301
|
Kürten CHL, Deuß E, Lei YL, Höing B, Kramer B, Lang S, Ferris RL, Kansy BA. [Stimulatory and inhibitory signaling pathways of the T cell-APC interaction and the effect of TLR agonists on APCs]. HNO 2020; 68:916-921. [PMID: 33128107 DOI: 10.1007/s00106-020-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND CD8+ cells are key players in the identification and elimination of cancer cells. Cancers can escape an effective T cell response by inducing an exhausted cell state, which limits the cytotoxic capacity of the effector cells. Among other mechanisms, new checkpoint inhibitors reactivate exhausted, dysfunctional T cells. CD8+ T cells can eliminate tumor cells after presentation of tumor-specific antigens via antigen-presenting cells (APCs). APC-mediated tumor recognition is mainly stimulated by Toll-like receptors (TLRs). OBJECTIVE This study investigates the effect of TLR agonists on APCs as well as stimulatory and inhibitory signaling pathways of the T cell-APC interaction. MATERIALS AND METHODS Gene expression of interleukin (IL)12 and programmed death ligand 1 (PD-L1) was analyzed by quantitative polymerase chain reaction (qPCR) after 0, 8, 24, and 48 h of CD14+ cell stimulation with CpG. Protein expression of inhibitor of nuclear factor kappa B (IκBα) after CpG stimulation was investigated by western blot. CD8+ T cells were stimulated for 72 h with or without programmed cell death protein 1 (PD-1) checkpoint blockade and analyzed for expression of PD‑1, Tim‑3, CTLA4, and Lag3 by flow cytometry. RESULTS TLR stimulation (by unmethylated CpG DNA) of APCs upregulates immunostimulatory signals such as IL12 expression but also activates immunoinhibitory signaling pathways such as PD-L1 expression. This signaling is NF-κB dependent. After blockade of the PD-1/PD-L1 signaling pathway, overexpression of other immune checkpoint inhibitory receptors was observed-a potential explanation for lacking therapeutic responses after TLR stimulation with PD‑1 checkpoint blockade. CONCLUSION TLR stimulation causes APCs in the tumor microenvironment to upregulate PD-L1 in an NF-κB-mediated fashion, thereby contributing to CD8+ T cell exhaustion. The effect of PD‑1 blockade after TLR stimulation might be impaired due to upregulation of other checkpoint inhibitors.
Collapse
Affiliation(s)
- C H L Kürten
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - E Deuß
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - Y L Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - B Höing
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - B Kramer
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - S Lang
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland
| | - R L Ferris
- Cancer Immunology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - B A Kansy
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Essen, Hufelandstraße 55, 45147, Essen, Deutschland.
| |
Collapse
|
302
|
Origin and fine-tuning of effector CD8 T cell subpopulations in chronic infection. Curr Opin Virol 2020; 46:27-35. [PMID: 33137688 DOI: 10.1016/j.coviro.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/27/2020] [Accepted: 10/11/2020] [Indexed: 12/31/2022]
Abstract
Persisting stimulation can skew CD8 T cells towards a hypofunctional state commonly referred to as T cell exhaustion. This functional attenuation likely constitutes a mechanism which evolved to balance T cell mediated viral control versus overwhelming immunopathology. Here, we highlight the recent progress in defining the genetic mechanisms and factors shaping the differentiation of exhausted CD8 T cells. We review how the transcription factor Tox imposes an exhausted phenotype in the Tcf1+ progenitors and how CD4 help fine-tunes the effector subsets that emerge from this progenitor population. Both processes critically shape the spectrum of effector function performed by CD8 T cells and the level of resulting virus control. Finally, we discuss how these insights can be exploited to boost the immune response in chronic infection and cancer.
Collapse
|
303
|
Peña-Asensio J, Sanz-de-Villalobos E, Miquel J, Larrubia JR. Tumor necrosis family receptor superfamily member 9/tumor necrosis factor receptor-associated factor 1 pathway on hepatitis C viral persistence and natural history. World J Hepatol 2020; 12:754-765. [PMID: 33200014 PMCID: PMC7643212 DOI: 10.4254/wjh.v12.i10.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is an excellent immunological model for understanding the mechanisms developed by non-cytopathic viruses and tumors to evade the adaptative immune response. The antigen-specific cytotoxic T cell response is essential for keeping HCV under control, but during persistent infection, these cells become exhausted or even deleted. The exhaustion process is progressive and depends on the infection duration and level of antigenemia. During high antigenic load and long duration of infection, T cells become extremely exhausted and ultimately disappear due to apoptosis. The development of exhaustion involves the impairment of positive co-stimulation induced by regulatory cytokines, such as transforming growth factor beta 1. This cytokine downregulates tumor necrosis factor receptor (TNFR)-associated factor 1 (TRAF1), the signal transducer of the T cell co-stimulatory molecule TNFR superfamily member 9 (known as 4-1BB). This impairment correlates with the low reactivity of T cells and an exhaustion phenotype. Treatment with interleukin-7 in vitro restores TRAF1 expression and rescues T cell effector function. The process of TRAF1 loss and its in vitro recovery is hierarchical, and more affected by severe disease progression. In conclusion, TRAF1 dynamics on T cells define a new pathogenic model that describes some aspects of the natural history of HCV, and sheds light on novel immunotherapy strategies for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Julia Peña-Asensio
- Department of Systems Biology, Guadalajara University Hospital. University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Eduardo Sanz-de-Villalobos
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Joaquín Miquel
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| | - Juan Ramón Larrubia
- Translational Hepatology Unit, Guadalajara University Hospital, University of Alcalá, Guadalajara E-19002, Guadalajara, Spain
| |
Collapse
|
304
|
Raju S, Verbaro DJ, Egawa T. PD-1 Signaling Promotes Control of Chronic Viral Infection by Restricting Type-I-Interferon-Mediated Tissue Damage. Cell Rep 2020; 29:2556-2564.e3. [PMID: 31775026 PMCID: PMC6894421 DOI: 10.1016/j.celrep.2019.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 01/15/2023] Open
Abstract
Immune responses are essential for pathogen elimination but also cause tissue damage, leading to disease or death. However, it is unclear how the host immune system balances control of infection and protection from the collateral tissue damage. Here, we show that PD-1-mediated restriction of immune responses is essential for durable control of chronic LCMV infection in mice. In contrast to responses in the chronic phase, PD-1 blockade in the subacute phase of infection paradoxically results in viral persistence. This effect is associated with damage to lymphoid architecture and subsequently decreases adaptive immune responses. Moreover, this tissue damage is type I interferon dependent, as sequential blockade of the interferon receptor and PD-1 pathways prevents immunopathology and enhances control of infection. We conclude that PD-1-mediated suppression is required as an immunoregulatory mechanism for sustained responses to chronic viral infection by antagonizing type-I interferon-dependent immunopathology. Using stage-specific PD-1 blockade in LCMV-infected mice, Raju et al. uncover the requirement for PD-1-mediated suppression of CD8 T cells for durable immune response to chronic viral infection, as well as the requirement for IFNAR signaling in programming of CD8 T cells toward effectors that cause immunopathology.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
305
|
Kräutler NJ, Yermanos A, Pedrioli A, Welten SPM, Lorgé D, Greczmiel U, Bartsch I, Scheuermann J, Kiefer JD, Eyer K, Menzel U, Greiff V, Neri D, Stadler T, Reddy ST, Oxenius A. Quantitative and Qualitative Analysis of Humoral Immunity Reveals Continued and Personalized Evolution in Chronic Viral Infection. Cell Rep 2020; 30:997-1012.e6. [PMID: 31995768 DOI: 10.1016/j.celrep.2019.12.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Control of established chronic lymphocytic choriomeningitis virus (LCMV) infection requires the production of neutralizing antibodies, but it remains unknown how the ensemble of antibodies evolves during ongoing infection. Here, we analyze the evolution of antibody responses during acute or chronic LCMV infection, combining quantitative functional assays and time-resolved antibody repertoire sequencing. We establish that antibody responses initially converge in both infection types on a functional and repertoire level, but diverge later during chronic infection, showing increased clonal diversity, the appearance of mouse-specific persistent clones, and distinct phylogenetic signatures. Chronic infection is characterized by a longer-lasting germinal center reaction and a continuous differentiation of plasma cells, resulting in the emergence of higher-affinity plasma cells exhibiting increased antibody secretion rates. Taken together, our findings reveal the emergence of a personalized antibody response in chronic infection and support the concept that maintaining B cell diversity throughout chronic LCMV infection correlates with the development of infection-resolving antibodies.
Collapse
Affiliation(s)
- Nike Julia Kräutler
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland; Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Suzanne P M Welten
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Dominique Lorgé
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Ilka Bartsch
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jörg Scheuermann
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jonathan D Kiefer
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ulrike Menzel
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Victor Greiff
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Immunology, University of Oslo, Sognsvannsveien 20 Rikshospitalet, 0372 Oslo, Norway
| | - Dario Neri
- Institute for Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Tanja Stadler
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.
| |
Collapse
|
306
|
Lercher A, Popa AM, Viczenczova C, Kosack L, Klavins K, Agerer B, Opitz CA, Lanz TV, Platten M, Bergthaler A. Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis. PLoS Pathog 2020; 16:e1008973. [PMID: 33045014 PMCID: PMC7580883 DOI: 10.1371/journal.ppat.1008973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis. Viral hepatitis is responsible for more than one million annual deaths worldwide and may progress to liver cirrhosis and hepatocellular carcinoma. The main metabolic cell type of the liver is the hepatocyte. In viral hepatitis, type I interferon (IFN-I) signaling rewires hepatocyte metabolism and serum metabolites to shape disease pathophysiology – an immune-regulatory circuit that might be therapeutically exploited. Here, we show that hepatocyte-intrinsic antiviral IFN-I signaling is both necessary and sufficient to induce wide-spread metabolic changes in hepatocytes. We identify a IFN-I-mediated induction of the hepatic kynurenine pathway via the rate-limiting and liver-specific enzyme TDO2, which controls serum homeostasis of tryptophan by converting it into kynurenine. Loss of TDO2 triggers a so far unknown compensatory mechanism, resulting in a vast increase of circulating kynurenine independent of hepatocyte intrinsic activity of the related IDO-enzymes. This study provides new insights into how inflammation reprograms metabolism of the liver and the kynurenine pathway during viral hepatitis.
Collapse
MESH Headings
- Animals
- Antiviral Agents/metabolism
- Female
- Hepatitis Viruses/isolation & purification
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunity, Innate/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/virology
- Interferon Regulatory Factor-7/physiology
- Kynurenine/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- STAT1 Transcription Factor/physiology
- Tryptophan/metabolism
- Tryptophan Oxygenase/physiology
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| | - Alexandra M. Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| |
Collapse
|
307
|
Buchwald ZS, Nasti TH, Lee J, Eberhardt CS, Wieland A, Im SJ, Lawson D, Curran W, Ahmed R, Khan MK. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J Immunother Cancer 2020; 8:jitc-2020-000867. [PMID: 33028691 PMCID: PMC7542667 DOI: 10.1136/jitc-2020-000867] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Background Radiotherapy (RT) has been shown to stimulate an antitumor immune response in irradiated tumors as well as unirradiated distant sites (abscopal effect). Previous studies have demonstrated a role for the tumor-draining lymph node (LN) in mediating an anti-programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) stimulated antitumor immune response. Here, we investigated whether the LN is also important in mediating a RT alone stimulated abscopal response. Methods We used a subcutaneous modified B16F10 flank tumor model injected bilaterally. Our B16F10 cell line has an inserted viral glycoprotein which facilitated identification of tumor-specific T-cells. RT was directed at one flank tumor alone or one flank tumor and the tumor-draining LN. We evaluated response by tumor growth measurements and flow cytometry of both tumor-infiltrating and LN T-cells. Results We show that local tumor irradiation improves distant tumor control (abscopal effect). Depletion of CD8+ T-cells significantly reduced this abscopal response. We have previously shown, in a chronic lymphocytic choriomeningitis virus (LCMV) infection, that the T-cell proliferative burst following blockade of PD-1/L1 is provided by a ‘stem-like’ CD8+ T-cell subset which then differentiate into terminally differentiated effectors. These terminally differentiated effectors have the potential to kill virally infected or tumor cells following PD-1/L1 blockade. In the chronic LCMV infection, stem-like CD8+ T-cells were found exclusively in secondary lymphoid organs. Similarly, here we found these cells at high frequencies in the tumor-draining LN, but at low frequencies within the tumor. The effect of RT on this T-cell subset in unknown. Interestingly, tumor irradiation stimulated total CD8+ and stem-like CD8+ T-cell proliferation in the LN. When the LN and the tumor were then targeted with RT, the abscopal effect was reduced, and we found a concomitant reduction in the number of total tumor-specific CD8+ T-cells and stem-like CD8+ T-cells in both the irradiated and unirradiated tumor. Conclusions These correlative results suggest the tumor-draining LN may be an important mediator of the abscopal effect by serving as a stem-like CD8+ T-cell reservoir, a site for stem-like T-cell expansion, and a site from which they can populate the tumor.
Collapse
Affiliation(s)
- Zachary S Buchwald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA.,Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Tahseen H Nasti
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Judong Lee
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Christiane S Eberhardt
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Andres Wieland
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Se Jin Im
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - David Lawson
- Department of Hematology and Oncology, Emory University, Atlanta, Georgia, USA
| | - Walter Curran
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
308
|
Labarta-Bajo L, Gramalla-Schmitz A, Gerner RR, Kazane KR, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Raffatellu M, Zúñiga EI. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc Natl Acad Sci U S A 2020; 117:24998-25007. [PMID: 32958643 PMCID: PMC7547153 DOI: 10.1073/pnas.2003656117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Anna Gramalla-Schmitz
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Romana R Gerner
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
| | - Katelynn R Kazane
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Tara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA 92093
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-University of California San Diego, La Jolla, CA 92093
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093;
| |
Collapse
|
309
|
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and Molecular Mechanisms of CD8 + T Cell Differentiation, Dysfunction and Exhaustion. Int J Mol Sci 2020; 21:ijms21197357. [PMID: 33027962 PMCID: PMC7582856 DOI: 10.3390/ijms21197357] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically “exhausted” in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Matthias Mulazzani
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
310
|
Exposing Hidden Targets: Combining epigenetic and immunotherapy to overcome cancer resistance. Semin Cancer Biol 2020; 65:114-122. [DOI: 10.1016/j.semcancer.2020.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
|
311
|
T Cell Receptor Diversity and Lineage Relationship between Virus-Specific CD8 T Cell Subsets during Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2020; 94:JVI.00935-20. [PMID: 32759317 DOI: 10.1128/jvi.00935-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Recent studies on chronic viral infections have defined a novel programmed cell death 1-positive (PD-1+) T cell factor 1-positive (TCF1+) stem-like CD8 T cell subset that gives rise to the terminally differentiated exhausted CD8 T cells. In this study, we performed T cell receptor beta (TCRβ) sequencing of virus-specific CD8 T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection to examine the TCR diversity and lineage relationship of these two functionally distinct subsets. We found that >95% of the TCR repertoire of the exhausted CD8 T cell subset was shared with the stem-like CD8 T cells. The TCR repertoires of both CD8 T cell subsets were composed mostly of a few dominant clonotypes, but there was slightly more breadth and diversity in the stem-like CD8 T cells than their exhausted counterpart (∼40 versus ∼15 GP33+ clonotypes; ∼20 versus ∼7 GP276+ clonotypes). Interestingly, the breadth of the TCR repertoire was broader during the early stages (day 8) of the chronic infection than the later stages (days 45 to 60), showing that there was a narrowing of the TCR repertoire during chronic infection (∼2-fold GP33+ and GP276+ stem-like subset; ∼10-fold GP33+ and ∼5-fold GP276+ exhausted subset). In contrast, during acute LCMV infection, the TCR repertoire was much broader in both GP33-specific effector (∼160 clonotypes) and memory CD8 T cells (∼160 clonotypes). Overall, our data demonstrate that the virus-specific CD8 T cell TCR repertoire is broad and remains stable after acute LCMV infection, but it contracts and is narrower during chronic infection. Our study also shows that the repertoire of the exhausted CD8 T cell subset is almost completely derived from the stem-like CD8 T cell subset during established chronic LCMV infection.IMPORTANCE CD8 TCR repertoires responding to chronic viral infections (HIV, hepatitis C virus [HCV], Epstein-Barr virus [EBV], and cytomegalovirus [CMV]) have limited breadth and diversity. How these repertoires change and are maintained throughout the chronic infection are unknown. We thus characterized the LCMV-specific CD8 TCR repertoires of stem-like and terminally exhausted subsets generated during chronic LCMV infections. During chronic LCMV infections, the repertoires started as diverse but became more clonal at the late time point. Further, the exhausted subset was composed of dominant clonotypes that were shared with the stem-like subset. Together, we demonstrate that the TCR repertoire contracts over time and is almost exclusively derived from the stem-like subset late during the persistent viral infection. Our data suggest that dominant clonotypes in the exhausted subset are derived from a diverse pool of stem-like clonotypes, which may be contributing to the clonality observed during chronic viral infections.
Collapse
|
312
|
Marro BS, Zak J, Zavareh RB, Teijaro JR, Lairson LL, Oldstone MBA. Discovery of Small Molecules for the Reversal of T Cell Exhaustion. Cell Rep 2020; 29:3293-3302.e3. [PMID: 31801090 DOI: 10.1016/j.celrep.2019.10.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Inhibitory receptors (IRs) function as critical regulators of immune responses by tempering T cell activity. In humans, several persisting viruses as well as cancers exploit IR signaling by upregulating IR ligands, resulting in suppression of T cell function (i.e., exhaustion). This allows escape from immune surveillance and continuation of disease. Here, we report the design, implementation, and results of a phenotypic high-throughput screen for molecules that modulate CD8+ T cell activity. We identify 19 compounds from the ReFRAME drug-repurposing collection that restore cytokine production and enhance the proliferation of exhausted T cells. Analysis of our top hit, ingenol mebutate, a protein kinase C (PKC) inducing diterpene ester, reveals a role for this molecule in overriding the suppressive signaling cascade mediated by IR signaling on T cells. Collectively, these results demonstrate a disease-relevant methodology for identifying modulators of T cell function and reveal new targets for immunotherapy.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Reza Beheshti Zavareh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
313
|
Liu L, Lin Q, Peng J, Fang J, Tan Z, Tang H, Kwan K, Nishiura K, Liang J, Kwok H, Du Z, Sun J, Liu K, Yuen KY, Wang H, Chen Z. Persistent lentivirus infection induces early myeloid suppressor cells expansion to subvert protective memory CD8 T cell response ✰,✰✰. EBioMedicine 2020; 60:103008. [PMID: 32979832 PMCID: PMC7519271 DOI: 10.1016/j.ebiom.2020.103008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Memory CD8+T cell responses play an essential role in protection against persistent infection. However, HIV-1 evades vaccine-induced memory CD8+T cell response by mechanisms that are not fully understood. Methods We analyzed the temporal dynamics of CD8+T cell recall activity and function during EcoHIV infection in a potent PD1-based vaccine immunized immunocompetent mice. Findings Upon intraperitoneal EcoHIV infection, high levels of HIV-1 GAG-specific CD8+T lymphocytes recall response reduced EcoHIV-infected cells significantly. However, this protective effect diminished quickly after seven days, followed by a rapid reduction of GAG-specific CD8+T cell number and activity, and viral persistence. Mechanistically, EcoHIV activated dendritic cells (DCs) and myeloid cells. Myeloid cells were infected and rapidly expanded, exhibiting elevated PD-L1/-L2 expression and T cell suppressive function before day 7, and were resistant to CD8+T cell-mediated apoptosis. Depletion of myeloid-derived suppressor cells (MDSCs) reduced EcoHIV infection and boosted T cell responses. Interpretation This study provides an overview of the temporal interplay of persistent virus, DCs, MDSCs and antigen-specific CD8+T cells during acute infection. We identify MDSCs as critical gatekeepers that restrain antiviral T cell memory responses, and highlight MDSCs as an important target for developing effective vaccines against chronic human infections. Funding Hong Kong Research Grant Council (T11–709/18-N, HKU5/CRF/13G), General Research Fund (17122915 and 17114114), Hong Kong Health and Medical Research Fund (11100752, 14130582, 16150662), Grant RGC-ANR A-HKU709/14, the San-Ming Project of Medicine (SZSM201512029), University Development Fund of the University of Hong Kong and Li Ka Shing Faculty of Medicine Matching Fund to HKU AIDS Institute.
Collapse
Affiliation(s)
- Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, P.R. China.
| | - Qingqing Lin
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Jie Peng
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Jun Fang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Hangying Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Kayi Kwan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Kenji Nishiura
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Jianguo Liang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Hauyee Kwok
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Zhenglong Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Jiaze Sun
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Kang Liu
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Kwok-Yung Yuen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, P.R. China.
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, P.R. China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Key Clinical Department of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, P.R. China.
| |
Collapse
|
314
|
Davenport B, Eberlein J, Nguyen TT, Victorino F, van der Heide V, Kuleshov M, Ma'ayan A, Kedl R, Homann D. Chemokine Signatures of Pathogen-Specific T Cells II: Memory T Cells in Acute and Chronic Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:2188-2206. [PMID: 32948682 DOI: 10.4049/jimmunol.2000254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Pathogen-specific memory T cells (TM) contribute to enhanced immune protection under conditions of reinfection, and their effective recruitment into a recall response relies, in part, on cues imparted by chemokines that coordinate their spatiotemporal positioning. An integrated perspective, however, needs to consider TM as a potentially relevant chemokine source themselves. In this study, we employed a comprehensive transcriptional/translational profiling strategy to delineate the identities, expression patterns, and dynamic regulation of chemokines produced by murine pathogen-specific TM CD8+TM, and to a lesser extent CD4+TM, are a prodigious source for six select chemokines (CCL1/3/4/5, CCL9/10, and XCL1) that collectively constitute a prominent and largely invariant signature across acute and chronic infections. Notably, constitutive CCL5 expression by CD8+TM serves as a unique functional imprint of prior antigenic experience; induced CCL1 production identifies highly polyfunctional CD8+ and CD4+TM subsets; long-term CD8+TM maintenance is associated with a pronounced increase of XCL1 production capacity; chemokines dominate the earliest stages of the CD8+TM recall response because of expeditious synthesis/secretion kinetics (CCL3/4/5) and low activation thresholds (CCL1/3/4/5/XCL1); and TM chemokine profiles modulated by persisting viral Ags exhibit both discrete functional deficits and a notable surplus. Nevertheless, recall responses and partial virus control in chronic infection appear little affected by the absence of major TM chemokines. Although specific contributions of TM-derived chemokines to enhanced immune protection therefore remain to be elucidated in other experimental scenarios, the ready visualization of TM chemokine-expression patterns permits a detailed stratification of TM functionalities that may be correlated with differentiation status, protective capacities, and potential fates.
Collapse
Affiliation(s)
- Bennett Davenport
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jens Eberlein
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Tom T Nguyen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Francisco Victorino
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maxim Kuleshov
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and.,Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045.,Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
315
|
Dyer BA, Feng CH, Eskander R, Sharabi AB, Mell LK, McHale M, Mayadev JS. Current Status of Clinical Trials for Cervical and Uterine Cancer Using Immunotherapy Combined With Radiation. Int J Radiat Oncol Biol Phys 2020; 109:396-412. [PMID: 32942005 DOI: 10.1016/j.ijrobp.2020.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023]
Abstract
Novel therapies combined with radiation continue to be of significant interest in the developmental treatment paradigm of gynecologic cancers. Clinical implementation of immunotherapy in oncology has rapidly changed the treatment landscape, options, paradigm, and outcomes through clinical trials. Immunotherapy has emerged as a therapeutic pillar in the treatment of solid tumors with demonstrable synergistic activity when combined with radiation therapy and chemoradiotherapy by an alteration or enhancement of the immune system. In solid tumors, radiation therapy induces migration of dendritic cells, T cell activation, and proliferation, and increases in tumor-infiltrating lymphocytes. These immunomodulatory effects in conjunction with immune checkpoint blockade are currently under active investigation in the adjuvant, definitive, and metastatic settings. Results from early phase trials demonstrate promising efficacy and overall tolerable toxicity profiles of combined modality treatment. There is significant interest in optimizing the treatment for patients with locally advanced cervical cancer beyond the standard of care-chemoradiation-which has been in place for the last 30 years. The majority of cervical cancer emerges after persistent infection with a high-risk subtype of the human papillomavirus, where viral oncoproteins lead to cellular changes and immortalization. As a result, immune tolerance can develop, resulting in cancer. Knowledge of the mechanism of human papillomavirus-related oncogenesis suggests that immune therapy or checkpoint blockade can reinvigorate an antitumor immune response. Current clinical trials are exploring the therapeutic potential of these approaches. Uterine cancers have been grouped into 4 molecular subclasses by their driver mutations, mutational burden, and copy-number alterations. Of these subgroups, the polymerase epsilon-mutated and microsatellite-unstable may represent up to 40% of endometrial cancers, and they have been shown to be immunogenic. Because of the inherent immunogenicity of these MSI-high tumors, combined immune modulation strategies, including chemotherapy, radiation, and immunotherapy and immune checkpoint inhibitor therapy, are being explored to improve treatment outcomes. In this review, we explore current immunomodulatory and multimodality therapeutic approaches in the treatment of cervical and uterine cancer through ongoing clinical trials investigating the combination of immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Brandon A Dyer
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington
| | - Christine H Feng
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Ramez Eskander
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Services, University of California San Diego, La Jolla, California
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Loren K Mell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Michael McHale
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Services, University of California San Diego, La Jolla, California
| | - Jyoti S Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| |
Collapse
|
316
|
González-Tafoya E, Diupotex M, Zamora-Chimal J, Salaiza-Suazo N, Ruiz-Remigio A, Becker I. TNF contributes to T-cell exhaustion in chronic L. mexicana infections of mice through PD-L1 up-regulation. Cell Immunol 2020; 358:104196. [PMID: 33032241 DOI: 10.1016/j.cellimm.2020.104196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
Leishmania mexicana can produce chronic infections leading to exhausted T cell phenotypes, mediated by PD-1/PD-L1. Little is known on mechanisms that induce these inhibitory molecules in chronic leishmaniasis. We analyzed factors that contribute to exhausted phenotypes in chronic L. mexicana infections of mice. Our results show that draining lymph node cells express enhanced levels of PD-1/PD-L1. T lymphocytes producing low cytokine levels were also found. L. mexicana infection of dendritic cells (DCs) produced elevated amounts of TNF and showed up-regulation of PD-L1 expression. We provide evidence that T cells of chronic L. mexicana infections in mice are functionally exhausted due to chronic TNF production, which leads to PD-L1 up-regulation in DCs. We conclude that TNF has a fundamental role in promoting T cell exhaustion during chronic L. mexicana infections, which contributes to the inability of T cells to proliferate and produce pro-inflammatory cytokines, thus favoring disease progression.
Collapse
Affiliation(s)
- Eddie González-Tafoya
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico
| | - Mariana Diupotex
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico
| | - Norma Salaiza-Suazo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico
| | - Adriana Ruiz-Remigio
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis 148, Ciudad de México C. P. 06726, Mexico.
| |
Collapse
|
317
|
Weisberg SP, Carpenter DJ, Chait M, Dogra P, Gartrell-Corrado RD, Chen AX, Campbell S, Liu W, Saraf P, Snyder ME, Kubota M, Danzl NM, Schrope BA, Rabadan R, Saenger Y, Chen X, Farber DL. Tissue-Resident Memory T Cells Mediate Immune Homeostasis in the Human Pancreas through the PD-1/PD-L1 Pathway. Cell Rep 2020; 29:3916-3932.e5. [PMID: 31851923 PMCID: PMC6939378 DOI: 10.1016/j.celrep.2019.11.056] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
Non-recirculating tissue-resident memory T cells (TRMs) are the predominant T cell subset in diverse tissue sites, where they mediate protective immune responses in situ. Here, we reveal a role for TRM in maintaining immune homeostasis in the human pancreas through interactions with resident macrophages and the PD-1/PD-L1 inhibitory pathway. Using tissues obtained from organ donors, we identify that pancreas T cells comprise CD8+PD-1hi TRMs, which are phenotypically, functionally, and transcriptionally distinct compared to TRMs in neighboring jejunum and lymph node sites. Pancreas TRMs cluster with resident macrophages throughout the exocrine areas; TRM effector functions are enhanced by macrophage-derived co-stimulation and attenuated by the PD-1/PD-L1 pathways. Conversely, in samples from chronic pancreatitis, TRMs exhibit reduced PD-1 expression and reduced interactions with macrophages. These findings suggest important roles for PD-1 and TRM-macrophage interactions in controlling tissue homeostasis and immune dysfunctions underlying inflammatory disease, with important implications for PD-1-based immunotherapies.
Collapse
Affiliation(s)
- Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin J Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Chait
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Andrew X Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sean Campbell
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Wei Liu
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Pooja Saraf
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark E Snyder
- Department of Medicine, Columbia University Medical Center, New York, NY 00132, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Nichole M Danzl
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Beth A Schrope
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Yvonne Saenger
- Department of Medicine, Columbia University Medical Center, New York, NY 00132, USA
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
318
|
Exhausted CD8 + T cells exhibit low and strongly inhibited TCR signaling during chronic LCMV infection. Nat Commun 2020; 11:4454. [PMID: 32901001 PMCID: PMC7479152 DOI: 10.1038/s41467-020-18256-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic viral infections are often associated with impaired CD8+ T cell function, referred to as exhaustion. Although the molecular and cellular circuits involved in CD8+ T cell exhaustion are well defined, with sustained presence of antigen being one important parameter, how much T cell receptor (TCR) signaling is actually ongoing in vivo during established chronic infection is unclear. Here, we characterize the in vivo TCR signaling of virus-specific exhausted CD8+ T cells in a mouse model, leveraging TCR signaling reporter mice in combination with transcriptomics. In vivo signaling in exhausted cells is low, in contrast to their in vitro signaling potential, and despite antigen being abundantly present. Both checkpoint blockade and adoptive transfer of naïve target cells increase TCR signaling, demonstrating that engagement of co-inhibitory receptors curtails CD8+ T cell signaling and function in vivo. Excess antigenic exposure, such as in cancers or chronic viral infection, can lead to T cell exhaustion. Here the authors show that despite high exposure to antigen in the context of chronic LCMV infection in mice, exhausted CD8+ T cells have low levels of TCR signalling that can be reactivated by PD-L1 blockade.
Collapse
|
319
|
PD-L1 Checkpoint Inhibition Narrows the Antigen-Specific T Cell Receptor Repertoire in Chronic Lymphocytic Choriomeningitis Virus Infection. J Virol 2020; 94:JVI.00795-20. [PMID: 32641478 DOI: 10.1128/jvi.00795-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 11/20/2022] Open
Abstract
Checkpoint inhibitors are effective in restoring exhausted CD8+ T cell responses in persistent viral infections or tumors. Several compounds are in clinical use for different malignancies, but trials in patients with chronic viral infections have also been conducted. In a mouse model of persistent lymphocytic choriomeningitis virus (LCMV) infection, it was shown that checkpoint inhibitor treatment increased T cell proliferation and functionality, but its influence on the antigen-specific T cell receptor (TCR) repertoire is unknown. NP396-specific CD8+ T cells dominate during acute LCMV infection and are predominantly exhausted during chronic infection. Next-generation sequencing of NP396-specific TCRs showed that exhaustion corresponds with a significantly reduced NP396-specific TCR repertoire diversity: Shannon indices of 4 in immunized mice to 2.6 in persistently infected mice. Anti-PD-L1 treatment during persistent LCMV infection restored NP396-specific T cell responses and reduced viral titers. Nevertheless, anti-PD-L1-treated mice showed an even more narrowed TCR repertoire, with reduced TCR diversity compared to that of persistently infected control mice (Shannon indices of 2.1 and 2.6, respectively). Interestingly, anti-PD-L1 treatment-induced narrowing of the TCR repertoire negatively correlates with functional and physical restoration of the antigen-specific T cell response. Further, we found that private, hyperexpanded TCR clonotypes dominated the T cell response after anti-PD-L1 treatment. Although being private, these top clonotypes from anti-PD-L1-treated mice revealed a more closely related CDR3 motif than those of top clonotypes from persistently infected control mice. In conclusion, although targeting the PD-1/PD-L1 pathway reinvigorates exhausted CD8+ T cells, it fails to restore T cell repertoire diversity.IMPORTANCE Checkpoint inhibitors are effective immunotherapeutics to restore cancer- and virus-induced exhausted CD8+ T cells, by enhancing the quality and survival of immune responses. Although checkpoint inhibitors are already used as therapy against various cancers, not much is known about their multifaceted impact on the exhausted CD8+ T cell receptor (TCR) repertoire. This report describes for the first time the evolvement of an exhausted antigen-specific CD8+ TCR repertoire under checkpoint inhibitor treatment. By using a well-established virus model, we were able to show major shifts toward oligoclonality of the CD8+ TCR repertoire response against a massively exhausted lymphocytic choriomeningitis virus (LCMV) epitope. While supporting viral control in the LCMV model, oligoclonality and more private of TCR repertoires may impact future pathogenic challenges and may promote viral escape. Our results may explain the ongoing problems of viral escapes, unpredictable autoimmunity, and heterogeneous responses appearing as adverse effects of checkpoint inhibitor treatments.
Collapse
|
320
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
321
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
322
|
Golden EB, Marciscano AE, Formenti SC. Radiation Therapy and the In Situ Vaccination Approach. Int J Radiat Oncol Biol Phys 2020; 108:891-898. [PMID: 32800803 DOI: 10.1016/j.ijrobp.2020.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
During the past century, from the advent of preclinical modeling to the establishment of clinical trials, the hypothesis that host defenses regulate tumor growth (posited and refined by leaders in the field of cancer immunity) has become accepted as a scientific pillar in oncology. Since the turn of the millennium, a search has been under way for the best therapeutic approach to reprogram the immune system to recognize tumor cells that have undergone "immune escape." This quest has led some to question conventional scientific views of tumor cell kill, including the role of host immunity in patients treated with radiation therapy. In the last two decades, evidence has accumulated that radiation therapy can effectively convert a potentially lethal cancer into an in situ personalized vaccine. Herein, we review the underlying mechanisms and maneuvers responsible for in situ vaccine production.
Collapse
Affiliation(s)
- Encouse B Golden
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York
| | - Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York City, New York.
| |
Collapse
|
323
|
Sears JD, Waldron KJ, Wei J, Chang CH. Targeting metabolism to reverse T-cell exhaustion in chronic viral infections. Immunology 2020; 162:135-144. [PMID: 32681647 DOI: 10.1111/imm.13238] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022] Open
Abstract
CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs.
Collapse
Affiliation(s)
| | | | - Jian Wei
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chih-Hao Chang
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.,Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
324
|
Chronic Hepatitis B Infection Is Associated with Increased Molecular Degree of Inflammatory Perturbation in Peripheral Blood. Viruses 2020; 12:v12080864. [PMID: 32784775 PMCID: PMC7472740 DOI: 10.3390/v12080864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern. The interaction between HBV and the host inflammatory response is an important contributing factor driving liver damage and diseases outcomes. Here, we performed a retrospective analysis employing an adapted molecular degree of perturbation (MDP) score system to assess the overall inflammatory imbalance related to persistent HBV infection. Plasma levels of several cytokines, chemokines, and other inflammatory markers were measured in Brazilian individuals diagnosed with either chronic HBV or previous HBV infection, as well as in uninfected controls between 2006 and 2007. Multidimensional analyses were used to depict and compare the overall expression profile of inflammatory markers between distinct clinical groups. Chronic HBV patients exhibited a marked inflammatory imbalance, characterized by heightened MDP scores and a distinct profile of correlation networks inputting plasma concentrations of the biomarkers, compared with either individuals with previous HBV or controls. Furthermore, in participants with chronic HBV infection, the viral loads in peripheral blood were directly proportional to overall molecular perturbation as well as to specific perturbations of interleukin (IL)-4 and interferon (IFN)-γ concentrations. These findings highlight additional nuances about systemic inflammation related to persistent HBV infection.
Collapse
|
325
|
Aparicio-Domingo P, Cannelle H, Buechler MB, Nguyen S, Kallert SM, Favre S, Alouche N, Papazian N, Ludewig B, Cupedo T, Pinschewer DD, Turley SJ, Luther SA. Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection. Eur J Immunol 2020; 51:76-90. [PMID: 32700362 DOI: 10.1002/eji.201948413] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/02/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33-/- mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.
Collapse
Affiliation(s)
| | - Hélène Cannelle
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matthew B Buechler
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Sylvain Nguyen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sandra M Kallert
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Stéphanie Favre
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nagham Alouche
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
326
|
Zebley CC, Gottschalk S, Youngblood B. Rewriting History: Epigenetic Reprogramming of CD8 + T Cell Differentiation to Enhance Immunotherapy. Trends Immunol 2020; 41:665-675. [PMID: 32624330 PMCID: PMC7395868 DOI: 10.1016/j.it.2020.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
The full potential of T cell-based immunotherapies remains limited by a variety of T cell extrinsic and intrinsic immunosuppressive mechanisms that can become imprinted to stably reduce the antitumor ability of T cells. Here, we discuss recent insights into memory CD8+ T cell differentiation and exhaustion and the association of these differentiation states with clinical outcomes during immune checkpoint blockade and chimeric antigen receptor (CAR) T cell therapeutic modalities. We consider the barriers limiting immunotherapy with a focus on epigenetic regulation impeding efficacy of adoptively transferred T cells and other approaches that augment T cell responses such as immune checkpoint blockade. Furthermore, we outline conceptual and technical breakthroughs that can be applied to existing therapeutic approaches and to the development of novel cutting-edge strategies.
Collapse
Affiliation(s)
- Caitlin C Zebley
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
327
|
Urban SL, Jensen IJ, Shan Q, Pewe LL, Xue HH, Badovinac VP, Harty JT. Peripherally induced brain tissue-resident memory CD8 + T cells mediate protection against CNS infection. Nat Immunol 2020; 21:938-949. [PMID: 32572242 PMCID: PMC7381383 DOI: 10.1038/s41590-020-0711-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/13/2020] [Indexed: 12/27/2022]
Abstract
The central nervous system (CNS) is classically viewed as immune-privileged; however, recent advances highlight interactions between the peripheral immune system and CNS in controlling infections and tissue homeostasis. Tissue-resident memory (TRM) CD8+ T cells in the CNS are generated after brain infections, but it is unknown whether CNS infection is required to generate brain TRM cells. We show that peripheral infections generate antigen-specific CD8+ memory T cells in the brain that adopt a unique TRM signature. Upon depletion of circulating and perivascular memory T cells, this brain signature was enriched and the surveilling properties of brain TRM cells was revealed by intravital imaging. Notably, peripherally induced brain TRM cells showed evidence of rapid activation and enhanced cytokine production and mediated protection after brain infections. These data reveal that peripheral immunizations can generate brain TRM cells and will guide potential use of T cells as therapeutic strategies against CNS infections and neurological diseases.
Collapse
Affiliation(s)
- Stina L Urban
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Isaac J Jensen
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Hackensack, NJ, USA
- VA New Jersey Health Care System, East Orange, NJ, USA
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
328
|
Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol 2020; 108:1361-1368. [PMID: 32726880 DOI: 10.1002/jlb.4mr0620-091r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Immune exhaustion in T cells significantly impacts their ability to control malignancies and infections, and its discovery has led to revolutionary therapies for cancer in the form of checkpoint blockade. NK cells, like T cells, are lymphocytes that recognize virally infected and malignantly transformed cells. However, it remains unclear if NK cells are similarly susceptible to exhaustion. In this review, the aims are to summarize what is currently known and to identify key areas of variability that skew the scientific literature on NK cell exhaustion. A lack of consensus on the defining features of NK cell dysfunctional states such as senescence, suppression, and exhaustion has made a comparison between studies difficult. There are also significant differences in the biology of NK cell subsets with long-lived, adaptive NK cells sharing an epigenetic signature closer to memory CD8+ T cells than to conventional NK cells. Very different checkpoint receptor expression and effector functions have been shown in adaptive versus conventional NK cells chronically exposed to activating signals. Adaptive NK cells develop in individuals with cytomegalovirus (CMV) infection and well over half of the human population worldwide is CMV seropositive by adulthood. Despite this high prevalence, most studies do not account or control for this population. This may contribute to some of the variability reported in the literature on checkpoint receptor expression on NK cells. In this review, the protective role that exhaustion plays in T cells will also be discussed and the evidence for a similar phenomenon in NK cells will be examined.
Collapse
Affiliation(s)
- Aimee M Merino
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hansol Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
329
|
Jiang W, Withers B, Sutrave G, Clancy LE, Yong MI, Blyth E. Pathogen-Specific T Cells Beyond CMV, EBV and Adenovirus. Curr Hematol Malig Rep 2020; 14:247-260. [PMID: 31228095 DOI: 10.1007/s11899-019-00521-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Infectious diseases contribute significantly to morbidity and mortality in recipients of allogeneic haematopoietic stem cell transplantation (aHSCT), particularly in the era of highly immunosuppressive transplant regimens and alternate donor transplants. Delayed cellular immune recovery is a major mechanism for the increased risk in these patients. Adoptive cell therapy with ex vivo manipulated pathogen-specific T cells (PSTs) is increasingly taking its place as a treatment strategy using donor-derived or third party-banked cells. RECENT FINDINGS The majority of clinical trial data in the form of early-phase studies has been in the prophylaxis or treatment of cytomegalovirus (CMV), Epstein-Barr virus (EBV) and adenovirus (AdV). Advancements in methods to select and enrich PSTs offer the opportunity to target the less common viral pathogens as well as fungi with this technology. Early clinical studies of PSTs targeting polyomaviruses (BK virus and JC virus), human herpesvirus 6 (HHV6), varicella zoster virus (VZV) and Aspergillus spp. have shown promising results in small numbers of patients. Other potential targets include herpes simplex virus (HSV), respiratory viruses and other invasive fungal species. In this review, we describe the burden of disease of this wider spectrum of pathogens, the progress in the development of manufacturing capability, early clinical results and the opportunities and challenges for implementation in the clinic.
Collapse
Affiliation(s)
- Wei Jiang
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Barbara Withers
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,St Vincent's Hospital, Darlinghurst, Australia
| | - Gaurav Sutrave
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia
| | - Leighton E Clancy
- Westmead Institute of Medical Research, University of Sydney, Sydney, Australia.,Sydney Cellular Therapies Laboratory, Westmead, Australia
| | - Michelle I Yong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Emily Blyth
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Westmead Institute of Medical Research, University of Sydney, Sydney, Australia. .,St Vincent's Hospital, Darlinghurst, Australia. .,BMT and Cell Therapies Program, Westmead Hospital, Sydney, Australia.
| |
Collapse
|
330
|
Tay RE, Olawoyin O, Cejas P, Xie Y, Meyer CA, Ito Y, Weng QY, Fisher DE, Long HW, Brown M, Kim HJ, Wucherpfennig KW. Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. J Exp Med 2020; 217:151741. [PMID: 32374402 PMCID: PMC7336313 DOI: 10.1084/jem.20191453] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cytotoxic T cells play a key role in adaptive immunity by killing infected or cancerous cells. While the transcriptional control of CD8 T cell differentiation and effector function following T cell activation has been extensively studied, little is known about epigenetic regulation of these processes. Here we show that the histone deacetylase HDAC3 inhibits CD8 T cell cytotoxicity early during activation and is required for persistence of activated CD8 T cells following resolution of an acute infection. Mechanistically, HDAC3 inhibits gene programs associated with cytotoxicity and effector differentiation of CD8 T cells including genes encoding essential cytotoxicity proteins and key transcription factors. These data identify HDAC3 as an epigenetic regulator of the CD8 T cell cytotoxicity program.
Collapse
Affiliation(s)
- Rong En Tay
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Olamide Olawoyin
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Qing Yu Weng
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hye-Jung Kim
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| | - Kai W Wucherpfennig
- Department of Immunology, Harvard Medical School, Boston, MA.,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
331
|
Mohammadzadeh A. Co-inhibitory receptors, transcription factors and tolerance. Int Immunopharmacol 2020; 84:106572. [DOI: 10.1016/j.intimp.2020.106572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
|
332
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
333
|
Pack AD, Tarleton RL. Cutting Edge: Augmenting Muscle MHC Expression Enhances Systemic Pathogen Control at the Expense of T Cell Exhaustion. THE JOURNAL OF IMMUNOLOGY 2020; 205:573-578. [PMID: 32591392 DOI: 10.4049/jimmunol.2000218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 11/19/2022]
Abstract
Myocytes express low levels of MHC class I (MHC I), perhaps influencing the ability of CD8+ T cells to efficiently detect and destroy pathogens that invade muscle. Trypanosoma cruzi infects many cell types but preferentially persists in muscle, and we asked if this tissue-dependent persistence was linked to MHC expression. Inducible enhancement of skeletal muscle MHC I in mice during the first 20 d of T. cruzi infection resulted in enhanced CD8-dependent reduction of parasite load. However, continued overexpression of MHC I beyond 30 d ultimately led to a collapse of systemic parasite control associated with immune exhaustion, which was reversible in part by blocking PD-1:PD-L1 interactions. These studies demonstrate a surprisingly strong and systemically dominant effect of skeletal muscle MHC expression on maintaining T cell function and pathogen control and argue that the normally low MHC I expression in skeletal muscle is host protective by allowing for pathogen control while preventing immune exhaustion.
Collapse
Affiliation(s)
- Angela D Pack
- Department of Microbiology, University of Georgia, Athens, GA 30602.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602; and
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602; and .,Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
334
|
Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation. PLoS Pathog 2020; 16:e1008555. [PMID: 32579593 PMCID: PMC7340326 DOI: 10.1371/journal.ppat.1008555] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/07/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cell anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion.
Collapse
|
335
|
Grayson JM, Perez MD, Blevins R, Coe BN, Detty MR, McIver ZA. Photodepletion with 2-Se-Cl prevents lethal graft-versus-host disease while preserving antitumor immunity. PLoS One 2020; 15:e0234778. [PMID: 32569289 PMCID: PMC7307732 DOI: 10.1371/journal.pone.0234778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host-disease (GVHD), limits the use of hematopoietic cell transplant (HCT) to treat a variety of malignancies. Any new therapeutic approach must satisfy three requirements: 1) Prevent GVHD, 2) Maintain anti-pathogen immunity, and 3) Maintain anti-tumor immunity. In prior studies we have shown that the selective photosensitizer 2-Se-Cl eliminates highly alloreactive lymphocytes from the graft prior to HCT preventing GVHD and that antiviral immune responses were preserved following incubation with 2-Se-Cl. In this report, we investigated whether 2-Se-Cl treatment preserves antitumor immunity, and then used high dimensional flow cytometry to identify the determinants of successful immune reconstitution. Donor C57BL/6 splenocytes were cocultured for 4 days with irradiated BALB/c splenocytes and then exposed to 2-Se-Cl. Photodepletion (PD)-treated splenocytes were then infused into lethally irradiated BALB/c mice inoculated with A20 leukemia/lymphoma cells. Recipient mice that received PD-treated splenocytes survived > 100 days without evidence of GVHD or leukemia. In contrast, mice that did not receive PD-treated cells at time of HCT died of leukemia progression. Multiparameter flow cytometry of cytokines and surface markers on peripheral blood samples 15 days after HCT demonstrated unique patterns of immune reconstitution. We found that before clinical disease onset GVHD was marked by functionally exhausted T cells, while tumor clearance and long-term survival were associated with an expansion of polyfunctional T cells, monocytes, and DCs early after transplantation. Taken together these results demonstrate that 2-Se-Cl photodepletion is a new treatment that can facilitate HCT by preventing GVHD while preserving antiviral and anti-tumor immunity.
Collapse
Affiliation(s)
- Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mildred D Perez
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Rebecca Blevins
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Benjamin N Coe
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Michael R Detty
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| | - Zachariah A McIver
- Department of Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
336
|
Coulon PG, Roy S, Prakash S, Srivastava R, Dhanushkodi N, Salazar S, Amezquita C, Nguyen L, Vahed H, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, BenMohamed L. Upregulation of Multiple CD8 + T Cell Exhaustion Pathways Is Associated with Recurrent Ocular Herpes Simplex Virus Type 1 Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:454-468. [PMID: 32540992 DOI: 10.4049/jimmunol.2000131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
A large proportion of the world's population harbors latent HSV type 1 (HSV-1). Cross-talk between antiviral CD8+ T cells and HSV-1 appear to control latency/reactivation cycles. We found that compared with healthy asymptomatic individuals, in symptomatic (SYMP) patients, the CD8+ T cells with the same HLA-A*0201-restricted HSV-1 epitope specificities expressed multiple genes and proteins associated to major T cell exhaustion pathways and were dysfunctional. Blockade of immune checkpoints with anti-LAG-3 and anti-PD-1 antagonist mAbs synergistically restored the frequency and function of antiviral CD8+ T cells, both 1) ex vivo, in SYMP individuals and SYMP HLA-A*0201 transgenic mice; and 2) in vivo in HSV-1-infected SYMP HLA-A*0201 transgenic mice. This was associated with a significant reduction in virus reactivation and recurrent ocular herpetic disease. These findings confirm antiviral CD8+ T cell exhaustion during SYMP herpes infection and pave the way to targeting immune checkpoints to combat recurrent ocular herpes.
Collapse
Affiliation(s)
- Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Stephanie Salazar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Cassandra Amezquita
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lan Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Angela M Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Wasay R Warsi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Edgar A Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Uyen T Mai
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697; and.,Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
337
|
Lim Y, Kim S, Kim S, Kim DI, Kang KW, Hong SH, Lee SM, Koh HR, Seo YJ. n-3 Polyunsaturated Fatty Acids Impede the TCR Mobility and the TCR-pMHC Interaction of Anti-Viral CD8+ T Cells. Viruses 2020; 12:v12060639. [PMID: 32545480 PMCID: PMC7354506 DOI: 10.3390/v12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Sehoon Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - So-Hee Hong
- Department of Biotechnology, the Catholic University of Korea, Bucheon 14662, Korea;
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (H.R.K.); (Y.-J.S.)
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
- Correspondence: (H.R.K.); (Y.-J.S.)
| |
Collapse
|
338
|
Taguchi K, Onoe T, Yoshida T, Yamashita Y, Tanaka Y, Ohdan H. Tumor Endothelial Cell–Mediated Antigen-Specific T-cell Suppression via the PD-1/PD-L1 Pathway. Mol Cancer Res 2020; 18:1427-1440. [DOI: 10.1158/1541-7786.mcr-19-0897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
|
339
|
Wu J, Weisshaar N, Hotz-Wagenblatt A, Madi A, Ma S, Mieg A, Hering M, Mohr K, Schlimbach T, Borgers H, Cui G. Skeletal muscle antagonizes antiviral CD8 + T cell exhaustion. SCIENCE ADVANCES 2020; 6:eaba3458. [PMID: 32582853 PMCID: PMC7292629 DOI: 10.1126/sciadv.aba3458] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 05/05/2023]
Abstract
CD8+ T cells become functionally impaired or "exhausted" in chronic infections, accompanied by unwanted body weight reduction and muscle mass loss. Whether muscle regulates T cell exhaustion remains incompletely understood. We report that mouse skeletal muscle increased interleukin (IL)-15 production during LCMV clone 13 chronic infection. Muscle-specific ablation of Il15 enhanced the CD8+ T cell exhaustion phenotype. Muscle-derived IL-15 was required to maintain a population of CD8+CD103+ muscle-infiltrating lymphocytes (MILs). MILs resided in a less inflamed microenvironment, expressed more T cell factor 1 (Tcf1), and had higher proliferative potential than splenic T cells. MILs differentiated into functional effector T cells after reentering lymphoid tissues. Increasing muscle mass via muscle-specific inhibition of TGFβ signaling enhanced IL-15 production and antiviral CD8+ T cell responses. We conclude that skeletal muscle antagonizes T cell exhaustion by protecting T cell proliferative potential from inflammation and replenishing the effector T cell progeny pool in lymphoid organs.
Collapse
Affiliation(s)
- Jingxia Wu
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Weisshaar
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alaa Madi
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alessa Mieg
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Marvin Hering
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Helena Borgers
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Corresponding author.
| |
Collapse
|
340
|
Yermanos A, Sandu I, Pedrioli A, Borsa M, Wagen F, Oetiker N, Welten SPM, Pallmer K, Reddy ST, Oxenius A. Profiling Virus-Specific Tcf1+ T Cell Repertoires During Acute and Chronic Viral Infection. Front Immunol 2020; 11:986. [PMID: 32547546 PMCID: PMC7272574 DOI: 10.3389/fimmu.2020.00986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
CD8 T cells play a crucial role in providing protection from viral infections. It has recently been established that a subset of CD8 T cells expressing Tcf1 are responsible for sustaining exhausted T cells during chronic lymphocytic choriomeningitis virus (LCMV) infection. Many of these studies, however, have been performed using T cell receptor (TCR) transgenic mice, in which CD8 T cells express a monoclonal TCR specific for the LCMV glycoprotein. To investigate whether the Tcf1+ and Tcf1- repertoires are naturally composed of similar or different clones in wild-type mice exposed to acute or chronic LCMV infection, we performed TCR repertoire sequencing of virus-specific CD8 T cells, including Tcf1+ and Tcf1- populations. Our analysis revealed that the Tcf1+ TCR repertoire is maintained at an equal or higher degree of clonal diversity despite harboring fewer cells. Additionally, within the same animal, there was extensive clonal overlap between the Tcf1+ and Tcf1- repertoires in both chronic and acute LCMV infection. We could further detect these virus-specific clones in longitudinal blood samples earlier in the infection. With respect to common repertoire parameters (clonal overlap, germline gene usage, and clonal expansion), we found minor differences between the virus-specific TCR repertoire of acute and chronic LCMV infection 40 days post infection. Overall, our results indicate that the Tcf1+ population emerging during chronic LCMV infection is not clonally distinct from the Tcf1- population, supporting the notion that the Tcf1+ pool is indeed a fuel for the more exhausted Tcf1- population within the heterogenous repertoire of LCMV-specific CD8 T cells.
Collapse
Affiliation(s)
- Alexander Yermanos
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | - Mariana Borsa
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | - Sai T. Reddy
- Department of Biosystems and Engineering, ETH Zurich, Basel, Switzerland
| | | |
Collapse
|
341
|
Norton TD, Tada T, Leibowitz R, van der Heide V, Homann D, Landau NR. Lentiviral-Vector-Based Dendritic Cell Vaccine Synergizes with Checkpoint Blockade to Clear Chronic Viral Infection. Mol Ther 2020; 28:1795-1805. [PMID: 32497512 DOI: 10.1016/j.ymthe.2020.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic cell vaccines are a promising strategy for the treatment of cancer and infectious diseases but have met with mixed success. We report on a lentiviral vector-based dendritic cell vaccine strategy that generates a cluster of differentiation 8 (CD8) T cell response that is much stronger than that achieved by standard peptide-pulsing approaches. The strategy was tested in the mouse lymphocytic choriomeningitis virus (LCMV) model. Bone marrow-derived dendritic cells from SAMHD1 knockout mice were transduced with a lentiviral vector expressing the GP33 major-histocompatibility-complex (MHC)-class-I-restricted peptide epitope and CD40 ligand (CD40L) and injected into wild-type mice. The mice were highly protected against acute and chronic variant CL-13 LCMVs, resulting in a 100-fold greater decrease than that achieved with peptide epitope-pulsed dendritic cells. Inclusion of an MHC-class-II-restricted epitope in the lentiviral vector further increased the CD8 T cell response and resulted in antigen-specific CD8 T cells that exhibited a phenotype associated with functional cytotoxic T cells. The vaccination synergized with checkpoint blockade to reduce the viral load of mice chronically infected with CL-13 to an undetectable level. The strategy improves upon current dendritic cell vaccine strategies; is applicable to the treatment of disease, including AIDS and cancer; and supports the utility of Vpx-containing vectors.
Collapse
Affiliation(s)
- Thomas D Norton
- Department of Medicine, Division of Infectious Diseases, New York University Langone Medical Center, New York, NY 10016, USA; Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Takuya Tada
- Department of Medicine, Division of Infectious Diseases, New York University Langone Medical Center, New York, NY 10016, USA
| | - Rebecca Leibowitz
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Verena van der Heide
- Diabetes, Obesity and Metabolism Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute & Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathaniel R Landau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
342
|
Imai N, Tawara I, Yamane M, Muraoka D, Shiku H, Ikeda H. CD4 + T cells support polyfunctionality of cytotoxic CD8 + T cells with memory potential in immunological control of tumor. Cancer Sci 2020; 111:1958-1968. [PMID: 32304127 PMCID: PMC7293103 DOI: 10.1111/cas.14420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Polyfunctionality/multifunctionality of effector T cells at the single cell level has been shown as an important parameter to predict the quality of T cell response and immunological control of infectious disease and malignancy. However, the fate of polyfunctional CD8+ CTLs and the factors that control the polyfunctionality of T cells remain largely unknown. Here we show that the acquisition of polyfunctionality on the initial stimulation is a sensitive immune correlate of CTL survival and memory formation. CD8+ T cells with high polyfunctionality, assessed with γ‐interferon and tumor necrosis factor‐α production and surface mobilization of the degranulation marker CD107a, showed enhanced Bcl‐2 expression, low apoptosis, and increased CD127highKLRG1low memory precursor phenotype. Consistent with these observations, CD8+ T cells were found to acquire high frequency of cells with polyfunctionality when stimulated in conditions known to enhance memory formation, such as the presence of CD4+ T cells, interleukin (IL)‐2, or IL‐21. Utilizing T‐cell receptor (TCR) transgenic mouse‐derived CD8+ T cells that express a TCR specific for a tumor‐derived neoantigen, we showed that polyfunctional tumor‐specific CTLs generated in the presence of CD4+ T cells showed long persistence in vivo and induced enhanced tumor regression when adoptively transferred into mice with progressing tumor. Acquisition of polyfunctionality thus impacts CTL survival and memory formation associated with immunological control of tumor.
Collapse
Affiliation(s)
- Naoko Imai
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makiko Yamane
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Daisuke Muraoka
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
343
|
Leth S, Jensen-Fangel S. Programmed cell death protein 1 (PD-1) in infection. APMIS 2020; 128:177-187. [PMID: 32304591 DOI: 10.1111/apm.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Exhausted and dysfunctional T cells triggered by infection and cancer render the immune system unable to eliminate these pathogens. Pharmacologic blockade of the surface receptors that inhibit T-cell function has shown remarkable success in patients with various malignancies. In this Review, we discuss the emerging evidence of inhibiting checkpoint pathways as a potential role in controlling or clearing infectious diseases. Though interesting tendencies, much work is still needed in order to develop safe strategies that can be translated into clinically relevant outcomes in patients with infections.
Collapse
Affiliation(s)
- Steffen Leth
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Jensen-Fangel
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
344
|
Fenwick C, Joo V, Jacquier P, Noto A, Banga R, Perreau M, Pantaleo G. T-cell exhaustion in HIV infection. Immunol Rev 2020; 292:149-163. [PMID: 31883174 PMCID: PMC7003858 DOI: 10.1111/imr.12823] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
The T‐cell response is central in the adaptive immune‐mediated elimination of pathogen‐infected and/or cancer cells. This activated T‐cell response can inflict an overwhelming degree of damage to the targeted cells, which in most instances leads to the control and elimination of foreign invaders. However, in conditions of chronic infection, persistent exposure of T cells to high levels of antigen results in a severe T‐cell dysfunctional state called exhaustion. T‐cell exhaustion leads to a suboptimal immune‐mediated control of multiple viral infections including the human immunodeficiency virus (HIV). In this review, we will discuss the role of T‐cell exhaustion in HIV disease progression, the long‐term defect of T‐cell function even in aviremic patients on antiretroviral therapy (ART), the role of exhaustion‐specific markers in maintaining a reservoir of latently infected cells, and exploiting these markers in HIV cure strategies.
Collapse
Affiliation(s)
- Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Patricia Jacquier
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Riddhima Banga
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
345
|
Battista C, Kenz Z, Shoda L. Mechanistic mathematical representation of CD8+ T cell mediated drug-induced liver injury (DILI) Part 1: initial development using experimental antigen, ovalbumin (OVA). THE JOURNAL OF IMMUNOLOGY 2020. [DOI: 10.4049/jimmunol.204.supp.72.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Idiosyncratic DILI (iDILI), rare liver injury not dependent on drug dose, is poorly understood and costly to patients and drug developers. Some iDILI events appear immune-mediated. This work builds on the established hepatocyte life cycle and intrinsic injury models in DILIsym, utilizing quantitative systems toxicology methods to incorporate direct activation of liver CD8+ T cells by OVA-expressing hepatocytes.
Simulated hepatocyte OVA expression leads to activation of naïve OVA-specific CD8+ T cells. Activated T cells differentiate to effector, memory, or exhausted T cells. T cell cytotoxicity induces apoptosis in antigen-presenting hepatocytes, with resultant ALT release. By design, the model reproduces a differential CD8+ T cell response to low vs. high levels of hepatocyte OVA expression consistent with data 1,2. Mechanistically, the differential response is driven by effector T cell mediated clearance of low antigen vs. persistent high antigen and differentiation of exhausted T cells3. Reducing T cell functional avidity by 70x, as described for OVA altered peptide ligands4, reduced IFN-γ production and T cell cytotoxicity consistent with data5.
By reproducing these results, DILIsym establishes proof-of-concept in the quantitative relationships among antigen-expressing hepatocytes, antigen-specific T cell number, cytotoxicity, and ALT release. These quantitative relationships set the stage for translation to drug-mediated CD8+ T cell cytotoxicity6.
Collapse
Affiliation(s)
| | - Zackary Kenz
- 1DILIsym Services, Inc., a Simulations Plus Company
| | - Lisl Shoda
- 1DILIsym Services, Inc., a Simulations Plus Company
| |
Collapse
|
346
|
A Mathematical Framework for Predicting Lifestyles of Viral Pathogens. Bull Math Biol 2020; 82:54. [PMID: 32350621 PMCID: PMC7189636 DOI: 10.1007/s11538-020-00730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Abstract
Despite being similar in structure, functioning, and size, viral pathogens enjoy very different, usually well-defined ways of life. They occupy their hosts for a few days (influenza), for a few weeks (measles), or even lifelong (HCV), which manifests in acute or chronic infections. The various transmission routes (airborne, via direct physical contact, etc.), degrees of infectiousness (referring to the viral load required for transmission), antigenic variation/immune escape and virulence define further aspects of pathogenic lifestyles. To survive, pathogens must infect new hosts; the success determines their fitness. Infection happens with a certain likelihood during contact of hosts, where contact can also be mediated by vectors. Besides structural aspects of the host-contact network, three parameters appear to be key: the contact rate and the infectiousness during contact, which encode the mode of transmission, and third the immunity of susceptible hosts. On these grounds, what can be said about the reproductive success of viral pathogens? This is the biological question addressed in this paper. The answer extends earlier results of the author and makes explicit connection to another basic work on the evolution of pathogens. A mathematical framework is presented that models intra- and inter-host dynamics in a minimalistic but unified fashion covering a broad spectrum of viral pathogens, including those that cause flu-like infections, childhood diseases, and sexually transmitted infections. These pathogens turn out as local maxima of numerically simulated fitness landscapes. The models involve differential and integral equations, agent-based simulation, networks, and probability.
Collapse
|
347
|
Condotta SA, Downey J, Pardy RD, Valbon SF, Tarrab E, Lamarre A, Divangahi M, Richer MJ. Cyclophilin D Regulates Antiviral CD8 + T Cell Survival in a Cell-Extrinsic Manner. Immunohorizons 2020; 4:217-230. [PMID: 32332052 DOI: 10.4049/immunohorizons.2000016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
CD8+ T cell-mediated immunity is critical for host defense against viruses and requires mitochondria-mediated type I IFN (IFN-I) signaling for optimal protection. Cyclophilin D (CypD) is a mitochondrial matrix protein that modulates the mitochondrial permeability transition pore, but its role in IFN-I signaling and CD8+ T cell responses to viral infection has not been previously explored. In this study, we demonstrate that CypD plays a critical extrinsic role in the survival of Ag-specific CD8+ T cell following acute viral infection with lymphocytic choriomeningitis virus in mice. CypD deficiency resulted in reduced IFN-I and increased CD8+ T cell death, resulting in a reduced antiviral CD8+ T cell response. In addition, CypD deficiency was associated with an increase in pathogen burden at an early time-point following infection. Furthermore, our data demonstrate that transfer of wild-type macrophages (expressing CypD) to CypD-deficient mice can partially restore CD8+ T cell responses. These results establish that CypD plays an extrinsic role in regulating optimal effector CD8+ T cell responses to viral infection. Furthermore, this suggests that, under certain circumstances, inhibition of CypD function may have a detrimental impact on the host's ability to respond to viral infection.
Collapse
Affiliation(s)
- Stephanie A Condotta
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jeffrey Downey
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Ryan D Pardy
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stefanie F Valbon
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Esther Tarrab
- Laboratoire d'Immunovirologie, Institut National de la Recherche Scientifique, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; and
| | - Alain Lamarre
- Laboratoire d'Immunovirologie, Institut National de la Recherche Scientifique, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; and
| | - Maziar Divangahi
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- Department of Pathology, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Martin J Richer
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3G 1Y6, Canada;
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
348
|
Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol 2020; 42:101302. [PMID: 31604535 DOI: 10.1016/j.smim.2019.101302] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
T cell inhibitory co-receptors play a crucial role in maintaining the balance between physiologic immune responses and maladaptive ones. T cell immunoglobulin and mucin domain-containing-3 (Tim-3) is a unique inhibitory co-receptor in that its expression is chiefly restricted to interferon (IFN)γ-producing CD4+ and CD8+ T cells. Early reports firmly established its importance in maintaining peripheral tolerance in transplantation and autoimmunity. However, it has become increasingly clear that Tim-3 expression on T cells, together with other check-point molecules, in chronic infections and cancers can hinder productive immune responses. In this review, we outline what is currently known about the regulation of Tim-3 expression, its ligands and signaling. We discuss both its salutary and deleterious function in immune disorders, as well as the T cell-extrinsic and -intrinsic factors that regulate its function.
Collapse
|
349
|
Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM, Kedl RM, Diamond MS, Morrison TE. Chikungunya Virus Evades Antiviral CD8 + T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues. J Virol 2020; 94:e02036-19. [PMID: 32102875 PMCID: PMC7163133 DOI: 10.1128/jvi.02036-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes explosive epidemics of a febrile illness characterized by debilitating arthralgia and arthritis that can endure for months to years following infection. In mouse models, CHIKV persists in joint tissues for weeks to months and is associated with chronic synovitis. Using a recombinant CHIKV strain encoding a CD8+ T cell receptor epitope from ovalbumin, as well as a viral peptide-specific major histocompatibility complex class I tetramer, we interrogated CD8+ T cell responses during CHIKV infection. Epitope-specific CD8+ T cells, which were reduced in Batf3-/- and Wdfy4-/- mice with known defects in antigen cross-presentation, accumulated in joint tissue and the spleen. Antigen-specific ex vivo restimulation assays and in vivo killing assays demonstrated that CD8+ T cells produce cytokine and have cytolytic activity. Despite the induction of a virus-specific CD8+ T cell response, the CHIKV burden in joint-associated tissues and the spleen were equivalent in wild-type (WT) and CD8α-/- mice during both the acute and the chronic phases of infection. In comparison, CD8+ T cells were essential for the control of acute and chronic lymphocytic choriomeningitis virus infection in the joint and spleen. Moreover, adoptive transfer of virus-specific effector CD8+ T cells or immunization with a vaccine that induces virus-specific effector CD8+ T cells prior to infection enhanced the clearance of CHIKV infection in the spleen but had a minimal impact on CHIKV infection in the joint. Collectively, these data suggest that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading CD8+ T cell immunity.IMPORTANCE CHIKV is a reemerging mosquito-transmitted virus that in the last decade has spread into Europe, Asia, the Pacific Region, and the Americas. Joint pain, swelling, and stiffness can endure for months to years after CHIKV infection, and epidemics have a severe economic impact. Elucidating the mechanisms by which CHIKV subverts antiviral immunity to establish and maintain a persistent infection may lead to the development of new therapeutic strategies against chronic CHIKV disease. In this study, we found that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading antiviral CD8+ T cell immunity. Thus, immunomodulatory therapies that improve CD8+ T cell immune surveillance and clearance of CHIKV infection could be a strategy for mitigating chronic CHIKV disease.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
350
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|