301
|
Meng XW, Heldebrant MP, Kaufmann SH. Phorbol 12-myristate 13-acetate inhibits death receptor-mediated apoptosis in Jurkat cells by disrupting recruitment of Fas-associated polypeptide with death domain. J Biol Chem 2002; 277:3776-83. [PMID: 11729181 DOI: 10.1074/jbc.m107218200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of death receptor-mediated apoptosis is incompletely understood. Previous studies have demonstrated that phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, inhibits Fas (CD95)-mediated apoptosis in Jurkat (type II) cells but not SKW6.4 (type I) cells. In this study, we demonstrated that PMA also protects Jurkat cells from apoptosis induced by tumor necrosis factor-alpha and the tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). Interestingly, PMA failed to protect Jurkat cells from apoptosis induced by other agents, including etoposide, camptothecin, and gamma-irradiation. Analysis of the initial events induced by agonistic anti-Fas antibodies revealed that PMA inhibited Fas binding to Fas-associated polypeptide with death domain (FADD) in Jurkat cells but not in SKW6.4 cells. Although the protein kinase inhibitor bisindoylmaleimide VIII increased apoptosis induced by agonistic anti-Fas antibody, tumor necrosis factor-alpha, and TRAIL, these effects were not observed with the protein kinase C inhibitor H7 and were not associated with increased FADD recruitment to Fas. These results indicate that PMA inhibits death signaling induced by a number of discrete receptors and suggest that the effects are mediated at the level of receptor-mediated adaptor molecule recruitment.
Collapse
Affiliation(s)
- Xue Wei Meng
- Division of Oncology Research, Department of Molecular Pharmacology, Mayo Clinic, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
302
|
Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Kayagaki N, Yagita H, Okumura K. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 2002; 195:161-9. [PMID: 11805143 PMCID: PMC2193611 DOI: 10.1084/jem.20011171] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells and interferon (IFN)-gamma have been implicated in immune surveillance against tumor development. Here we show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a critical role in the NK cell-mediated and IFN-gamma-dependent tumor surveillance. Administration of neutralizing monoclonal antibody against TRAIL promoted tumor development in mice subcutaneously inoculated with a chemical carcinogen methylcholanthrene (MCA). This protective effect of TRAIL was at least partly mediated by NK cells and totally dependent on IFN-gamma. In the absence of TRAIL, NK cells, or IFN-gamma, TRAIL-sensitive sarcomas preferentially emerged in MCA-inoculated mice. Moreover, development of spontaneous tumors in p53(+/-) mice was also promoted by neutralization of TRAIL. These results indicated a substantial role of TRAIL as an effector molecule that eliminates developing tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Killer Cells, Natural/immunology
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
- Kazuyoshi Takeda
- Department of Immunology, Juntendo University, School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Nitric oxide (NO), an important molecule involved in neurotransmission, vascular homeostasis, immune regulation, and host defense, is generated from a guanido nitrogen of L-arginine by the family of NO synthase enzymes. Large amounts of NO produced for relatively long periods of time (days to weeks) by inducible NO synthase in macrophages and vascular endothelial cells after challenge with lipopolysaccharide or cytokines (such as interferons, tumor necrosis factor-alpha, and interleukin-1), are cytotoxic for various pathogens and tumor cells. This cytotoxic effect against tumor cells was found to be associated with apoptosis (programmed cell death). The mechanism of NO-mediated apoptosis involves accumulation of the tumor suppressor protein p53, damage of different mitochondrial functions, alterations in the expression of members of the Bcl-2 family, activation of the caspase cascade, and DNA fragmentation. Depending on the amount, duration, and the site of NO production, this molecule may not only mediate apoptosis in target cells but also protect cells from apoptosis induced by other apoptotic stimuli. In this review, we will concentrate on the current knowledge about the role of NO as an effector of apoptosis in tumor cells and discuss the mechanisms of NO-mediated apoptosis.
Collapse
Affiliation(s)
- V Umansky
- Division of Cellular Immunology, Tumor Immunology Program, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
304
|
Kakuta S, Tagawa YI, Shibata S, Nanno M, Iwakura Y. Inhibition of B16 melanoma experimental metastasis by interferon-gamma through direct inhibition of cell proliferation and activation of antitumour host mechanisms. Immunology 2002; 105:92-100. [PMID: 11849319 PMCID: PMC1782640 DOI: 10.1046/j.0019-2805.2001.01342.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Interferon-gamma (IFN-gamma) has pleiotropic activities other than its antivirus action, including cell growth inhibition, natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activation, and angiogenesis inhibitory activity, and these activities are supposed to be involved in its antitumour activity. However, it has not been completely elucidated which activity is mainly involved in the tumour suppression in vivo. In this study, we analysed inhibitory mechanisms of endogenous IFN-gamma against B16 melanoma experimental metastasis. After intravenous injection of tumour cells, tumour deposits in the lungs and liver were increased and life span was shorter in IFN-gamma(-/-) mice, indicating important roles for IFN-gamma in antitumour mechanisms. Interestingly, tumour deposits were not increased in IFN-gamma receptor (R)(-/-) mice. Furthermore, only low levels of cell-mediated immunity against the tumour and activation of NK cells were observed, indicating that antimetastatic effects of IFN-gamma is not mediated by host cells. The survival period of B16 melanoma-bearing IFN-gamma R(-/-) mice was, however, shorter than wild-type mice. These observations suggest that IFN-gamma prevents B16 melanoma experimental metastasis by directly inhibiting the cell growth, although antitumour host functions may also be involved in a later phase.
Collapse
Affiliation(s)
- Shigeru Kakuta
- Center for Experimental Medicine, Insitute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
305
|
Abstract
Activation of apoptosis via death receptors is a tightly regulated event, and the death pathway itself is open to interference on the part of soluble or membrane-bound decoy receptors. The aggregation state of the death-inducing ligand is a crucial factor, particularly when these molecules are used as recombinant drugs against tumors. Whether tumors are sensitive to such ligands is determined by both the net abundance of death receptors versus decoy receptors and the balance between intracellular apoptotic and antiapoptotic mechanisms. This means that in vivo elimination of tumor cells by effector arms such as T lymphocytes, natural killer cells, macrophages, and dendritic cells is dependent on both the function of activated lymphoid cells and the genetic properties of tumor cells. Death receptor ligands, however, may be a double-edged sword. When expressed on cytotoxic T lymphocytes, natural killer cells, monocytes, and dendritic cells, they induce the apoptosis of many tumor cells, whereas their expression on tumor cells induces the apoptosis of killer cells. The in vivo result is influenced by the number of infiltrating cells, their state of activation, the cytokine repertoire in the tumor microenvironment, and the ability of the tumor to produce soluble factors inhibiting their cytolytic functions.
Collapse
Affiliation(s)
- Paola Cappello
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | | | | | | |
Collapse
|
306
|
Liabakk NB, Sundan A, Torp S, Aukrust P, Frøland SS, Espevik T. Development, characterization and use of monoclonal antibodies against sTRAIL: measurement of sTRAIL by ELISA. J Immunol Methods 2002; 259:119-28. [PMID: 11730847 DOI: 10.1016/s0022-1759(01)00501-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two monoclonal antibodies against tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL), designated VI10E and III6F, have been generated. These antibodies were useful in flow cytometry analysis, immunohistochemistry, immunoprecipitation and in the development of an immunoassay for the detection of soluble TRAIL (sTRAIL)in biological samples. The immunoassay was based on two monoclonal antibodies against TRAIL. VI10E was used as the capture antibody and bound TRAIL was detected with anti-TRAIL from R&D Systems which was digoxigenin (DIG)-labeled. This enzyme-linked immunosorbent assay (ELISA) was specific for TRAIL since a panel of other cytokines did not affect the signal. The immunoassay was suitable for the detection of sTRAIL in human serum and plasma samples, cell culture supernatants and cell lysates. In a preliminary screening, it was found that serum samples from human immunodeficiency virus (HIV)-infected patients contained sTRAIL, and all these positive samples were found in the AIDS group. Using the immunoassay, it was found that phytohaemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC) to produce significant amounts of sTRAIL, the levels of which increased with exposure time. Thus, the immunoassay for TRAIL presented here represents a useful tool for measuring sTRAIL in various biological samples. It will also permit studies of release mechanisms as well as possible functions of the soluble form of this molecule.
Collapse
Affiliation(s)
- Nina Beate Liabakk
- Faculty of Medicine, Institute of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, Medisinsk Teknisk Senter, N-7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
307
|
Takeda K, Smyth MJ, Cretney E, Hayakawa Y, Yamaguchi N, Yagita H, Okumura K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 2001; 214:194-200. [PMID: 12088418 DOI: 10.1006/cimm.2001.1896] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Natural killer (NK) cells and interferon- (IFN) gamma have been implicated in immune surveillance against tumor development. Here we show tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which is a type II membrane protein belonging to the TNF family and plays a critical role in the NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous growth of TRAIL-sensitive tumors. Administration of a neutralizing monoclonal antibody against TRAIL promoted outgrowth of subcutaneously inoculated TRAIL-sensitive tumors (L929, LB27.4, and Renca) but not TRAIL-resistant tumors (P815 and B16). Such a protective effect of TRAIL against TRAIL-sensitive tumors was abrogated in NK cell-depleted or IFN-gamma-deficient mice. These results suggested a substantial role of TRAIL as the effector molecule that eliminates subcutaneously developing TRAIL-sensitive tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis Regulatory Proteins
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Cytotoxicity, Immunologic
- Fibrosarcoma/immunology
- Fibrosarcoma/pathology
- Immunity, Innate
- Immunologic Surveillance/immunology
- Injections, Subcutaneous
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Killer Cells, Natural/immunology
- L Cells/immunology
- L Cells/transplantation
- Male
- Mast-Cell Sarcoma/immunology
- Mast-Cell Sarcoma/pathology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Neoplasm Transplantation
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Perforin
- Pore Forming Cytotoxic Proteins
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/transplantation
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- K Takeda
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
308
|
Siegmund D, Hausser A, Peters N, Scheurich P, Wajant H. Tumor necrosis factor (TNF) and phorbol ester induce TNF-related apoptosis-inducing ligand (TRAIL) under critical involvement of NF-kappa B essential modulator (NEMO)/IKKgamma. J Biol Chem 2001; 276:43708-12. [PMID: 11557763 DOI: 10.1074/jbc.m106421200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that tumor necrosis factor (TNF) and phorbol 12-myristate 13-acetate (PMA) induce TNF-related apoptosis-inducing ligand (TRAIL) in T cells. In cells deficient for NF-kappaB essential modulator (NEMO)/IKKgamma, an essential component of the NF-kappaB-inducing I-kappaB kinase (IKK) complex, induction of TRAIL expression was completely abrogated but was recovered in cells restored for IKKgamma expression. In cells deficient for receptor-interacting protein expression TNF, but not PMA-induced TRAIL expression was blocked. Inhibition of protein synthesis with cycloheximide blocked PMA, but not TNF-induced up-regulation of TRAIL. As both TNF and PMA rapidly induce NF-kappaB activation this suggests that NEMO/IKKgamma-dependent activation of the NF-kappaB pathway is necessary but not sufficient for up-regulation of TRAIL in T cells. The capability of the NF-kappaB pathway to induce the potent death ligand TRAIL may explain the reported proapoptotic features of this typically antiapoptotic pathway.
Collapse
Affiliation(s)
- D Siegmund
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
309
|
Srivastava RK. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 2001; 3:535-46. [PMID: 11774036 PMCID: PMC1506567 DOI: 10.1038/sj.neo.7900203] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 08/27/2001] [Indexed: 02/06/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL/APO-2L) is a member of the TNF family that promotes apoptosis by binding to the transmembrane receptors TRAIL-R1/DR4 and TRAIL-R2/DR5. Its cytotoxic activity is relatively selective to the human tumor cell lines without much effect on the normal cells. Hence, it exerts an antitumor activity without causing toxicity, as apparent by studies with several xenograft models. This review discusses the intracellular mechanisms by which TRAIL induces apoptosis. The major pathway of its action proceeds through the formation of DISC and activation of caspase-8. The apoptotic processes, therefore, follow two signaling pathways, namely the mitochondrial-independent activation of caspase-3, and mitochondrial-dependent apoptosis due to cleavage of BID by caspase-8, the formation of apoptosomes, and activation of caspase-9 and the downstream caspases. Bcl-2 and Bcl-X(L) have no effect on TRAIL-induced apoptosis in lymphoid cells, whereas these genes block or delay apoptosis in nonlymphoid cancer cells. TRAIL participates in cytotoxicity mediated by activated NK cells, monocytes, and some cytotoxic T cells. Hence, TRAIL may prove to be an effective antitumor agent. In addition, it may enhance the effectiveness of treatment with chemotherapeutic drugs and irradiation. Nontagged Apo-2L/TRAIL does not cause hepatotoxicity in monkeys and chimpanzees and in normal human hepatocytes. Thus, nontagged Apo-2L/TRAIL appears to be a promising new candidate for use in the treatment of cancer.
Collapse
Affiliation(s)
- R K Srivastava
- Department of Pharmaceutical Sciences, University of Maryland - School of Pharmacy Greenebaum Cancer Center, 20 North Pine Street, Baltimore, MD 21201, USA.
| |
Collapse
|
310
|
Abstract
At the doses used clinically, chemotherapy is believed to kill melanoma by a final common 'mitochondrial' pathway that leads to apoptosis. Similarly, several natural defence mechanisms kill melanoma by the same pathways. A corollary to the latter is that survival of melanoma in the host is due to the development of anti-apoptotic mechanisms in melanoma cells. What are these mechanisms? And how might we bypass them to improve the treatment of melanoma?
Collapse
Affiliation(s)
- P Hersey
- Immunology and Oncology Unit, Newcastle, New South Wales, Australia.
| | | |
Collapse
|
311
|
Lum JJ, Pilon AA, Sanchez-Dardon J, Phenix BN, Kim JE, Mihowich J, Jamison K, Hawley-Foss N, Lynch DH, Badley AD. Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2l. J Virol 2001; 75:11128-36. [PMID: 11602752 PMCID: PMC114692 DOI: 10.1128/jvi.75.22.11128-11136.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 08/08/2001] [Indexed: 12/31/2022] Open
Abstract
Because the persistence of human immunodeficiency virus (HIV) in cellular reservoirs presents an obstacle to viral eradication, we evaluated whether tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induces apoptosis in such reservoirs. Lymphocytes and monocyte-derived macrophages (MDM) from uninfected donors do not die following treatment with either leucine zipper human TRAIL (LZhuTRAIL) or agonistic anti-TRAIL receptor antibodies. By contrast, such treatment induces apoptosis of in vitro HIV-infected MDM as well as peripheral blood lymphocytes from HIV-infected patients, including CD4(+) CD45RO(+) HLA-DR(-) lymphocytes. In addition, LZhuTRAIL-treated cells produce less viral RNA and p24 antigen than untreated controls. Whereas untreated cultures produce large amounts of HIV RNA and p24 antigen, of seven treated CD4(+) CD45RO(+) HLA-DR(-) cell cultures, viral RNA production was undetectable in all, p24 antigen was undetectable in six, and proviral DNA was undetectable in four. These data demonstrate that TRAIL induces death of cells from HIV-infected patients, including cell types which harbor latent HIV reservoirs.
Collapse
Affiliation(s)
- J J Lum
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Yang R, Xu D, Zhang A, Gruber A. Immature dendritic cells kill ovarian carcinoma cells by a FAS/FASL pathway, enabling them to sensitize tumor-specific CTLs. Int J Cancer 2001; 94:407-13. [PMID: 11745422 DOI: 10.1002/ijc.1484] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) can acquire antigen(s) from apoptotic tumor cells, resulting in an immunogen that can induce class I-restricted cytotoxic T lymphocytes (CTLs) and protective tumor rejection. Here, we investigated whether DCs derived from ascitic monocytes of patients with ovarian carcinoma could kill autologous ovarian tumor cells and if as a result they would acquire antigen(s) enabling them to induce a tumor-specific immunity. We found that the immature DCs could exert a significant cytotoxicity towards autologous and allogeneic ovarian tumor cells. This cytotoxicity was independent of Ca(2+) and could be inhibited by anti-Fas IgG1 monoclonal antibody, indicating the involvement of the Fas/Fas ligand (FasL) pathway in the cytotoxic mechanism. Further supporting this conclusion, the ascitic monocyte-derived DCs expressed high levels of FasL mRNA and intracellular FasL and significant levels of Fas were also revealed on the surface of ovarian tumor cells. Coculture of DCs induced apoptosis in ovarian carcinoma cells, as well as uptake of apoptotic tumor cells into the cytoplasma of the DCs, as visualized by immunofluoresence. Autologous DCs cocultured with apoptotic ovarian tumor cells were able to specifically stimulate tumor-specific CTLs, whereas DCs cocultured with necrotic ovarian cells were unable to do so. Collectively, these results demonstrate that immature DCs can kill autologous ovarian carcinoma cells via the Ca(2+)-independent Fas/FasL pathway and that this may have important consequences for their ability to stimulate tumor-specific CTLs.
Collapse
Affiliation(s)
- R Yang
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | |
Collapse
|
313
|
Golby SJ, Spencer J. Role of innate immunity in cancer. Curr Opin Gastroenterol 2001; 17:568-72. [PMID: 17031220 DOI: 10.1097/00001574-200111000-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Recently, much progress has been made in the field of tumor immunology. Much of this work has focused on understanding and exploiting the innate immune response to tumor cells. A novel human receptor-ligand system that mediates natural killer (NK) and gammadelta T-cell killing of carcinoma cells has been identified, and the functions of an equivalent system in mice are beginning to be explored. The mechanisms of action of an innate tumoricidal cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), and of tumor cell resistance to it, are emerging, as are the ways in which tumor cells evade the damaging effects of IFN-gamma and of complement. Overcoming tumor cell resistance to innate immune attack could prove to be a fruitful approach to cancer immunotherapy in the clinic.
Collapse
Affiliation(s)
- S J Golby
- Guy's, King's and St. Thomas' School of Medicine, University of London, London, United Kingdom
| | | |
Collapse
|
314
|
Sato K, Hida S, Takayanagi H, Yokochi T, Kayagaki N, Takeda K, Yagita H, Okumura K, Tanaka N, Taniguchi T, Ogasawara K. Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 2001; 31:3138-46. [PMID: 11745330 DOI: 10.1002/1521-4141(200111)31:11<3138::aid-immu3138>3.0.co;2-b] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natural killer (NK) cells play an important role in early defense against viral infection. The cytotoxic activity of NK cells is increased by interferon-alpha/beta (IFN-alpha/beta), produced en masse in virally infected cells. However, the mechanism(s) by which IFN-alpha/beta contribute to the NK-cell-mediated antiviral response is not well understood. Here we provide evidence that the cytotoxicity of NK cells is enhanced by IFN-alpha/beta through induction of TNF-related apoptosis-inducing ligand (TRAIL). Isolation and analysis of the murine TRAIL promoter revealed the presence of an IFN-stimulated response element (ISRE), which binds to the transcription factor ISGF3 (interferon stimulated gene factor-3). This promoter is indeed activated by IFN-beta in ISGF3-dependent manner. We also show that virally infected cells, but not uninfected cells, are susceptible to TRAIL-mediated cytotoxicity in vitro, and that the TRAIL expressed in NK cells is indeed crucial in limiting virus replication in vivo. Thus, our study reveals a new molecular link between IFN-alpha/beta signaling and activation of NK cells in antiviral response of the host.
Collapse
Affiliation(s)
- K Sato
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Toomey NL, Deyev VV, Wood C, Boise LH, Scott D, Liu LH, Cabral L, Podack ER, Barber GN, Harrington WJ. Induction of a TRAIL-mediated suicide program by interferon alpha in primary effusion lymphoma. Oncogene 2001; 20:7029-40. [PMID: 11704827 DOI: 10.1038/sj.onc.1204895] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2001] [Revised: 07/17/2001] [Accepted: 08/02/2001] [Indexed: 11/09/2022]
Abstract
Gammaherpes viruses are often detected in lymphomas arising in immunocompromised patients. We have found that Azidothymidine (AZT) alone induces apoptosis in Epstein Barr Virus (EBV) positive Burkitt's lymphoma (BL) cells but requires interferon alpha (IFN-alpha) to induce apoptosis in Human Herpes Virus Type 8 (HHV-8) positive Primary Effusion Lymphomas (PEL). Our analysis of a series of AIDS lymphomas revealed that IFN-alpha selectively induced very high levels of the Death Receptor (DR) tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in HHV-8 positive PEL lines and primary tumor cells whereas little or no induction was observed in primary EBV+ AIDS lymphomas and EBV-Burkitt's lines. AZT and IFN-alpha mediated apoptosis in PEL was blocked by stable overexpression of dominant negative Fas Associated Death Domain (FADD), decoy receptor 2 (DcR2), soluble TRAIL receptor fusion proteins (DR-4 and DR-5) and thymidine. Trimeric TRAIL (in place of IFN-alpha) similarly synergized with AZT to induce apoptosis in HHV-8 positive PEL cells. This is the first demonstration that IFN-alpha induces functional TRAIL in a malignancy that can be exploited to effect a suicide program. This novel antiviral approach to Primary Effusion lymphomas is targeted and may represent a highly effective and relatively non-toxic therapy.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- Arabidopsis Proteins
- Biopolymers
- Cysteine Endopeptidases/metabolism
- Drug Synergism
- Enzyme Activation/drug effects
- Epstein-Barr Virus Infections/complications
- Etoposide/pharmacology
- Fatty Acid Desaturases/biosynthesis
- Fatty Acid Desaturases/genetics
- Fatty Acid Desaturases/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, bcl-2
- HIV Infections/complications
- Herpesviridae Infections/complications
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 8, Human/isolation & purification
- Humans
- Immunocompromised Host
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Lymphoma, AIDS-Related/etiology
- Lymphoma, AIDS-Related/immunology
- Lymphoma, AIDS-Related/pathology
- Lymphoma, AIDS-Related/therapy
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/pharmacology
- Membrane Glycoproteins/physiology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- TNF-Related Apoptosis-Inducing Ligand
- Thymidine/pharmacology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/chemistry
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Necrosis Factor-alpha/physiology
- Tumor Virus Infections/complications
- Zidovudine/pharmacology
- Zidovudine/therapeutic use
- bcl-X Protein
Collapse
Affiliation(s)
- N L Toomey
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, FL 33136, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Ruiz de Almodóvar C, Ruiz-Ruiz C, Muñoz-Pinedo C, Robledo G, López-Rivas A. The differential sensitivity of Bc1-2-overexpressing human breast tumor cells to TRAIL or doxorubicin-induced apoptosis is dependent on Bc1-2 protein levels. Oncogene 2001; 20:7128-33. [PMID: 11704839 DOI: 10.1038/sj.onc.1204887] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2001] [Revised: 06/29/2001] [Accepted: 08/01/2001] [Indexed: 01/11/2023]
Abstract
Bc1-2 protein is a potent anti-apoptotic protein that inhibits a mitochondria-operated pathway of apoptosis in many cells. DNA damaging agents and death receptor ligands can activate this mitochondrial apoptotic mechanism. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been suggested to escape from the inhibitory action of Bc1-2 protein. We show that in human breast tumor MCF-7 cells, TRAIL induced a mitochondrial pathway of apoptosis that involved cytochrome c release from mitochondria and activation of caspase 9. The DNA damaging drug doxorubicin also activated this mitochondria-regulated mechanism of apoptosis, which was inhibited in Bc1-2-overexpressing cells. We also demonstrate that in MCF-7 cells Bc1-2 might confer resistance to TRAIL-induced apoptosis, depending on the expression levels of the anti-apoptotic protein. These results indicate that enhanced expression of Bc1-2 in tumor cells can render these cells less sensitive not only to chemotherapeutic drugs but also to TRAIL.
Collapse
Affiliation(s)
- C Ruiz de Almodóvar
- Instituto de Parasitología y Biomedicina CSIC, calle Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | |
Collapse
|
317
|
Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK. Pro-survival function of Akt/protein kinase B in prostate cancer cells. Relationship with TRAIL resistance. J Biol Chem 2001; 276:38361-9. [PMID: 11461904 DOI: 10.1074/jbc.m103321200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor necrosis factor superfamily member TRAIL/Apo-2L has recently been shown to induce apoptosis in transformed and cancer cells. Some prostate cancer cells express constitutively active Akt/protein kinase B due to a complete loss of lipid phosphatase PTEN gene, a negative regulator of phosphatidylinositol 3-kinase pathway. Constitutively active Akt promotes cellular survival and resistance to chemotherapy and radiation. We have recently noticed that some human prostate cancer cells are resistant to TRAIL. We therefore examined the intracellular mechanisms of cellular resistance to TRAIL. The cell lines expressing the highest level of constitutively active Akt were more resistant to undergo apoptosis by TRAIL than those expressing the lowest level. Down-regulation of constitutively active Akt by phosphatidylinositol 3-kinase inhibitors, wortmannin and LY294002, reversed cellular resistance to TRAIL. Treatment of resistant cells with cycloheximide (a protein synthesis inhibitor) rendered cells sensitive to TRAIL. Transfecting dominant negative Akt decreased Akt activity and increased TRAIL-induced apoptosis in cells with high Akt activity. Conversely, transfecting constitutively active Akt into cells with low Akt activity increased Akt activity and attenuated TRAIL-induced apoptosis. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage, as caspase-8 activity was not affected. Enforced expression of anti-apoptotic protein Bcl-2 or Bcl-X(L) inhibited TRAIL-induced mitochondrial dysfunction and apoptosis. We therefore identify Akt as a constitutively active kinase that promotes survival of prostate cancer cells and demonstrate that modulation of Akt activity, by pharmacological or genetic approaches, alters the cellular responsiveness to TRAIL. Thus, TRAIL in combination with agents that down-regulate Akt activity can be used to treat prostate cancer.
Collapse
Affiliation(s)
- H Thakkar
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Greenebaum Cancer Center, Baltimore, Maryland 21201-1180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Clarke P, Meintzer SM, Spalding AC, Johnson GL, Tyler KL. Caspase 8-dependent sensitization of cancer cells to TRAIL-induced apoptosis following reovirus-infection. Oncogene 2001; 20:6910-9. [PMID: 11687970 DOI: 10.1038/sj.onc.1204842] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2001] [Revised: 07/16/2001] [Accepted: 07/16/2001] [Indexed: 02/07/2023]
Abstract
TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis in susceptible cells by binding to death receptors 4 (DR4) and 5 (DR5). TRAIL preferentially induces apoptosis in transformed cells and the identification of mechanisms by which TRAIL-induced apoptosis can be enhanced may lead to novel cancer chemotherapeutic strategies. Here we show that reovirus infection induces apoptosis in cancer cell lines derived from human breast, lung and cervical cancers. Reovirus-induced apoptosis is mediated by TRAIL and is associated with the release of TRAIL from infected cells. Reovirus infection synergistically and specifically sensitizes cancer cell lines to killing by exogenous TRAIL. This sensitization both enhances the susceptibility of previously resistant cell lines to TRAIL-induced apoptosis and reduces the amount of TRAIL needed to kill already sensitive lines. Sensitization is not associated with a detectable change in the expression of TRAIL receptors in reovirus-infected cells. Sensitization is associated with an increase in the activity of the death receptor-associated initiator caspase, caspase 8, and is inhibited by the peptide IETD-fmk, suggesting that reovirus sensitizes cancer cells to TRAIL-induced apoptosis in a caspase 8-dependent manner. Reovirus-induced sensitization of cells to TRAIL is also associated with increased cleavage of PARP, a substrate of the effector caspases 3 and 7.
Collapse
Affiliation(s)
- P Clarke
- Department of Neurology, University of Colorado Health Sciences, Denver, Colorado, CO 80262, USA
| | | | | | | | | |
Collapse
|
319
|
Zörnig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1551:F1-37. [PMID: 11591448 DOI: 10.1016/s0304-419x(01)00031-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has become clear that, together with deregulated growth, inhibition of programmed cell death (PCD) plays a pivotal role in tumorigenesis. In this review, we present an overview of the genes and mechanisms involved in PCD. We then summarize the evidence that impaired PCD is a prerequisite for tumorigenesis, as indicated by the fact that more and more neoplastic mutations appear to act by interfering with PCD. This has made the idea of restoration of corrupted 'death programs' an intriguing new area for potential cancer therapy.
Collapse
Affiliation(s)
- M Zörnig
- Georg-Speyer-Haus, Frankfurt, Germany.
| | | | | | | |
Collapse
|
320
|
Vidalain PO, Azocar O, Yagita H, Rabourdin-Combe C, Servet-Delprat C. Cytotoxic activity of human dendritic cells is differentially regulated by double-stranded RNA and CD40 ligand. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3765-72. [PMID: 11564793 DOI: 10.4049/jimmunol.167.7.3765] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The main function of dendritic cells (DCs) is to induce adaptive immune response through Ag presentation and specific T lymphocyte activation. However, IFN-alpha- or IFN-gamma-stimulated CD11c+ blood DCs and IFN-beta-stimulated monocyte-derived DCs were recently reported to express functional TNF-related apoptosis-inducing ligand (TRAIL), suggesting that DCs may become cytotoxic effector cells of innate immunity upon appropriate stimulation. In this study, we investigate whether dsRNA and CD40 ligand (CD40L), that were characterized as potent inducers of DC maturation, could also stimulate or modulate DC cytotoxicity toward tumoral cells. We observed that dsRNA, but not CD40L, is a potent inducer of TRAIL expression in human monocyte-derived DCs. As revealed by cytotoxicity assays, DCs acquire the ability to kill tumoral cells via the TRAIL pathway when treated with dsRNA. More precisely, dsRNA is shown to induce IFN-beta synthesis that consecutively mediates TRAIL expression by the DCs. In contrast, we demonstrate that TRAIL expression in dsRNA- or IFN-alpha-treated DCs is potently inhibited after CD40L stimulation. Unexpectedly, CD40L-activated DCs still developed cytotoxicity toward tumoral cells. This latter appeared to be partly mediated by TNF-alpha induction and a yet unidentified pathway. Altogether, these results demonstrate that dsRNA and CD40L, that were originally characterized as maturation signals for DCs, also stimulate their cytotoxicity that is mediated through TRAIL-dependent or -independent mechanisms.
Collapse
Affiliation(s)
- P O Vidalain
- Laboratoire d'Immunobiologie Fondamentale et Clinique, Institut National de la Santé et de la Recherche Médicale Unité 503, 21 Avenue Tony Garnier, 69365 Lyon, France
| | | | | | | | | |
Collapse
|
321
|
Chen Q, Gong B, Mahmoud-Ahmed AS, Zhou A, Hsi ED, Hussein M, Almasan A. Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 2001; 98:2183-92. [PMID: 11568006 PMCID: PMC1350927 DOI: 10.1182/blood.v98.7.2183] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It has been reported that interferons (IFNs) may have antitumor activity in multiple myeloma (MM). The mechanism for their effect on MM, however, remains elusive. This study shows that IFN-alpha and -beta, but not -gamma, induce apoptosis characterized by Annexin V positivity, nuclear fragmentation and condensation, and loss of clonogenicity in 3 MM cell lines (U266, RPMI-8266, and NCI-H929), and in plasma cells from 10 patients with MM. Apo2 ligand (Apo2L, also TRAIL) induction was one of the earliest events following IFN administration in U266 cells. Treatment of these cells with TRAIL, but not with Fas agonistic antibodies, induces apoptosis. Cell death induced by IFNs and Apo2L in U266 cells was partially blocked by a dominant-negative Apo2L receptor, DR5, demonstrating the functional significance of Apo2L induction. This study shows that IFNs activate caspases and the mitochondrial-dependent apoptotic pathway, possibly mediated by Apo2L production. Thus, IFN-alpha and -beta induce cytochrome c release from mitochondria starting at 12 hours, with an amplified release seen at 48 hours. Moreover, Bid cleavage precedes the initial cytochrome c release, whereas the late, amplified cytochrome c release coincides with changes in levels of Bcl-2, Bcl-X(L), and reduction of mitochondrial membrane potential. These results link the Apo2L induction and modulation of Bcl-2 family proteins to mitochondrial dysfunction. Furthermore, IFNs and Apo2L induce cell death of CD38(+)/CD45(-/dim) plasma cells, without significant effect on nonplasma blood cells, in a caspase and Bcl-2 cleavage-dependent manner. These results warrant further clinical studies with IFNs and Apo2L in MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandru Almasan
- Reprints: Alexandru Almasan, Dept of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195; e-mail:
| |
Collapse
|
322
|
Tollefson AE, Toth K, Doronin K, Kuppuswamy M, Doronina OA, Lichtenstein DL, Hermiston TW, Smith CA, Wold WS. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75:8875-87. [PMID: 11533151 PMCID: PMC114456 DOI: 10.1128/jvi.75.19.8875-8887.2001] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.
Collapse
Affiliation(s)
- A E Tollefson
- Department of Molecular Microbiology and Immunology, St. Louis University Health Sciences Center, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumour growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets.
Collapse
Affiliation(s)
- M J Bissell
- Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 99720, USA.
| | | |
Collapse
|
324
|
Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20:6073-83. [PMID: 11593415 DOI: 10.1038/sj.onc.1204736] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2001] [Revised: 06/07/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
TRAIL/Apo-2L is a member of the tumor necrosis factor superfamily and has recently been shown to induce apoptosis in cancer cells, but not in normal cells. In nude mice injected with human tumors, TRAIL reduces the size of these tumors without side effects. Akt promotes cell survival and block apoptosis. Some prostate cancer cells express high levels of Akt due to lack of active lipid phosphatase PTEN, a negative regulator of PI-3 kinase pathway, which may be responsible for drug resistance. The objective of this paper is to investigate the intracellular molecules that regulate TRAIL resistance. We have examined caspase-8 activity, BID cleavage, Akt activity, mitochondrial membrane potential (DeltaPsi(m)) and apoptosis in prostate cancer (LNCap, PC-3, PC-3M and DU145) cells treated with or without TRAIL. PC-3, PC-3M and DU145 cells are sensitive to TRAIL, whereas LNCap cells are resistant. LNCap cells express the highest level of constitutively active Akt, which is directly correlated with TRAIL resistance. TRAIL activates caspase-8 in all the cell lines. Downregulation of constitutively active Akt by PI-3 kinase inhibitors (wortmannin and LY-294002), dominant negative Akt or PTEN, renders LNCap cells sensitive to TRAIL. Inhibition of TRAIL sensitivity occurs at the level of BID cleavage. Inhibition of protein synthesis by cycloheximide also causes LNCap cells sensitive to TRAIL. Overexpression of Bcl-2 or Bcl-X(L) inhibits TRAIL-induced DeltaPsi(m) and apoptosis. Overexpression of constitutively active Akt in PC-3M cells (express very low levels of constitutively active Akt) restores TRAIL resistance. These data suggest that elevated Akt activity protects LNCap cells from TRAIL-induced apoptosis, and the PI-3 kinase/Akt pathway may inhibit apoptotic signals by inhibiting processing of BID. Thus, constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer.
Collapse
Affiliation(s)
- X Chen
- Department of Pharmaceutical Sciences, University of Maryland-School of Pharmacy, Greenebaum Cancer Center, 20 N Pine Street, Baltimore, MD 21201-1180, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Wei XC, Wang XJ, Chen K, Zhang L, Liang Y, Lin XL. Killing effect of TNF-related apoptosis inducing ligand regulated by tetracycline on gastric cancer cell line NCI-N87. World J Gastroenterol 2001; 7:559-62. [PMID: 11819829 PMCID: PMC4688673 DOI: 10.3748/wjg.v7.i4.559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clone the cDNA fragment of human TRAIL (TNF-related apoptosis inducing ligand) into a tetracycline-regulated gene expression system, the RevTet-On system, transduce expression vectors into a gastric carcinoma cell line-NCI-N87 and examine the effects of controlled expression of TRAIL in vitro on the gastric carcinoma cells.
METHODS: The full-length cDNA of TRAIL was inserted into a vector under the control of the tetracycline-responsive element (TRE) to obtain the plasmid pRevTRE-TRAIL, which was transfected into a packaging cell line PT67. In addition, vector pRev-Tet On and pRevTRE were also transfected into PT67 separately. After hygromycin and G418 selection, the viral titer was determined. The medium containing retroviral vectors was collected and used to transduce a gastric carcinoma cell line NCI-N87. The resulting cell line NCI-N87-Tet On TRE-TRAIL and a control cell line, NCI-N87 Tet On-TRE, were established. TRAIL expression in the cell line was induced by incubating cells with doxycycline (Dox), which is a tetracycline analogue. The killing effect on gastric carcinoma cells was analyzed after induction.
RESULTS: The recombinant plasmid pRev-TRE-TRAIL was constructed. After hygromycin or G418 selection, the producer cell lines PT67-TRE, PT67-TRE-TRAIL and PT67-Tet On were obtained, with titers of about 108 CFU·L-1. By transducing NCI-N87 cells with retroviral vectors from these cell lines, stable cell lines NCI-N87-Tet On TRE-TRAIL (NN3T) and control cell line NCI-N87-Tet On TRE (NN2T) were established. The growth curves of the selected cell lines were the same with the wild type NCI-N87. When Dox was added, cell death was obvious in the test groups (29%-77%), whereas no difference was observed in control and wild type cell lines. With the addition of a medium from the test group, human leukemia cell line Jurkat was activated till death (83%), indicating the secretion of active TRAIL proteins from the test cells to the medium.
CONCLUSION: With the use of the RevTet-On system, a regulated expression system for TRAIL was constructed. Using this system, the selected killing effect of TRAIL on gastric carcinoma cell line NCI-N87 could be observed.
Collapse
Affiliation(s)
- X C Wei
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 38 Xue Yuan Road, Haidian District, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
326
|
Bullani RR, Huard B, Viard-Leveugle I, Byers HR, Irmler M, Saurat JH, Tschopp J, French LE. Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 2001; 117:360-4. [PMID: 11511316 DOI: 10.1046/j.0022-202x.2001.01418.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FLIP (FLICE Inhibitory Protein) is a recently identified intracellular inhibitor of caspase-8 activation that potently inhibits cell death mediated by all death receptors including Fas and TRAIL. FLIP has recently been shown to favor tumor growth and immune escape in mouse tumor models. We analyzed FLIP expression by immunohistochemistry in a panel of 61 benign and malignant human melanocytic skin lesions. FLIP expression was undetectable in all but one benign melanocytic lesion (31/32, 97%). In contrast, FLIP was strongly expressed in most melanomas (24/29 = 83%). Overexpression of FLIP by transfection in a Fas- and TRAIL-sensitive human melanoma cell line rendered this cell line more resistant to death mediated by both TRAIL and FasL. Selective expression of FLIP by human melanomas may confer in vivo resistance to FasL and TRAIL, thus representing an additional mechanism by which melanoma cells escape immune destruction.
Collapse
Affiliation(s)
- R R Bullani
- Department of Dermatology, Geneva University Medical School, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Abstract
Induction of apoptosis in tumor cells is a major goal for chemotherapy and radiation treatment strategies. However, disordered gene expression often leads to apoptosis resistance rendering tumor cells insensitive to various conventional treatments. TNF-related apoptosis-inducing ligand (TRAIL) is a recently identified cytokine of the TNF superfamily that induces apoptosis in tumor cells upon binding to different receptors. Remarkably, the majority of tumor cell lines are sensitive to TRAIL-induced apoptosis, while most nontransformed cell types are TRAIL-resistant. Furthermore, a combination treatment of TRAIL with ionizing irradiation or chemotherapeutic agents induces apoptosis in a highly synergistic manner, particularly in those cells that are otherwise resistant to a sole treatment. In contrast to other TNF members, TRAIL apparently does not exert overt systemic toxicity in murine and primate models, although unexpected concerns about a potential hepatotoxicity of TRAIL have been recently raised. While the molecular mechanisms of TRAIL sensitivity and resistance are poorly understood, TRAIL seems to be a promising biological agent for combination therapy with chemotherapeutic drugs or irradiation.
Collapse
Affiliation(s)
- J Held
- Department of Immunology and Cell Biology, University of Münster, Münster, Germany
| | | |
Collapse
|
328
|
Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, Kim H, Kim SJ, Park JH. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer 2001; 93:262-8. [PMID: 11410875 DOI: 10.1002/ijc.1310] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated the induction of cell death in a hepatoma cell line by IFN-gamma and its possible mechanism. Among the 2 hepatitis B virus (HBV)-associated hepatoma cell lines, SNU-354 and SNU-368, IFN-gamma induced cell death and increased caspase-3 activity in SNU-368 but not in SNU-354. IFN-gamma induced several changes in the mRNA expression level of apoptosis-regulating genes, e.g., increased expression of Fas, caspase-1 and TNF-related apoptosis-inducing ligand (TRAIL). In particular, IFN-gamma potently increased the mRNA expression of TRAIL in both cell lines. However, it did not change the mRNA expression level of death-mediating TRAIL receptors, e.g., DR4 and DR5, which were constitutively expressed in both cell lines. In contrast, the decoy receptor DcR1 was expressed in SNU-354 but not in SNU-368, and its expression level in SNU-354 was increased by IFN-gamma. Another decoy receptor, DcR2, was constitutively expressed in both cell lines; however, its expression level in SNU-368 was decreased by IFN-gamma. In addition, exogenous recombinant TRAIL reduced viability in SNU-368, but not in SNU-354, cells. From these findings, we speculated that TRAIL up-regulation and the subsequent TRAIL-mediated apoptosis serve as a mechanism of IFN-gamma-induced cell death in SNU-368. To confirm this hypothesis, we demonstrated that soluble DR4-Fc fusion protein, a TRAIL pathway inhibitor, inhibited IFN-gamma-induced cell death in SNU-368. Our results demonstrated that IFN-gamma acts as an inducer of cell death through TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- E C Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea 120-752
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Wajant H, Moosmayer D, Wüest T, Bartke T, Gerlach E, Schönherr U, Peters N, Scheurich P, Pfizenmaier K. Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 2001; 20:4101-6. [PMID: 11494138 DOI: 10.1038/sj.onc.1204558] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2001] [Revised: 04/10/2001] [Accepted: 04/19/2001] [Indexed: 11/08/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a typical member of the tumor necrosis factor (TNF) ligand family that is expressed as a type II membrane protein (memTRAIL) and signals apoptosis via the death domain-containing receptors TRAIL-R1 and -2. Soluble recombinant derivatives of TRAIL (sTRAIL) are considered as novel tumors therapeutics because of their selective apoptosis inducing activity in a variety of human tumors but not in normal cells. Using antagonistic antigen-binding fragment (Fab) preparations of TRAIL-R1- and TRAIL-R2-specific antibodies, we demonstrate in this study that TRAIL-R1 becomes activated by both the soluble and the membrane-bound form of the ligand, whereas TRAIL-R2 becomes only activated by memTRAIL or soluble TRAIL secondarily cross-linked by antibodies. Furthermore, we show that the restricted signal capacity of sTRAIL can be readily converted into a fully signal competent memTRAIL-like molecule, i.e. a TRAIL-R2 stimulating ligand, by genetic fusion to an antibody derivative that allows antigen-dependent 'immobilization' of the fusion protein to cell surfaces. We conclude that antibody targeting-dependent activation can be used to design selective therapeutics derived of those ligands of the TNF family that are biologically inactive in their soluble form.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Jelachich ML, Lipton HL. Theiler's murine encephalomyelitis virus induces apoptosis in gamma interferon-activated M1 differentiated myelomonocytic cells through a mechanism involving tumor necrosis factor alpha (TNF-alpha) and TNF-alpha-related apoptosis-inducing ligand. J Virol 2001; 75:5930-8. [PMID: 11390594 PMCID: PMC114308 DOI: 10.1128/jvi.75.13.5930-5938.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infection of susceptible mice with the low-neurovirulence Theiler's murine encephalomyelitis virus strain BeAn results in an inflammatory demyelinating disease similar to multiple sclerosis. While the majority of virus antigen is detected in central nervous system macrophages (Mphis), few infiltrating Mphis are infected. We used the myelomonocytic precursor M1 cell line to study BeAn virus-Mphi interactions in vitro to elucidate mechanisms for restricted virus expression. We have shown that restricted BeAn infection of M1 cells differentiated in vitro (M1-D) results in apoptosis. In this study, BeAn infection of gamma interferon (IFN-gamma)-activated M1-D cells also resulted in apoptosis but with no evidence of virus replication or protein expression. RNase protection assays of M1-D cellular RNA revealed up-regulation of Fas and the p55 chain of the tumor necrosis factor alpha (TNF-alpha) receptor transcripts with IFN-gamma activation. BeAn infection of activated cells resulted in increased caspase 8 mRNA transcripts and the appearance of TNF-alpha-related apoptosis-inducing ligand (TRAIL) 4 h postinfection. Both unactivated and activated M1-D cells expressed TRAIL receptors (R1 and R2), but only activated cells were killed by soluble TRAIL. Activated cells were also susceptible to soluble FasL- and TNF-alpha-induced apoptosis. The data suggest that IFN-gamma-activated M1-D cell death receptors become susceptible to their ligands and that the cells respond to BeAn virus infection by producing the ligands TNF-alpha and TRAIL to kill the susceptible cells. Unactivated cells are not susceptible to FasL or TRAIL and require virus replication to initiate apoptosis. Therefore, two mechanisms of apoptosis induction can be triggered by BeAn infection: an intrinsic pathway requiring virus replication and an extrinsic pathway signaling through the death receptors.
Collapse
Affiliation(s)
- M L Jelachich
- Evanston Northwestern Healthcare Research Institute and Northwestern University, 2650 Ridge Ave., Evanston, IL 60201, USA.
| | | |
Collapse
|
331
|
Miyazaki T, Reed JC. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2001; 2:493-500. [PMID: 11376335 DOI: 10.1038/88684] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Apoptosis-inducing tumor necrosis factor (TNF) family receptors recruit the proforms of caspase family cell death proteases to ligand-receptor complexes through interactions with intracellular adapter proteins. We have found that the GTP-binding protein DAP3 binds directly (with high affinity) to the death domain of TNF-related apoptosis-inducing ligand (TRAIL) receptors, and is required for TRAIL-induced apoptosis. DAP3 also associates with the pro-caspase-8--binding adapter protein Fas-associated death domain (FADD), and links FADD to the TRAIL receptors DR4 and DR5. We have also found that binding of DAP3 to FADD and activation of pro-caspase-8 in an in vitro reconstituted system is GTP-dependent. Elucidation of this mechanism suggests GTP-binding proteins as potential targets for pharmacological intervention in TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- T Miyazaki
- The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
332
|
Varela N, Munoz-Pinedo C, Ruiz-Ruiz C, Robledo G, Pedroso M, López-Rivas A. Interferon-gamma sensitizes human myeloid leukemia cells to death receptor-mediated apoptosis by a pleiotropic mechanism. J Biol Chem 2001; 276:17779-87. [PMID: 11279136 DOI: 10.1074/jbc.m100815200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The role of interferon (IFN)-gamma as a sensitizing agent in apoptosis induced by ligation of death receptors has been evaluated in human myeloid leukemia cells. Incubation of U937 cells with IFN-gamma sensitized these cells to apoptosis induced by tumor necrosis factor-alpha, agonistic CD95 antibody, and tumor necrosis factor-related apoptosis-inducing ligand. Other human myeloid leukemic cells were also sensitized by IFN-gamma to death receptor-mediated apoptosis. Treatment of U937 cells with IFN-gamma up-regulated the expression of caspase-8 and potently synergized with death receptor ligation in the processing of caspase-8 and BID cleavage. Concomitantly, a marked down-regulation of BCL-2 protein was also observed in cells incubated with IFN-gamma. Furthermore, the caspase-dependent generation of a 23-kDa fragment of BCL-2 protein, the release of cytochrome c from mitochondria and the activation of caspase-9 were also enhanced upon death receptor ligation in IFN-gamma-treated cells. Ectopically expressed Bcl-2 protein inhibited IFN-gamma-induced sensitization to apoptosis. In summary, these results indicate that IFN-gamma sensitizes human myeloid leukemic cells to a death receptor-induced, mitochondria-mediated pathway of apoptosis.
Collapse
Affiliation(s)
- N Varela
- Instituto de Parasitologia y Biomedicina, Consejo Superior de Investigaciones Cientificas, calle Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | | | |
Collapse
|
333
|
Oshima K, Yanase N, Ibukiyama C, Yamashina A, Kayagaki N, Yagita H, Mizuguchi J. Involvement of TRAIL/TRAIL-R interaction in IFN-alpha-induced apoptosis of Daudi B lymphoma cells. Cytokine 2001; 14:193-201. [PMID: 11448118 DOI: 10.1006/cyto.2001.0873] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interferon-alpha (IFN-alpha) exerts the anti-tumour effect on various tumours at least partly through induction of apoptosis. Apoptosis is induced by members of the tumour necrosis factor (TNF) family, including Fas (CD95) and TNF-related apoptosis-inducing ligand (TRAIL). In the present study, we examined whether the TRAIL/TRAIL-R system is involved in IFN-alpha-induced apoptosis using Daudi B lymphoma cells. IFN-alpha upregulated the expression of TRAIL within 12 h, as assessed by flow cytometry and RT-PCR, and the level increased with time until 72 h. The levels of both TRAIL-R1 and TRAIL-R2, low in Daudi cells, were enhanced by IFN-alpha. The enhanced TRAIL-R1/-R2 appeared to function as a death-inducing molecule since IFN-alpha-stimulated cells were more susceptible to TRAIL-induced cell death. The IFN-alpha-stimulated Daudi cells or their derived culture supernatants displayed cytotoxicity against TRAIL-sensitive, but not resistant lines. Moreover, the IFN-alpha-induced reduction in mitochondrial membrane potential preceding the induction of apoptosis was substantially prevented by neutralizing anti-TRAIL monoclonal antibody. Taken together, IFN-alpha-induced apoptosis appears to be mediated by the autocrine and/or paracrine loop involving TRAIL/TRAIL-R.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- Cell Death/immunology
- Growth Inhibitors/pharmacology
- Humans
- Immunity, Innate
- Interferon-alpha/antagonists & inhibitors
- Interferon-alpha/pharmacology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- RNA, Messenger/biosynthesis
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- K Oshima
- Department of Immunology and Intractable Disease, Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | | | | | | | | | | | | |
Collapse
|
334
|
Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem 2001; 276:16484-90. [PMID: 11278665 DOI: 10.1074/jbc.m010384200] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor necrosis factor (TNF), Fas, and TNF-related apoptosis-inducing ligand (TRAIL) receptors (R) are highly specific physiological mediators of apoptotic signaling. We observed earlier that a number of FasR-insensitive cell lines could redirect the proapoptotic signal to an anti-apoptotic ERK1/2 signal resulting in inhibition of caspase activation. Here we determine that similar mechanisms are operational in regulating the apoptotic signaling of other death receptors. Activation of the FasR, TNF-R1, and TRAIL-R, respectively, rapidly induced subsequent ERK1/2 activation, an event independent from caspase activity. Whereas inhibition of the death receptor-mediated ERK1/2 activation was sufficient to sensitize the cells to apoptotic signaling from FasR and TRAIL-R, cells were still protected from apoptotic TNF-R1 signaling. The latter seemed to be due to the strong activation of the anti-apoptotic factor NF-kappaB, which remained inactive in FasR or TRAIL-R signaling. However, when the cells were sensitized with cycloheximide, which is sufficient to sensitize the cells also to apoptosis by TNF-R1 stimulation, we noticed that adenovirus-mediated expression of constitutively active MKK1 could rescue the cells from apoptosis induced by the respective receptors by preventing caspase-8 activation. Taken together, our results show that ERK1/2 has a dominant protecting effect over apoptotic signaling from the death receptors. This protection, which is independent of newly synthesized proteins, acts in all cases by suppressing activation of the caspase effector machinery.
Collapse
Affiliation(s)
- S E Tran
- Turku Centre for Biotechnology, POB 123, FIN-20521, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
335
|
Liu S, Yu Y, Zhang M, Wang W, Cao X. The involvement of TNF-alpha-related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta-stimulated human dendritic cells to tumor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5407-15. [PMID: 11313377 DOI: 10.4049/jimmunol.166.9.5407] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF-alpha-related apoptosis-inducing ligand (TRAIL) is characterized by its preferential induction of apoptosis of tumor cells but not normal cells. Dendritic cells (DCs), besides their role as APCs, now have been demonstrated to exert cytotoxicity or cytostasis on some tumor cells. Here, we report that both human CD34(+) stem cell-derived DCs (CD34DCs) and human CD14(+) monocyte-derived DCs (MoDCs) express TRAIL and exhibit cytotoxicity to some types of tumor cells partially through TRAIL. Moderate expression of TRAIL appeared on CD34DCs from the 8th day of culture and was also seen on freshly isolated monocytes. The level of TRAIL expression remained constant until DC maturation. TRAIL expression on immature CD34DCs or MoDCs was greatly up-regulated after IFN-beta stimulation. Moreover, IFN-beta could strikingly enhance the ability of CD34DCs or MoDCs to kill TRAIL-sensitive tumor cells, but LPS did not have such an effect. The up-regulation of TRAIL on IFN-beta-stimulated DCs partially contributed to the increased cytotoxicity of DCS: Pretreatment of TRAIL-sensitive tumor cells with caspase-3 inhibitor could significantly increase their resistance to the cytotoxicity of IFN-beta-stimulated DCS: In contrast, NF-kappaB inhibitor could significantly increase the sensitivity of tumor cells to the killing by nonstimulated or LPS-stimulated DCS: Our studies demonstrate that IFN-beta-stimulated DCs are functionally cytotoxic. Thus, an innate mechanism of DC-mediated antitumor immunity might exist in vivo in which DCs act as effectors to directly kill tumor cells partially via TRAIL. Subsequently, DCs act as APCs involved in the uptake, processing, and presentation of apoptotic tumor Ags to cross-prime CD8(+) CTL cells.
Collapse
Affiliation(s)
- S Liu
- Department of Immunology, Second Military Medical University, Shanghei, People's Republic of China
| | | | | | | | | |
Collapse
|
336
|
Simon AK, Williams O, Mongkolsapaya J, Jin B, Xu XN, Walczak H, Screaton GR. Tumor necrosis factor-related apoptosis-inducing ligand in T cell development: sensitivity of human thymocytes. Proc Natl Acad Sci U S A 2001; 98:5158-63. [PMID: 11309507 PMCID: PMC33180 DOI: 10.1073/pnas.091100398] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Accepted: 02/28/2001] [Indexed: 01/25/2023] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- Animals
- Antibodies, Monoclonal
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- Cells, Cultured
- Child, Preschool
- Clonal Deletion/drug effects
- Cytotoxicity, Immunologic
- Flow Cytometry
- Genes, RAG-1/genetics
- Humans
- Infant
- Jurkat Cells
- Lymphocyte Activation
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Knockout
- Organ Culture Techniques
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- TNF-Related Apoptosis-Inducing Ligand
- Thymus Gland/cytology
- Thymus Gland/drug effects
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- A K Simon
- Medical Research Council Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
337
|
Roth W, Wagenknecht B, Klumpp A, Naumann U, Hahne M, Tschopp J, Weller M. APRIL, a new member of the tumor necrosis factor family, modulates death ligand-induced apoptosis. Cell Death Differ 2001; 8:403-10. [PMID: 11550092 DOI: 10.1038/sj.cdd.4400827] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Revised: 11/20/2000] [Accepted: 12/07/2000] [Indexed: 01/15/2023] Open
Abstract
APRIL (a proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family. Tumor growth-promoting as well as apoptosis-inducing effects of APRIL have been described. Here, we report that five of 12 human malignant glioma cell lines express APRIL. APRIL gene transfer experiments revealed that malignant glioma cells are refractory to growth-promoting activity of APRIL in vitro and in vivo. Interestingly, ectopic expression of APRIL confers minor protection from apoptotic cell death induced by the death ligands, CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2 ligand (Apo2L). This antiapoptotic activity is specific for death ligand/receptor-mediated apoptosis since APRIL does not protect glioma cells from the cytotoxicity of the drugs, teniposide, vincristine, lomustine or cisplatin. Ectopic expression of APRIL is associated with the upregulation of X-linked inhibitor of apoptosis protein (XIAP), providing a possible explanation for the antiapoptotic activity observed here. In contrast, APRIL does not regulate the expression levels of the antiapoptotic proteins FLICE-inhibitory protein (FLIP), Bcl-2 or Bcl-X(L). These findings suggest that APRIL is involved in the regulation of death ligand-induced apoptotic signaling in malignant glioma cells.
Collapse
Affiliation(s)
- W Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
338
|
Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 2001; 193:661-70. [PMID: 11257133 PMCID: PMC2193421 DOI: 10.1084/jem.193.6.661] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is expressed by in vitro activated natural killer (NK) cells, but the relevance of this observation to the biological function of NK cells has been unclear. Herein, we have demonstrated the in vivo induction of mouse TRAIL expression on various tissue NK cells and correlated NK cell activation with TRAIL-mediated antimetastatic function in vivo. Expression of TRAIL was only constitutive on a subset of liver NK cells, and innate NK cell control of Renca carcinoma hepatic metastases in the liver was partially TRAIL dependent. Administration of therapeutic doses of interleukin (IL)-12, a powerful inducer of interferon (IFN)-gamma production by NK cells and NKT cells, upregulated TRAIL expression on liver, spleen, and lung NK cells, and IL-12 suppressed metastases in both liver and lung in a TRAIL-dependent fashion. By contrast, alpha-galactosylceramide (alpha-GalCer), a powerful inducer of NKT cell IFN-gamma and IL-4 secretion, suppressed both liver and lung metastases but only stimulated NK cell TRAIL-mediated function in the liver. TRAIL expression was not detected on NK cells from IFN-gamma-deficient mice and TRAIL-mediated antimetastatic effects of IL-12 and alpha-GalCer were strictly IFN-gamma dependent. These results indicated that TRAIL induction on NK cells plays a critical role in IFN-gamma-mediated antimetastatic effects of IL-12 and alpha-GalCer.
Collapse
Affiliation(s)
- M J Smyth
- Cancer Immunology, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Institute, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Miura Y, Misawa N, Maeda N, Inagaki Y, Tanaka Y, Ito M, Kayagaki N, Yamamoto N, Yagita H, Mizusawa H, Koyanagi Y. Critical contribution of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to apoptosis of human CD4+ T cells in HIV-1-infected hu-PBL-NOD-SCID mice. J Exp Med 2001; 193:651-60. [PMID: 11238596 PMCID: PMC2193390 DOI: 10.1084/jem.193.5.651] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a key for CD4+ T cell destruction in HIV-1-infected patients. In this study, human peripheral blood lymphocyte (PBL)-transplanted nonobese diabetic (NOD)-severe combined immunodeficient (SCID) (hu-PBL-NOD-SCID) mice were used to examine in vivo apoptosis after HIV-1 infection. As the hu-PBL-NOD-SCID mouse model allowed us to see extensive infection with HIV-1 and to analyze apoptosis in human cells in combination with immunohistological methods, we were able to quantify the number of apoptotic cells with HIV-1 infection. As demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), massive apoptosis was predominantly observed in virus-uninfected CD4+ T cells in the spleens of HIV-1-infected mice. A combination of TUNEL and immunostaining for death-inducing tumor necrosis factor (TNF) family molecules indicated that the apoptotic cells were frequently found in conjugation with TNF-related apoptosis-inducing ligand (TRAIL)-expressing CD3+CD4+ human T cells. Administration of a neutralizing anti-TRAIL mAb in HIV-1-infected mice markedly inhibited the development of CD4+ T cell apoptosis. These results suggest that a large number of HIV-1-uninfected CD4+ T cells undergo TRAIL-mediated apoptosis in HIV-infected lymphoid organs.
Collapse
Affiliation(s)
- Yoshiharu Miura
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoko Misawa
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoyoshi Maeda
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yoshio Inagaki
- Department of Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, University of the Ryukyus, Okinawa, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nobuhiko Kayagaki
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Koyanagi
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
340
|
Mori K, Miyamoto N, Higuchi Y, Nanba K, Ito M, Tsurudome M, Nishio M, Kawano M, Uchida A, Ito Y. Cross-talk between RANKL and FRP-1/CD98 Systems: RANKL-mediated osteoclastogenesis is suppressed by an inhibitory anti-CD98 heavy chain mAb and CD98-mediated osteoclastogenesis is suppressed by osteoclastogenesis inhibitory factor. Cell Immunol 2001; 207:118-26. [PMID: 11243701 DOI: 10.1006/cimm.2000.1748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two pathways to osteoclastogenesis, RANKL-mediated and CD98-mediated osteoclastogenesis, have recently been reported. RANKL, OCIF, and TIMP-3 mRNAs are not found in monocytes freshly isolated or incubated with anti-FRP-1/CD98hc antibody. RANK, TACE, and M-CSF mRNAs can be detected in these cells. Interestingly, the expressed amount of RANK mRNA increases by cultivation of monocytes with anti-CD98hc antibody and maximal expression is observed in osteoclast-like cells. CD98-mediated cell aggregation and multinucleated giant cell formation are blocked by OCIF. OCIF also suppressed the CD98-mediated induction of Sp1 and c-src mRNAs in monocytes. Soluble RANK shows no effect on CD98-mediated cell aggregation and multinucleated giant cell formation. When blood monocytes were incubated with RANKL and M-CSF, c-src and Sp1 mRNAs were first found in blood monocytes incubated with these cytokines for 7 days. On the contrary, c-src mRNA could be detected 3 h after treatment of blood monocytes with anti-CD98hc mAb. LAT-1 mRNA was not found, and the expression levels of Y(+)LAT-1 and Y(+)LAT-2 mRNAs were not changed in monocytes stimulated without or with anti-CD98hc mAb or RANKL and M-CSF. An inhibitory mAb directed against CD98hc, HBJ 127, shows a suppressive effect on RANKL-mediated cell aggregation and cell fusion. Thus, there is cross-talk between these two pathways.
Collapse
Affiliation(s)
- K Mori
- Department of Microbiology, Mie University School of Medicine, 2-174, Edobashi, Tsu-Shi, Mie Prefecture, 514-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
341
|
Sarker M, Ruiz-Ruiz C, López-Rivas A. Activation of protein kinase C inhibits TRAIL-induced caspases activation, mitochondrial events and apoptosis in a human leukemic T cell line. Cell Death Differ 2001; 8:172-81. [PMID: 11313719 DOI: 10.1038/sj.cdd.4400791] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Revised: 06/08/2000] [Accepted: 10/03/2000] [Indexed: 11/09/2022] Open
Abstract
TRAIL causes apoptosis in numerous types of tumor cells. However, the mechanisms regulating TRAIL-induced apoptosis remain to be elucidated. We have investigated the role of PKC in regulating TRAIL-induced mitochondrial events and apoptosis in the Jurkat T cell line. We found a caspase-dependent decline in mitochondrial membrane potential and translocation of cytochrome c from mitochondria into the cytosol in response to TRAIL. Both these events were prevented by PKC activation. Moreover, PKC activation considerably reduced the activation of caspases, PARP cleavage and apoptosis when induced upon TRAIL treatment. MAPK activation was involved in the mechanism of PKC-mediated inhibition of TRAIL-induced cytochrome c release from mitochondria. Furthermore, inhibition of the MAPK pathway partially reversed the PKC-mediated inhibition of TRAIL-induced apoptosis. Besides, PKC activation may also inhibit the TRAIL-induced apoptosis through a MAPK-independent mechanism. Altogether, these results indicate a negative role of PKC in the regulation of apoptotic signals generated upon TRAIL receptor activation.
Collapse
Affiliation(s)
- M Sarker
- Instituto de Parasitología y Biomedicina CSIC, calle Ventanilla 11, 18001 Granada, Spain
| | | | | |
Collapse
|
342
|
Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001; 7:94-100. [PMID: 11135622 DOI: 10.1038/83416] [Citation(s) in RCA: 541] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various tumor cells in vitro, but its physiological role in tumor surveillance remains unknown. Here, we report that TRAIL is constitutively expressed on murine natural killer (NK) cells in the liver and plays a substantial role in suppressing tumor metastasis. Freshly isolated NK cells, but not natural killer T cells or ordinary T cells, from the liver expressed cell surface TRAIL, which was responsible for spontaneous cytotoxicity against TRAIL-sensitive tumor cells in vitro along with perforin and Fas ligand (FasL). Administration of neutralizing monoclonal antibody against TRAIL significantly increased experimental liver metastases of several TRAIL-sensitive tumor cell lines. Such an anti-metastatic effect of TRAIL was not observed in NK cell-depleted mice or interferon-gamma-deficient mice, the latter of which lacked TRAIL on liver NK cells. These findings provide the first evidence for the physiological function of TRAIL as a tumor suppressor.
Collapse
Affiliation(s)
- K Takeda
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Rusch L, Zhou A, Silverman RH. Caspase-dependent apoptosis by 2',5'-oligoadenylate activation of RNase L is enhanced by IFN-beta. J Interferon Cytokine Res 2000; 20:1091-100. [PMID: 11152576 DOI: 10.1089/107999000750053762] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2',5'-oligoadenylate (2-5A) system is an interferon (IFN)-regulated RNA decay pathway that provides innate immunity against viral infections. The biologic action of the 2-5A system is mediated by RNase L, an endoribonuclease that becomes enzymatically active after binding to 2-5A. RNase L is also implicated in mediating apoptosis in response to both viral and nonviral inducers. To study the cellular effects of RNase L activation directly, 2-5A was transfected into the human ovarian cancer cell line, Hey1B. Activation of RNase L by 2-5A resulted in specific 18S rRNA cleavage and induction of apoptosis, as measured by TUNEL and annexin V binding assays. In contrast, the dimeric form of 2-5A, ppA2'p5'A, neither activated RNase L nor caused apoptosis. Treatment with IFN-beta prior to 2-5A transfection enhanced cellular RNase L levels (< or = 2.2-fold) and increased the proportion of cells undergoing apoptosis (by < or =40%). However, rRNA cleavages after 2-5A transfections were not enhanced by IFN-beta pretreatments, indicating that basal levels of RNase L were sufficient for this activity. Apoptosis in response to RNase L activation was accompanied by cytochrome c release from mitochondria. Induction of apoptosis by either 2-5A alone or by the combination of 2-5A and IFN-beta was effectively blocked with either the pancaspase inhibitor, Z-VAD-fmk, or with the caspase 3 inhibitor, DEVD-fmk. Therefore, activation of RNase L by 2-5A leads to cytochrome c release into the cytoplasm and then to caspase activation and apoptosis. These results suggest potential uses for 2-5A in augmenting the anticancer activities of IFN.
Collapse
Affiliation(s)
- L Rusch
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
344
|
Gong B, Almasan A. Genomic organization and transcriptional regulation of human Apo2/TRAIL gene. Biochem Biophys Res Commun 2000; 278:747-52. [PMID: 11095979 DOI: 10.1006/bbrc.2000.3872] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apo2L, or TRAIL, is a type II integral membrane protein belonging to the TNF family which induces apoptotic cell death in a variety of human tumor cells. Apo2L is expressed in many tissues, suggesting that it is nontoxic to normal cells. We found that Apo2L mRNA was induced by interferon (IFN)-alpha and -beta, but not -gamma, in Jurkat cells. To gain a better understanding of the molecular mechanisms that regulate expression of Apo2L, we have characterized the organization of the human Apo2L gene and its promoter region. The Apo2L gene spans approximately 20 kb and is composed of five exons. The 1.2-kb Apo2L promoter region upstream of the translation initiation codon was cloned, its transcription start site defined, and several putative transcription factor binding sites identified. Luciferase reporter constructs were transfected into Jurkat cells and shown to be induced by IFNs. Deletion analysis indicates that the Apo2L promoter region between nucleotides 126 and 33 upstream of the transcriptional start site controls the expression of the Apo2L gene following IFN-beta treatment.
Collapse
Affiliation(s)
- B Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland, Ohio, 44195, USA
| | | |
Collapse
|
345
|
Nakayama M, Kayagaki N, Yamaguchi N, Okumura K, Yagita H. Involvement of TWEAK in interferon gamma-stimulated monocyte cytotoxicity. J Exp Med 2000; 192:1373-80. [PMID: 11067885 PMCID: PMC2193363 DOI: 10.1084/jem.192.9.1373] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
TWEAK, a new member of the tumor necrosis factor (TNF) family, induces cell death in some tumor cell lines, but its physiological functions are largely unknown. In this study, we investigated the expression and function of TWEAK in human peripheral blood mononuclear cells (PBMCs) by using newly generated anti-human TWEAK mAbs. Although freshly isolated PBMCs expressed no detectable level of TWEAK on their surfaces, a remarkable TWEAK expression was rapidly observed on monocytes upon stimulation with interferon (IFN)-gamma but not with IFN-alpha or lipopolysaccharide. Cytotoxic activity of IFN-gamma-stimulated monocytes against human squamous carcinoma cell line HSC3 was inhibited partially by anti-TWEAK mAb alone and almost completely by combination with anti-TRAIL (TNF-related apoptosis-inducing ligand) mAb. These results revealed a novel pathway of monocyte cytotoxicity against tumor cells that is mediated by TWEAK and potentiated by IFN-gamma.
Collapse
Affiliation(s)
- M Nakayama
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
346
|
Mühlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G, Scheurich P, Moosmayer D, Tschopp J, Wajant H. The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 2000; 275:32208-13. [PMID: 10807904 DOI: 10.1074/jbc.m000482200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors, TRAIL-R1 and TRAIL-R2, induces apoptosis and activation of NF-kappaB in cultured cells. In this study, we have demonstrated differential signaling capacities by both receptors using either epitope-tagged soluble TRAIL (sTRAIL) or sTRAIL that was cross-linked with a monoclonal antibody. Interestingly, sTRAIL was sufficient for induction of apoptosis only in cell lines that were killed by agonistic TRAIL-R1- and TRAIL-R2-specific IgG preparations. Moreover, in these cell lines interleukin-6 secretion and NF-kappaB activation were induced by cross-linked or non-cross-linked anti-TRAIL, as well as by both receptor-specific IgGs. However, cross-linking of sTRAIL was required for induction of apoptosis in cell lines that only responded to the agonistic anti-TRAIL-R2-IgG. Interestingly, activation of c-Jun N-terminal kinase (JNK) was only observed in response to either cross-linked sTRAIL or anti-TRAIL-R2-IgG even in cell lines where both receptors were capable of signaling apoptosis and NF-kappaB activation. Taken together, our data suggest that TRAIL-R1 responds to either cross-linked or non-cross-linked sTRAIL which signals NF-kappaB activation and apoptosis, whereas TRAIL-R2 signals NF-kappaB activation, apoptosis, and JNK activation only in response to cross-linked TRAIL.
Collapse
Affiliation(s)
- F Mühlenbeck
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand–mediated apoptosis. Blood 2000. [DOI: 10.1182/blood.v96.7.2628.h8002628_2628_2631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.
Collapse
|
348
|
Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand–mediated apoptosis. Blood 2000. [DOI: 10.1182/blood.v96.7.2628] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Dendritic cells (DCs) disappear from lymph nodes 1 to 2 days after antigen presentation, presumably by apoptosis. To evaluate the role of death ligands in elimination of DCs, we analyzed the sensitivity of human DCs to CD95 ligand (CD95L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found mature DCs to be resistant to killing via CD95L or TRAIL, whereas only immature DCs were partially sensitive. However, all DC populations expressed CD95, TRAIL-R2, and TRAIL-R3 at comparable levels, suggesting that sensitivity to death ligand-induced DC apoptosis is not regulated at the receptor level. Interestingly, mature DCs highly expressed the caspase 8 inhibitory protein cFLIP, whereas only low levels were detected in immature DCs. Thus, death ligand sensitivity proved to be dependent on DC maturation and inversely correlated with expression levels of cFLIP. Induction of apoptosis by TRAIL or CD95L does not seem to play a role in the elimination of mature DCs, but instead might serve to regulate immature DC populations.
Collapse
|
349
|
Wang Q, Ji Y, Wang X, Evers BM. Isolation and molecular characterization of the 5'-upstream region of the human TRAIL gene. Biochem Biophys Res Commun 2000; 276:466-71. [PMID: 11027498 DOI: 10.1006/bbrc.2000.3512] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TRAIL, a novel member of the TNF family, acts through membrane receptors to induce apoptosis of activated T lymphocytes and may represent a mechanism for the "immune escape" of certain cancers. Various cytokines appear to increase expression of other TNF family members; however, the regulation of TRAIL has not been defined. The purpose of this study was to assess molecular mechanisms regulating TRAIL gene expression in human colon cancers. In this study, we have cloned the human TRAIL (hTRAIL) promoter ( approximately 1.6 kb) and identified a number of putative transcription factor binding sites such as NFAT, AP-1 and Sp1 sequences which are important for the expression of other TNF family members. Transient transfections of 5'-deletion promoter constructs into either Caco-2 or HT29 colon cancer cells identified TRAIL promoter regions critical for both basal and interferon-gamma (IFN-gamma)-mediated induction. Furthermore, induction of TRAIL mRNA levels was demonstrated in HT29 and Caco-2 cells with IFN-gamma treatment suggesting an important role for this cytokine in TRAIL expression.
Collapse
Affiliation(s)
- Q Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555-0536, USA
| | | | | | | |
Collapse
|
350
|
Paul S, Snary D, Hoebeke J, Allen D, Balloul JM, Bizouarne N, Dott K, Geist M, Hilgers J, Kieny MP, Burchell J, Taylor-Papadimitriou J, Acres RB. Targeted macrophage cytotoxicity using a nonreplicative live vector expressing a tumor-specific single-chain variable region fragment. Hum Gene Ther 2000; 11:1417-28. [PMID: 10910139 DOI: 10.1089/10430340050057495] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antigen-specific recognition and subsequent destruction of tumor cells is the goal of vaccine-based immunotherapy of cancer. Often, however, tumor antigen-specific cytotoxic T lymphocytes (CTLs) are either not available or in a state of anergy. In addition, MHCI expression on tumor cells is often downregulated. Either or both of these situations can allow tumor growth to proceed unchecked by CTL control. We have shown previously that tumor antigen-specific monoclonal antibodies can be expressed in vaccinia virus and that activated macrophages infected with this virus acquire the ability to kill tumor cells expressing that antigen. Here we show that a membrane-anchored form of the scFv portion of the MUC1 tumor antigen-specific monoclonal antibody, SM3, can be expressed on activated macrophages with the highly attenuated poxvirus, modified vaccinia Ankara (MVA), as a gene transfer vector. Cells infected with the MVA-scFv construct were shown to express the membrane-bound scFv by Western blot and FACS analysis. That cells expressing the membrane-anchored scFv specifically bind antigen was shown by FACS and by BIAcore analysis. GM-CSF-activated macrophages were infected with the construct and shown to recognize specifically MUC1-expressing tumor cells as measured by IL-12 release. Furthermore, activated macrophages expressing the membrane-bound scFv specifically lyse target cells expressing the MUC1 antigen but not cells that do not express MUC1.
Collapse
Affiliation(s)
- S Paul
- Clinical and Experimental Immunology Laboratory, Transgene SA, Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|