301
|
Kleanthous H, Silverman JM, Makar KW, Yoon IK, Jackson N, Vaughn DW. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. NPJ Vaccines 2021; 6:128. [PMID: 34711846 PMCID: PMC8553742 DOI: 10.1038/s41541-021-00393-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Vaccination of the global population against COVID-19 is a great scientific, logistical, and moral challenge. Despite the rapid development and authorization of several full-length Spike (S) protein vaccines, the global demand outweighs the current supply and there is a need for safe, potent, high-volume, affordable vaccines that can fill this gap, especially in low- and middle-income countries. Whether SARS-CoV-2 S-protein receptor-binding domain (RBD)-based vaccines could fill this gap has been debated, especially with regards to its suitability to protect against emerging viral variants of concern. Given a predominance for elicitation of neutralizing antibodies (nAbs) that target RBD following natural infection or vaccination, a key biomarker of protection, there is merit for selection of RBD as a sole vaccine immunogen. With its high-yielding production and manufacturing potential, RBD-based vaccines offer an abundance of temperature-stable doses at an affordable cost. In addition, as the RBD preferentially focuses the immune response to potent and recently recognized cross-protective determinants, this domain may be central to the development of future pan-sarbecovirus vaccines. In this study, we review the data supporting the non-inferiority of RBD as a vaccine immunogen compared to full-length S-protein vaccines with respect to humoral and cellular immune responses against both the prototype pandemic SARS-CoV-2 isolate and emerging variants of concern.
Collapse
Affiliation(s)
| | | | | | - In-Kyu Yoon
- Coalition for Epidemic Preparedness Innovations, Greater London, UK
| | - Nicholas Jackson
- Coalition for Epidemic Preparedness Innovations, Greater London, UK.
| | | |
Collapse
|
302
|
Sariol CA, Serrano-Collazo C, Ortiz EJ, Pantoja P, Cruz L, Arana T, Atehortua D, Pabon-Carrero C, Espino AM. Limited impact of Delta variant’s mutations in the effectiveness of neutralization conferred by natural infection or COVID-19 vaccines in a Latino population. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.10.25.21265422. [PMID: 34729566 PMCID: PMC8562550 DOI: 10.1101/2021.10.25.21265422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The SARS-CoV-2 pandemic has impacted public health systems all over the world. The Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has increased virulence. Our data shows that pre-exposed individuals had similar neutralizing activity against the authentic COVID-19 strain and the Delta and Epsilon variants. After one vaccine dose, the neutralization capacity expands to all tested variants. Healthy vaccinated individuals showed a limited breadth of neutralization. One vaccine dose induced similar neutralizing antibodies against the Delta compared to the authentic strain. However, even after two doses, this capacity only expanded to the Epsilon variant.
Collapse
Affiliation(s)
- Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Department of Internal medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Edwin J. Ortiz
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Puerto Rico Science, Technology and Research Trust, PR, USA
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| | | | | | - Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
303
|
BNT162b2 mRNA Vaccination Leads to Long-Term Protection from COVID-19 Disease. Vaccines (Basel) 2021; 9:vaccines9101164. [PMID: 34696272 PMCID: PMC8538967 DOI: 10.3390/vaccines9101164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/18/2022] Open
Abstract
The efficacy of SARS-CoV-2 mRNA-based vaccines in preventing COVID-19 disease has been extensively demonstrated; however, it is of uttermost importance to acquire knowledge on the persistence of immune-protection both in terms of levels of neutralizing antibodies and specialized memory cells. This can provide important scientific basis for decisions on the need of additional vaccine doses and on when these should be administered thus resulting in an improvement in vaccination schedules. Here, we briefly report the changes in antibody levels and cellular immunity following BNT162b2 administration. We show an important fall in anti S1-Spike antibodies in BNT162b2 vaccinated subjects overtime, paralleled by a contextual consolidation of specific spike (S) T-cells, mainly of the CD8+ compartment. Contrariwise, CD4+ S-specific response shows a considerable interindividual variability. These data suggest that the well-known antibody drop in vaccinated subjects is replaced by memory cell consolidation that can protect from severe adverse effects of SARS-CoV-2 infection.
Collapse
|
304
|
Lee YS, Hong SH, Park HJ, Lee HY, Hwang JY, Kim SY, Park JW, Choi KS, Seong JK, Park SI, Lee SM, Hwang KA, Yun JW, Nam JH. Peptides Derived From S and N Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 Induce T Cell Responses: A Proof of Concept for T Cell Vaccines. Front Microbiol 2021; 12:732450. [PMID: 34630356 PMCID: PMC8498111 DOI: 10.3389/fmicb.2021.732450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape vaccine-induced neutralizing antibodies has indicated the importance of T cell responses against this virus. In this study, we highlight the SARS-CoV-2 epitopes that induce potent T cell responses and discuss whether T cell responses alone are adequate to confer protection against SARS-CoV-2 and describe the administration of 20 peptides with an RNA adjuvant in mice. The peptides have been synthesized based on SARS-CoV-2 spike and nucleocapsid protein sequences. Our study demonstrates that immunization with these peptides significantly increases the proportion of effector memory T cell population and interferon-γ (IFN-γ)-, interleukin-4 (IL-4)-, tumor necrosis factor-α (TNF-α)-, and granzyme B-producing T cells. Of these 20 peptides, four induce the generation of IFN-γ-producing T cells, elicit CD8+ T cell (CTL) responses in a dose-dependent manner, and induce cytotoxic T lymphocytes that eliminate peptide-pulsed target cells in vivo. Although it is not statistically significant, these peptide vaccines reduce viral titers in infected hamsters and alleviate pulmonary pathology in SARS-CoV-2-infected human ACE2 transgenic mice. These findings may aid the design of effective SARS-CoV-2 peptide vaccines, while providing insights into the role of T cells in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - So-Hee Hong
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Seo Yeon Kim
- Preclinical Research Center, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
| | - Kang-Seuk Choi
- BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Sang-In Park
- Scripps Korea Antibody Institute, Chuncheon, South Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, SML Genetree, Seoul, South Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea.,BK21 PLUS Program, The Catholic University of Korea, Bucheon, South Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea.,BK21 PLUS Program, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
305
|
Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, Kern F, Schwarz T, Mangold M, Unger C, Dörfler F, Kadler S, Rosowski J, Gürcan K, Uyar-Aydin Z, Frentsch M, Kurth F, Schnatbaum K, Eckey M, Hippenstiel S, Hocke A, Müller MA, Sawitzki B, Miltenyi S, Paul F, Mall MA, Wenschuh H, Voigt S, Drosten C, Lauster R, Lachman N, Sander LE, Corman VM, Röhmel J, Meyer-Arndt L, Thiel A, Giesecke-Thiel C. Cross-reactive CD4 + T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 2021; 374:eabh1823. [PMID: 34465633 PMCID: PMC10026850 DOI: 10.1126/science.abh1823] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functional relevance of preexisting cross-immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a subject of intense debate. Here, we show that human endemic coronavirus (HCoV)–reactive and SARS-CoV-2–cross-reactive CD4+ T cells are ubiquitous but decrease with age. We identified a universal immunodominant coronavirus-specific spike peptide (S816-830) and demonstrate that preexisting spike- and S816-830–reactive T cells were recruited into immune responses to SARS-CoV-2 infection and their frequency correlated with anti–SARS-CoV-2-S1-IgG antibodies. Spike–cross-reactive T cells were also activated after primary BNT162b2 COVID-19 messenger RNA vaccination and displayed kinetics similar to those of secondary immune responses. Our results highlight the functional contribution of preexisting spike–cross-reactive T cells in SARS-CoV-2 infection and vaccination. Cross-reactive immunity may account for the unexpectedly rapid induction of immunity after primary SARS-CoV-2 immunization and the high rate of asymptomatic or mild COVID-19 disease courses.
Collapse
Affiliation(s)
- Lucie Loyal
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Braun
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Larissa Henze
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beate Kruse
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Florian Kern
- JPT Peptide Technologies GmbH, Berlin, Germany
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Tatjana Schwarz
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clara Unger
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friederike Dörfler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Shirin Kadler
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jennifer Rosowski
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Kübrah Gürcan
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Zehra Uyar-Aydin
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Therapy-Induced Remodeling in Immuno-Oncology, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Maren Eckey
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A. Müller
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner, Berlin, Germany
| | | | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
- Institute for Virology, Universitätsklinikum Essen, Essen, Germany
| | - Christian Drosten
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Roland Lauster
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nils Lachman
- Institute for Transfusion Medicine, Tissue Typing Laboratory, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M. Corman
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Virology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lil Meyer-Arndt
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Clinical Neuroimmunology, NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Thiel
- Si-M/“Der Simulierte Mensch,” a Science Framework of Technische Universität Berlin and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt – Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| | - Claudia Giesecke-Thiel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Corresponding author. (A.T.); (C.G.-T.)
| |
Collapse
|
306
|
Hamelin DJ, Fournelle D, Grenier JC, Schockaert J, Kovalchik KA, Kubiniok P, Mostefai F, Duquette JD, Saab F, Sirois I, Smith MA, Pattijn S, Soudeyns H, Decaluwe H, Hussin J, Caron E. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA-supertype-dependent manner. Cell Syst 2021; 13:143-157.e3. [PMID: 34637888 PMCID: PMC8492600 DOI: 10.1016/j.cels.2021.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 02/09/2023]
Abstract
The rapid, global dispersion of SARS-CoV-2 has led to the emergence of a diverse range of variants. Here, we describe how the mutational landscape of SARS-CoV-2 has shaped HLA-restricted T cell immunity at the population level during the first year of the pandemic. We analyzed a total of 330,246 high-quality SARS-CoV-2 genome assemblies, sampled across 143 countries and all major continents from December 2019 to December 2020 before mass vaccination or the rise of the Delta variant. We observed that proline residues are preferentially removed from the proteome of prevalent mutants, leading to a predicted global loss of SARS-CoV-2 T cell epitopes in individuals expressing HLA-B alleles of the B7 supertype family; this is largely driven by a dominant C-to-U mutation type at the RNA level. These results indicate that B7-supertype-associated epitopes, including the most immunodominant ones, were more likely to escape CD8+ T cell immunosurveillance during the first year of the pandemic.
Collapse
Affiliation(s)
| | - Dominique Fournelle
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Christophe Grenier
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jana Schockaert
- ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium
| | | | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | | | - Frederic Saab
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | | | - Martin A Smith
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Sofie Pattijn
- ImmunXperts, a Nexelis Group Company, 6041 Gosselies, Belgium
| | - Hugo Soudeyns
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julie Hussin
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
307
|
Szeto C, Nguyen AT, Lobos CA, Chatzileontiadou DSM, Jayasinghe D, Grant EJ, Riboldi-Tunnicliffe A, Smith C, Gras S. Molecular Basis of a Dominant SARS-CoV-2 Spike-Derived Epitope Presented by HLA-A*02:01 Recognised by a Public TCR. Cells 2021; 10:cells10102646. [PMID: 34685626 PMCID: PMC8534114 DOI: 10.3390/cells10102646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
The data currently available on how the immune system recognises the SARS-CoV-2 virus is growing rapidly. While there are structures of some SARS-CoV-2 proteins in complex with antibodies, which helps us understand how the immune system is able to recognise this new virus; however, we lack data on how T cells are able to recognise this virus. T cells, especially the cytotoxic CD8+ T cells, are critical for viral recognition and clearance. Here we report the X-ray crystallography structure of a T cell receptor, shared among unrelated individuals (public TCR) in complex with a dominant spike-derived CD8+ T cell epitope (YLQ peptide). We show that YLQ activates a polyfunctional CD8+ T cell response in COVID-19 recovered patients. We detail the molecular basis for the shared TCR gene usage observed in HLA-A*02:01+ individuals, providing an understanding of TCR recognition towards a SARS-CoV-2 epitope. Interestingly, the YLQ peptide conformation did not change upon TCR binding, facilitating the high-affinity interaction observed.
Collapse
Affiliation(s)
- Christopher Szeto
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea T. Nguyen
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christian A. Lobos
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Demetra S. M. Chatzileontiadou
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Dhilshan Jayasinghe
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | | | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie Gras
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (C.S.); (A.T.N.); (C.A.L.); (D.S.M.C.); (D.J.); (E.J.G.)
- Viral and Structural Immunology Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
308
|
A flow cytometry-based proliferation assay for clinical evaluation of T-cell memory against SARS-CoV-2. J Immunol Methods 2021; 499:113159. [PMID: 34597619 PMCID: PMC8484816 DOI: 10.1016/j.jim.2021.113159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
In general, the method of choice for evaluating immunity against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is detection of antibodies against the virus in patient sera. However, this is not feasible in patients who do not produce antibodies, either due to a primary immunodeficiency or secondary to treatment with immunosuppressive drugs. Assessment of the antiviral T cell response is an alternative to serological tests, but most T cell assays are labor-intensive and unsuitable for a clinical routine laboratory. We developed a flow cytometry-based assay for T cell proliferative responses against SARS-CoV-2, based on the detection of blast transformation of activated cells. The assay was validated on previously SARS-CoV-2 infected individuals and healthy seronegative blood donors, displaying 74% sensitivity and 96% specificity for previous infection with SARS-CoV-2. The usefulness of the assay was demonstrated in a patient with common variable immunodeficiency with a history of COVID-19. The described T-cell assay is a clinically relevant complement to serology in the evaluation of cellular immunity against SARS-CoV-2, which can be emulated by any routine lab with flow cytometric competence.
Collapse
|
309
|
Schrörs B, Riesgo-Ferreiro P, Sorn P, Gudimella R, Bukur T, Rösler T, Löwer M, Sahin U. Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates. PLoS One 2021; 16:e0249254. [PMID: 34570776 PMCID: PMC8475993 DOI: 10.1371/journal.pone.0249254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/01/2021] [Indexed: 12/03/2022] Open
Abstract
Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 1,036,030 SARS-CoV-2 genome assemblies and 30,806 NGS datasets from GISAID and European Nucleotide Archive (ENA) focusing on non-synonymous mutations in the spike protein. Only around 2.5% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.6% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 5,472 distinct variants were found in total. The majority of the observed variants were recurrent, but only 21 and 14 recurrent variants were found in at least 1% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 2.6% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the continuous importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Schrörs
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Pablo Riesgo-Ferreiro
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Patrick Sorn
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Ranganath Gudimella
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Thomas Bukur
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Thomas Rösler
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Martin Löwer
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
| | - Ugur Sahin
- Biomarker Discovery Center, Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz Gemeinnützige GmbH, Mainz, Rhineland-Palantinate, Germany
- CEO, BioNTech SE, Mainz, Rhineland-Palantinate, Germany
| |
Collapse
|
310
|
Painter MM, Mathew D, Goel RR, Apostolidis SA, Pattekar A, Kuthuru O, Baxter AE, Herati RS, Oldridge DA, Gouma S, Hicks P, Dysinger S, Lundgreen KA, Kuri-Cervantes L, Adamski S, Hicks A, Korte S, Giles JR, Weirick ME, McAllister CM, Dougherty J, Long S, D'Andrea K, Hamilton JT, Betts MR, Bates P, Hensley SE, Grifoni A, Weiskopf D, Sette A, Greenplate AR, Wherry EJ. Rapid induction of antigen-specific CD4 + T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 2021; 54:2133-2142.e3. [PMID: 34453880 PMCID: PMC8361141 DOI: 10.1016/j.immuni.2021.08.001] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.
Collapse
MESH Headings
- 2019-nCoV Vaccine mRNA-1273
- Adult
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- BNT162 Vaccine
- CD8-Positive T-Lymphocytes/immunology
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- Female
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunologic Memory
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Male
- Middle Aged
- Peptides/immunology
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Th1 Cells/immunology
- Vaccination
- Young Adult
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ajinkya Pattekar
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ramin S Herati
- NYU Langone Vaccine Center, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sharon Adamski
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amanda Hicks
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Scott Korte
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Madison E Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christopher M McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kurt D'Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Immune Health™, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
311
|
Zhang H, Deng S, Ren L, Zheng P, Hu X, Jin T, Tan X. Profiling CD8 + T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. Cell Rep 2021; 36:109708. [PMID: 34506741 PMCID: PMC8390359 DOI: 10.1016/j.celrep.2021.109708] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Cellular immunity is important in determining the disease severity of COVID-19 patients. However, current understanding of SARS-CoV-2 epitopes mediating cellular immunity is limited. Here we apply T-Scan, a recently developed method, to identify CD8+ T cell epitopes from COVID-19 patients of four major HLA-A alleles. Several identified epitopes are conserved across human coronaviruses, which might mediate pre-existing cellular immunity to SARS-CoV-2. In addition, we identify and validate four epitopes that were mutated in the newly circulating variants, including the Delta variant. The mutations significantly reduce T cell responses to the epitope peptides in convalescent and vaccinated samples. We further determine the crystal structure of HLA-A∗02:01/HLA-A∗24:02 in complex with the epitope KIA_S/NYN_S, respectively, which reveals the importance of K417 and L452 of the spike protein for binding to HLA. Our data suggest that evading cellular immunity might contribute to the increased transmissibility and disease severity associated with the new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hang Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shasha Deng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Peiyi Zheng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaowen Hu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
312
|
Boni C, Cavazzini D, Bolchi A, Rossi M, Vecchi A, Tiezzi C, Barili V, Fisicaro P, Ferrari C, Ottonello S. Degenerate CD8 Epitopes Mapping to Structurally Constrained Regions of the Spike Protein: A T Cell-Based Way-Out From the SARS-CoV-2 Variants Storm. Front Immunol 2021; 12:730051. [PMID: 34566990 PMCID: PMC8455995 DOI: 10.3389/fimmu.2021.730051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023] Open
Abstract
There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.
Collapse
Affiliation(s)
- Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| |
Collapse
|
313
|
Tan AT, Lim JM, Le Bert N, Kunasegaran K, Chia A, Qui MD, Tan N, Chia WN, de Alwis R, Ying D, Sim JX, Ooi EE, Wang LF, Chen MIC, Young BE, Hsu LY, Low JG, Lye DC, Bertoletti A. Rapid measurement of SARS-CoV-2 spike T cells in whole blood from vaccinated and naturally infected individuals. J Clin Invest 2021; 131:152379. [PMID: 34623327 DOI: 10.1172/jci152379] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Defining the correlates of protection necessary to manage the COVID-19 pandemic requires the analysis of both antibody and T cell parameters, but the complexity of traditional tests limits virus-specific T cell measurements. We tested the sensitivity and performance of a simple and rapid SARS-CoV-2 spike protein-specific T cell test based on the stimulation of whole blood with peptides covering the SARS-CoV-2 spike protein, followed by cytokine (IFN-γ, IL-2) measurement in different cohorts including BNT162b2-vaccinated individuals (n = 112), convalescent asymptomatic and symptomatic COVID-19 patients (n = 130), and SARS-CoV-1-convalescent individuals (n = 12). The sensitivity of this rapid test is comparable to that of traditional methods of T cell analysis (ELISPOT, activation-induced marker). Using this test, we observed a similar mean magnitude of T cell responses between the vaccinees and SARS-CoV-2 convalescents 3 months after vaccination or virus priming. However, a wide heterogeneity of the magnitude of spike-specific T cell responses characterized the individual responses, irrespective of the time of analysis. The magnitude of these spike-specific T cell responses cannot be predicted from the neutralizing antibody levels. Hence, both humoral and cellular spike-specific immunity should be tested after vaccination to define the correlates of protection necessary to evaluate current vaccine strategies.
Collapse
Affiliation(s)
- Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Joey Me Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kamini Kunasegaran
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Adeline Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Martin Dc Qui
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Nicole Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Ding Ying
- National Centre for Infectious Diseases (NCID), Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Singapore
| | - Jean Xy Sim
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Barnaby E Young
- National Centre for Infectious Diseases (NCID), Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Singapore
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jenny Gh Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - David C Lye
- National Centre for Infectious Diseases (NCID), Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Singapore.,Yong Loo Lin School of Medicine, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Singapore Immunology Network, A*STAR, Singapore
| |
Collapse
|
314
|
Ma T, Ryu H, McGregor M, Babcock B, Neidleman J, Xie G, George AF, Frouard J, Murray V, Gill G, Ghosn E, Newell EW, Lee SA, Roan NR. Protracted yet Coordinated Differentiation of Long-Lived SARS-CoV-2-Specific CD8 + T Cells during Convalescence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:1344-1356. [PMID: 34389625 PMCID: PMC8763019 DOI: 10.4049/jimmunol.2100465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022]
Abstract
CD8+ T cells can potentiate long-lived immunity against COVID-19. We screened longitudinally-sampled convalescent human donors against SARS-CoV-2 tetramers and identified a participant with an immunodominant response against residues 322 to 311 of nucleocapsid (Nuc322-331), a peptide conserved in all variants of concern reported to date. We conducted 38-parameter cytometry by time of flight on tetramer-identified Nuc322-331-specific CD8+ T cells and on CD4+ and CD8+ T cells recognizing the entire nucleocapsid and spike proteins, and took 32 serological measurements. We discovered a coordination of the Nuc322-331-specific CD8+ T response with both the CD4+ T cell and Ab pillars of adaptive immunity. Over the approximately six month period of convalescence monitored, we observed a slow and progressive decrease in the activation state and polyfunctionality of Nuc322-331-specific CD8+ T cells, accompanied by an increase in their lymph node-homing and homeostatic proliferation potential. These results suggest that following a typical case of mild COVID-19, SARS-CoV-2-specific CD8+ T cells not only persist but continuously differentiate in a coordinated fashion well into convalescence into a state characteristic of long-lived, self-renewing memory.
Collapse
Affiliation(s)
- Tongcui Ma
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Matthew McGregor
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Benjamin Babcock
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Ashley F George
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA
- Department of Urology, University of California San Francisco, San Francisco, CA
| | - Victoria Murray
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Gurjot Gill
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Eliver Ghosn
- Department of Medicine, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
- Department of Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University, Atlanta, GA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchison Cancer Research Center, Seattle, WA
| | - Sulggi A Lee
- Zuckerberg San Francisco General Hospital and the University of California, San Francisco, CA; and
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA;
- Department of Urology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
315
|
Verhagen J, van der Meijden ED, Lang V, Kremer AE, Völkl S, Mackensen A, Aigner M, Kremer AN. Human CD4 + T cells specific for dominant epitopes of SARS-CoV-2 Spike and Nucleocapsid proteins with therapeutic potential. Clin Exp Immunol 2021; 205:363-378. [PMID: 34061349 PMCID: PMC8239517 DOI: 10.1111/cei.13627] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly throughout the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralizing antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of nine immunodominant epitopes and characterize T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR-αβ sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/therapy
- COVID-19/virology
- Clone Cells/immunology
- Clone Cells/virology
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/immunology
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immunization, Passive
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Male
- Middle Aged
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Johan Verhagen
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Edith D van der Meijden
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Vanessa Lang
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Anita N Kremer
- Department of Medicine 5, Haematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
316
|
Saba AA, Adiba M, Saha P, Hosen MI, Chakraborty S, Nabi AHMN. An in-depth in silico and immunoinformatics approach for designing a potential multi-epitope construct for the effective development of vaccine to combat against SARS-CoV-2 encompassing variants of concern and interest. Comput Biol Med 2021; 136:104703. [PMID: 34352457 PMCID: PMC8321692 DOI: 10.1016/j.compbiomed.2021.104703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/03/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest of the several viral pathogens that have acted as a threat to human health around the world. Thus, to prevent COVID-19 and control the outbreak, the development of vaccines against SARS-CoV-2 is one of the most important strategies at present. The study aimed to design a multi-epitope vaccine (MEV) against SARS-CoV-2. For the development of a more effective vaccine, 1549 nucleotide sequences were taken into consideration, including the variants of concern (B.1.1.7, B.1.351, P.1 and, B.1.617.2) and variants of interest (B.1.427, B.1.429, B.1.526, B.1.617.1 and P.2). A total of 11 SARS-CoV-2 proteins (S, N, E, M, ORF1ab polyprotein, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10) were targeted for T-cell epitope prediction and S protein was targeted for B-cell epitope prediction. MEV was constructed using linkers and adjuvant beta-defensin. The vaccine construct was verified, based on its antigenicity, physicochemical properties, and its binding potential, with toll-like receptors (TLR2, TLR4), ACE2 receptor and B cell receptor. The selected vaccine construct showed considerable binding with all the receptors and a significant immune response, including elevated antibody titer and B cell population along with augmented activity of TH cells, Tc cells and NK cells. Thus, immunoinformatics and in silico-based approaches were used for constructing MEV which is capable of eliciting both innate and adaptive immunity. In conclusion, the vaccine construct developed in this study has all the potential for the development of a next-generation vaccine which may in turn effectively combat the new variants of SARS-CoV-2 identified so far. However, in vitro and animal studies are warranted to justify our findings for its utility as probable preventive measure.
Collapse
Affiliation(s)
- Abdullah Al Saba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Maisha Adiba
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Piyal Saha
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Md Ismail Hosen
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - Sajib Chakraborty
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh.
| |
Collapse
|
317
|
Heide J, Schulte S, Kohsar M, Brehm TT, Herrmann M, Karsten H, Marget M, Peine S, Johansson AM, Sette A, Lütgehetmann M, Kwok WW, Sidney J, Schulze zur Wiesch J. Broadly directed SARS-CoV-2-specific CD4+ T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19. PLoS Pathog 2021; 17:e1009842. [PMID: 34529740 PMCID: PMC8445433 DOI: 10.1371/journal.ppat.1009842] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to define the breadth and specificity of dominant SARS-CoV-2-specific T cell epitopes using a comprehensive set of 135 overlapping 15-mer peptides covering the SARS-CoV-2 envelope (E), membrane (M) and nucleoprotein (N) in a cohort of 34 individuals with acute (n = 10) and resolved (n = 24) COVID-19. Following short-term virus-specific in vitro cultivation, the single peptide-specific CD4+ T cell response of each patient was screened using enzyme linked immuno spot assay (ELISpot) and confirmed by single-peptide intracellular cytokine staining (ICS) for interferon-γ (IFN-γ) production. 97% (n = 33) of patients elicited one or more N, M or E-specific CD4+ T cell responses and each patient targeted on average 21.7 (range 0-79) peptide specificities. Overall, we identified 10 N, M or E-specific peptides that showed a response frequency of more than 36% and five of them showed high binding affinity to multiple HLA class II binders in subsequent in vitro HLA binding assays. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, namely Mem_P30 (aa146-160), Mem_P36 (aa176-190), both located within the M protein, and Ncl_P18 (aa86-100) located within the N protein. These peptides were further defined in terms of length and HLA restriction. Based on this epitope and restriction data we developed a novel DRB*11 tetramer (Mem_aa145-164) and examined the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient. This detailed characterization of single T cell peptide responses demonstrates that SARS-CoV-2 infection universally primes a broad T cell response directed against multiple specificities located within the N, M and E structural protein.
Collapse
Affiliation(s)
- Janna Heide
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Sophia Schulte
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Matin Kohsar
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Marissa Herrmann
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Hendrik Karsten
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Matthias Marget
- Department of Transfusion Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center, Hamburg-Eppendorf, Germany
| | - Alexandra M. Johansson
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, California, United States of America
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center, Hamburg-Eppendorf, Germany
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - John Sidney
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, California, United States of America
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
318
|
Wilhelm A, Toptan T, Pallas C, Wolf T, Goetsch U, Gottschalk R, Vehreschild MJGT, Ciesek S, Widera M. Antibody-Mediated Neutralization of Authentic SARS-CoV-2 B.1.617 Variants Harboring L452R and T478K/E484Q. Viruses 2021; 13:v13091693. [PMID: 34578275 DOI: 10.1101/2021.08.09.21261704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 05/24/2023] Open
Abstract
The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.51-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which, however, might be circumvented by combination therapy with casirivimab together.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Timo Wolf
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Udo Goetsch
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany
| | - Rene Gottschalk
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
- University Center for Infectious Diseases (UCI), University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Branch Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| |
Collapse
|
319
|
Wilhelm A, Toptan T, Pallas C, Wolf T, Goetsch U, Gottschalk R, Vehreschild MJGT, Ciesek S, Widera M. Antibody-Mediated Neutralization of Authentic SARS-CoV-2 B.1.617 Variants Harboring L452R and T478K/E484Q. Viruses 2021; 13:1693. [PMID: 34578275 PMCID: PMC8473269 DOI: 10.3390/v13091693] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/23/2022] Open
Abstract
The capacity of convalescent and vaccine-elicited sera and monoclonal antibodies (mAb) to neutralize SARS-CoV-2 variants is currently of high relevance to assess the protection against infections. We performed a cell culture-based neutralization assay focusing on authentic SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.427/B.1.429 (Epsilon), all harboring the spike substitution L452R. We found that authentic SARS-CoV-2 variants harboring L452R had reduced susceptibility to convalescent and vaccine-elicited sera and mAbs. Compared to B.1, Kappa and Delta showed a reduced neutralization by convalescent sera by a factor of 8.00 and 5.33, respectively, which constitutes a 2-fold greater reduction when compared to Epsilon. BNT2b2 and mRNA1273 vaccine-elicited sera were less effective against Kappa, Delta, and Epsilon compared to B.1. No difference was observed between Kappa and Delta towards vaccine-elicited sera, whereas convalescent sera were 1.51-fold less effective against Delta, respectively. Both B.1.617 variants Kappa (+E484Q) and Delta (+T478K) were less susceptible to either casirivimab or imdevimab. In conclusion, in contrast to the parallel circulating Kappa variant, the neutralization efficiency of convalescent and vaccine-elicited sera against Delta was moderately reduced. Delta was resistant to imdevimab, which, however, might be circumvented by combination therapy with casirivimab together.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (A.W.); (T.T.); (C.P.); (S.C.)
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (A.W.); (T.T.); (C.P.); (S.C.)
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (A.W.); (T.T.); (C.P.); (S.C.)
| | - Timo Wolf
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (T.W.); (M.J.G.T.V.)
| | - Udo Goetsch
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany; (U.G.); (R.G.)
| | - Rene Gottschalk
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany; (U.G.); (R.G.)
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (T.W.); (M.J.G.T.V.)
- University Center for Infectious Diseases (UCI), University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (A.W.); (T.T.); (C.P.); (S.C.)
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
- Branch Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; (A.W.); (T.T.); (C.P.); (S.C.)
| |
Collapse
|
320
|
Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W, Rosenfeld AM, Lundgreen KA, Reynaldi A, Khoury DS, Pattekar A, Gouma S, Kuri-Cervantes L, Hicks P, Dysinger S, Hicks A, Sharma H, Herring S, Korte S, Baxter AE, Oldridge DA, Giles JR, Weirick ME, McAllister CM, Awofolaju M, Tanenbaum N, Drapeau EM, Dougherty J, Long S, D'Andrea K, Hamilton JT, McLaughlin M, Williams JC, Adamski S, Kuthuru O, Frank I, Betts MR, Vella LA, Grifoni A, Weiskopf D, Sette A, Hensley SE, Davenport MP, Bates P, Luning Prak ET, Greenplate AR, Wherry EJ. mRNA Vaccination Induces Durable Immune Memory to SARS-CoV-2 with Continued Evolution to Variants of Concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.23.457229. [PMID: 34462751 PMCID: PMC8404899 DOI: 10.1101/2021.08.23.457229] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naïve and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies.
Collapse
Affiliation(s)
- Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Wenzhao Meng
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Harsh Sharma
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Sarah Herring
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Scott Korte
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Madison E Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Moses Awofolaju
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth M Drapeau
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jacob T Hamilton
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Sharon Adamski
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian Frank
- Division of Infectious Disease, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura A Vella
- Division of Infectious Disease, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USAs
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
321
|
Lanuti P, Rossi C, Cicalini I, Pierdomenico L, Damiani V, Semeraro D, Verrocchio S, Del Boccio P, Evangelista A, Sarra A, Zucchelli M, Bologna G, Simeone P, Catitti G, Di Marco F, Stefanetti S, Vespa S, Sinjari B, Bucci I, De Laurenzi V, Di Battista T, Stuppia L, Pieragostino D. Picture of the Favourable Immune Profile Induced by Anti-SARS-CoV-2 Vaccination. Biomedicines 2021; 9:biomedicines9081035. [PMID: 34440239 PMCID: PMC8391252 DOI: 10.3390/biomedicines9081035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic has hit people’s health, economy, and society worldwide. Great confidence in returning to normality has been placed in the vaccination campaign. The knowledge of individual immune profiles and the time required to achieve immunological protection is crucial to choose the best vaccination strategy. We compared anti-S1 antibody levels produced over time by BNT162b2 and AZD1222 vaccines and evaluated the induction of antigen-specific T-cells. A total of 2569 anti-SARS-CoV-2 IgG determination on dried blood spot samples were carried out, firstly in a cohort of 1181 individuals at random time-points, and subsequently, in an independent cohort of 88 vaccinated subjects, up to the seventeenth week from the first dose administration. Spike-specific T-cells were analysed in seronegative subjects between the two doses. AZD1222 induced lower anti-S1 IgG levels as compared to BNT162b2. Moreover, 40% of AZD1222 vaccinated subjects and 3% of BNT162b2 individuals resulted in seronegative during all the time-points, between the two doses. All these subjects developed antigen-specific T cells, already after the first dose. These results suggest that this test represents an excellent tool for a wide sero-surveillance. Both vaccines induce a favourable immune profile guaranteeing efficacy against severe adverse effects of SARS-CoV-2 infection, already after the first dose administration.
Collapse
Affiliation(s)
- Paola Lanuti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Rossi
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Verena Damiani
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Daniela Semeraro
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
| | - Sara Verrocchio
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Adelia Evangelista
- Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, G. d’Annunzio University of Chieti-Pescara, 65127 Pescara, Italy; (A.E.); (A.S.); (T.D.B.)
| | - Annalina Sarra
- Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, G. d’Annunzio University of Chieti-Pescara, 65127 Pescara, Italy; (A.E.); (A.S.); (T.D.B.)
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Giuseppina Bologna
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
| | - Simone Stefanetti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
| | - Simone Vespa
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Bruna Sinjari
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Medicine and Aging Science, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Tonio Di Battista
- Department of Philosophical, Pedagogical and Economic-Quantitative Sciences, G. d’Annunzio University of Chieti-Pescara, 65127 Pescara, Italy; (A.E.); (A.S.); (T.D.B.)
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.L.); (C.R.); (I.C.); (L.P.); (V.D.); (D.S.); (S.V.); (P.D.B.); (M.Z.); (G.B.); (P.S.); (G.C.); (F.D.M.); (S.S.); (S.V.); (I.B.); (V.D.L.); (L.S.)
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: ; Tel.: +39-0871-541593
| |
Collapse
|
322
|
Yaqinuddin A, Shafqat A, Kashir J, Alkattan K. Effect of SARS-CoV-2 Mutations on the Efficacy of Antibody Therapy and Response to Vaccines. Vaccines (Basel) 2021; 9:914. [PMID: 34452039 PMCID: PMC8402590 DOI: 10.3390/vaccines9080914] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 causes severe acute respiratory syndrome, which has led to significant morbidity and mortality around the world. Since its emergence, extensive prophylactic and therapeutic countermeasures have been employed to successfully prevent the spread of COVID-19. Extensive work has been undertaken on using monoclonal antibody therapies, mass vaccination programs, and antiviral drugs to prevent and treat COVID-19. However, since antiviral drugs could take years to become widely available, immunotherapy and vaccines currently appear to be the most feasible option. In December 2020, the first vaccine against SARS-CoV-2 was approved by the World Health Organization (WHO) and, subsequently, many other vaccines were approved for use by different international regulators in different countries. Most monoclonal antibodies (mAbs) and vaccines target the SARS-CoV-2 surface spike (S) protein. Recently, mutant (or variant) SARS-CoV-2 strains with increased infectivity and virulence that evade protective host antibodies present either due to infection, antibody therapy, or vaccine administration have emerged. In this manuscript, we discuss the different monoclonal antibody and vaccine therapies available against COVID-19 and how the efficacy of these therapies is affected by the emergence of variants of SARS-CoV-2. We also discuss strategies that might help society cope with variants that could neutralize the effects of immunotherapy and escape the protective immunity conferred by vaccines.
Collapse
Affiliation(s)
- Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11533, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (J.K.); (K.A.)
| |
Collapse
|
323
|
Nilsson JB, Grifoni A, Tarke A, Sette A, Nielsen M. PopCover-2.0. Improved Selection of Peptide Sets With Optimal HLA and Pathogen Diversity Coverage. Front Immunol 2021; 12:728936. [PMID: 34484239 PMCID: PMC8416060 DOI: 10.3389/fimmu.2021.728936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
The use of minimal peptide sets offers an appealing alternative for design of vaccines and T cell diagnostics compared to conventional whole protein approaches. T cell immunogenicity towards peptides is contingent on binding to human leukocyte antigen (HLA) molecules of the given individual. HLA is highly polymorphic, and each variant typically presents a different repertoire of peptides. This polymorphism combined with pathogen diversity challenges the rational selection of peptide sets with broad immunogenic potential and population coverage. Here we propose PopCover-2.0, a simple yet highly effective method, for resolving this challenge. The method takes as input a set of (predicted) CD8 and/or CD4 T cell epitopes with associated HLA restriction and pathogen strain annotation together with information on HLA allele frequencies, and identifies peptide sets with optimal pathogen and HLA (class I and II) coverage. PopCover-2.0 was benchmarked on historic data in the context of HIV and SARS-CoV-2. Further, the immunogenicity of the selected SARS-CoV-2 peptides was confirmed by experimentally validating the peptide pools for T cell responses in a panel of SARS-CoV-2 infected individuals. In summary, PopCover-2.0 is an effective method for rational selection of peptide subsets with broad HLA and pathogen coverage. The tool is available at https://services.healthtech.dtu.dk/service.php?PopCover-2.0.
Collapse
Affiliation(s)
- Jonas Birkelund Nilsson
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
324
|
Karami Fath M, Jahangiri A, Ganji M, Sefid F, Payandeh Z, Hashemi ZS, Pourzardosht N, Hessami A, Mard-Soltani M, Zakeri A, Rahbar MR, Khalili S. SARS-CoV-2 Proteome Harbors Peptides Which Are Able to Trigger Autoimmunity Responses: Implications for Infection, Vaccination, and Population Coverage. Front Immunol 2021; 12:705772. [PMID: 34447375 PMCID: PMC8383889 DOI: 10.3389/fimmu.2021.705772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sadat Hashemi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Anahita Hessami
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Rahbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
325
|
Alon D, Paitan Y, Robinson E, Ganor N, Lipovetsky J, Yerushalmi R, Cohen CJ, Raiter A. Downregulation of CD45 Signaling in COVID-19 Patients Is Reversed by C24D, a Novel CD45 Targeting Peptide. Front Med (Lausanne) 2021; 8:675963. [PMID: 34414199 PMCID: PMC8369232 DOI: 10.3389/fmed.2021.675963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
CD45, the predominant transmembrane tyrosine phosphatase in leukocytes, is required for the efficient induction of T cell receptor signaling and activation. We recently reported that the CD45-intracellular signals in peripheral blood mononuclear cells (PBMCs) of triple negative breast cancer (TNBC) patients are inhibited. We also reported that C24D, an immune modulating therapeutic peptide, binds to CD45 on immune-suppressed cells and resets the functionality of the immune system via the CD45 signaling pathway. Various studies have demonstrated that also viruses can interfere with the functions of CD45 and that patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are immune-suppressed. Given the similarity between the role of CD45 in viral immune suppression and our findings on TNBC, we hypothesized that the C24D peptide may have a similar "immune-resetting" effect on PBMCs from COVID-19 patients as it did on PBMCs from TNBC patients. We tested this hypothesis by comparing the CD45/TCR intracellular signaling in PBMCs from ten COVID-19 patients vs. PBMCs from ten healthy volunteers. Herein, we report our findings, demonstrating the immune reactivating effect of C24D via the phosphorylation of the tyrosine 505 and 394 in Lck, the tyrosine 493 in ZAP-70 and the tyrosine 172 in VAV-1 proteins in the CD45 signaling pathway. Despite the relatively small number of patients in this report, the results demonstrate that C24D rescued CD45 signaling. Given the central role played by CD45 in the immune system, we suggest CD45 as a potential therapeutic target.
Collapse
Affiliation(s)
- Danny Alon
- Department of Medicine A, Meir Medical Center, Kfar Saba, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Paitan
- Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Eyal Robinson
- Department of Medicine B, Meir Medical Center, Kfar Saba, Israel
| | - Nirit Ganor
- Microbiology Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Julia Lipovetsky
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Rinat Yerushalmi
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Cyrille J. Cohen
- Laboratory of Tumor Immunotherapy, The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Annat Raiter
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| |
Collapse
|
326
|
Tarke A, Sidney J, Methot N, Yu ED, Zhang Y, Dan JM, Goodwin B, Rubiro P, Sutherland A, Wang E, Frazier A, Ramirez SI, Rawlings SA, Smith DM, da Silva Antunes R, Peters B, Scheuermann RH, Weiskopf D, Crotty S, Grifoni A, Sette A. Impact of SARS-CoV-2 variants on the total CD4 + and CD8 + T cell reactivity in infected or vaccinated individuals. Cell Rep Med 2021; 2:100355. [PMID: 34230917 PMCID: PMC8249675 DOI: 10.1016/j.xcrm.2021.100355] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023]
Abstract
The emergence of SARS-CoV-2 variants with evidence of antibody escape highlight the importance of addressing whether the total CD4+ and CD8+ T cell recognition is also affected. Here, we compare SARS-CoV-2-specific CD4+ and CD8+ T cells against the B.1.1.7, B.1.351, P.1, and CAL.20C lineages in COVID-19 convalescents and in recipients of the Moderna (mRNA-1273) or Pfizer/BioNTech (BNT162b2) COVID-19 vaccines. The total reactivity against SARS-CoV-2 variants is similar in terms of magnitude and frequency of response, with decreases in the 10%-22% range observed in some assay/VOC combinations. A total of 7% and 3% of previously identified CD4+ and CD8+ T cell epitopes, respectively, are affected by mutations in the various VOCs. Thus, the SARS-CoV-2 variants analyzed here do not significantly disrupt the total SARS-CoV-2 T cell reactivity; however, the decreases observed highlight the importance for active monitoring of T cell reactivity in the context of SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa 16132, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Benjamin Goodwin
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sydney I. Ramirez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Stephen A. Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Davey M. Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Richard H. Scheuermann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California, San Diego, San Diego, CA 92093, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
327
|
Kang CK, Kim M, Lee S, Kim G, Choe PG, Park WB, Kim NJ, Lee CH, Kim IS, Jung K, Lee DS, Shin HM, Kim HR, Oh MD. Longitudinal Analysis of Human Memory T-Cell Response According to the Severity of Illness up to 8 Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Infect Dis 2021; 224:39-48. [PMID: 33755725 PMCID: PMC8083680 DOI: 10.1093/infdis/jiab159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Understanding the memory T-cell response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial for assessing the longevity of protective immunity after SARS-CoV-2 infection or coronavirus disease-2019 (COVID-19) vaccination. However, the longitudinal memory T-cell response up to 8 months post-symptom onset (PSO) according to the severity of illness is unknown. Methods We analyzed peripheral blood mononuclear cells (PBMCs) from healthy volunteers or patients with COVID-19 who experienced asymptomatic, mild, or severe illness at 2, 5, and 8 months PSO. SARS-CoV-2 spike, nucleocapsid, and membrane protein-stimulated PBMCs were subjected to flow cytometry analysis Results A total of 24 patients—seven asymptomatic and nine with mild and eight with severe disease—as well as six healthy volunteers were analyzed. SARS-CoV-2-specific OX40 +CD137 + CD4 + T cells and CD69 +CD137 + CD8 + T cells persisted at 8 months PSO. Also, antigen-specific cytokine-producing or polyfunctional CD4 + T cells were maintained for up to 8 months PSO. Memory CD4 + T-cell responses tended to be greater in patients who had severe illness than in those with mild or asymptomatic disease. Conclusions Memory response to SARS-CoV-2, based on the frequency and functionality, persists for 8 months PSO. Further investigations involving its longevity and protective effect from reinfection are warranted.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Ik Soo Kim
- Department of Microbiology, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Keehoon Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.,BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myoung-Don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
328
|
Copley HC, Gragert L, Leach AR, Kosmoliaptsis V. Influence of HLA Class II Polymorphism on Predicted Cellular Immunity Against SARS-CoV-2 at the Population and Individual Level. Front Immunol 2021; 12:669357. [PMID: 34349756 PMCID: PMC8327207 DOI: 10.3389/fimmu.2021.669357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 01/16/2023] Open
Abstract
Development of adaptive immunity after COVID-19 and after vaccination against SARS-CoV-2 is predicated on recognition of viral peptides, presented on HLA class II molecules, by CD4+ T-cells. We capitalised on extensive high-resolution HLA data on twenty five human race/ethnic populations to investigate the role of HLA polymorphism on SARS-CoV-2 immunogenicity at the population and individual level. Within populations, we identify wide inter-individual variability in predicted peptide presentation from structural, non-structural and accessory SARS-CoV-2 proteins, according to individual HLA genotype. However, we find similar potential for anti-SARS-CoV-2 cellular immunity at the population level suggesting that HLA polymorphism is unlikely to account for observed disparities in clinical outcomes after COVID-19 among different race/ethnic groups. Our findings provide important insight on the potential role of HLA polymorphism on development of protective immunity after SARS-CoV-2 infection and after vaccination and a firm basis for further experimental studies in this field.
Collapse
Affiliation(s)
- Hannah C. Copley
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Loren Gragert
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, United States
- Bioinformatics Research, National Marrow Donor Program, Minneapolis, MN, United States
| | - Andrew R. Leach
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
- National Institute of Health Research (NIHR) Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
329
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
330
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
331
|
Gallerani E, Proietto D, Dallan B, Campagnaro M, Pacifico S, Albanese V, Marzola E, Marconi P, Caputo A, Appay V, Gavioli R, Nicoli F. Impaired Priming of SARS-CoV-2-Specific Naive CD8 + T Cells in Older Subjects. Front Immunol 2021; 12:693054. [PMID: 34326844 PMCID: PMC8315546 DOI: 10.3389/fimmu.2021.693054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is associated with severe symptoms and death upon SARS-CoV-2 infection. Virus-specific CD8+ T-cell responses have shown to be protective toward critical COVID-19 manifestations, suggesting that suboptimal cellular immunity may contribute to the age-pattern of the disease. The induction of a CD8+ T-cell response against an emerging pathogen like SARS-CoV-2 relies on the activation of naive T cells. To investigate whether the primary CD8+ T-cell response against this virus is defective in advanced age, we used an in vitro approach to prime SARS-CoV-2-specific naive CD8+ T cells from healthy, unexposed donors of different age groups. Compared to younger adults, older individuals display a poor SARS-CoV-2-specific T-cell priming capacity in terms of both magnitude and quality of the response. In addition, older subjects recognize a lower number of epitopes. Our results implicate that immune aging is associated with altered primary SARS-CoV-2-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Eleonora Gallerani
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Proietto
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Beatrice Dallan
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Campagnaro
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Peggy Marconi
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Antonella Caputo
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- CNRS UMR 5164, ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
| | - Riccardo Gavioli
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Nicoli
- Laboratory of Biochemistry, Immunology and Microbiology (BIM), Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
332
|
Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB, Weber CR, Savic M, Rudolf F, Reddy ST. A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Reveals Age-Related Differences in Convalescent COVID-19 Patients. Front Immunol 2021; 12:701085. [PMID: 34322127 PMCID: PMC8312723 DOI: 10.3389/fimmu.2021.701085] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 01/23/2023] Open
Abstract
COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Florian Bieberich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Institute of Microbiology and Immunology, Department of Biology, ETH Zurich, Zurich, Switzerland.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Botnar Research Centre for Child Health, Basel, Switzerland
| | - Roy A Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Derek M Mason
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,deepCDR Biologics AG, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,deepCDR Biologics AG, Basel, Switzerland
| | - Miodrag Savic
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.,Department of Surgery, Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland.,Department of Health, Economics and Health Directorate, Canton Basel-Landschaft, Switzerland
| | - Fabian Rudolf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.,Botnar Research Centre for Child Health, Basel, Switzerland
| |
Collapse
|
333
|
Widera M, Wilhelm A, Hoehl S, Pallas C, Kohmer N, Wolf T, Rabenau HF, Corman VM, Drosten C, Vehreschild MJGT, Goetsch U, Gottschalk R, Ciesek S. Limited neutralization of authentic SARS-CoV-2 variants carrying E484K in vitro. J Infect Dis 2021; 224:1109-1114. [PMID: 34223909 PMCID: PMC8344430 DOI: 10.1093/infdis/jiab355] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Whether monoclonal antibodies are able to neutralise SARS-CoV-2 variants of concern has been investigated using pseudoviruses. In this study we show that bamlanivimab, casirivimab, and imdevimab efficiently neutralise authentic SARS-CoV-2 including variant B.1.1.7 (Alpha) but variants B.1.351 (Beta) and P.2 (Zeta) were resistant against bamlanivimab and partially to casirivimab.
Collapse
Affiliation(s)
- Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Wolf
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Germany.,University Center for Infectious Diseases (UCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Holger F Rabenau
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Infection Research, DZIF, Braunschweig, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Infection Research, DZIF, Braunschweig, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Germany.,University Center for Infectious Diseases (UCI), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Udo Goetsch
- Public Health Department of the City of Frankfurt am Main, Frankfurt am Main, Germany
| | - Rene Gottschalk
- Public Health Department of the City of Frankfurt am Main, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Center for Infection Research, DZIF, Braunschweig, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch Translational Medicine and Pharmacology, Frankfurt am Main, Germany
| |
Collapse
|
334
|
da Silva Antunes R, Pallikkuth S, Williams E, Dawen Yu E, Mateus J, Quiambao L, Wang E, Rawlings SA, Stadlbauer D, Jiang K, Amanat F, Arnold D, Andrews D, Fuego I, Dan JM, Grifoni A, Weiskopf D, Krammer F, Crotty S, Hoffer ME, Pahwa SG, Sette A. Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and Health Care Workers. J Infect Dis 2021; 224:70-80. [PMID: 33822097 PMCID: PMC8083569 DOI: 10.1093/infdis/jiab176] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Herein we measured CD4+ T-cell responses against common cold coronaviruses (CCC) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in high-risk health care workers (HCW) and community controls. We observed higher levels of CCC-reactive T cells in SARS-CoV-2-seronegative HCW compared to community donors, consistent with potential higher occupational exposure of HCW to CCC. We further show that SARS-CoV-2 T-cell reactivity of seronegative HCW was higher than community controls and correlation between CCC and SARS-CoV-2 responses is consistent with cross-reactivity and not associated with recent in vivo activation. Surprisingly, CCC T-cell reactivity was decreased in SARS-CoV-2-infected HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses, either directly or indirectly. This result was unexpected, but consistently detected in independent cohorts derived from Miami and San Diego. CD4+ T-cell responses against common cold coronaviruses (CCC) are elevated in SARS-CoV-2 seronegative high-risk health care workers (HCW) compared to COVID-19 convalescent HCW, suggesting that exposure to SARS-CoV-2 might interfere with CCC responses and/or cross-reactivity associated with a protective effect.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Erin Williams
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Esther Dawen Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Lorenzo Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Stephen A Rawlings
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - David Arnold
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Andrews
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irma Fuego
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Michael E Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Savita G Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
335
|
Redd AD, Nardin A, Kared H, Bloch EM, Pekosz A, Laeyendecker O, Abel B, Fehlings M, Quinn TC, Tobian AAR. CD8+ T-Cell Responses in COVID-19 Convalescent Individuals Target Conserved Epitopes From Multiple Prominent SARS-CoV-2 Circulating Variants. Open Forum Infect Dis 2021; 8:ofab143. [PMID: 34322559 PMCID: PMC8083629 DOI: 10.1093/ofid/ofab143] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
This study examined whether CD8+ T-cell responses from coronavirus disease 2019 convalescent individuals (n = 30) potentially maintain recognition of the major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (alpha, beta, gamma; n = 45 mutations assessed). Only 1 mutation found in Beta variant-spike overlapped with a previously identified epitope (1/52), suggesting that virtually all anti-SARS-CoV-2 CD8+ T-cell responses should recognize these newly described variants.
Collapse
Affiliation(s)
- Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Thomas C Quinn
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
336
|
CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2. Nat Commun 2021; 12:4048. [PMID: 34193869 PMCID: PMC8245475 DOI: 10.1038/s41467-021-24339-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic necessitates the fast development of vaccines. Recently, viral mutants termed variants of concern (VOC) which may escape host immunity have emerged. The efficacy of spike encoding mRNA vaccines (CVnCoV and CV2CoV) against the ancestral strain and the VOC B.1.351 was tested in a K18-hACE2 transgenic mouse model. Naive mice and mice immunized with a formalin-inactivated SARS-CoV-2 preparation were used as controls. mRNA-immunized mice develop elevated SARS-CoV-2 RBD-specific antibody and neutralization titers which are readily detectable, but significantly reduced against VOC B.1.351. The mRNA vaccines fully protect from disease and mortality caused by either viral strain. SARS-CoV-2 remains undetected in swabs, lung, or brain in these groups. Despite lower neutralizing antibody titers compared to the ancestral strain BavPat1, CVnCoV and CV2CoV show complete disease protection against the novel VOC B.1.351 in our studies. Emerging SARS-CoV-2 variants with mutations in the spike protein raise concerns regarding vaccine efficacy. Here, the authors show that two spike encoding mRNA vaccines in preclinical and clinical development protect human ACE2 mice from the B.1.351 variant of concern and ancestral B BavPat1.
Collapse
|
337
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
338
|
Akbay B, Abidi SH, Ibrahim MAA, Mukhatayev Z, Ali S. Multi-Subunit SARS-CoV-2 Vaccine Design Using Evolutionarily Conserved T- and B- Cell Epitopes. Vaccines (Basel) 2021; 9:702. [PMID: 34206865 PMCID: PMC8310312 DOI: 10.3390/vaccines9070702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
The SARS-CoV-2 pandemic has created a public health crisis worldwide. Although vaccines against the virus are efficiently being rolled out, they are proving to be ineffective against certain emerging SARS-CoV-2 variants. The high degree of sequence similarity between SARS-CoV-2 and other human coronaviruses (HCoV) presents the opportunity for designing vaccines that may offer protection against SARS-CoV-2 and its emerging variants, with cross-protection against other HCoVs. In this study, we performed bioinformatics analyses to identify T and B cell epitopes originating from spike, membrane, nucleocapsid, and envelope protein sequences found to be evolutionarily conserved among seven major HCoVs. Evolutionary conservation of these epitopes indicates that they may have critical roles in viral fitness and are, therefore, unlikely to mutate during viral replication thus making such epitopes attractive candidates for a vaccine. Our designed vaccine construct comprises of twelve T and six B cell epitopes that are conserved among HCoVs. The vaccine is predicted to be soluble in water, stable, have a relatively long half-life, and exhibit low allergenicity and toxicity. Our docking results showed that the vaccine forms stable complex with toll-like receptor 4, while the immune simulations predicted that the vaccine may elicit strong IgG, IgM, and cytotoxic T cell responses. Therefore, from multiple perspectives, our multi-subunit vaccine design shows the potential to elicit a strong immune-protective response against SARS-CoV-2 and its emerging variants while carrying minimal risk for causing adverse effects.
Collapse
Affiliation(s)
- Burkitkan Akbay
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Zhussipbek Mukhatayev
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.A.); (Z.M.)
| |
Collapse
|
339
|
Somogyi E, Csiszovszki Z, Molnár L, Lőrincz O, Tóth J, Pattijn S, Schockaert J, Mazy A, Miklós I, Pántya K, Páles P, Tőke ER. A Peptide Vaccine Candidate Tailored to Individuals' Genetics Mimics the Multi-Targeted T Cell Immunity of COVID-19 Convalescent Subjects. Front Genet 2021; 12:684152. [PMID: 34249101 PMCID: PMC8261158 DOI: 10.3389/fgene.2021.684152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 01/21/2023] Open
Abstract
Long-term immunity to coronaviruses likely stems from T cell activity. We present here a novel approach for the selection of immunoprevalent SARS-CoV-2-derived T cell epitopes using an in silico cohort of HLA-genotyped individuals with different ethnicities. Nine 30-mer peptides derived from the four major structural proteins of SARS-CoV-2 were selected and included in a peptide vaccine candidate to recapitulate the broad virus-specific T cell responses observed in natural infection. PolyPEPI-SCoV-2-specific, polyfunctional CD8+ and CD4+ T cells were detected in each of the 17 asymptomatic/mild COVID-19 convalescents' blood against on average seven different vaccine peptides. Furthermore, convalescents' complete HLA-genotype predicted their T cell responses to SARS-CoV-2-derived peptides with 84% accuracy. Computational extrapolation of this relationship to a cohort of 16,000 HLA-genotyped individuals with 16 different ethnicities suggest that PolyPEPI-SCoV-2 vaccination will likely elicit multi-antigenic T cell responses in 98% of individuals, independent of ethnicity. PolyPEPI-SCoV-2 administered with Montanide ISA 51 VG generated robust, Th1-biased CD8+, and CD4+ T cell responses against all represented proteins, as well as binding antibodies upon subcutaneous injection into BALB/c and hCD34+ transgenic mice modeling human immune system. These results have implications for the development of global, highly immunogenic, T cell-focused vaccines against various pathogens and diseases.
Collapse
Affiliation(s)
- Eszter Somogyi
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Zsolt Csiszovszki
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Levente Molnár
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Orsolya Lőrincz
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - József Tóth
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Sofie Pattijn
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - Jana Schockaert
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - Aurélie Mazy
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - István Miklós
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Pántya
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Péter Páles
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Enikő R. Tőke
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| |
Collapse
|
340
|
Quadeer AA, Ahmed SF, McKay MR. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell Rep Med 2021; 2:100312. [PMID: 34056627 PMCID: PMC8139281 DOI: 10.1016/j.xcrm.2021.100312] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Knowledge of the epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targeted by T cells in recovered (convalescent) individuals is important for understanding T cell immunity against coronavirus disease 2019 (COVID-19). This information can aid development and assessment of COVID-19 vaccines and inform novel diagnostic technologies. Here, we provide a unified description and meta-analysis of SARS-CoV-2 T cell epitopes compiled from 18 studies of cohorts of individuals recovered from COVID-19 (852 individuals in total). Our analysis demonstrates the broad diversity of T cell epitopes that have been recorded for SARS-CoV-2. A large majority are seemingly unaffected by current variants of concern. We identify a set of 20 immunoprevalent epitopes that induced T cell responses in multiple cohorts and in a large fraction of tested individuals. The landscape of SARS-CoV-2 T cell epitopes we describe can help guide immunological studies, including those related to vaccines and diagnostics. A web-based platform has been developed to help complement these efforts.
Collapse
Affiliation(s)
- Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
341
|
Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med 2021; 13:101. [PMID: 34127050 PMCID: PMC8201469 DOI: 10.1186/s13073-021-00910-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4+ T cell, and CD8+ T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE). METHODS We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage. Beyond MHC affinity, T cell vaccine candidates were further refined by predicted immunogenicity, sequence conservation, source protein abundance, and coverage of high frequency HLA alleles. B cell epitope regions were chosen from linear epitope mapping studies of convalescent patient serum, followed by filtering for surface accessibility, sequence conservation, spatial localization near functional domains of the spike glycoprotein, and avoidance of glycosylation sites. RESULTS From 58 initial candidates, three B cell epitope regions were identified. From 3730 (MHC-I) and 5045 (MHC-II) candidate ligands, 292 CD8+ and 284 CD4+ T cell epitopes were identified. By combining these B cell and T cell analyses, as well as a manufacturability heuristic, we proposed a set of 22 SARS-CoV-2 vaccine peptides for use in subsequent murine studies. We curated a dataset of ~ 1000 observed T cell epitopes from convalescent COVID-19 patients across eight studies, showing 8/15 recurrent epitope regions to overlap with at least one of our candidate peptides. Of the 22 candidate vaccine peptides, 16 (n = 10 T cell epitope optimized; n = 6 B cell epitope optimized) were manually selected to decrease their degree of sequence overlap and then synthesized. The immunogenicity of the synthesized vaccine peptides was validated using ELISpot and ELISA following murine vaccination. Strong T cell responses were observed in 7/10 T cell epitope optimized peptides following vaccination. Humoral responses were deficient, likely due to the unrestricted conformational space inhabited by linear vaccine peptides. CONCLUSIONS Overall, we find our selection process and vaccine formulation to be appropriate for identifying T cell epitopes and eliciting T cell responses against those epitopes. Further studies are needed to optimize prediction and induction of B cell responses, as well as study the protective capacity of predicted T and B cell epitopes.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kelly S Olsen
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Kaylee M Gentry
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Maria Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Wolfgang Beck
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jason Garness
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Sarah Entwistle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Caryn Willis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Steven Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Allison Woods
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Misha Fini
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Brandon Carpenter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Eric Routh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Erik Garrison
- Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Adam M Sandor
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
- Institute for Inflammatory Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jared Weiss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Division of Medical Oncology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Mark Heise
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Alex Rubinsteyn
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC, 27599-7295, USA.
- Department of Genetics, UNC School of Medicine, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
342
|
Rowntree LC, Petersen J, Juno JA, Chaurasia P, Wragg K, Koutsakos M, Hensen L, Wheatley AK, Kent SJ, Rossjohn J, Kedzierska K, Nguyen TH. SARS-CoV-2-specific CD8 + T-cell responses and TCR signatures in the context of a prominent HLA-A*24:02 allomorph. Immunol Cell Biol 2021; 99:990-1000. [PMID: 34086357 PMCID: PMC8242669 DOI: 10.1111/imcb.12482] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
In‐depth understanding of human T‐cell‐mediated immunity in coronavirus disease 2019 (COVID‐19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) T‐cell epitopes and generation of peptide–human leukocyte antigen (peptide–HLA) tetramers facilitate direct ex vivo analyses of SARS‐CoV‐2‐specific T cells and their T‐cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS‐CoV‐2 epitopes restricted by HLA‐A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike‐derived peptides generated CD8+IFNγ+ responses above background, S1208–1216 (QYIKWPWYI), S448–456 (NYNYLYRLF) and S193–201 (VFKNIDGYF), with S1208 generating immunodominant CD8+IFNγ+ responses. Using peptide–HLA‐I tetramers, we performed direct ex vivo tetramer enrichment for HLA‐A*24:02‐restricted CD8+ T cells in COVID‐19 patients and prepandemic controls. The precursor frequencies for HLA‐A*24:02‐restricted epitopes were within the range previously observed for other SARS‐CoV‐2 epitopes for both COVID‐19 patients and prepandemic individuals. Naïve A24/SARS‐CoV‐2‐specific CD8+ T cells increased nearly 7.5‐fold above the average precursor frequency during COVID‐19, gaining effector and memory phenotypes. Ex vivo single‐cell analyses of TCRαβ repertoires found that the A24/S448+CD8+ T‐cell TCRαβ repertoire was driven by a common TCRβ chain motif, whereas the A24/S1208+CD8+ TCRαβ repertoire was diverse across COVID‐19 patients. Our study provides an in depth characterization and important insights into SARS‐CoV‐2‐specific CD8+ T‐cell responses associated with a prominent HLA‐A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID‐19 and could be exploited in vaccine or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kathleen Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3000, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Thi Ho Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
343
|
Mengist HM, Kombe Kombe AJ, Mekonnen D, Abebaw A, Getachew M, Jin T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin Immunol 2021; 55:101533. [PMID: 34836774 PMCID: PMC8604694 DOI: 10.1016/j.smim.2021.101533] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/04/2023]
Abstract
Responsible for more than 4.9 million deaths so far, COVID-19, caused by SARS-CoV-2, is instigating devastating effects on the global health care system whose impacts could be longer for the years to come. Acquiring a comprehensive knowledge of host-virus interaction is critical for designing effective vaccines and/or drugs. Understanding the evolution of the virus and the impact of genetic variability on host immune evasion and vaccine efficacy is helpful to design novel strategies to minimize the effects of the emerging variants of concern (VOC). Most vaccines under development and/or in current use target the spike protein owning to its unique function of host receptor binding, relatively conserved nature, potent immunogenicity in inducing neutralizing antibodies, and being a good target of T cell responses. However, emerging SARS-CoV-2 strains are exhibiting variability on the spike protein which could affect the efficacy of vaccines and antibody-based therapies in addition to enhancing viral immune evasion mechanisms. Currently, the degree to which mutations on the spike protein affect immunity and vaccination, and the ability of the current vaccines to confer protection against the emerging variants attracts much attention. This review discusses the implications of SARS-CoV-2 spike protein mutations on immune evasion and vaccine-induced immunity and forward directions which could contribute to future studies focusing on designing effective vaccines and/or immunotherapies to consider viral evolution. Combining vaccines derived from different regions of the spike protein that boost both the humoral and cellular wings of adaptive immunity could be the best options to cope with the emerging VOC.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Arnaud John Kombe Kombe
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Daniel Mekonnen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Abtie Abebaw
- Department of Medical Laboratory Science, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Melese Getachew
- Department of Clinical Pharmacy, College of Health Science, Debre Markos University, Debre Markos, 269, Ethiopia
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China; CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031, China.
| |
Collapse
|
344
|
Bilich T, Roerden M, Maringer Y, Nelde A, Heitmann JS, Dubbelaar ML, Peter A, Hörber S, Bauer J, Rieth J, Wacker M, Berner F, Flatz L, Held S, Brossart P, Märklin M, Wagner P, Erne E, Klein R, Rammensee HG, Salih HR, Walz JS. Preexisting and Post-COVID-19 Immune Responses to SARS-CoV-2 in Patients with Cancer. Cancer Discov 2021; 11:1982-1995. [PMID: 34011563 DOI: 10.1158/2159-8290.cd-21-0191] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Patients with cancer, in particular patients with hematologic malignancies, are at increased risk for critical illness upon COVID-19. We here assessed antibody as well as CD4+ and CD8+ T-cell responses in unexposed and SARS-CoV-2-infected patients with cancer to characterize SARS-CoV-2 immunity and to identify immunologic parameters contributing to COVID-19 outcome. Unexposed patients with hematologic malignancies presented with reduced prevalence of preexisting SARS-CoV-2 cross-reactive CD4+ T-cell responses and signs of T-cell exhaustion compared with patients with solid tumors and healthy volunteers. Whereas SARS-CoV-2 antibody responses did not differ between patients with COVID-19 and cancer and healthy volunteers, intensity, expandability, and diversity of SARS-CoV-2 T-cell responses were profoundly reduced in patients with cancer, and the latter associated with a severe course of COVID-19. This identifies impaired SARS-CoV-2 T-cell immunity as a potential determinant for dismal outcome of COVID-19 in patients with cancer. SIGNIFICANCE: This first comprehensive analysis of SARS-CoV-2 immune responses in patients with cancer reports on the potential implications of impaired SARS-CoV-2 T-cell responses for understanding pathophysiology and predicting severity of COVID-19, which in turn might allow for the development of therapeutic measures and vaccines for this vulnerable patient population.See related commentary by Salomé and Horowitz, p. 1877.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Malte Roerden
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Marissa L Dubbelaar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Jonas Rieth
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Marcel Wacker
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Fiamma Berner
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Stefanie Held
- Department for Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department for Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Philipp Wagner
- Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Eva Erne
- Department of Urology, Medical Faculty and University Hospital, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), partner site Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany. .,Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), Stuttgart, Germany
| |
Collapse
|
345
|
Low JS, Vaqueirinho D, Mele F, Foglierini M, Jerak J, Perotti M, Jarrossay D, Jovic S, Perez L, Cacciatore R, Terrot T, Pellanda AF, Biggiogero M, Garzoni C, Ferrari P, Ceschi A, Lanzavecchia A, Sallusto F, Cassotta A. Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science 2021; 372:1336-1341. [PMID: 34006597 PMCID: PMC8168615 DOI: 10.1126/science.abg8985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed SARS-CoV-2 spike (S) and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that 34% of clones and 93% of individuals recognized a conserved immunodominant S346-365 region within the RBD comprising nested HLA-DR- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identify cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jun Siong Low
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Daniela Vaqueirinho
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Josipa Jerak
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Michela Perotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Rosalia Cacciatore
- Laboratory of Immunogenetics, Department of Transfusion Medicine and Immuno-Hematology, Fondazione I.R.C.C.S. Policlinico S. Matteo, 27100 Pavia, Italy
| | - Tatiana Terrot
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | | | - Maira Biggiogero
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Christian Garzoni
- Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
| | - Paolo Ferrari
- Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland.,Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland.,Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alessandro Ceschi
- Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, 6900 Lugano, Switzerland.,Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.,Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland. .,Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
346
|
Altmann DM, Reynolds CJ, Boyton RJ. SARS-CoV-2 variants: Subversion of antibody response and predicted impact on T cell recognition. Cell Rep Med 2021; 2:100286. [PMID: 34027499 PMCID: PMC8130189 DOI: 10.1016/j.xcrm.2021.100286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COVID-19 variants of concern, including B.1.1.7, B.1.351, and P.1, encompass mutations facilitating immune evasion. Neutralizing antibody recognition and function may be variably impaired. We considered the impact of mutations on T cell responses. Mutations could be neutral or result in either loss or gain of predicted epitopes depending on HLA type.
Collapse
Affiliation(s)
- Daniel M. Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | | | - Rosemary J. Boyton
- Department of Infectious Disease, Imperial College London, London, UK
- Lung Division, Royal Brompton Hospital and Harefield Hospitals, London, UK
| |
Collapse
|
347
|
Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest 2021; 131:149335. [PMID: 33822770 PMCID: PMC8121504 DOI: 10.1172/jci149335] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown T cell cross-recognition of SARS-CoV-2 and common cold coronavirus spike proteins. However, the effect of SARS-CoV-2 vaccines on T cell responses to common cold coronaviruses (CCCs) remains unknown. In this study, we analyzed CD4+ T cell responses to spike peptides from SARS-CoV-2 and 3 CCCs (HCoV-229E, HCoV-NL63, and HCoV-OC43) before and after study participants received Pfizer-BioNTech (BNT162b2) or Moderna (mRNA-1273) mRNA-based COVID-19 vaccines. Vaccine recipients showed broad T cell responses to the SARS-CoV-2 spike protein, and we identified 23 distinct targeted peptides in 9 participants, including 1 peptide that was targeted in 6 individuals. Only 4 of these 23 targeted peptides would potentially be affected by mutations in the UK (B.1.1.7) and South African (B.1.351) variants, and CD4+ T cells from vaccine recipients recognized the 2 variant spike proteins as effectively as they recognized the spike protein from the ancestral virus. Interestingly, we observed a 3-fold increase in the CD4+ T cell responses to HCoV-NL63 spike peptides after vaccination. Our results suggest that T cell responses elicited or enhanced by SARS-CoV-2 mRNA vaccines may be able to control SARS-CoV-2 variants and lead to cross-protection against some endemic coronaviruses.
Collapse
MESH Headings
- Adult
- BNT162 Vaccine
- CD4-Positive T-Lymphocytes/immunology
- COVID-19 Vaccines/immunology
- Coronavirus 229E, Human/genetics
- Coronavirus 229E, Human/immunology
- Coronavirus NL63, Human/genetics
- Coronavirus NL63, Human/immunology
- Coronavirus OC43, Human/genetics
- Coronavirus OC43, Human/immunology
- Cross Reactions
- Female
- Humans
- Male
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
Collapse
|
348
|
Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep 2021; 35:109179. [PMID: 34004174 PMCID: PMC8116342 DOI: 10.1016/j.celrep.2021.109179] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/16/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding and eliciting protective immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an urgent priority. To facilitate these objectives, we profile the repertoire of human leukocyte antigen class II (HLA-II)-bound peptides presented by HLA-DR diverse monocyte-derived dendritic cells pulsed with SARS-CoV-2 spike (S) protein. We identify 209 unique HLA-II-bound peptide sequences, many forming nested sets, which map to sites throughout S including glycosylated regions. Comparison of the glycosylation profile of the S protein to that of the HLA-II-bound S peptides reveals substantial trimming of glycan residues on the latter, likely induced during antigen processing. Our data also highlight the receptor-binding motif in S1 as a HLA-DR-binding peptide-rich region and identify S2-derived peptides with potential for targeting by cross-protective vaccine-elicited responses. Results from this study will aid analysis of CD4+ T cell responses in infected individuals and vaccine recipients and have application in next-generation vaccine design.
Collapse
|
349
|
Affiliation(s)
| | - Ottar Bjornstad
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta GA, USA
| |
Collapse
|
350
|
Cele S, Gazy I, Jackson L, Hwa SH, Tegally H, Lustig G, Giandhari J, Pillay S, Wilkinson E, Naidoo Y, Karim F, Ganga Y, Khan K, Bernstein M, Balazs AB, Gosnell BI, Hanekom W, Moosa MYS, Lessells RJ, de Oliveira T, Sigal A. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature 2021; 593:142-146. [PMID: 33780970 PMCID: PMC9867906 DOI: 10.1038/s41586-021-03471-w] [Citation(s) in RCA: 456] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
SARS-CoV-2 variants of concern (VOC) have arisen independently at multiple locations1,2 and may reduce the efficacy of current vaccines that target the spike glycoprotein of SARS-CoV-23. Here, using a live-virus neutralization assay, we compared the neutralization of a non-VOC variant with the 501Y.V2 VOC (also known as B.1.351) using plasma collected from adults who were hospitalized with COVID-19 during the two waves of infection in South Africa, the second wave of which was dominated by infections with the 501Y.V2 variant. Sequencing demonstrated that infections of plasma donors from the first wave were with viruses that did not contain the mutations associated with 501Y.V2, except for one infection that contained the E484K substitution in the receptor-binding domain. The 501Y.V2 virus variant was effectively neutralized by plasma from individuals who were infected during the second wave. The first-wave virus variant was effectively neutralized by plasma from first-wave infections. However, the 501Y.V2 variant was poorly cross-neutralized by plasma from individuals with first-wave infections; the efficacy was reduced by 15.1-fold relative to neutralization of 501Y.V2 by plasma from individuals infected in the second wave. By contrast, cross-neutralization of first-wave virus variants using plasma from individuals with second-wave infections was more effective, showing only a 2.3-fold decrease relative to neutralization of first-wave virus variants by plasma from individuals infected in the first wave. Although we tested only one plasma sample from an individual infected with a SARS-CoV-2 variant with only the E484K substitution, this plasma sample potently neutralized both variants. The observed effective neutralization of first-wave virus by plasma from individuals infected with 501Y.V2 provides preliminary evidence that vaccines based on VOC sequences could retain activity against other circulating SARS-CoV-2 lineages.
Collapse
Affiliation(s)
- Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Inbal Gazy
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Shi-Hsia Hwa
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Gila Lustig
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yeshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
| | | | | | - Bernadett I Gosnell
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Willem Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|