301
|
Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 2008; 7:205-14. [PMID: 18316026 PMCID: PMC2292811 DOI: 10.1016/j.cmet.2007.11.016] [Citation(s) in RCA: 257] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/10/2007] [Accepted: 11/30/2007] [Indexed: 12/21/2022]
Abstract
Hemochromatosis is caused by mutations in HFE, a protein that competes with transferrin (TF) for binding to transferrin receptor 1 (TFR1). We developed mutant mouse strains to gain insight into the role of the Hfe/Tfr1 complex in regulating iron homeostasis. We introduced mutations into a ubiquitously expressed Tfr1 transgene or the endogenous Tfr1 locus to promote or prevent the Hfe/Tfr1 interaction. Under conditions favoring a constitutive Hfe/Tfr1 interaction, mice developed iron overload attributable to inappropriately low expression of the hormone hepcidin. In contrast, mice carrying a mutation that interferes with the Hfe/Tfr1 interaction developed iron deficiency associated with inappropriately high hepcidin expression. High-level expression of a liver-specific Hfe transgene in Hfe-/- mice was also associated with increased hepcidin production and iron deficiency. Together, these models suggest that Hfe induces hepcidin expression when it is not in complex with Tfr1.
Collapse
Affiliation(s)
- Paul J Schmidt
- Division of Hematology/Oncology, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
302
|
Bauer M, Huse K, Settmacher U, Claus RA. The heme oxygenase – carbon monoxide system: regulation and role in stress response and organ failure. Intensive Care Med 2008; 34:640-8. [DOI: 10.1007/s00134-008-1010-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
|
303
|
Song D, Lee FS. A role for IOP1 in mammalian cytosolic iron-sulfur protein biogenesis. J Biol Chem 2008; 283:9231-8. [PMID: 18270200 DOI: 10.1074/jbc.m708077200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biogenesis of cytosolic iron-sulfur (Fe-S) proteins in mammalian cells is poorly understood. In Saccharomyces cerevisiae, there is a pathway dedicated to cytosolic Fe-S protein maturation that involves several essential proteins. One of these is Nar1, which intriguingly is homologous to iron-only hydrogenases, ancient enzymes that catalyze the formation of hydrogen gas in anaerobic bacteria. There are two orthologues of Nar1 in mammalian cells, iron-only hydrogenase-like protein 1 (IOP1) and IOP2 (also known as nuclear prelamin A recognition factor). We examined IOP1 for a potential role in mammalian cytosolic Fe-S protein biogenesis. We found that knockdown of IOP1 in both HeLa and Hep3B cells decreases the activity of cytosolic aconitase, an Fe-S protein, but not that of mitochondrial aconitase. Knockdown of IOP2, in contrast, had no effect on either. The decrease in aconitase activity upon IOP1 knockdown is rescued by expression of a small interference RNA-resistant version of IOP1. Upon loss of its Fe-S cluster, cytosolic aconitase is known to be converted to iron regulatory protein 1, and consistent with this, we found that IOP1 knockdown increases transferrin receptor 1 mRNA levels and decreases ferritin heavy chain protein levels. IOP1 knockdown also leads to a decrease in activity of xanthine oxidase, a distinct cytosolic Fe-S protein. Taken together, these results provide evidence that IOP1 is involved in mammalian cytosolic Fe-S protein maturation.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
304
|
Gu JM, Lim SO, Oh SJ, Yoon SM, Seong JK, Jung G. HBx modulates iron regulatory protein 1-mediated iron metabolism via reactive oxygen species. Virus Res 2008; 133:167-77. [PMID: 18262302 DOI: 10.1016/j.virusres.2007.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 12/21/2007] [Accepted: 12/24/2007] [Indexed: 10/22/2022]
Abstract
Hepatitis B virus X protein (HBx) is involved in viral metabolism and progression of liver disease. Iron metabolism plays a significant role in liver disease. In this report, to elucidate the relationship between iron metabolism and HBx, we established the Huh7 cell lines in which HBx was stably expressed (Huh7-HBx). In Huh7-HBx, we observed that transferrin receptor 1 (TfR1) expression decreased and ferritin heavy chain (FtH) expression increased as well as reactive oxygen species (ROS) level increased. We also found that these modulations were caused by the downregulation of iron regulatory protein 1 (IRP1). Furthermore, the levels of total iron and labile iron pool (LIP) were altered in Huh7-HBx. In addition, antioxidant N-acetylcystein (NaC) increased IRP1 expression by depleting HBx-induced ROS. We also confirmed these alterations of TfR1 and FtH in the primary hepatocytes of HBx transgenic mice and in HepG2.2.15 cells that constitutively replicate the intact HBV genome. In conclusion, these results suggest that HBx modulates iron metabolism via ROS leading to pathological status in liver diseases.
Collapse
Affiliation(s)
- Jin-Mo Gu
- Department of Biological Sciences, Seoul National University, 56-1 Shillim-dong, Kwanak-gu, Seoul 151-747, Republic of Korea
| | | | | | | | | | | |
Collapse
|
305
|
Brand A, Schonfeld E, Isharel I, Yavin E. Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem 2008; 105:1325-35. [PMID: 18208540 DOI: 10.1111/j.1471-4159.2008.05234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron, a transition metal and essential nutrient, is a typical pro-oxidant forming free radicals, lipid peroxides and causing cell damage when added at high (> or = 50 microM) concentrations to oligodendroglia-like OLN-93 cells that have been enriched for 3 days with 10 microM docosahexaenoic acid (DHA, 22 : 6 n-3). At low (5 microM) iron concentrations lipid peroxides were still formed, but cells turned resistant to 250 microM H2O2, a secondary genotoxic stress. This has been attributed most likely to a time-dependent (16 h preconditioning) increase of cellular antioxidant enzyme activities i.e., glutathione peroxidase (38%) and glutathione reductase (26%). DHA but not arachidonic acid (20 : 4 n-6) supplements induced 3-fold increase in gene expression of divalent metal transporter-1, a transporter protein presumably responsible for the increase in intracellular iron. Elevated iron levels triggered a transient scrambling of membrane lipid asymmetry as evident by an accelerated ethanolamine phosphoglyceride translocation to the outer cell surface. Ethanolamine phosphoglyceride reorientation is proposed to activate certain signaling cascades leading to changes in nuclear transcription, a reaction that could represent a mechanism of preconditioning. These findings may have important implications for understanding the interactive role of iron and DHA in nutritional deficiencies, losses of polyunsaturated fatty acids in the aging brain or excessive iron accumulation in degenerative disorders.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
306
|
Rincker MJ, Clarke SL, Eisenstein RS, Link JE, Hill GM. Effects of iron supplementation on binding activity of iron regulatory proteins and the subsequent effect on growth performance and indices of hematological and mineral status of young pigs. J Anim Sci 2008; 83:2137-45. [PMID: 16100069 DOI: 10.2527/2005.8392137x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of supplemental Fe on the binding activity of iron regulatory proteins (IRP) and the subsequent effect on growth performance and indices of hematological and mineral status of young pigs. In Exp. 1, male pigs (n = 10; 1.8 kg; age = 14 +/- 1 h) were allotted by BW to two treatments (five pigs per treatment). Treatments administered by i.m. injection were as follows: 1) 1 mL of sterile saline solution (Sal); and 2) 1 mL of 200 mg Fe as Fe-dextran (Fe). Pigs were bled (d 0 and 13) to determine hemoglobin (Hb), hematocrit (Hct), transferrin (Tf), and plasma Fe (PFe), and then killed (d 13) to determine spontaneous and 2-mercaptoethanol (2-ME)-inducible IRP RNA binding activity in liver and liver and whole-body mineral concentrations. Contemporary pigs (n = 5; 2.2 kg; age = 14 +/- 2 h) were killed at d 0 to establish baseline (BL1) measurements. In Exp. 2, pigs (six pigs per treatment; 6.5 kg; age = 19 +/- 3 d) were fed a basal diet (Phase 1 = d 0 to 7; Phase 2 = d 7 to 21; Phase 3 = d 21 to 35) supplemented with 0 or 150 mg/kg of Fe as ferrous sulfate and killed at d 35 (18.3 kg; age = 54 +/- 3 d). In addition, pigs (n = 5; 5.9 kg; age = 19 +/- 3 d) were killed at the start of Exp. 2 to establish baseline (BL2) measurements, and liver samples were collected and analyzed for IRP RNA binding activity. In Exp. 1, no difference (P = 0.482) was observed in ADG. On d 13, Fe-treated pigs had greater (P = 0.001) Hb, Hct, and PFe and less (P = 0.002) Tf than Sal-treated pigs. Whole-body Fe concentration was greater (P = 0.002) in Fe- vs. Sal-treated pigs. Treated pigs (Fe or Sal) had greater (P = 0.006) whole-body Cu and less (P = 0.002) whole-body Ca, Mg, Mn, P, and Zn concentrations than BL1. Liver Fe concentration was greater (P = 0.001) in Fe- vs. Sal-treated pigs, but liver Fe concentration of Sal-treated pigs was less (P = 0.001) than that of BL1 pigs. Sal-treated pigs had greater (P = 0.004) spontaneous IRP binding activity than Fe-treated pigs. In Exp. 2, spontaneous and 2-ME inducible IRP binding activities were greater (P = 0.013 and 0.005, respectively) in pigs fed diets containing 0 vs. 150 mg of added Fe/kg of diet. Moreover, pigs fed either treatment for 35 d had greater (P = 0.001) 2-ME inducible IRP binding activity than BL2 pigs. Results indicate that IRP binding activity is influenced by Fe supplementation. Subsequently, other indicators of Fe status are affected via the role of IRP in posttranscriptional expression of Fe storage and transport proteins.
Collapse
Affiliation(s)
- M J Rincker
- Department of Animal Science, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | |
Collapse
|
307
|
Schroeder SE, Reddy MB, Schalinske KL. Retinoic acid modulates hepatic iron homeostasis in rats by attenuating the RNA-binding activity of iron regulatory proteins. J Nutr 2007; 137:2686-90. [PMID: 18029484 DOI: 10.1093/jn/137.12.2686] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vitamin A deficiency has been widely associated with perturbations of iron homeostasis, a consequence that can be reversed by retinoid supplementation. Despite the numerous studies that demonstrate an interaction between these 2 nutrients, the mechanistic basis for this relation has not been well characterized. Because iron regulatory proteins (IRP) have been established as central regulators of iron homeostasis, we investigated the potential role of IRP in the regulation of iron homeostasis under conditions of vitamin A deficiency and supplementation with all-trans-retinoic acid (atRA). Rats were fed a control diet or a diet deficient in either vitamin A or iron or both micronutrients. Four parallel groups of rats were supplemented with atRA daily (30 micromol/kg body weight) during the final week of this study. As expected, iron-deficient (-Fe) rats exhibited a decrease in hepatic nonheme iron levels and a subsequent increase in IRP RNA-binding activity, resulting in diminished ferritin abundance. Interestingly, atRA supplementation inhibited the increase in IRP RNA-binding activity in -Fe rats to a level that was not significantly (P = 0.139) different from control values, and it partially restored ferritin abundance. This inhibition of IRP RNA-binding activity by atRA supplementation was also associated with a 40% reduction in transferrin receptor abundance. Taken together, these results indicate that IRP represent a mechanistic link between vitamin A and the regulation of iron homeostasis, a key finding toward further understanding this important nutrient-nutrient interaction.
Collapse
Affiliation(s)
- Stacy E Schroeder
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
308
|
Otogawa K, Ogawa T, Shiga R, Nakatani K, Ikeda K, Nakajima Y, Kawada N. Attenuation of acute and chronic liver injury in rats by iron-deficient diet. Am J Physiol Regul Integr Comp Physiol 2007; 294:R311-20. [PMID: 18032466 DOI: 10.1152/ajpregu.00735.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress due to iron deposition in hepatocytes or Kupffer cells contributes to the initiation and perpetuation of liver injury. The aim of this study was to clarify the association between dietary iron and liver injuries in rats. Liver injury was initiated by the administration of thioacetamide or ligation of the common bile duct in rats fed a control diet (CD) or iron-deficient diet (ID). In the acute liver injury model induced by thioacetamide, serum levels of aspartate aminotransferase and alanine aminotransferase, as well as hepatic levels of lipid peroxide and 4-hydroxynonenal, were significantly decreased in the ID group. The expression of 8-hydroxydeoxyguanosine and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling positivity showed a similar tendency. The expression of interleukin-1beta and monocyte chemotactic protein-1 mRNA was suppressed in the ID group. In liver fibrosis induced by an 8-wk thioacetamide administration, ID suppressed collagen deposition and smooth muscle alpha-actin expression. The expressions of collagen 1A2, transforming growth factor beta, and platelet-derived growth factor receptor beta mRNA were all significantly decreased in the ID group. Liver fibrosis was additionally suppressed in the bile-duct ligation model by ID. In culture experiments, deferoxamine attenuated the activation process of rat hepatic stellate cells, a dominant producer of collagen in the liver. In conclusion, reduced dietary iron is considered to be beneficial in improving acute and chronic liver injuries by reducing oxidative stress. The results obtained in this study support the clinical usefulness of an iron-reduced diet for the improvement of liver disorders induced by chronic hepatitis C and alcoholic/nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kohji Otogawa
- Department of Hepatology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
309
|
Carlson ES, Stead JDH, Neal CR, Petryk A, Georgieff MK. Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus 2007; 17:679-91. [PMID: 17546681 DOI: 10.1002/hipo.20307] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human and rat hippocampus is highly susceptible to iron deficiency (ID) during the late fetal, early neonatal time period which is a peak time of regulated brain iron uptake and utilization. ID during this period alters cognitive development and is characterized by distinctive, long-term changes in hippocampal cellular growth and function. The fundamental processes underlying these changes are not entirely understood. In this study, ID-induced changes in expression of 25 genes implicated in iron metabolism, including cell growth and energy metabolism, dendrite morphogenesis, and synaptic connectivity were assessed from postnatal day (P) 7 to P65 in hippocampus. All 25 genes showed altered expression during the period of ID (P7, 15, and 30); 10 had changes on P65 after iron repletion. ID caused long-term diminished protein levels of four factors critical for hippocampal neuron differentiation and plasticity, including CamKII alpha, Fkbp1a (Fkbp12), Dlgh4 (PSD-95), and Vamp1 (Synaptobrevin-1). ID altered gene expression in the mammalian target of rapamycin (mTOR) pathway and in a gene network implicated in Alzheimer disease etiology. ID during late fetal and early postnatal life alters the levels and timing of expression of critical genes involved in hippocampal development and function. The study provides targets for future studies in elucidating molecular mechanisms underpinning iron's role in cognitive development and function.
Collapse
Affiliation(s)
- Erik S Carlson
- Medical Scientist Training Program, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
310
|
Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MBH. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 2007; 15:873-86. [PMID: 16859391 DOI: 10.1517/13543784.15.8.873] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A new paradigm is emerging in the targeting of multiple disease aetiologies that collectively lead to neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, post-stroke neurodegeneration and others. This paradigm challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' when it comes to drug therapy. Accumulating evidence in the literature suggests that many neurodegenerative diseases have multiple mechanisms in their aetiologies, thus suggesting that a drug with at least two mechanisms of action targeted at multiple aetiologies of the same disease may offer more therapeutic benefit in certain disorders compared with a drug that only targets one disease aetiology. This review offers a synopsis of therapeutic strategies and novel investigative drugs developed in the authors' own and other laboratories that modulate multiple disease targets associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Texas Tech University Health Sciences Center, Department of Pharmaceutical Sciences, School of Pharmacy, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
311
|
Singh R, Wangemann P. Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am J Physiol Renal Physiol 2007; 294:F139-48. [PMID: 17959752 DOI: 10.1152/ajprenal.00433.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pendred syndrome is due to loss-of-function mutations of Slc26a4, which codes for the HCO(3)(-) transporter pendrin. Loss of pendrin causes deafness via a loss of the K(+) channel Kcnj10 in stria vascularis and consequent loss of the endocochlear potential. Pendrin and Kcnj10 are expressed in different cell types. Here, we report that free radical stress provides a link between the loss of Kcnj10 and the loss of pendrin. Studies were performed using native and cultured stria vascularis from Slc26a4(+/-) and Slc26a4(-/-) mice as well as Chinese hamster ovary (CHO)-K1 cells. Kcnj10, oxidized proteins, and proteins involved in iron metabolism were quantified by Western blotting. Nitrated proteins were quantified by ELISA. Total iron was measured by ferrozine spectrophotometry and gene expression was quantified by qRT-PCR. At postnatal day 10 (P10), stria vascularis from Slc26a4(+/-) and Slc26a4(-/-) mice expressed similar amounts of Kcnj10. Slc26a4(-/-) mice lost Kcnj10 expression during the next 5 days of development. In contrast, stria vascularis, obtained from P10 Slc26a4(-/-) mice and kept in culture for 5 days, maintained Kcnj10 expression. Stria vascularis from Slc26a4(-/-) mice was found to suffer from free radical stress evident by elevated amounts of oxidized and nitrated proteins and other changes in protein and gene expression. Free radical stress induced by 3-morpholinosydnonimine-N-ethylcarbamide was found to be sufficient to reduce Kcnj10 expression in CHO-K1 cells. These data demonstrate that free radical stress provides a link between loss of pendrin and loss of Kcnj10 in Slc26a4(-/-) mice and possibly in human patients suffering from Pendred syndrome.
Collapse
Affiliation(s)
- Ruchira Singh
- Department of Anatomy and Physiology, Kansas State University, 205 Coles Hall, Manhattan, KS 66506, USA
| | | |
Collapse
|
312
|
Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol 2007; 83:149-73. [PMID: 17870230 DOI: 10.1016/j.pneurobio.2007.07.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/10/2007] [Accepted: 07/26/2007] [Indexed: 01/09/2023]
Abstract
New findings obtained during the past years, especially the discovery of mutations in the genes associated with brain iron metabolism, have provided key insights into the homeostatic mechanisms of brain iron metabolism and the pathological mechanisms responsible for neurodegenerative diseases. The accumulated evidence demonstrates that misregulation in brain iron metabolism is one of the initial causes for neuronal death in some neurodegenerative disorders. The errors in brain iron metabolism found in these disorders have a multifactorial pathogenesis, including genetic and nongenetic factors. The disturbances of iron metabolism might occur at multiple levels, including iron uptake and release, storage, intracellular metabolism and regulation. It is the increased brain iron that triggers a cascade of deleterious events, leading to neuronal death in these diseases. In the article, the recent advances in studies on neurochemistry and neuropathophysiology of brain iron metabolism were reviewed.
Collapse
Affiliation(s)
- Ya Ke
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, NT, Hong Kong
| | | |
Collapse
|
313
|
|
314
|
Linke B, Schmidt W. Nutrients as Regulators of Root Morphology and Architecture. THE RHIZOSPHERE 2007. [DOI: 10.1201/9781420005585.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
315
|
Zeleniuch-Jacquotte A, Zhang Q, Dai J, Shore RE, Arslan AA, Koenig KL, Karkoszka J, Afanasyeva Y, Frenkel K, Toniolo P, Huang X. Reliability of serum assays of iron status in postmenopausal women. Ann Epidemiol 2007; 17:354-8. [PMID: 17027294 PMCID: PMC2965063 DOI: 10.1016/j.annepidem.2006.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 01/16/2023]
Abstract
PURPOSE The aim of the study is to determine the reliability during a 2-year period of several newly developed iron-related assays to assess their potential for use in prospective epidemiologic studies. METHODS We assessed the temporal reliability of several iron-related assays by using three serum samples collected at yearly intervals from 50 postmenopausal participants in a large prospective study. RESULTS We observed high reliability coefficients for ferritin (0.78; 95% confidence interval [CI], 0.67-0.86), soluble transferrin receptor (sTfR; 0.79; 95% CI, 0.69-0.87), sTfR/ferritin ratio (0.74; 95% CI, 0.62-0.83), and hepcidin (0.89; 95% CI, 0.84-0.94). In a subset of 30 women, lower reliability was observed for serum iron (0.50; 95% CI, 0.29-0.70), unsaturated iron-binding capacity (0.55; 95% CI, 0.34-0.73), total iron-binding capacity (0.60; 95% CI, 0.40-0.76), and serum transferrin saturation rate (0.44; 95% CI, 0.22-0.65). The reliability of anti-5-hydroxymethyl-2'-deoxyuridine autoantibody titers, a biomarker of oxidized DNA damage, one of the mechanisms by which iron is thought to impact disease risk, was very high (0.97, 95% CI, 0.5-0.99). CONCLUSIONS Our results show that some newly developed iron-related assays could be useful tools to assess iron-disease associations in prospective cohorts that collect a single blood sample.
Collapse
Affiliation(s)
- Anne Zeleniuch-Jacquotte
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
|
317
|
Abstract
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.
Collapse
Affiliation(s)
- Zhengchang Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA.
| | | |
Collapse
|
318
|
Balla J, Jeney V, Varga Z, Komódi E, Nagy E, Balla G. Iron homeostasis in chronic inflammation. ACTA ACUST UNITED AC 2007; 94:95-106. [PMID: 17444278 DOI: 10.1556/aphysiol.94.2007.1-2.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation induced anemia and resistance to erythropoietin are common features in patients with chronic kidney disease (CKD). Elevated levels of cytokines and enhanced oxidative stress, conditions associated with inflammatory states, are implicated in the development of anemia. Accumulating evidence suggests that activation of cytokine cascade and the associated acute-phase response, as it often occurs in patients with CKD, divert iron from erythropoiesis to storage sites within the reticuloendothelial system leading to functional iron deficiency and subsequently to anemia or resistance to erythropoietin. Other processes have also been shown to be involved in the pathogenesis of anemia provoked by the activated immune system including an inhibition of erythroid progenitor proliferation and differentiation, a suppression of erythropoietin production and a blunted response to erythropoietin. The present review concerns the underlying alterations in iron metabolism induced by chronic inflammation that result in anemia.
Collapse
Affiliation(s)
- J Balla
- Department of Medicine, Division of Nephrology and Hemodialysis Unit, Medical and Health Science Center, University of Debrecen, Nagyerdei krt. 98, H-4012 Debercen, Hungary.
| | | | | | | | | | | |
Collapse
|
319
|
Walden WE, Selezneva AI, Dupuy J, Volbeda A, Fontecilla-Camps JC, Theil EC, Volz K. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 2007; 314:1903-8. [PMID: 17185597 DOI: 10.1126/science.1133116] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Iron regulatory protein 1 (IRP1) binds iron-responsive elements (IREs) in messenger RNAs (mRNAs), to repress translation or degradation, or binds an iron-sulfur cluster, to become a cytosolic aconitase enzyme. The 2.8 angstrom resolution crystal structure of the IRP1:ferritin H IRE complex shows an open protein conformation compared with that of cytosolic aconitase. The extended, L-shaped IRP1 molecule embraces the IRE stem-loop through interactions at two sites separated by approximately 30 angstroms, each involving about a dozen protein:RNA bonds. Extensive conformational changes related to binding the IRE or an iron-sulfur cluster explain the alternate functions of IRP1 as an mRNA regulator or enzyme.
Collapse
Affiliation(s)
- William E Walden
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612-7344, USA
| | | | | | | | | | | | | |
Collapse
|
320
|
Christova T, Templeton DM. Effect of hypoxia on the binding and subcellular distribution of iron regulatory proteins. Mol Cell Biochem 2007; 301:21-32. [PMID: 17200797 DOI: 10.1007/s11010-006-9393-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O(2)) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4-8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression.
Collapse
Affiliation(s)
- Tania Christova
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
321
|
Song N, Jiang H, Wang J, Xie JX. Divalent metal transporter 1 up-regulation is involved in the 6-hydroxydopamine-induced ferrous iron influx. J Neurosci Res 2007; 85:3118-26. [PMID: 17663481 DOI: 10.1002/jnr.21430] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reasons underlying the high iron content found in the substantia nigra (SN) of Parkinson's disease (PD) are largely unknown. We suppose, based on our previous studies, that the newly discovered iron transporter divalent metal transporter 1 (DMT1) might be involved in this SN iron accumulation process. To investigate this, we first observed the cellular expression of DMT1 in rat SN, both with the iron response element (+IRE) and without the IRE (-IRE) forms. The results showed that both forms of DMT1 were expressed on neurons, astrocytes, and microglia but not on oligodendrocytes. We further observed the relationship between the increased iron influx and DMT1 expression in 6-hydroxydopamine (6-OHDA)-treated C6 cells. 6-OHDA (10 micromol/liter) caused a significant increase in ferrous iron influx, with the increased expression of DMT1+IRE, both in protein and in mRNA levels, whereas no change was observed for DMT1-IRE. To clarify further that the increased expression of DMT1 was not due to the increased intracellular iron content, C6 cells were overloaded with ferric ammonium citrate (100 microg/ml). Decreased expression of both forms of DMT1 was observed. Our data suggest that DMT1 is highly expressed in rat SN in a cell-specific manner. Increased DMT1+IRE expression is the mechanism behind ferrous iron influx induced by 6-OHDA treatment in C6 cells. This may give some evidence for the involvement of DMT1 in the iron accumulation in PD.
Collapse
Affiliation(s)
- Ning Song
- Department of Physiology, Medical College of Qingdao University, Qingdao, China
| | | | | | | |
Collapse
|
322
|
Stehling O, Smith PM, Biederbick A, Balk J, Lill R, Mühlenhoff U. Investigation of iron-sulfur protein maturation in eukaryotes. Methods Mol Biol 2007; 372:325-42. [PMID: 18314737 DOI: 10.1007/978-1-59745-365-3_24] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron-sulfur (Fe-S) clusters are cofactors of many proteins that are involved in central biochemical pathways, such as oxidative phosphorylation, photosynthesis, and amino acid biosynthesis. The assembly of these cofactors and the maturation of Fe-S proteins require complex cellular machineries in all kingdoms of life. In eukaryotes, Fe-S protein biogenesis is an essential process, and mitochondria perform a primary role in synthesis. Defects in Fe-S protein maturation in yeast result in respiratory deficiency and auxotrophies for certain amino acids and vitamins that require Fe-S proteins for their biosynthesis. Frequently, heme biosynthesis is also affected. The present compendium describes assays for the analysis of de novo Fe-S cluster and heme formation, cellular iron homeostasis, and the activity of Fe-S cluster- and heme-containing enzymes. These approaches are crucial to elucidate the mechanisms underlying the maturation of Fe-S proteins and may aid in the identification of new members of this evolutionary ancient process.
Collapse
Affiliation(s)
- Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Germany
| | | | | | | | | | | |
Collapse
|
323
|
Wiesinger JA, Buwen JP, Cifelli CJ, Unger EL, Jones BC, Beard JL. Down-regulation of dopamine transporter by iron chelationin vitrois mediated by altered trafficking, not synthesis. J Neurochem 2007; 100:167-79. [PMID: 17227437 DOI: 10.1111/j.1471-4159.2006.04175.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.
Collapse
Affiliation(s)
- Jason A Wiesinger
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
324
|
Irace C, Esposito G, Maffettone C, Rossi A, Festa M, Iuvone T, Santamaria R, Sautebin L, Carnuccio R, Colonna A. Oxalomalate affects the inducible nitric oxide synthase expression and activity. Life Sci 2006; 80:1282-91. [PMID: 17257628 DOI: 10.1016/j.lfs.2006.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 12/07/2006] [Accepted: 12/15/2006] [Indexed: 11/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.
Collapse
Affiliation(s)
- Carlo Irace
- Dipartimento di Farmacologia Sperimentale, Università di Napoli Federico II, via D. Montesano 49, 80131-Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Kang GS, Li Q, Chen H, Costa M. Effect of metal ions on HIF-1α and Fe homeostasis in human A549 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 610:48-55. [PMID: 16877034 DOI: 10.1016/j.mrgentox.2006.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 11/21/2022]
Abstract
Several metals are carcinogenic but little is known about the mechanisms by which they cause cancer. A pathway that may contribute to metal ion induced carcinogenesis is by hypoxia signaling, which involves a disruption of cellular iron homeostasis by competition with iron transporters or iron-regulated enzymes. To examine the involvement of iron in the hypoxia signaling activity of these metal ions we investigated HIF-1alpha protein stabilization, IRP-1 activity, and ferritin protein levels in human lung carcinoma A459 cells exposed to various agents in serum- and iron-free salt-glucose medium (SGM) or in normal complete medium. We also studied the effects of excess exogenous iron on these responses induced by nickel ion exposure. Our results show the following: (1) SGM enhanced metals-induced HIF-1alpha stabilization and IRP-1 activation (e.g., nickel and cobalt ions). (2) If SGM was reconstituted with a slight excess level (25 microM of FeSO(4)) of iron, this enhancing ability was significantly decreased. (3) The effect of a high level of exogenous iron (500 microM of FeSO(4)) on metal-induced hypoxia and iron metabolism was highly dependent on the order of addition. If treatment with the Fe and metal ions was simultaneous (co-treatment), the effects of nickel ion exposure were overwhelmed, since the added Fe reversed HIF-1alpha stabilization, decreased IRP-1 activity, and increased ferritin level. Pre-treatment with iron was not able to reverse the responses caused by nickel ion exposure. These results imply that it is important to consider the available iron concentration and suitable exposure design when studying metal-induced hypoxia or metal-induced disruption of Fe homeostasis.
Collapse
Affiliation(s)
- Gi Soo Kang
- Department of Environmental Medicine, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
326
|
Van der Schyf CJ, Geldenhuys WJ, Youdim MBH. Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 2006; 99:1033-48. [PMID: 17054441 DOI: 10.1111/j.1471-4159.2006.04141.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The multiple disease etiologies that lead to neuropsychiatric disorders, such as Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, Huntington disease, schizophrenia, depressive illness and stroke, offer significant challenges to drug discovery efforts aimed at preventing or even reversing the progression of these disorders. Transcriptomic tools and proteomic profiling have clearly indicated that such diseases are multifactorial in origin. Further, they are thought to be initiated by a cascade of molecular events that involve several neurotransmitter systems. In response to this complexity, a new paradigm has recently emerged that challenges the widely held assumption that 'silver bullet' agents are superior to 'dirty drugs' in therapeutic approaches aimed at the prevention or treatment of neuropsychiatric diseases. A similar pattern of drug development has occurred in strategies for the treatment of cancer, AIDS and cardiovascular diseases. In this review, we offer an overview of therapeutic strategies and novel investigative drugs discovered or developed in our own and other laboratories, that address multiple CNS etiological targets associated with an array of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cornelis J Van der Schyf
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities College of Pharmacy, Rootstow, Ohio, USA
| | | | | |
Collapse
|
327
|
Mikhael M, Kim SF, Schranzhofer M, Soe-Lin S, Lin SS, Sheftel AD, Mullner EW, Ponka P. Iron regulatory protein-independent regulation of ferritin synthesis by nitrogen monoxide. FEBS J 2006; 273:3828-36. [PMID: 16911529 DOI: 10.1111/j.1742-4658.2006.05390.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The discovery of iron-responsive elements (IREs), along with the identification of iron regulatory proteins (IRP1, IRP2), has provided a molecular basis for our current understanding of the remarkable post-transcriptional regulation of intracellular iron homeostasis. In iron-depleted conditions, IRPs bind to IREs present in the 5'-UTR of ferritin mRNA and the 3'-UTR of transferrin receptor (TfR) mRNA. Such binding blocks the translation of ferritin, the iron storage protein, and stabilizes TfR mRNA, whereas the opposite scenario develops when iron in the intracellular transit pool is plentiful. Nitrogen monoxide (commonly designated nitric oxide; NO), a gaseous molecule involved in numerous functions, is known to affect cellular iron metabolism via the IRP/IRE system. We previously demonstrated that the oxidized form of NO, NO(+), causes IRP2 degradation that is associated with an increase in ferritin synthesis [Kim, S & Ponka, P (2002) Proc Natl Acad Sci USA99, 12214-12219]. Here we report that sodium nitroprusside (SNP), an NO(+) donor, causes a dramatic and rapid increase in ferritin synthesis that initially occurs without changes in the RNA-binding activities of IRPs. Moreover, we demonstrate that the translational efficiency of ferritin mRNA is significantly higher in cells treated with SNP compared with those incubated with ferric ammonium citrate, an iron donor. Importantly, we also provide definitive evidence that the iron moiety of SNP is not responsible for such changes. These results indicate that SNP-mediated increase in ferritin synthesis is, in part, due to an IRP-independent and NO(+)-dependent post-transcriptional, regulatory mechanism.
Collapse
Affiliation(s)
- Marc Mikhael
- Department of Physiology, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Rab A, Bartoszewski R, Jurkuvenaite A, Wakefield J, Collawn JF, Bebok Z. Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am J Physiol Cell Physiol 2006; 292:C756-66. [PMID: 16987996 DOI: 10.1152/ajpcell.00391.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD.
Collapse
Affiliation(s)
- András Rab
- Dept. of Cell Biology, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., MCLM 760, Birmingham, AL 35294-0005, USA.
| | | | | | | | | | | |
Collapse
|
329
|
Abstract
Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are mammalian proteins that register cytosolic iron concentrations and post-transcriptionally regulate expression of iron metabolism genes to optimize cellular iron availability. In iron-deficient cells, IRPs bind to iron-responsive elements (IREs) found in the mRNAs of ferritin, the transferrin receptor and other iron metabolism transcripts, thereby enhancing iron uptake and decreasing iron sequestration. IRP1 registers cytosolic iron status mainly through an iron-sulfur switch mechanism, alternating between an active cytosolic aconitase form with an iron-sulfur cluster ligated to its active site and an apoprotein form that binds IREs. Although IRP2 is homologous to IRP1, IRP2 activity is regulated primarily by iron-dependent degradation through the ubiquitin-proteasomal system in iron-replete cells. Targeted deletions of IRP1 and IRP2 in animals have demonstrated that IRP2 is the chief physiologic iron sensor. The physiological role of the IRP-IRE system is illustrated by (i) hereditary hyperferritinemia cataract syndrome, a human disease in which ferritin L-chain IRE mutations interfere with IRP binding and appropriate translational repression, and (ii) a syndrome of progressive neurodegenerative disease and anemia that develops in adult mice lacking IRP2. The early death of mouse embryos that lack both IRP1 and IRP2 suggests a central role for IRP-mediated regulation in cellular viability.
Collapse
Affiliation(s)
- Tracey A Rouault
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, Building 18T, Room 101, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
330
|
Kwik-Uribe C, Smith DR. Temporal responses in the disruption of iron regulation by manganese. J Neurosci Res 2006; 83:1601-10. [PMID: 16568477 DOI: 10.1002/jnr.20836] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Manganese (Mn) is an essential trace element, though at elevated exposures it is also a neurotoxicant. Several mechanisms underlying manganese toxicity have been investigated, although a consistent mechanism(s) of action at low exposures has not been fully elucidated. Here we systematically evaluated the effects of in vitro manganese exposure on intracellular iron (Fe) homeostasis and iron-regulatory protein (IRP) binding activity in undifferentiated PC12 cells over a range of manganese exposure concentrations (1, 10, 50, and 200 microM MnCl(2)) and exposure durations (12, 24, 36, and 48 hr), to test the hypothesis that moderately elevated manganese exposure disrupts cellular iron regulation. Results demonstrate that manganese exposure produces a rapid and sustained dose-dependent dysregulation of cellular iron metabolism, with effects occurring as early as 12 hr exposure and at manganese doses as low as 1 microM. Manganese exposure altered the dynamics of IRP-1 binding and the intracellular abundance of IRP-2, and altered the cellular abundance of transferrin receptor, ferritin, and mitochondrial aconitase protein levels. Cellular levels of labile iron were significantly increased with manganese exposure, although total cellular iron levels were not. The overall pattern of effects shows that manganese produced an inappropriate cellular response akin to iron deficiency, to which the cells were able to mount a compensatory response. Consistent with our previous studies, these data indicate that even low to moderate exposures to Manganese in vitro significantly disrupt cellular iron metabolism, which may be an important contributory mechanism of manganese neurotoxicity.
Collapse
Affiliation(s)
- Catherine Kwik-Uribe
- Department of Environmental Toxicology, University of California, Santa Cruz, California, USA
| | | |
Collapse
|
331
|
Iwig JS, Rowe JL, Chivers PT. Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function. Mol Microbiol 2006; 62:252-62. [PMID: 16956381 DOI: 10.1111/j.1365-2958.2006.05369.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nickel physiology of Escherichia coli is dominated by its Ni-Fe hydrogenase isozymes, which are expressed under anaerobic growth conditions. Hydrogenase activity in E. coli requires the NikABCDE nickel transporter, which is transcriptionally repressed by NikR in the presence of excess nickel. Recently, a nickel and cobalt-efflux protein, RcnA, was identified in E. coli. This study examines the effect of RcnA on nickel homeostasis in E. coli. Under nickel-limiting conditions, deletion of rcnA increased NikR activity in vivo. Nickel and cobalt-dependent regulation of rcnA expression required the newly identified transcriptional repressor RcnR (formerly YohL). Deletion of rcnR results in constitutive rcnA expression and a corresponding decrease in NikR activity. Purified RcnR binds directly to the rcnA promoter DNA fragment and this interaction is inhibited by nickel and cobalt. Nickel accumulation is affected differently among deletion strains with impaired nickel homeostasis. Surprisingly, in low nickel growth conditions rcnA expression is required for nickel import via NikABCDE. The data support a model with two distinct pools of nickel ions in E. coli. NikR bridges these two pools by controlling the levels of the hydrogenase-associated pool based on the nickel levels in the second pool.
Collapse
Affiliation(s)
- Jeffrey S Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
332
|
Cooper CA, Handy RD, Bury NR. The effects of dietary iron concentration on gastrointestinal and branchial assimilation of both iron and cadmium in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 79:167-75. [PMID: 16844240 DOI: 10.1016/j.aquatox.2006.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 05/10/2023]
Abstract
Zebrafish (Danio rerio) were fed either a diet containing 33mgFekg(-1) (low) or 95mgFekg(-1) (normal) for 10 weeks, after which short-term Cd and Fe uptake by the gastrointestinal tract and gill was assessed. Carcass metal content and transcript levels of the iron importer, Divalent Metal Transporter 1 (DMT1) and an iron exporter, ferroportin1, in both the gastrointestinal tract and gill were also measured. Fish fed the low Fe diet accumulated 13 times more Cd into their livers via the gastrointestinal tract than those fed the normal Fe diet. However, no significant increase in liver Fe accumulation was measured. Concomitantly, when exposed to 48nmolCdL(-1) fish fed the low Fe diet exhibited a approximately 4-fold increase in Cd accumulation on the gill and in the liver, compared to those fed a normal diet. In addition, fish fed the low Fe diet also significantly accumulated more Fe on the gill (nine-fold increase) and into the carcass (four-fold increase) when exposed to 96nmolFeL(-1), compared to fish fed a normal diet. Surprisingly, carcass Fe, Ca and Mg concentrations were increased in fish fed the low Fe diet, which suggests that Fe body levels may not be a good indicator of whether a fish is more or less susceptible to increased non-essential metal accumulation via an Fe uptake pathway. However, significantly elevated transcript levels of DMT1 and ferroportin1 (2.7- and 3.8-fold induction, respectively) were seen in the gastrointestinal tract, and DMT1 in the gills (1.8-fold induction) of zebrafish fed a low Fe diet. The correlation between Cd uptake and DMT1 expression suggests that one route of uptake of Cd, either from the diet or from the water, could be via DMT1.
Collapse
Affiliation(s)
- C A Cooper
- Division of Health and Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | |
Collapse
|
333
|
Tsui KH, Chang PL, Juang HH. Manganese antagonizes iron blocking mitochondrial aconitase expression in human prostate carcinoma cells. Asian J Androl 2006; 8:307-15. [PMID: 16625280 DOI: 10.1111/j.1745-7262.2006.00139.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. METHODS The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. RESULTS In vitro study revealed that manganese chloride (MnCl2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC-3 cells. Although results from transient gene expression assays showed that MnCl2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by co-treatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCl2 on the gene expression of mACON. CONCLUSION These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
Collapse
Affiliation(s)
- Ke-Hung Tsui
- Department of Anatomy, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, China
| | | | | |
Collapse
|
334
|
Attardo GM, Strickler-Dinglasan P, Perkin SAH, Caler E, Bonaldo MF, Soares MB, El-Sayeed N, Aksoy S. Analysis of fat body transcriptome from the adult tsetse fly, Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2006; 15:411-24. [PMID: 16907828 DOI: 10.1111/j.1365-2583.2006.00649.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tsetse flies (Diptera: Glossinidia) are vectors of pathogenic African trypanosomes. To develop a foundation for tsetse physiology, a normalized expressed sequence tag (EST) library was constructed from fat body tissue of immune-stimulated Glossina morsitans morsitans. Analysis of 20,257 high-quality ESTs yielded 6372 unique genes comprised of 3059 tentative consensus (TC) sequences and 3313 singletons (available at http://aksoylab.yale.edu). We analysed the putative fat body transcriptome based on homology to other gene products with known functions available in the public domain. In particular, we describe the immune-related products, reproductive function related yolk proteins and milk-gland protein, iron metabolism regulating ferritins and transferrin, and tsetse's major energy source proline biosynthesis. Expression analysis of the three yolk proteins indicates that all are detected in females, while only the yolk protein with similarity to lipases, is expressed in males. Milk gland protein, apparently important for larval nutrition, however, is primarily synthesized by accessory milk gland tissue.
Collapse
Affiliation(s)
- G M Attardo
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
335
|
Theil EC, Matzapetakis M, Liu X. Ferritins: iron/oxygen biominerals in protein nanocages. J Biol Inorg Chem 2006; 11:803-10. [PMID: 16868744 DOI: 10.1007/s00775-006-0125-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Accepted: 06/06/2006] [Indexed: 01/09/2023]
Abstract
Ferritin protein nanocages that form iron oxy biominerals in the central nanometer cavity are nature's answer to managing iron and oxygen; gene deletions are lethal in mammals and render bacteria more vulnerable to host release of antipathogen oxidants. The multifunctional, multisubunit proteins couple iron with oxygen (maxi-ferritins) or hydrogen peroxide (mini-ferritins) at catalytic sites that are related to di-iron sites oxidases, ribonucleotide reductase, methane monooxygenase and fatty acid desaturases, and synthesize mineral precursors. Gated pores, distributed symmetrically around the ferritin cages, control removal of iron by reductants and chelators. Gene regulation of ferritin, long known to depend on iron and, in animals, on a noncoding messenger RNA (mRNA) structure linked in a combinatorial array to functionally related mRNA of iron transport, has recently been shown to be linked to an array of proteins for antioxidant responses such as thioredoxin and quinone reductases. Ferritin DNA responds more to oxygen signals, and ferritin mRNA responds more to iron signals. Ferritin genes (DNA and RNA) and protein function at the intersection of iron and oxygen chemistry in biology.
Collapse
Affiliation(s)
- Elizabeth C Theil
- CHORI (Children's Hospital Research Institute Oakland), 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | | | |
Collapse
|
336
|
Rachmilewitz EA, Weizer-Stern O, Adamsky K, Amariglio N, Rechavi G, Breda L, Rivella S, Cabantchik ZI. Role of iron in inducing oxidative stress in thalassemia: Can it be prevented by inhibition of absorption and by antioxidants? Ann N Y Acad Sci 2006; 1054:118-23. [PMID: 16339657 DOI: 10.1196/annals.1345.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The pathophysiology of thalassemia is, to a certain extent, associated with the generation of labile iron in the pathological red blood cell (RBC). The appearance of such forms of iron at the inner and outer cell surfaces exposes the cell to conditions whereby the labile metal promotes the formation of reactive oxygen species (ROS) leading to cumulative cell damage. Another source of iron accumulation results from increased absorption due to decreased expression of hepcidin. The presence of labile plasma iron (LPI) was carried out using fluorescent probes in the FACS. RNA expression of hepcidin was measured in two models of thalassemic mice. Hepcidin expression was also measured in human hepatoma HepG2 cells following incubation with thalassemic sera. LPI was identified and could be quantitatively measured and correlated with other parameters of iron overload. Hepcidin expression was downregulated in the livers of thalassemic mice, in major more than in intermedia. Thalassemic sera down regulated hepcidin expression in HepG2 liver cells. A possible way to decrease iron absorption could be by modulating hepcidin expression pharmacologically, by gene therapy or by its administration. Treatment with combination of antioxidants such as N-acetylcysteine for proteins and vitamin E for lipids in addition to iron chelators could neutralize the deleterious effects of ROS and monitored by quantitation of LPI.
Collapse
Affiliation(s)
- Eliezer A Rachmilewitz
- Department of Hematology, The Edith Wolfson Medical Center, P.O. Box 5, 58100 Holon, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Nie G, Chen G, Sheftel AD, Pantopoulos K, Ponka P. In vivo tumor growth is inhibited by cytosolic iron deprivation caused by the expression of mitochondrial ferritin. Blood 2006; 108:2428-34. [PMID: 16757684 DOI: 10.1182/blood-2006-04-018341] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial ferritin (MtFt) is a mitochondrial iron-storage protein whose function and regulation is largely unknown. Our previous results have shown that MtFt overexpression markedly affects intracellular iron homeostasis in mammalian cells. Using tumor xenografts, we examined the effects of MtFt overexpression on tumor iron metabolism and growth. The expression of MtFt dramatically reduced implanted tumor growth in nude mice. Mitochondrial iron deposition in MtFt-expressing tumors was directly observed by transmission electron microscopy. A cytosolic iron starvation phenotype in MtFt-expressing tumors was revealed by increased RNA-binding activity of iron regulatory proteins, and concomitantly both an increase in transferrin receptor levels and a decrease in cytosolic ferritin. MtFt overexpression also led to decreases in total cellular heme content and heme oxygenase-1 levels. In addition, elevated MtFt in tumors was also associated with a decrease in total aconitase activity and lower frataxin protein level. In conclusion, our study shows that high MtFt levels can significantly affect tumor iron homeostasis by shunting iron into mitochondria; iron scarcity resulted in partially deficient heme and iron-sulfur cluster synthesis. It is likely that deprivation of iron in the cytosol is the cause for the significant inhibition of xenograft tumor growth.
Collapse
Affiliation(s)
- Guangjun Nie
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital and Department of Physiology, McGill University, 3755 Cote Ste-Catherine Rd, Montreal, QC H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
338
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
339
|
Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86:583-650. [PMID: 16601269 DOI: 10.1152/physrev.00011.2005] [Citation(s) in RCA: 1797] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
340
|
Babendure JR, Babendure JL, Ding JH, Tsien RY. Control of mammalian translation by mRNA structure near caps. RNA (NEW YORK, N.Y.) 2006; 12:851-61. [PMID: 16540693 PMCID: PMC1440912 DOI: 10.1261/rna.2309906] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The scanning model of RNA translation proposes that highly stable secondary structures within mRNAs can inhibit translation, while structures of lower thermal stability also affect translation if close enough to the 5' methyl G cap. However, only fragmentary information is available about the dependence of translation efficiency in live mammalian cells on the thermodynamic stability, location, and GC content of RNA structures in the 5'-untranslated region. We devised a two-color fluorescence assay for translation efficiency in single live cells and compared a wide range of hairpins with predicted thermal stabilities ranging from -10 to -50 kcal/mol and 5' G cap-to-hairpin distances of 1-46 bases. Translation efficiency decreased abruptly as hairpin stabilities increased from deltaG = -25 to -35 kcal/mol. Shifting a hairpin as little as nine bases relative to the 5' cap could modulate translation more than 50-fold. Increasing GC content diminished translation efficiency when predicted thermal stability and cap-to-hairpin distances were held constant. We additionally found naturally occurring 5'-untranslated regions affected translation differently in live cells compared with translation in in vitro lysates. Our study will assist scientists in designing experiments that deliberately modulate mammalian translation with designed 5' UTRs.
Collapse
Affiliation(s)
- Jeremy R Babendure
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0647, USA
| | | | | | | |
Collapse
|
341
|
|
342
|
Jiao Y, Wilkinson J, Christine Pietsch E, Buss JL, Wang W, Planalp R, Torti FM, Torti SV. Iron chelation in the biological activity of curcumin. Free Radic Biol Med 2006; 40:1152-60. [PMID: 16545682 DOI: 10.1016/j.freeradbiomed.2005.11.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 10/29/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Curcumin is among the more successful chemopreventive compounds investigated in recent years, and is currently in human trials to prevent cancer. The mechanism of action of curcumin is complex and likely multifactorial. We have made the unexpected observation that curcumin strikingly modulates proteins of iron metabolism in cells and in tissues, suggesting that curcumin has properties of an iron chelator. Curcumin increased mRNA levels of ferritin and GSTalpha in cultured liver cells. Unexpectedly, however, although levels of GSTalpha protein increased in parallel with mRNA levels in response to curcumin, levels of ferritin protein declined. Since iron chelators repress ferritin translation, we considered that curcumin may act as an iron chelator. To test this hypothesis, we measured the effect of curcumin on transferrin receptor 1, a protein stabilized under conditions of iron limitation, as well as the ability of curcumin to activate iron regulatory proteins (IRPs). Both transferrin receptor 1 and activated IRP, indicators of iron depletion, increased in response to curcumin. Consistent with the hypothesis that curcumin acts as an iron chelator, mice that were fed diets supplemented with curcumin exhibited a decline in levels of ferritin protein in the liver. These results suggest that iron chelation may be an additional mode of action of curcumin.
Collapse
Affiliation(s)
- Yan Jiao
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Geiser DL, Zhang D, Winzerling JJ. Secreted ferritin: mosquito defense against iron overload? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:177-87. [PMID: 16503479 DOI: 10.1016/j.ibmb.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/28/2005] [Accepted: 12/07/2005] [Indexed: 05/06/2023]
Abstract
The yellow fever mosquito, Aedes aegypti, must blood feed in order to complete her life cycle. The blood meal provides a high level of iron that is required for egg development. We are interested in developing control strategies that interfere with this process. We show that A. aegypti larval cells synthesize and secrete ferritin in response to iron exposure. Cytoplasmic ferritin is maximal at low levels of iron, consists of both the light chain (LCH) and heavy chain (HCH) subunits and reflects cytoplasmic iron levels. Secreted ferritin increases in direct linear relationship to iron dose and consists primarily of HCH subunits. Although the messages for both subunits increase with iron treatment, our data indicate that mosquito HCH synthesis could be partially controlled at the translational level as well. Importantly, we show that exposure of mosquito cells to iron at low concentrations increases cytoplasmic iron, while higher iron levels results in a decline in cytoplasmic iron levels indicating that excess iron is removed from mosquito cells. Our work indicates that HCH synthesis and ferritin secretion are key factors in the response of mosquito cells to iron exposure and could be the primary mechanisms that allow these insects to defend against an intracellular iron overload.
Collapse
Affiliation(s)
- Dawn L Geiser
- Department of Nutritional Science, College of Agriculture and Life Sciences and Center for Insect Science, University of Arizona, 1177 East 4th Street, Shantz Building, Room 405, Tucson, AZ 85721-0038, USA.
| | | | | |
Collapse
|
344
|
Golub MS, Hogrefe CE, Tarantal AF, Germann SL, Beard JL, Georgieff MK, Calatroni A, Lozoff B. Diet-induced iron deficiency anemia and pregnancy outcome in rhesus monkeys. Am J Clin Nutr 2006; 83:647-56. [PMID: 16522913 PMCID: PMC1538981 DOI: 10.1093/ajcn.83.3.647] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Iron deficiency anemia (IDA) is relatively common in the third trimester of pregnancy, but causal associations with low birth weight and compromised neonatal iron status are difficult to establish in human populations. OBJECTIVE The objective was to determine the effects of diet-induced IDA on intrauterine growth and neonatal iron status in an appropriate animal model for third-trimester IDA in women. DESIGN Hematologic and iron-status measures, pregnancy outcomes, and fetal and neonatal evaluations were compared between pregnant rhesus monkeys (n = 14) fed a diet containing 10 microg Fe/g diet from the time of pregnancy detection (gestation days 28-30) and controls (n = 24) fed 100 microg Fe/g diet. RESULTS By the third trimester, 79% of the iron-deprived dams and 29% of the control monkeys had a hemoglobin concentration <11 g/dL. There were also significant group differences in hematocrit, mean corpuscular volume, transferrin saturation, serum ferritin, and serum iron. At birth, the newborns of monkeys iron-deprived during pregnancy had significantly lower hemoglobin, mean corpuscular volume, and mean corpuscular hemoglobin values and a lower ratio of erythroid to total colony-forming units in bone marrow than did the control newborns. Pregnancy weight gain did not differ significantly between the iron-deprived and control dams, and the fetuses and newborns of the iron-deprived dams were not growth retarded relative to the controls. Gestation length, the number of stillbirths, and neonatal neurobehavioral test scores did not differ significantly by diet group. CONCLUSION These data indicate that an inadequate intake of iron from the diet during pregnancy in rhesus monkeys can lead to compromised hematologic status of the neonate without indications of growth retardation or impaired neurologic function at birth.
Collapse
Affiliation(s)
- Mari S Golub
- University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Selezneva AI, Cavigiolio G, Theil EC, Walden WE, Volz K. Crystallization and preliminary X-ray diffraction analysis of iron regulatory protein 1 in complex with ferritin IRE RNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:249-52. [PMID: 16511314 PMCID: PMC2197192 DOI: 10.1107/s1744309106004192] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/02/2006] [Indexed: 11/10/2022]
Abstract
Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe-4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe-4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase. The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe-S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P2(1), with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 A, beta = 92.0 degrees. Native data sets have been collected from several crystals with resolution extending to 2.8 A and the structure has been solved by molecular replacement.
Collapse
Affiliation(s)
- Anna I. Selezneva
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612-7334, USA
| | - Giorgio Cavigiolio
- Children’s Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | - Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | - William E. Walden
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612-7334, USA
| | - Karl Volz
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612-7334, USA
- Correspondence e-mail:
| |
Collapse
|
346
|
Pondarré C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM, McDonald A, Han AP, Medlock A, Kutok JL, Anderson SA, Eisenstein RS, Fleming MD. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron–sulfur cluster biogenesis. Hum Mol Genet 2006; 15:953-64. [PMID: 16467350 DOI: 10.1093/hmg/ddl012] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins with iron-sulfur (Fe-S) clusters participate in multiple metabolic pathways throughout the cell. The mitochondrial ABC half-transporter Abcb7, which is mutated in X-linked sideroblastic anemia with ataxia in humans, is a functional ortholog of yeast Atm1p and is predicted to export a mitochondrially derived metabolite required for cytosolic Fe-S cluster assembly. Using an inducible Cre/loxP system to delete exons 9 and 10 of the Abcb7 gene, we examined the phenotype of mice deficient in Abcb7. We found that Abcb7 was essential in extra-embryonic tissues early in gestation and that the mutant allele exhibits an X-linked parent-of-origin lethality effect. Furthermore, using X-chromosome inactivation assays and tissue-specific deletions, Abcb7 was found to be essential for the development and function of numerous other cell types and tissues. A notable exception to this was liver, where loss of Abcb7 impaired cytosolic Fe-S cluster assembly but was not lethal. In this situation, control of iron regulatory protein 1, a key cytosolic modulator of iron metabolism, which is responsive to the availability of cytosolic Fe-S clusters, was impaired and contributed to the dysregulation of hepatocyte iron metabolism. Altogether, these studies demonstrate the essential nature of Abcb7 in mammals and further substantiate a central role for mitochondria in the biogenesis of cytosolic Fe-S proteins.
Collapse
Affiliation(s)
- Corinne Pondarré
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Wu J, Eckard J, Chen H, Costa M, Frenkel K, Huang X. Altered iron homeostasis involvement in arsenite-mediated cell transformation. Free Radic Biol Med 2006; 40:444-52. [PMID: 16443159 PMCID: PMC2955321 DOI: 10.1016/j.freeradbiomed.2005.08.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/20/2022]
Abstract
Chronic exposure to low doses of arsenite causes transformation of human osteogenic sarcoma (HOS) cells. Although oxidative stress is considered important in arsenite-induced cell transformation, the molecular and cellular mechanisms by which arsenite transforms human cells are still unknown. In the present study, we investigated whether altered iron homeostasis, known to affect cellular oxidative stress, can contribute to the arsenite-mediated cell transformation. Using arsenite-induced HOS cell transformation as a model, it was found that total iron levels are significantly higher in transformed HOS cells in comparison to parental control HOS cells. Under normal iron metabolism conditions, iron homeostasis is tightly controlled by inverse regulation of ferritin and transferrin receptor (TfR) through iron regulatory proteins (IRP). Increased iron levels in arsenite transformed cells should theoretically lead to higher ferritin and lower TfR in these cells than in controls. However, the results showed that both ferritin and TfR are decreased, apparently through two different mechanisms. A lower ferritin level in cytoplasm was due to the decreased mRNA in the arsenite-transformed HOS cells, while the decline in TfR was due to a lowered IRP-binding activity. By challenging cells with iron, it was further established that arsenite-transformed HOS cells are less responsive to iron treatment than control HOS cells, which allows accumulation of iron in the transformed cells, as exemplified by significantly lower ferritin induction. On the other hand, caffeic acid phenethyl ester (CAPE), an antioxidant previously shown to suppress As-mediated cell transformation, prevents As-mediated ferritin depletion. In conclusion, our results suggest that altered iron homeostasis contributes to arsenite-induced oxidative stress and, thus, may be involved in arsenite-mediated cell transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xi Huang
- Corresponding author. Fax: +1 212 263 6649. (X. Huang)
| |
Collapse
|
348
|
Clarke SL, Vasanthakumar A, Anderson SA, Pondarré C, Koh CM, Deck KM, Pitula JS, Epstein CJ, Fleming MD, Eisenstein RS. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe-S cluster. EMBO J 2006; 25:544-53. [PMID: 16424901 PMCID: PMC1383537 DOI: 10.1038/sj.emboj.7600954] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 12/19/2005] [Indexed: 11/08/2022] Open
Abstract
The generally accepted role of iron-regulatory protein 1 (IRP1) in orchestrating the fate of iron-regulated mRNAs depends on the interconversion of its cytosolic aconitase and RNA-binding forms through assembly/disassembly of its Fe-S cluster, without altering protein abundance. Here, we show that IRP1 protein abundance can be iron-regulated. Modulation of IRP1 abundance by iron did not require assembly of the Fe-S cluster, since a mutant with all cluster-ligating cysteines mutated to serine underwent iron-induced protein degradation. Phosphorylation of IRP1 at S138 favored the RNA-binding form and promoted iron-dependent degradation. However, phosphorylation at S138 was not required for degradation. Further, degradation of an S138 phosphomimetic mutant was not blocked by mutation of cluster-ligating cysteines. These findings were confirmed in mouse models with genetic defects in cytosolic Fe-S cluster assembly/disassembly. IRP1 RNA-binding activity was primarily regulated by IRP1 degradation in these animals. Our results reveal a mechanism for regulating IRP1 action relevant to the control of iron homeostasis during cell proliferation, inflammation, and in response to diseases altering cytosolic Fe-S cluster assembly or disassembly.
Collapse
Affiliation(s)
- Stephen L Clarke
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Sheila A Anderson
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Corinne Pondarré
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Cheryl M Koh
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Kathryn M Deck
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Joseph S Pitula
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Charles J Epstein
- Department of Pediatrics and Center for Human Genetics, University of California, San Francisco, CA, USA
| | - Mark D Fleming
- Department of Pathology, Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard S Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Madison, WI 53706, USA. Tel.: +1 608 262 5830; Fax: +1 608 262 5860; E-mail:
| |
Collapse
|
349
|
Huang E, Ong WY, Go ML, Connor JR. Upregulation of iron regulatory proteins and divalent metal transporter-1 isoforms in the rat hippocampus after kainate induced neuronal injury. Exp Brain Res 2005; 170:376-86. [PMID: 16328268 DOI: 10.1007/s00221-005-0220-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 09/02/2005] [Indexed: 11/25/2022]
Abstract
Iron regulatory proteins (IRP1 and IRP2) bind to iron response elements (IRE) on specific mRNAs, to affect the translation of many proteins involved in iron metabolism. An increase in iron levels and divalent metal transporter-1 (DMT1) expression have been observed in the rat hippocampus after excitotoxic injury induced by kainate, but thus far, it is not known whether these could be associated with changes in IRPs. The present study was therefore carried out to elucidate the expression of IRP1 or IRP2 and the IRE or non-IRE forms of DMT1 (DMT1 or -IRE DMT1) in the hippocampus after neuronal injury induced by kainate. A sustained upregulation of IRP1, IRP2, DMT1 and -IRE DMT1 protein was detected in the lesioned hippocampus by western blot and immunohistochemical analyses up to 2 months post-injection. Double immunofluorescence labeling showed that IRP1, IRP2, DMT1 and -IRE DMT1 were mostly expressed in GFAP positive astrocytes. The increased IRP expression could lead to increased expression of the +IRE form of DMT1. On the other hand, the increased expression of the -IRE DMT1 indicates that IRPs are unlikely to be only factor determining the expression of DMT1. It is postulated that transcription factors acting on putative AP-1, NF-kappaB binding sites, or gamma-interferon responsive elements on the DMT1 promoter may also play a role in upregulating the expression of the transporter. This could lead to increased iron influx into the brain areas undergoing neurodegeneration, and might be a factor contributing to neuronal damage after the initial excitotoxic injury.
Collapse
Affiliation(s)
- En Huang
- Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
350
|
Delaby C, Pilard N, Hetet G, Driss F, Grandchamp B, Beaumont C, Canonne-Hergaux F. A physiological model to study iron recycling in macrophages. Exp Cell Res 2005; 310:43-53. [PMID: 16095591 DOI: 10.1016/j.yexcr.2005.07.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/01/2005] [Accepted: 07/05/2005] [Indexed: 12/29/2022]
Abstract
Following erythrophagocytosis (EP) of senescent red blood cells (RBCs), heme iron is recycled to the plasma by tissue macrophages. This process is critical for mammalian iron homeostasis but remains elusive. We characterized a cellular model using artificially-aged murine RBCs and murine bone marrow-derived macrophages (BMDMs) and study mRNA and protein expression of HO-1, ferroportin and ferritin after EP. In vitro ageing of RBCs was obtained by raising intracellular calcium concentration. These RBCs exhibit several features of erythrocyte senescence including externalization of phosphatidyl-serine, specific binding and phagocytosis by BMDMs. During the first hours of EP, we observed a rapid increase of HO-1 and ferroportin mRNAs and proteins, whereas ferritin protein expression was progressively induced with no major changes in RNA levels. At later stages after EP, a different pattern of expression was observed with a net decrease of ferroportin, a sustained high level of HO-1, and a strong increase in ferritins. Taken together, these results suggest that after EP, iron is rapidly extracted from heme and exported by ferroportin. Surprisingly, the gene expression profile at late stages after EP, which is indicative of iron storage, is reminiscent of what is observed in inflammation. However, phagocytosis of artificially-aged red blood cells seems to repress the proinflammatory response of macrophages.
Collapse
Affiliation(s)
- Constance Delaby
- Inserm U656, Fer et synthèse d'hème, Génétique, Physiologie et Pathologie, Faculté de Médecine Xavier Bichat, 16, rue Henri Huchard, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|