301
|
Kurahashi K, Ota S, Nakamura K, Nagashima Y, Yazawa T, Satoh M, Fujita A, Kamiya R, Fujita E, Baba Y, Uchida K, Morimura N, Andoh T, Yamada Y. Effect of lung-protective ventilation on severePseudomonas aeruginosapneumonia and sepsis in rats. Am J Physiol Lung Cell Mol Physiol 2004; 287:L402-10. [PMID: 15107296 DOI: 10.1152/ajplung.00435.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (VT) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low VTventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low VT(6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH2O) was then compared with high VTwith low PEEP ventilation (VT12 ml/kg, PEEP 3 cmH2O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low VTventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 ± 0.78 vs. 3.78 ± 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 ± 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-α in the fluid of noninvolved lung undergoing high VTventilation compared with those animals receiving low VT. We conclude that low VTventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low VTventilation, at least short term. Furthermore, low VTventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.
Collapse
Affiliation(s)
- Kiyoyasu Kurahashi
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan, 236-0004.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Brugirard-Ricaud K, Givaudan A, Parkhill J, Boemare N, Kunst F, Zumbihl R, Duchaud E. Variation in the effectors of the type III secretion system among Photorhabdus species as revealed by genomic analysis. J Bacteriol 2004; 186:4376-81. [PMID: 15205440 PMCID: PMC421592 DOI: 10.1128/jb.186.13.4376-4381.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entomopathogenic bacteria of the genus Photorhabdus harbor a type III secretion system. This system was probably acquired prior to the separation of the species within this genus. Furthermore, the core components of the secretion machinery are highly conserved but the predicted effectors differ between Photorhabdus luminescens and P. asymbiotica, two highly related species with different hosts.
Collapse
Affiliation(s)
- Karine Brugirard-Ricaud
- Laboratoire EMIP Ecologie Microbienne des Insectes et Interaction Hôte-Pathogène, Université de Montpellier II, UMR1133 INRA-UMII, 34095 Montpellier 5, France
| | | | | | | | | | | | | |
Collapse
|
303
|
Banerji S, Flieger A. Patatin-like proteins: a new family of lipolytic enzymes present in bacteria? MICROBIOLOGY-SGM 2004; 150:522-525. [PMID: 14993300 DOI: 10.1099/mic.0.26957-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Antje Flieger
- Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
| |
Collapse
|
304
|
Tamura M, Ajayi T, Allmond LR, Moriyama K, Wiener-Kronish JP, Sawa T. Lysophospholipase A activity of Pseudomonas aeruginosa type III secretory toxin ExoU. Biochem Biophys Res Commun 2004; 316:323-31. [PMID: 15020221 DOI: 10.1016/j.bbrc.2004.02.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Indexed: 11/25/2022]
Abstract
Acute lung injury in Pseudomonas aeruginosa pneumonia depends primarily on ExoU that is delivered directly into the eukaryotic cell via the type III secretion system. Recent studies demonstrated that ExoU has lipase activity, and that the cytotoxicity of ExoU is dependent on its patatin-like phospholipase domain. We investigated the phospholipase A (PLA) activity of ExoU. ExoU, but not non-catalytic ExoU-S142A, preincubated with the BEAS-2B cell lysate showed a weak increase of Ca(2+)-independent PLA(2) activity. When activated ExoU was mixed with secretory type PLA(2), more phospholipase activity was observed, suggesting that ExoU has lysophospholipase A (lysoPLA) activity. A significant increase in lysoPLA activity was also observed. Glycerol enhanced this activity and inhibitors of iPLA(2) suppressed ExoU's lysoPLA activity. Our results suggest that ExoU has a potent lysoPLA activity that requires the presence of the catalytically active site Ser(142) with an unknown eukaryotic cell factor(s) for its activation.
Collapse
Affiliation(s)
- Miki Tamura
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143-0542, USA
| | | | | | | | | | | |
Collapse
|
305
|
Smith RS, Wolfgang MC, Lory S. An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect Immun 2004; 72:1677-84. [PMID: 14977975 PMCID: PMC356001 DOI: 10.1128/iai.72.3.1677-1684.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infections caused by the opportunistic pathogen Pseudomonas aeruginosa involve the interplay of several bacterial virulence factors. It has recently been established that the delivery of toxic effector proteins by the type III secretion system is an important virulence mechanism in several animal models. Furthermore, the expression of the type III secretion system and its effectors has been correlated with a poor clinical outcome during human infections. A novel cyclic AMP (cAMP) regulatory network that controls the expression of virulence factors, including the type III secretion system, was examined to determine its contribution to P. aeruginosa colonization and dissemination in a mouse pneumonia model. Mutants lacking the two genome-encoded adenylate cyclases, CyaA and CyaB, and the cAMP-dependent regulator Vfr were examined. Based on the enumeration of bacteria in lungs, livers, and spleens, as well as the assessment of mouse lung pathology, mutations in the cyaB and vfr genes resulted in a more significantly attenuated phenotype than mutations in cyaA. Moreover, in this model, expression of the type III secretion system was essential for lung colonization and pathology. Strains with mutations in the exsA gene, which encodes a type III regulatory protein, or pscC, which encodes an essential component of the secretion apparatus, were also significantly attenuated. Finally, we demonstrate that virulence can be restored in an adenylate cyclase mutant by the overexpression of exsA, which specifically restores expression of the type III secretion system in the absence of a functional cAMP-dependent regulatory network.
Collapse
Affiliation(s)
- Roger S Smith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
306
|
Hogardt M, Roeder M, Schreff AM, Eberl L, Heesemann J. Expression of Pseudomonas aeruginosa exoS is controlled by quorum sensing and RpoS. Microbiology (Reading) 2004; 150:843-851. [PMID: 15073294 DOI: 10.1099/mic.0.26703-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
InPseudomonas aeruginosa, virulence determinants and biofilm formation are coordinated via a hierarchical quorum sensing cascade, which involves the transcriptional regulators LasR and RhlR and their cognate homoserine lactone activators C12-HSL [N-(3-oxododecanoyl)-l-homoserine lactone] and c4-hsl (n-butanoyl-l-homoserine lactone), which are produced by LasI and RhlI, respectively. The exoenzyme S regulon ofP. aeruginosa, comprises genes for a type III secretion system and for four anti-host effector proteins (ExoS, T, U and Y), which are translocated into host cells. It is a reasonable assumption that this ExoS regulon should be downregulated in the biofilm growth state and thus should also be under the regulatory control of the Las/Rhl system. Therefore, anexoS′-gfpreporter construct was used, and the influence of the Las and Rhl quorum sensing systems and the effect of the stationary-phase sigma factor RpoS on regulation of theexoSgene was examined. Evidence is provided for downregulation ofexoSduring biofilm formation ofP. aeruginosaPAO1. TherhlImutant PDO100 andrhlRmutant PDO111, but not thelasImutant PDO-JP1, showed approximately twofold upregulation of theexoS′-gfpreporter in comparison to PAO1. Upregulation ofexoS′-gfpin the PDO100 mutant could be repressed to normal level by adding C4-HSL autoinducer, indicating a negative regulatory effect of RhlR/C4-HSL onexoSexpression. As RhlR/C4-HSL is also involved in regulation of RpoS, theP. aeruginosa rpoSmutant SS24 was examined and theexoS′-gfpreporter was found to be fivefold upregulated in comparison to PAO1. For the first time evidence is reported for a regulatory cascade linking RhlR/RhlI and RpoS with the expression of the anti-host effector ExoS, part of the exoenzyme S regulon. Moreover, these data suggest that the exoenzyme S regulon may be downregulated inP. aeruginosabiofilms.
Collapse
Affiliation(s)
- Michael Hogardt
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, D-80336 Munich, Germany
| | - Maximilian Roeder
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, D-80336 Munich, Germany
| | - Anna Maria Schreff
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, D-80336 Munich, Germany
| | - Leo Eberl
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, D-80336 Munich, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians University Munich, Pettenkoferstraße 9a, D-80336 Munich, Germany
| |
Collapse
|
307
|
Darling KEA, Dewar A, Evans TJ. Role of the cystic fibrosis transmembrane conductance regulator in internalization of Pseudomonas aeruginosa by polarized respiratory epithelial cells. Cell Microbiol 2004; 6:521-33. [PMID: 15104594 DOI: 10.1111/j.1462-5822.2004.00380.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.
Collapse
Affiliation(s)
- Katharine E A Darling
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
308
|
Rietsch A, Wolfgang MC, Mekalanos JJ. Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa. Infect Immun 2004; 72:1383-90. [PMID: 14977942 PMCID: PMC356022 DOI: 10.1128/iai.72.3.1383-1390.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 11/11/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system is a dedicated machinery used by many pathogens to deliver toxins directly into the cytoplasm of a target cell. Expression and secretion of the type III effectors are triggered by cell contact. In Pseudomonas aeruginosa and Yersinia spp., expression can be triggered in vitro by removing calcium from the medium. The mechanism underlying either mode of regulation is unclear. Here we characterize a transposon insertion mutant of P. aeruginosa PAO1 that displays a marked defect in cytotoxicity. The insertion is located upstream of several genes involved in histidine utilization and impedes the ability of PAO1 to intoxicate eukaryotic cells effectively in a type III-dependent fashion. This inhibition depends on the presence of histidine in the medium and appears to depend on the excessive uptake and catabolism of histidine. The defect in cytotoxicity is mirrored by a decrease in exoS expression. Other parameters such as growth or piliation are unaffected. The cytotoxicity defect is partially complemented by an insertion mutation in cbrA that also causes overexpression of cbrB. The cbrAB two-component system has been implicated in sensing and responding to a carbon-nitrogen imbalance. Taken together, these results suggest that the metabolic state of the cell influences expression of the type III regulon.
Collapse
Affiliation(s)
- Arne Rietsch
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
309
|
TLR4 signaling is essential for survival in acute lung injury induced by virulent Pseudomonas aeruginosa secreting type III secretory toxins. Respir Res 2004; 5:1. [PMID: 15040820 PMCID: PMC389879 DOI: 10.1186/1465-9921-5-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 02/12/2004] [Indexed: 02/06/2023] Open
Abstract
Background The relative contributions of the cytotoxic phenotype of P. aeruginosa expressing type III secretory toxins and an immunocompromised condition lacking normal Toll-like receptor 4 (TLR4) signaling in the pathogenesis of acute lung injury and sepsis were evaluated in a mouse model for Pseudomonas aeruginosa pneumonia. By using lipopolysaccharide-resistant C3H/HeJ mice missing normal TLR4 signaling due to a mutation on the tlr4 gene, we evaluated how TLR4 signaling modulates the pneumonia caused by cytotoxic P. aeruginosa expressing type III secretory toxins. Methods We infected C3H/HeJ or C3H/FeJ mice with three different doses of either a cytotoxic P. aeruginosa strain (wild type PA103) or its non-cytotoxic isogenic mutant missing the type III secretory toxins (PA103ΔUT). Survival of the infected mice was evaluated, and the severity of acute lung injury quantified by measuring alveolar epithelial permeability as an index of acute epithelial injury and the water to dry weight ratios of lung homogenates as an index of lung edema. Bacteriological analysis and cytokine assays were performed in the infected mice. Results Development of acute lung injury and sepsis was observed in all mouse strains when the cytotoxic P. aeruginosa strain but not the non-cytotoxic strain was instilled in the airspaces of the mice. Only C3H/HeJ mice had severe bacteremia and high mortality when a low dose of the cytotoxic P. aeruginosa strain was instilled in their lungs. Conclusion The cytotoxic phenotype of P. aeruginosa is the critical factor causing acute lung injury and sepsis in infected hosts. When the P. aeruginosa is a cytotoxic strain, the TLR4 signaling system is essential to clear the batcteria to prevent lethal lung injury and bacteremia.
Collapse
|
310
|
Garrity-Ryan L, Shafikhani S, Balachandran P, Nguyen L, Oza J, Jakobsen T, Sargent J, Fang X, Cordwell S, Matthay MA, Engel JN. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect Immun 2004; 72:546-58. [PMID: 14688136 PMCID: PMC343945 DOI: 10.1128/iai.72.1.546-558.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/03/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
ExoT is a type III secreted effector protein found in almost all strains of Pseudomonas aeruginosa and is required for full virulence in an animal model of acute pneumonia. It is comprised of an N-terminal domain with GTPase activating protein (GAP) activity towards Rho family GTPases and a C-terminal ADP ribosyltransferase (ADPRT) domain with minimal activity towards a synthetic substrate in vitro. Consistent with its activity as a Rho family GTPase, ExoT has been shown to inhibit P. aeruginosa internalization into epithelial cells and macrophages, disrupt the actin cytoskeleton through a Rho-dependent pathway, and inhibit wound repair in a scrape model of injured epithelium. We have previously shown that mutation of the invariant arginine of the GAP domain to lysine (R149K) results in complete loss of GAP activity in vitro but only partially inhibits ExoT anti-internalization and cell rounding activity. We have constructed in-frame deletions and point mutations within the ADPRT domain in order to test whether this domain might account for the residual activity observed in ExoT GAP mutants. Deletion of a majority of the ADPRT domain (residues 234 to 438) or point mutations of the ADPRT catalytic site (residues 383 to 385) led to distinct changes in host cell morphology and substantially reduced the ability of ExoT to inhibit in vitro epithelial wound healing over a 24-h period. In contrast, only subtle effects on the efficiency of ExoT-induced bacterial internalization were observed in the ADPRT mutant forms. Expression of each domain individually in Saccharomyces cerevisiae was toxic, whereas expression of each of the catalytically inactive mutant domains was not. Collectively, these data demonstrate that the ADPRT domain of ExoT is active in vivo and contributes to the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- L Garrity-Ryan
- Departments of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Schoehn G, Di Guilmi AM, Lemaire D, Attree I, Weissenhorn W, Dessen A. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J 2003; 22:4957-67. [PMID: 14517235 PMCID: PMC204482 DOI: 10.1093/emboj/cdg499] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.
Collapse
Affiliation(s)
- Guy Schoehn
- Laboratoire de Virologie Moléculaire Structurale, Grenoble, France
| | | | | | | | | | | |
Collapse
|
312
|
McMorran B, Town L, Costelloe E, Palmer J, Engel J, Hume D, Wainwright B. Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection. Infect Immun 2003; 71:6035-44. [PMID: 14500525 PMCID: PMC201109 DOI: 10.1128/iai.71.10.6035-6044.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P. aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific type III-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 h of infection and could be classified into four different expression patterns. These include (i) host genes that are induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specifically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early and transient activation of the AP1 transcription factor complex. In conclusion, the present study provides a detailed insight into the response of epithelial cells to infection and indicates the significant role played by the type III virulence mechanism in the initial host response.
Collapse
Affiliation(s)
- B McMorran
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia 4072, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
313
|
Phillips RM, Six DA, Dennis EA, Ghosh P. In vivo phospholipase activity of the Pseudomonas aeruginosa cytotoxin ExoU and protection of mammalian cells with phospholipase A2 inhibitors. J Biol Chem 2003; 278:41326-32. [PMID: 12915403 DOI: 10.1074/jbc.m302472200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of clinical isolates of Pseudomonas aeruginosa are cytotoxic to mammalian cells due to the action of the 74-kDa protein ExoU, which is secreted into host cells by the type III secretion system and whose function is unknown. Here we report that the swift and profound cytotoxicity induced by purified ExoU or by an ExoU-expressing strain of P. aeruginosa is blocked by various inhibitors of cytosolic (cPLA2) and Ca2+ -independent (iPLA2) phospholipase A2 enzymes. In contrast, no cytoprotection is offered by inhibitors of secreted phospholipase A2 enzymes or by a number of inhibitors of signal transduction pathways. This suggests that phospholipase A2 inhibitors may represent a novel mode of treatment for acute P. aeruginosa infections. We find that 300-600 molecules of ExoU/cell are required to achieve half-maximal cell killing and that ExoU localizes to the host cell plasma membrane in punctate fashion. We also show that ExoU interacts in vitro with an inhibitor of cPLA2 and iPLA2 enzymes and contains a putative serine-aspartate catalytic dyad homologous to those found in cPLA2 and iPLA2 enzymes. Mutation of either the serine or the aspartate renders ExoU non-cytotoxic. Although no phospholipase or esterase activity is detected in vitro, significant phospholipase activity is detected in vivo, suggesting that ExoU requires one or more host cell factors for activation as a membrane-lytic and cytotoxic phospholipase.
Collapse
Affiliation(s)
- Rebecca M Phillips
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0314, USA
| | | | | | | |
Collapse
|
314
|
Ullrich S, Berchtold S, Boehmer C, Fillon S, Jendrossek V, Palmada M, Schroeder TH, Pier GB, Lang F. Pseudomonas aeruginosa activates Cl- channels in host epithelial cells. Pflugers Arch 2003; 447:23-8. [PMID: 12920599 DOI: 10.1007/s00424-003-1136-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 06/26/2003] [Indexed: 01/05/2023]
Abstract
Exposure to Pseudomonas aeruginosa triggers the apoptotic cell death of Chang epithelial cells, and this depends on the expression of both the CD95 receptor and CD95 ligand. In lymphocytes CD95-mediated apoptosis is paralleled by the activation of outwardly rectifying Cl- channels. The present study was performed to explore whether P. aeruginosa-induced apoptosis of Chang epithelial cells is paralleled by activation of Cl- channels. According to whole-cell patch-clamp recordings, exposure of Chang epithelial cells to P. aeruginosa does lead to rapid activation of an outwardly rectifying Cl- -selective current. The current is inhibited by the Cl- channel blocker NPPB. Exposure of Chang epithelial cells to P. aeruginosa led to a significant decrease of cell membrane capacitance by 6%, pointing to a decrease in cell volume by 7%. Exposure to P. aeruginosa depolarized the mitochondrial membrane potential indicating apoptotic cell death. The decline of mitochondrial membrane potential was not significantly affected by NPPB. In conclusion, P. aeruginosa-induced apoptosis of Chang epithelial cells is paralleled by activation of Cl- channels. Activation of the channels participates in the alteration of cell volume but is not a prerequisite for P. aeruginosa-induced apoptosis.
Collapse
Affiliation(s)
- Susanne Ullrich
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. Single-nucleotide-polymorphism mapping of the Pseudomonas aeruginosa type III secretion toxins for development of a diagnostic multiplex PCR system. J Clin Microbiol 2003; 41:3526-31. [PMID: 12904350 PMCID: PMC179785 DOI: 10.1128/jcm.41.8.3526-3531.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We mapped the coding single nucleotide polymorphisms in four toxin genes-exoS, exoT, exoU, and exoY-of the Pseudomonas aeruginosa type III secretion system among several clinical isolates. We then used this information to design a multiplex PCR assay based on the simultaneous amplification of fragments of these genes. Eight strains of known genotype were used to test our multiplex PCR method, which showed 100% sensitivity and specificity in this small sample size. This assay appears to be promising for the rapid and accurate genotyping of the presence of these genes in clinical strains of P. aeruginosa.
Collapse
Affiliation(s)
- Temitayo Ajayi
- Department of Anesthesia and Perioperative Care, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
316
|
Cowell BA, Twining SS, Hobden JA, Kwong MSF, Fleiszig SMJ. Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2291-2299. [PMID: 12904569 DOI: 10.1099/mic.0.26280-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen implicated in a variety of devastating conditions. Its flexibility as a pathogen is attributed to a myriad of virulence factors and regulatory elements that respond to prevailing environmental conditions. ExoS and ExoT are type III secreted effector proteins, regulated by the transcriptional activator ExsA, that can inhibit invasion of epithelial cells by cytotoxic strains of P. aeruginosa. This study sought to understand why invasive strains, which can secrete both ExoS and ExoT, still invade epithelial cells. The results showed that LasA and elastase (LasB), which are regulated by the Las and Rhl quorum-sensing systems, modulated P. aeruginosa invasion. Mutation of lasA and/or lasB reduced P. aeruginosa invasion, which was not fully restored by extracellularly added LasB, P. aeruginosa conditioned medium containing LasA and LasB, or EGTA pretreatment of cells. This indicated that protease effects on invasion involved factors additional to tight junction disruption and subsequent alterations to cell polarity. Upon mutation of lasA and/or lasB, steady-state levels of ExoS and ExoT were increased in culture medium of P. aeruginosa grown under conditions stimulatory for these toxins. The increase in ExoS was significantly correlated with reduced invasion. In vitro experiments showed that purified LasB degraded recombinant ExoS. Taken together, these studies suggest a mechanism by which invasive strains can synthesize inhibitors of invasion, ExoS and ExoT, yet still invade epithelial cells. By this mechanism, LasA and LasB decrease the levels of the toxins directly or indirectly, and thus reduce inhibition of invasion.
Collapse
Affiliation(s)
- Brigitte A Cowell
- School of Optometry, University of California, Berkeley 94720-2020, CA, USA
| | - Sally S Twining
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey A Hobden
- Department of Microbiology, Wayne State University, Detroit, MI, USA
| | - Mary S F Kwong
- School of Optometry, University of California, Berkeley 94720-2020, CA, USA
| | | |
Collapse
|
317
|
Zhang J, Takayama H, Matsuba T, Jiang R, Tanaka Y. Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from Pseudomonas aeruginosa. Microbiol Immunol 2003; 47:199-206. [PMID: 12725289 DOI: 10.1111/j.1348-0421.2003.tb03387.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is able to secrete many virulence factors that are cytotoxic towards eukaryotic cells. To investigate the effect of the bacterium on macrophages, we obtained cell-free supernatants from P. aeruginosa (Pa) IID1117 (elastase-positive and protease-positive) and Pa IID1130 (elastase-positive and protease-negative). After 6 hr of incubation with the cell-free supernatant from the Pa IID1117 strain, the viability of J774 macrophages was shown to be significantly reduced (47.5+/-11%), but not Pa IID1130 (96.4+/-1.6%) at a concentration of 10% (v/v) compared to control J774 macrophages without any supernatant (97.2+/-1.7%) by the detection of trypan blue dye exclusion. The death of cells was further demonstrated to be due to apoptosis characterized by chromatin condensation and apoptotic bodies by Hoechst 33258 staining, DNA fragmentation by agarose gel electrophoresis and terminal deoxynucleotidyl transferase-mediated d-UTP nick end labeling (TUNEL). An activated subunit was found to be released from procaspase-3 in cell lysate. But in the presence of protease inhibitor, the apoptosis was completely blocked. The findings indicate that the Pa IID1117 strain is capable of inducing apoptosis in J774 macrophages. The apoptosis induced by the cell-free supernatant from Pa IID1117 strain is suggested to be dependent on protease, but not elastase.
Collapse
Affiliation(s)
- Jianling Zhang
- Department of Microbiology and Pathology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan
| | | | | | | | | |
Collapse
|
318
|
Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2003; 100:8484-9. [PMID: 12815109 PMCID: PMC166255 DOI: 10.1073/pnas.0832438100] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of causing a variety of life-threatening human infections. The genetic basis for preferential infection of certain immunocompromised patients or individuals with cystic fibrosis by P. aeruginosa is not understood. To establish whether variation in the genomic repertoire of P. aeruginosa strains can be associated with a particular type of infection, we used a whole-genome DNA microarray to determine the genome content of 18 strains isolated from the most common human infections and environmental sources. A remarkable conservation of genes including those encoding nearly all known virulence factors was observed. Phylogenetic analysis of strain-specific genes revealed no correlation between genome content and infection type. Clusters of strain-specific genes in the P. aeruginosa genome, termed variable segments, appear to be preferential sites for the integration of novel genetic material. A specialized cloning vector was developed for capture and analysis of these genomic segments. With this capture system a site associated with the strain-specific ExoU cytotoxin-encoding gene was interrogated and an 80-kb genomic island carrying exoU was identified. These studies demonstrate that P. aeruginosa strains possess a highly conserved genome that encodes genes important for survival in numerous environments and allows it to cause a variety of human infections. The acquisition of novel genetic material, such as the exoU genomic island, through horizontal gene transfer may enhance colonization and survival in different host environments.
Collapse
Affiliation(s)
- Matthew C. Wolfgang
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Bridget R. Kulasekara
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Xiaoyou Liang
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Dana Boyd
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Kai Wu
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Qing Yang
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - C. Garrett Miyada
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
| | - Stephen Lory
- Department of Microbiology and Molecular
Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115;
andAffymetrix, Inc., Santa Clara, CA
95051
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
319
|
Carty NL, Rumbaugh KP, Hamood AN. Regulation of toxA by PtxR in Pseudomonas aeruginosa PA103. Can J Microbiol 2003; 49:450-64. [PMID: 14569286 DOI: 10.1139/w03-058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exotoxin A (ETA) production in Pseudomonas aeruginosa requires the regulatory locus regAB. Pseudomonas aeruginosa PA103 produces significantly higher levels of ETA than the prototypic strain PAO1 does, partly because of differences in the regAB locus. Other factors that contribute to this variation are not known. We previously described the P. aeruginosa gene ptxR that positively regulates production of ETA through regAB. ETA production was enhanced but still iron regulated in the PAO1 strain PAO1-XR that carries two copies of ptxR on its chromosome. Here we determine whether ptxR regulation of ETA is different in PA103. In contrast to PAO1-XR, ETA activity produced by PA103-2R, a PA103 strain carrying two copies of ptxR, is enhanced tenfold and partially deregulated in the presence of iron. Real-time PCR transcriptional analysis showed that the copy number of toxA mRNA in PA103-2R is significantly higher than in PA103 in both the presence and absence of iron, yet no similar increase in either regAB or ptxR mRNA copy number was detected. The integrated plasmid together with adjoining DNA was retrieved from the PA103-2R chromosome to determine whether integration-induced DNA changes played a role in this phenotype. Introduction of the retrieved plasmid in PA103 produced a phenotype similar to that of PA103-2R. Sequence analysis of the plasmid revealed the loss of 322 bp within the region 3' of ptxR. A plasmid construct carrying a 4-bp insertion in this same region produced in PA103 a phenotype similar to that of PA103-2R. Our results suggest that the effect of ptxR on toxA expression is different in PA103 than in PAO1 and that this variation in PA103-2R does not occur solely through regAB. Changes within the region 3' of ptxR are critical for the production of the unique PA103-2R phenotype, which occurs in trans and requires intact ptxR, but is not caused by ptxR overexpression.
Collapse
Affiliation(s)
- Nancy L Carty
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
320
|
Fleiszig SMJ, Kwong MSF, Evans DJ. Modification of Pseudomonas aeruginosa interactions with corneal epithelial cells by human tear fluid. Infect Immun 2003; 71:3866-74. [PMID: 12819071 PMCID: PMC162005 DOI: 10.1128/iai.71.7.3866-3874.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both cytotoxic and invasive strains of Pseudomonas aeruginosa can damage corneal epithelial cells in vitro, but neither can infect healthy corneas in vivo. We tested the hypothesis that whole human tear fluid can protect corneal epithelia against P. aeruginosa virulence mechanisms. Cultured corneal epithelial cells were inoculated with 10(6) CFU of one of 10 strains of P. aeruginosa (five cytotoxic, five invasive)/ml with or without reflex tear fluid collected from the conjunctival sacs of human volunteers. Cytotoxicity was assessed by observation of trypan blue staining and measurement of lactate dehydrogenase release; invasion was quantified by using gentamicin survival assays. Tear fluid retarded growth of only 50% of the P. aeruginosa strains (three of five invasive strains, two of five cytotoxic strains) yet protected corneal cells against invasion by or cytotoxicity of 9 of 10 strains. The only strain resistant to the tear cytoprotective effects was susceptible to tear bacteriostatic activity. Dilution of tear fluid threefold significantly reduced cytoprotection, while bacteriostatic activity prevailed with dilutions beyond 100-fold. Sulfacetamide (1 mg/ml) with bacteriostatic activity matching that of tear fluid was less cytoprotective than tear fluid (80% protection with tear fluid, 48% with sulfacetamide). Video microscopy revealed bacterial chain formation in both tear fluid and sulfacetamide, but tear fluid also blocked bacterial swimming motility. After prolonged tear contact, bacteria regained normal growth rates, swimming motility, and cytotoxic activity, suggesting a breakdown of protective tear factors. Boiled tear fluid lost bacteriostatic activity and effects on bacterial motility but retained cytoprotective function. These results suggest that human tear fluid can protect corneal epithelial cells against P. aeruginosa virulence mechanisms in a manner not dependent upon bacteriostatic activity or effects on bacterial motility. Whether overlapping tear film components are involved in these defense functions is to be determined.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- Morton D. Sarver Laboratory for Contact Lens and Cornea Research, School of Optometry, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
321
|
Rabin SDP, Hauser AR. Pseudomonas aeruginosa ExoU, a toxin transported by the type III secretion system, kills Saccharomyces cerevisiae. Infect Immun 2003; 71:4144-50. [PMID: 12819106 PMCID: PMC161993 DOI: 10.1128/iai.71.7.4144-4150.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExoU, a protein transported by the type III secretion system of Pseudomonas aeruginosa, is an important cytotoxin, though its mechanism of action is unclear. Here we show that the intracellular expression of ExoU is cytotoxic to Saccharomyces cerevisiae. Furthermore, internal amino- and carboxyl-terminal deletions confirmed that regions of ExoU previously shown to be essential for killing mammalian cells were also required for killing yeast cells. These findings indicate that S. cerevisiae is a useful model organism for the study of ExoU.
Collapse
Affiliation(s)
- Shira D P Rabin
- Department of Microbiology/Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
322
|
Sato H, Frank DW, Hillard CJ, Feix JB, Pankhaniya RR, Moriyama K, Finck-Barbançon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytotoxin, ExoU. EMBO J 2003; 22:2959-69. [PMID: 12805211 PMCID: PMC162142 DOI: 10.1093/emboj/cdg290] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pseudomonas aeruginosa delivers the toxin ExoU to eukaryotic cells via a type III secretion system. Intoxication with ExoU is associated with lung injury, bacterial dissemination and sepsis in animal model and human infections. To search for ExoU targets in a genetically tractable system, we used controlled expression of the toxin in Saccharomyces cerevisiae. ExoU was cytotoxic for yeast and caused a vacuolar fragmentation phenotype. Inhibitors of human calcium-independent (iPLA(2)) and cytosolic phospholipase A(2) (cPLA(2)) lipase activity reduce the cytotoxicity of ExoU. The catalytic domains of patatin, iPLA(2) and cPLA(2) align or are similar to ExoU sequences. Site-specific mutagenesis of predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated toxicity. ExoU expression in yeast resulted in an accumulation of free palmitic acid, changes in the phospholipid profiles and reduction of radiolabeled neutral lipids. ExoUS142A and ExoUD344A expressed in yeast failed to release palmitic acid. Recombinant ExoU demonstrated lipase activity in vitro, but only in the presence of a yeast extract. From these data we conclude that ExoU is a lipase that requires activation or modification by eukaryotic factors.
Collapse
Affiliation(s)
- Hiromi Sato
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Jia J, Alaoui-El-Azher M, Chow M, Chambers TC, Baker H, Jin S. c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun 2003; 71:3361-70. [PMID: 12761120 PMCID: PMC155783 DOI: 10.1128/iai.71.6.3361-3370.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an opportunistic bacterial pathogen, Pseudomonas aeruginosa mainly affects immunocompromised individuals as well as patients with cystic fibrosis. In a previous study, we showed that ExoS of P. aeruginosa, when injected into host cells through a type III secretion apparatus, functions as an effector molecule to trigger apoptosis in various tissue culture cells. Here, we show that injection of the ExoS into HeLa cells activates c-Jun NH(2)-terminal kinase (JNK) phosphorylation while shutting down ERK1/2 and p38 phosphorylation. Inhibiting JNK activation by expression of a dominant negative JNK1 or with a specific JNK inhibitor abolishes ExoS-triggered apoptosis, demonstrating the requirement for JNK-mediated signaling. Following JNK phosphorylation, cytochrome c is released into the cytosol, leading to the activation of caspase 9 and eventually caspase 3. Although c-Jun phosphorylation is also observed as a result of JNK activation, ongoing host protein synthesis is not essential for the apoptotic induction, suggesting that c-Jun- or other AP-1-driven activation of gene expression is dispensable in this process. Therefore, ExoS has opposing effects on different cellular pathways that regulate apoptosis: it shuts down host cell survival signal pathways by inhibiting ERK1/2 and p38 activation, and it activates proapoptotic pathways through activation of JNK1/2 leading ultimately to cytochrome c release and activation of caspases. These results highlight the modulation of host cell signaling by the type III secretion system during interaction between P. aeruginosa and host cells.
Collapse
Affiliation(s)
- Jinghua Jia
- Department of Molecular Genetics and Microbiology, University of Florida School of Medicine, Gainesville 32610, USA
| | | | | | | | | | | |
Collapse
|
324
|
Fleiszig SMJ, McNamara NA, Evans DJ. The tear film and defense against infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:523-30. [PMID: 12613956 DOI: 10.1007/978-1-4615-0717-8_74] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Suzanne M J Fleiszig
- Morton D. Sarver Laboratory for Cornea and Contact Lens Research, School of Optometry, University of California, Berkeley, California, USA
| | | | | |
Collapse
|
325
|
Jendrossek V, Fillon S, Belka C, Müller I, Puttkammer B, Lang F. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect Immun 2003; 71:2665-73. [PMID: 12704141 PMCID: PMC153227 DOI: 10.1128/iai.71.5.2665-2673.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative facultative opportunistic pathogen associated with severe infections in immunocompromised hosts and in patients with cystic fibrosis. P. aeruginosa strains show divergent pathogenicity in vivo and trigger apoptosis of and/or are internalized into human host cells. In the present study, we studied the molecular ordering of apoptosis signaling upon infection of human conjunctiva epithelial Chang cells with P. aeruginosa PAK as well as the role of bacterial pili in the response to the infection. Our results show that CD95 up-regulation is followed by early activation of caspase-8 and -3 and cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase. The data also demonstrate release of apoptosis inducing factor into the cytosol of infected cells. Induction of mitochondrial alterations, i.e., mitochondrial depolarization and release of cytochrome c, as well as cleavage of caspase-9, -7, and -1 occurred only at later time points. In addition, our results demonstrate that pili are required for P. aeruginosa-induced apoptosis of human epithelial cells. While the two piliated P. aeruginosa strains, PAO-I and PAK, induced apoptosis of Chang cells within 3 h of infection, the pilus-deficient P. aeruginosa mutants PAK Delta pilA and PAK Delta pilA Delta all were without effect. The pilus-deficient mutants failed to induce a significant up-regulation of CD95 on the cell surface and to trigger mitochondrial alterations or activation of caspase-8, -3, and -7. In addition, only the piliated wild-type strains induced caspase-1-mediated activation of interleukin-1 beta. Thus, pili are necessary for distinct infection-induced cellular responses of human epithelial cells.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
326
|
Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 2003; 71:2404-13. [PMID: 12704110 PMCID: PMC153283 DOI: 10.1128/iai.71.5.2404-2413.2003] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonvertebrate model hosts represent valuable tools for the study of host-pathogen interactions because they facilitate the identification of bacterial virulence factors and allow the discovery of novel components involved in host innate immune responses. In this report, we determined that the greater wax moth caterpillar Galleria mellonella is a convenient nonmammalian model host for study of the role of the type III secretion system (TTSS) in Pseudomonas aeruginosa pathogenesis. Based on the observation that a mutation in the TTSS pscD gene of P. aeruginosa strain PA14 resulted in a highly attenuated virulence phenotype in G. mellonella, we examined the roles of the four known effector proteins of P. aeruginosa (ExoS, ExoT, ExoU, and ExoY) in wax moth killing. We determined that in P. aeruginosa strain PA14, only ExoT and ExoU play a significant role in G. mellonella killing. Strain PA14 lacks the coding sequence for the ExoS effector protein and does not seem to express ExoY. Moreover, using Delta exoU Delta exoY, Delta exoT Delta exoY, and Delta exoT Delta exoU double mutants, we determined that individual translocation of either ExoT or ExoU is sufficient to obtain nearly wild-type levels of G. mellonella killing. On the other hand, data obtained with a Delta exoT Delta exoU Delta exoY triple mutant and a Delta pscD mutant suggested that additional, as-yet-unidentified P. aeruginosa components of type III secretion are involved in virulence in G. mellonella. A high level of correlation between the results obtained in the G. mellonella model and the results of cytopathology assays performed with a mammalian tissue culture system validated the use of G. mellonella for the study of the P. aeruginosa TTSS.
Collapse
Affiliation(s)
- Sachiko Miyata
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
327
|
Faure K, Shimabukuro D, Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP. O-antigen serotypes and type III secretory toxins in clinical isolates of Pseudomonas aeruginosa. J Clin Microbiol 2003; 41:2158-60. [PMID: 12734267 PMCID: PMC154700 DOI: 10.1128/jcm.41.5.2158-2160.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The association of O-antigen serotypes with type III secretory toxins was analyzed in 99 clinical isolates of Pseudomonas aeruginosa. Isolates secreting ExoU were frequently serotyped as O11, but none were serotype O1. Most of the isolates that were nontypeable for O antigen did not secrete type III secretory toxins.
Collapse
Affiliation(s)
- Karine Faure
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
328
|
Fujimoto J, Wiener-Kronish JP, Hashimoto S, Sawa T. Effects of Cl2MDP-encapsulating liposomes in a murine model of Pseudomonas aeruginosa-induced sepsis. J Liposome Res 2003; 12:239-57. [PMID: 12604029 DOI: 10.1081/lpr-120014760] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa is a pathogen that frequently causes acute lung injury, bacteremia and sepsis in critically ill patients. As tissue macrophages are a major producer of inflammatory mediators that contribute to septic physiology, and are essential for eliminating bacteria from the circulation, we investigated the role of tissue macrophages in the generation of both inflammatory and anti-inflammatory cytokines in septic shock by using our mouse model of P. aeruginosa pneumonia. To see the effects of tissue macrophage depletion, we intravenously injected dichloromethylene-diphosphonate (Cl2MDP)-encapsulating liposomes in mice. Two days after the liposome injection, we instilled cytotoxic P. aeruginosa (PA103) into the lung that disseminates and causes septic shock. After the infection, we collected blood and bronchoalveolar lavage fluids. The samples were then analyzed for TNF-alpha, MIP-2, and IL-10 concentration. We compared these results to control mice that received either liposomes without Cl2MDP or phosphate buffered saline alone. Plasma TNF-alpha, MIP-2, and IL-10 levels were significantly decreased in the tissue macrophage-depleted mice compared to the control groups of mice. Although depletion of tissue macrophages by Cl2MDP-liposome administration did not affect the severity of bacteremia or the survival of infected mice, these results imply that tissue macrophages have a major role in the production of both proinflammatory and anti-inflammatory cytokines in the circulation and in the causing septic physiology associated with P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Junichi Fujimoto
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143-0542, USA
| | | | | | | |
Collapse
|
329
|
Allmond LR, Karaca TJ, Nguyen VN, Nguyen T, Wiener-Kronish JP, Sawa T. Protein binding between PcrG-PcrV and PcrH-PopB/PopD encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system. Infect Immun 2003; 71:2230-3. [PMID: 12654846 PMCID: PMC152033 DOI: 10.1128/iai.71.4.2230-2233.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the proteins encoded by the pcrGVH-popBD operon of the Pseudomonas aeruginosa type III secretion system, PcrG bound to PcrV and PcrH bound to PopB/PopD. In addition, Yersinia LcrG bound to PcrV, and Yersinia LcrH bound to PopD. The results imply a highly functional conservation of type III secretion between P. aeruginosa and Yersinia species.
Collapse
Affiliation(s)
- Leonard R Allmond
- Department of Anesthesia and Perioperative Care, School of Medicine, University of California-San Francisco, 513 Parnassus, San Francisco, CA 94143-0542, USA
| | | | | | | | | | | |
Collapse
|
330
|
Tomich M, Griffith A, Herfst CA, Burns JL, Mohr CD. Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun 2003; 71:1405-15. [PMID: 12595458 PMCID: PMC148827 DOI: 10.1128/iai.71.3.1405-1415.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion systems are utilized by a number of gram-negative bacterial pathogens to deliver virulence-associated proteins into host cells. Using a PCR-based approach, we identified homologs of type III secretion genes in the gram-negative bacterium Burkholderia cepacia, an important pulmonary pathogen in immunocompromised patients and patients with cystic fibrosis. One of the genes, designated bscN, encodes a member of a family of ATP-binding proteins believed to generate energy driving virulence protein secretion. Genetic dissection of the regions flanking the bscN gene revealed a locus consisting of at least 10 open reading frames, predicted to encode products with significant homology to known type III secretion proteins in other bacteria. A defined null mutation was generated in the bscN gene, and the null strain and wild-type parent strain were examined by use of a murine model of B. cepacia infection. Quantitative bacteriological analysis of the lungs and spleens of infected C57BL/6 mice revealed that the bscN null strain was attenuated in virulence compared to the parent strain, with significantly lower bacterial recovery from the lungs and spleens at 3 days postinfection. Moreover, histopathological changes, including an inflammatory cell infiltrate, were more pronounced in the lungs of mice infected with the wild-type parent strain than in those of mice infected with the isogenic bscN mutant. These results implicate type III secretion as an important determinant in the pathogenesis of B. cepacia.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455-0312, USA
| | | | | | | | | |
Collapse
|
331
|
Abstract
DsbA is a periplasmic thiol:disulfide oxidoreductase which contributes to the process of protein folding by catalyzing the formation of disulfide bonds. In this study, we demonstrate that the dsbA gene is required for the expression of the type III secretion system under low-calcium inducing conditions, intracellular survival of P. aeruginosa upon infection of HeLa cells, and twitching motility. The diverse phenotypes of the dsbA mutant are likely due to its defect in the folding of proteins that are involved in various biological processes, such as signal sensing, protein secretion, and defense against host clearing. In light of its effect on various virulence factors, DsbA could be an important target for the control of P. aeruginosa infections.
Collapse
Affiliation(s)
- Un-Hwan Ha
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
332
|
Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 2003; 4:253-63. [PMID: 12586068 DOI: 10.1016/s1534-5807(03)00019-4] [Citation(s) in RCA: 295] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type III secretion systems (TTSSs) are utilized by numerous bacterial pathogens to inject effector proteins directly into host cells. Using a whole-genome microarray, we investigated the conditions and regulatory factors that control the expression of the Pseudomonas aeruginosa TTSS. The transcriptional response of known TTSS genes indicates a hierarchical pattern of expression in which a set of secretion apparatus and regulatory genes is constitutively expressed. Further analysis of genes coordinately regulated with those encoding the TTSS led to the identification of a signaling pathway that originates from a membrane-associated adenylate cyclase and controls TTSS gene expression. Transcriptome analysis of mutants lacking the ability to synthesize cAMP or the cAMP binding protein Vfr implicated this pathway in the global regulation of host-directed virulence determinants, including the TTSS.
Collapse
Affiliation(s)
- Matthew C Wolfgang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
333
|
Régulation transcriptionnelle du système de sécrétion de type III de Pseudomonas aeruginosa : conséquences de mutations de gènes de la pyruvate déhydrogénase. Med Mal Infect 2003. [DOI: 10.1016/s0399-077x(02)00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
334
|
Engel JN. Molecular Pathogenesis of Acute Pseudomonas Aeruginosa Infections. SEVERE INFECTIONS CAUSED BY PSEUDOMONAS AERUGINOSA 2003. [DOI: 10.1007/978-1-4615-0433-7_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
335
|
Sundin C, Wolfgang MC, Lory S, Forsberg A, Frithz-Lindsten E. Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb Pathog 2002; 33:265-77. [PMID: 12495673 DOI: 10.1006/mpat.2002.0534] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type III secretion system (TTSS) of the opportunistic pathogen Pseudomonas aeruginosa enables the bacterium to deliver exoenzymes directly into the eukaryotic cell. In this study we have investigated the role of key factors involved in this process. We could demonstrate that the translocators PopB, PopD and PcrV are absolutely required for delivery of Exoenzyme S into host cells. By analyzing different Tfp (type IV pili) mutants we could establish a correlation between the frequency of bacteria binding to the host cell and the levels of translocated ExoS, thereby verifying that the process is contact dependent. However, there was no absolute requirement for the Tfp per se, since the pilus could be substituted with a different type of adhesin, the non-fimbrial adhesin pH6 antigen of Yersinia pestis. Taken together, our results demonstrate that binding to establish close contact between the type III secretion organelle and the host cell is essential for translocation, while the additional activities of Tfp are not essential for the delivery of TTSS proteins.
Collapse
Affiliation(s)
- Charlotta Sundin
- Department of Medical Countermeasures, FOI NBC-Defence, S-901 82, Umeå, Sweden
| | | | | | | | | |
Collapse
|
336
|
Zhu H, Thuruthyil SJ, Willcox MDP. Determination of quorum-sensing signal molecules and virulence factors of Pseudomonas aeruginosa isolates from contact lens-induced microbial keratitis. J Med Microbiol 2002; 51:1063-1070. [PMID: 12466404 DOI: 10.1099/0022-1317-51-12-1063] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The virulence of Pseudomonas aeruginosa in contact lens-induced microbial keratitis has been linked to various extracellular and cell-associated bacterial products, such as proteases and toxins. Recently, a group of bacterial signal molecules, N-acyl-homoserine lactones (AHLs), has been reported to play an important role in the regulation of the production of several bacterial virulence factors in P. aeruginosa. The aim of this study was to determine the signal molecules produced by P. aeruginosa keratitis strains, and to elucidate any possible correlation between the production of signal molecules and the expression of phenotypic characteristics, including protease production, bacterial invasion and acute cytotoxic activity. The presence and profiles of AHLs in ocular P. aeruginosa isolates were analysed by a combination of thin-layer chromatography and bioassay. All 17 keratitis isolates produced AHLs. There were differences both in the amounts and the types of AHL production in the various phenotypes of isolates. High levels of AHLs were found among the isolates with high protease activity and invasiveness. Acutely cytotoxic isolates displayed low AHL and protease activities. Invasive strains were more common than cytotoxic strains from keratitis patients. These results suggest that quorum-sensing systems of P. aeruginosa display a complexity even within the same species, and the production of certain AHL signal molecules may be associated with certain phenotypes in P. aeruginosa.
Collapse
Affiliation(s)
- Hua Zhu
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Sophy J Thuruthyil
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- Cooperative Research Center for Eye Research and Technology, University of New South Wales, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
337
|
Jacob T, Lee RJ, Engel JN, Machen TE. Modulation of cytosolic Ca(2+) concentration in airway epithelial cells by Pseudomonas aeruginosa. Infect Immun 2002; 70:6399-408. [PMID: 12379720 PMCID: PMC130342 DOI: 10.1128/iai.70.11.6399-6408.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modulation of cytosolic (intracellular) Ca(2+) concentration (Ca(i)) may be an important host response when airway epithelial cells are exposed to Pseudomonas aeruginosa. We measured Ca(i) in Calu-3 cells exposed from the apical or basolateral surface to cytotoxic and noncytotoxic strains of P. aeruginosa. Apical addition of either noncytotoxic strains or cytotoxic strains failed to affect Ca(i) over a 3-h time period, nor were changes observed after basolateral addition of noncytotoxic strains. In contrast, basolateral addition of cytotoxic strains caused a slow increase in Ca(i) from 100 nM to 200 to 400 nM. This increase began after 20 to 50 min and persisted for an additional 30 to 75 min, at which time the cells became nonviable. P. aeruginosa-induced increases in Ca(i) were blocked by the addition of the Ca channel blocker La(3+) to the basolateral but not to the apical chamber. Likewise, replacing the basolateral but not the apical medium with Ca-free solution prevented P. aeruginosa-mediated changes in Ca(i). With isogenic mutants of PA103, we demonstrated that the type III secretion apparatus, the type III-secreted effector ExoU, and type IV pili were necessary for increased Ca(i). We propose that translocation of ExoU through the basolateral surface of polarized airway epithelial cells via the type III secretion apparatus leads to release of Ca stored in the endoplasmic reticulum and activation of Ca channels in the basolateral membranes of epithelial cells.
Collapse
Affiliation(s)
- Tobias Jacob
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | |
Collapse
|
338
|
McCaw ML, Lykken GL, Singh PK, Yahr TL. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol Microbiol 2002; 46:1123-33. [PMID: 12421316 DOI: 10.1046/j.1365-2958.2002.03228.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the Pseudomonas aeruginosa type III secretion system is induced by contact with eukaryotic cells, serum or low Ca2+ concentrations. We report that ExsD, a unique protein, is a negative regulator of the type III regulon. Localization studies indicate that ExsD is not secreted by P. aeruginosa. To determine the role of exsD, a non-polar deletion was returned to the chromosome by allelic exchange. The delta exsD mutant is competent for type III secretion and translocation of the ExoU cytotoxin to eukaryotic host cells. To examine the effect of ExsD on transcription, lacZ transcriptional reporter fusions were integrated into the chromosome. Promoters controlling transcription of genes encoding the type III secretory, regulatory and effector proteins demonstrated significant derepression in the delta exsD background. Expression of ExsD from a multicopy plasmid completely repressed transcription of the regulon. Although a mutant in pscC, encoding a structural component of the type III translocase, is repressed for expression of the regulon, a delta exsD, pscC:: omega double mutant is derepressed. Bacterial two-hybrid data indicate that ExsD binds the transcriptional activator of the regulon, ExsA. We conclude that ExsD is a negative regulator and propose that ExsD functions as an ExsA antiactivator to regulate transcription of the regulon.
Collapse
Affiliation(s)
- Michelle L McCaw
- Department of Microbiology, University of Iowa, Iowa City 52242-1101, USA
| | | | | | | |
Collapse
|
339
|
Type III secretion-mediated killing of endothelial cells by Pseudomonas aeruginosa. Microb Pathog 2002. [DOI: 10.1006/mpat.2002.0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
340
|
Fleiszig SMJ, Evans DJ. The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin Exp Optom 2002; 85:271-8. [PMID: 12366347 DOI: 10.1111/j.1444-0938.2002.tb03082.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 03/21/2002] [Indexed: 10/20/2022] Open
Abstract
Bacterial keratitis is a sight-threatening corneal disease that is most commonly associated with the extended wear of soft contact lenses. Over the past decade, we have investigated the pathogenesis of infectious keratitis involving the opportunistic pathogen Pseudomonas aeruginosa. Our research has focused on understanding the respective roles of bacteria and host in the establishment of this infection. Here, we provide a current perspective on P. aeruginosa keratitis, reviewing some of the research developments that have helped shape our views on the mechanisms by which pathogen and host response cause corneal disease. P. aeruginosa may provide a model for the pathogenesis of bacterial keratitis and help further elucidate the complex array of host factors that normally protect the cornea from infectious agents.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, 688 Minor Hall, University of California at Berkeley, Berkeley, CA, 94720-2020, USA
| | | |
Collapse
|
341
|
Evans DJ, Kuo TC, Kwong M, Van R, Fleiszig SMJ. Mutation of csk, encoding the C-terminal Src kinase, reduces Pseudomonas aeruginosa internalization by mammalian cells and enhances bacterial cytotoxicity. Microb Pathog 2002; 33:135-43. [PMID: 12220990 DOI: 10.1006/mpat.2002.0521] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Clinical isolates of Pseudomonas aeruginosa are either invasive or cytotoxic towards mammalian epithelial cells, endothelial cells, and macrophages. Invasion requires host cell actin cytoskeleton function, and ExsA-regulated proteins of P. aeruginosa that inhibit invasion (ExoS and ExoT) can disrupt the cytoskeleton. Another ExsA regulated protein, ExoU, is involved in the cytotoxic activity of cytotoxic strains. Src-family kinases are thought to participate in the regulation of cytoskeleton function. Recent studies have suggested that Src-family tyrosine kinases, p60-Src and p59-Fyn, are activated during P. aeruginosa invasion. Using fibroblasts homozygous for mutation of csk (-/-), we tested the hypothesis that mutation of csk, encoding a negative regulator of Src-family tyrosine kinases, would be important in P. aeruginosa invasion and cytotoxicity. Mutation of csk was found to reduce invasion by approximately 8-fold, without reducing bacterial adherence to cells (P=0.0001). Conversely, csk (-/-) cells were approximately 5-fold more susceptible to ExoU-dependent cytotoxicity (P=0.024), which was accompanied by a small increase in ExsA-regulated adherence. ExoT-dependent invasion inhibitory activity of cytotoxic P. aeruginosa was attenuated in csk (-/-) cells as compared to normal fibroblasts. These data show that fibroblasts, like epithelial cells, are susceptible to P. aeruginosa invasion and cytotoxicity. They also show a role for Csk in P. aeruginosa invasion, while providing further evidence that actin cytoskeleton disruption contributes to ExsA-regulated P. aeruginosa cytotoxicity and invasion inhibition.
Collapse
Affiliation(s)
- David J Evans
- Morton D. Sarver Laboratory for Cornea and Contact Lens Research, School of Optometry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
342
|
Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock REW, Speert DP. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196:109-18. [PMID: 12093875 PMCID: PMC2194012 DOI: 10.1084/jem.20020005] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a deltamexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a deltamexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including deltamexB and deltamexXY mutants, were intermediate between WT and the deltamexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the deltamexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence.
Collapse
Affiliation(s)
- Yoichi Hirakata
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Fauvarque MO, Bergeret E, Chabert J, Dacheux D, Satre M, Attree I. Role and activation of type III secretion system genes in Pseudomonas aeruginosa-induced Drosophila killing. Microb Pathog 2002; 32:287-95. [PMID: 12137756 DOI: 10.1006/mpat.2002.0504] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa strains PAO1 and CHA showing type III system-dependent cytotoxicity towards macrophages ex vivo are able to induce rapid death of adult fly Drosophila melanogaster accompanied by bacterial multiplication to high-titers. The role of P. aeruginosa type III secretion system in rapid fly killing was demonstrated here by using several isogenic CHA mutants, selectively affected in this system. The activation of P. aeruginosa pexsCBA, the regulatory operon of the type III system, and the activation of the Drosophila gene diptericin, showed the host-pathogen recognition during infection process.
Collapse
Affiliation(s)
- M-O Fauvarque
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR5092), Département de Réponse et Dynamique Cellulaires, CEA/Grenoble, France
| | | | | | | | | | | |
Collapse
|
344
|
Thakur A, Xue M, Stapleton F, Lloyd AR, Wakefield D, Willcox MDP. Balance of pro- and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infect Immun 2002; 70:2187-97. [PMID: 11895986 PMCID: PMC127830 DOI: 10.1128/iai.70.4.2187-2197.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to elucidate the expression of pro- and anti-inflammatory cytokines in mouse corneas infected with Pseudomonas aeruginosa. Three bacterial strains (invasive, cytotoxic, or CLARE [contact lens-induced acute red eye]) which have recently been shown to produce distinct patterns of corneal disease in the mouse were used. The left mouse (BALB/c) corneas were scarified and infected with 2 x 10(6) CFU of one of the three P. aeruginosa strains, while right eyes served as controls. Animals were examined at 1, 4, 8, 16, and 24 h with a slit lamp biomicroscope to grade the severity of infection. Following examination, eyes were collected and processed for histopathology, multiprobe RNase protection assay for cytokine mRNA, enzyme-linked immunosorbent assay to quantitate cytokine proteins, and myeloperoxidase activity to quantitate polymorphonuclear leukocytes. The kinetics of appearance and magnitude of expression of key cytokines varied significantly in the three different phenotypes of P. aeruginosa infection. The predominant cytokines expressed in response to all three phenotypes were interleukin-1 beta (IL-1 beta), IL-1Ra, and IL-6. In response to the invasive strain, which induced severe corneal inflammation, significantly lower ratios of IL-1Ra to IL-1 beta were present at all time points, whereas corneas challenged with the CLARE strain, which induced very mild inflammation, showed a high ratio of IL-1Ra to IL-1 beta. The outcome of infection in bacterial keratitis correlated with the relative induction of these pro- and anti-inflammatory cytokines, and exogenous administration of recombinant rIL-1Ra (rIL-1Ra) was able to reduce the disease severity significantly. These findings point to the therapeutic potential of rIL-1Ra protein in possible treatment strategies for bacterial keratitis.
Collapse
Affiliation(s)
- A Thakur
- Cornea and Contact Lens Research Unit, Cooperative Research Centre for Eye Research and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | | | |
Collapse
|
345
|
Abstract
While originally characterized as a collection of related syndromes, cystic fibrosis (CF) is now recognized as a single disease whose diverse symptoms stem from the wide tissue distribution of the gene product that is defective in CF, the ion channel and regulator, cystic fibrosis transmembrane conductance regulator (CFTR). Defective CFTR protein impacts the function of the pancreas and alters the consistency of mucosal secretions. The latter of these effects probably plays an important role in the defective resistance of CF patients to many pathogens. As the modalities of CF research have changed over the decades from empirical histological studies to include biophysical measurements of CFTR function, the clinical management of this disease has similarly evolved to effectively address the ever-changing spectrum of CF-related infectious diseases. These factors have led to the successful management of many CF-related infections with the notable exception of chronic lung infection with the gram-negative bacterium Pseudomonas aeruginosa. The virulence of P. aeruginosa stems from multiple bacterial attributes, including antibiotic resistance, the ability to utilize quorum-sensing signals to form biofilms, the destructive potential of a multitude of its microbial toxins, and the ability to acquire a mucoid phenotype, which renders this microbe resistant to both the innate and acquired immunologic defenses of the host.
Collapse
Affiliation(s)
- Jeffrey B. Lyczak
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
| | - Carolyn L. Cannon
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
| | - Gerald B. Pier
- Channing Laboratory, Brigham and Women's Hospital,, Harvard Medical School,, Children's Hospital, Boston, MA 02115
- Corresponding author. Mailing address: Channing Laboratory, 181 Longwood Ave., Boston, MA 02115. Phone: (617) 525-2269. Fax: (617) 525-2510.
| |
Collapse
|
346
|
Pukatzki S, Kessin RH, Mekalanos JJ. The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci U S A 2002; 99:3159-64. [PMID: 11867744 PMCID: PMC122489 DOI: 10.1073/pnas.052704399] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically accessible host models are useful for studying microbial pathogenesis because they offer the means to identify novel strategies that pathogens use to evade immune mechanisms, cause cellular injury, and induce disease. We have developed conditions under which the human pathogen Pseudomonas aeruginosa infects Dictyostelium discoideum, a genetically tractable eukaryotic organism. When D. discoideum is plated on nutrient agar plates with different P. aeruginosa strains, the bacteria form lawns on these plates with amoebae embedded in them. Virulent P. aeruginosa strains kill these amoebae and leave an intact bacterial lawn. A number of P. aeruginosa mutants have been identified that are avirulent in this assay. Amoebae feed on these bacteria and form plaques in their bacterial lawns. One avirulent mutant strain carries an insertional mutation in the lasR gene. LasR is a transcription factor that controls a number of virulence genes in a density-dependent fashion. Another class of avirulent P. aeruginosa mutants is defective in type III secretion. One mutant lacks the PscJ protein, a structural component of the secretion apparatus, suggesting that cytotoxins are injected into the D. discoideum cell. One of these cytotoxins is ExoU, and exoU mutants are avirulent toward D. discoideum. Complementation of the lasR and exoU mutations restores virulence. Therefore, P. aeruginosa uses conserved virulence pathways to kill D. discoideum.
Collapse
Affiliation(s)
- Stefan Pukatzki
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
347
|
Hauser AR, Cobb E, Bodi M, Mariscal D, Vallés J, Engel JN, Rello J. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 2002; 30:521-8. [PMID: 11990909 DOI: 10.1097/00003246-200203000-00005] [Citation(s) in RCA: 313] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Pseudomonas aeruginosa is a frequent cause of ventilator-associated pneumonia. Recent evidence suggests that production of type III secretion proteins is correlated with increased pathogenicity in both cellular and animal models of infection. The objective of this study was to determine whether this system contributes to disease severity in humans with ventilator-associated pneumonia. DESIGN Retrospective pilot cohort study. SETTING University hospital. PATIENTS Thirty-five mechanically ventilated patients with bronchoscopically confirmed ventilator-associated pneumonia caused by P. aeruginosa. MEASUREMENTS AND MAIN RESULTS Ventilator-associated pneumonia was categorized as severe (patients died or had a recurrence of their pneumonia despite appropriate antibiotic therapy) or mild (patients uneventfully recovered from their pneumonia). The type III secretion genotypes and phenotypes of isolates cultured from the patients with ventilator-associated pneumonia were determined. Whereas every examined isolate harbored type III secretion genes, only 27 (77%) were capable of secreting detectable amounts of type III proteins in vitro. Twenty-two (81%) of the patients infected with these 27 isolates had severe disease. Of the eight isolates that did not secrete type III proteins, only three (38%) were cultured from patients with severe disease. Thus, infection with a type-III-secreting isolate correlated with severe disease (p < .05). In vitro assays indicated that ExoU, the type III effector protein most closely linked to mortality in animal models, was secreted in detectable amounts in vitro by 10 (29%) of the 35 examined isolates. Nine (90%) of these 10 isolates were cultured from patients with severe disease (p < .05 when compared with the nonsecreting isolates). In contrast, ExoS was secreted by 16 (46%) of the 35 examined isolates. Twelve (75%) of these 16 isolates were cultured from patients with severe disease (p = .14 when compared with the nonsecreting isolates). CONCLUSIONS In patients with ventilator-associated pneumonia, type-III-secreting isolates were associated with worse clinical outcomes, suggesting that this secretion system plays an important role in human disease. Our findings support the hypothesis that antibodies targeted against these proteins may be useful as adjunctive therapy in intubated patients with P. aeruginosa colonization or infection.
Collapse
Affiliation(s)
- Alan R Hauser
- Department of Microbiology/Immunology, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
348
|
Pathogenicity Islands and PAI-Like Structures in Pseudomonas Species. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-642-56031-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
349
|
Larbig K, Kiewitz C, Tümmler B. Pathogenicity Islands and PAI-Like Structures in Pseudomonas Species. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-662-09217-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
350
|
Shime N, Sawa T, Fujimoto J, Faure K, Allmond LR, Karaca T, Swanson BL, Spack EG, Wiener-Kronish JP. Therapeutic administration of anti-PcrV F(ab')(2) in sepsis associated with Pseudomonas aeruginosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5880-6. [PMID: 11698464 DOI: 10.4049/jimmunol.167.10.5880] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of rabbit-derived polyclonal Ab against PcrV, a protein involved in the translocation of type III secreted toxins of Pseudomonas aeruginosa, was investigated in two animal models of P. aeruginosa sepsis. In a mouse survival study, the i.v. administration of anti-PcrV IgG after the airspace instillation of a lethal dose of P. aeruginosa resulted in the complete survival of the animals. In a rabbit model of septic shock associated with Pseudomonas-induced lung injury, animals treated with anti-PcrV IgG intratracheally or i.v. had significant decreases in lung injury, bacteremia, and plasma TNF-alpha and significant improvement in the hemodynamic parameters associated with shock compared with animals treated in a similar manner with nonspecific control IgG. The administration of anti-PcrV F(ab')(2) showed protective effects comparable to those of whole anti-PcrV IgG. These results document that the therapeutic administration of anti-PcrV IgG blocks the type III secretion system-mediated virulence of P. aeruginosa and prevents septic shock and death, and that these protective effects are largely Fc independent. We conclude that Ab therapy neutralizing the type III secretion system has significant potential against lethal P. aeruginosa infections.
Collapse
Affiliation(s)
- N Shime
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|