301
|
Espinoza J, Gotsch F, Kusanovic JP, Gonçalves LF, Lee W, Hassan S, Mittal P, Shoen ML, Romero R. Changes in fetal cardiac geometry with gestation: implications for 3- and 4-dimensional fetal echocardiography. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2007; 26:437-43; quiz 444. [PMID: 17384040 PMCID: PMC2190734 DOI: 10.7863/jum.2007.26.4.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
OBJECTIVE Three- and 4-dimensional fetal echocardiography can be performed using novel algorithms. However, these algorithms assume that the spatial relationships among cardiac chambers and great vessels are constant throughout gestation. The objective of this study was to determine whether changes in fetal cardiac geometry occur during gestation. METHODS A cross-sectional study was conducted by reviewing 3- and 4-dimensional volume data sets from healthy fetuses obtained between 12 and 41 weeks of gestation. Volume data sets were examined using commercially available software. Parameters measured included angles between: (1) the ductal arch and fetal thoracic aorta; (2) the ductal arch and aortic arch; and (3) the left outflow tract and main pulmonary artery, as seen in the short axis of the heart. The mean angle from the left outflow tract to the short axis was calculated. Nonparametric statistics were used for analysis. RESULTS Eighty-five fetuses were included in the study. The angle between the ductal arch and the fetal thoracic aorta decreased with gestational age (Spearman rho coefficient: -0.39; P < .001). In contrast, the angle between the ductal arch and aortic arch, and the mean angle between the left outflow tract and the short axis of the heart increased with gestational age (Spearman rho coefficients: 0.45 and 0.40, respectively; P < .001). CONCLUSIONS (1) Changes in fetal cardiac geometry were shown with advancing gestational age. (2) Proposed algorithms for the examination of the fetal heart with 3-dimensional ultrasonography may need to be adapted to optimize visualization of the standard planes before 26 weeks of gestation.
Collapse
Affiliation(s)
- Jimmy Espinoza
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
| | - Luís F. Gonçalves
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Wesley Lee
- Division of Fetal Imaging, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Sonia Hassan
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Pooja Mittal
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Mary Lou Shoen
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Hospital, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, National Institute of Child Health and Human Development, NIH/DHHS, Detroit, Michigan and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
302
|
Schleiffarth JR, Person AD, Martinsen BJ, Sukovich DJ, Neumann A, Baker CVH, Lohr JL, Cornfield DN, Ekker SC, Petryk A. Wnt5a is required for cardiac outflow tract septation in mice. Pediatr Res 2007; 61:386-91. [PMID: 17515859 DOI: 10.1203/pdr.0b013e3180323810] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lack of septation of the cardiac outflow tract (OFT) results in persistent truncus arteriosus (PTA), a form of congenital heart disease. The outflow myocardium expands through addition of cells originating from the pharyngeal mesoderm referred to as secondary/anterior heart field, whereas cardiac neural crest (CNC) cell-derived mesenchyme condenses to form an aortopulmonary septum. We show for the first time that a mutation in Wnt5a in mice leads to PTA. We provide evidence that Wnt5a is expressed in the pharyngeal mesoderm adjacent to CNC cells in both mouse and chicken embryos and in the myocardial cell layer of the conotruncus at the time when CNC cells begin to form the aortopulmonary septum in mice. Although expression domains of secondary heart field markers are not altered in Wnt5a mutant embryos, the expression of CNC cell marker PlexinA2 is significantly reduced. Stimulation of CNC cells with Wnt5a protein elicits Ca2+ transients, suggesting that CNC cells are capable of responding to Wnt5a. We propose a novel model in which Wnt5a produced in the OFT by cells originating from the pharyngeal mesoderm signals to adjacent CNC cells during formation of the aortopulmonary septum through a noncanonical pathway via localized intracellular increases in Ca2+.
Collapse
Affiliation(s)
- J Robert Schleiffarth
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Hayashi S, Inoue A. Cardiomyocytes re-enter the cell cycle and contribute to heart development after differentiation from cardiac progenitors expressing Isl1 in chick embryo. Dev Growth Differ 2007; 49:229-39. [PMID: 17394601 DOI: 10.1111/j.1440-169x.2007.00923.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiomyocytes are generated from the precardiac mesoderm and the size of the heart increases dramatically during embryogenesis. However, it is unclear how differentiation and proliferation correlate in the cardiac cell line during development. Here, we show that cardiomyocytes re-entered into a proliferative state after differentiation with a concomitant cell cycle arrest in chick embryo. The cells in the course of differentiation from Isl1-positive cardiac precursors to cardiomyocytes did not proliferate, but differentiated cardiomyocytes proliferated even after the acquisition of contractile function. After differentiation, cardiomyocytes developed a proliferative potential to contribute to the increase in cell numbers during heart development. Almost all differentiated cardiomyocytes (82.8%) incorporated bromodeoxyuridine (BrdU) in vitro, indicating the ability of DNA replication. Furthermore, mitotic chromosomes were observed in the cardiomyocytes in which a sarcomeric structure was sustained in the cytoplasm. We conclude that the sequential events of the differentiation to contractile myocytes and the re-entry into the cell cycle are strictly regulated during cardiac cell maturation. These results provide an insight into the maturation mechanism of the cardiac cell line.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | |
Collapse
|
304
|
Postema PG, Rammeloo LAJ, van Litsenburg R, Rothuis EGM, Hruda J. Left superior vena cava in pediatric cardiology associated with extra-cardiac anomalies. Int J Cardiol 2007; 123:302-6. [PMID: 17391785 DOI: 10.1016/j.ijcard.2006.12.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/19/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND In case reports and small series, the coexistence of a persistent left superior vena cava (LSVC) and extra-cardiac anomalies has been noted. However, an association between LSVC and extra-cardiac anomalies has not been documented. We investigated the association between LSVC and extra-cardiac anomalies in patients referred to our tertiary pediatric cardiology department between 1998 and 2005. METHODS Trans-thoracic echocardiograms were performed on 4426 consecutive patients. Cardiac and extra-cardiac anomalies were registered prospectively in a computerized database. In a retrospective observational design, characteristics of patients with LSVC were collected. RESULTS In 4426 patients, 1825 (41%) were diagnosed with congenital heart disease (CHD) and 295 patients (7%) with extra-cardiac anomalies. LSVC was present in 102 patients, of which 89 (87%) with CHD (OR 10.2, 95% CI 5.7 to 18.3, p<0.001) and 61 (60%) with extra-cardiac anomalies (OR 26.0, 95% CI 17.1 to 39.5, p<0.001). Confirmed syndromes were present in 43 LSVC patients (42%), including VACTERL association (vertebral defects, anal atresia, cardiac malformations, tracheo-esophageal fistula with esophageal atresia, radial and renal dysplasia, and limb anomalies, 9%), trisomy 21 (7%), 22q11 (6%) and CHARGE association (coloboma, heart defects, atresia of choanae, retardation, genital and ear anomalies, 5%). In 17 LSVC patients (17%) with multiple anomalies in different organ systems, a syndrome diagnosis was not confirmed. CONCLUSIONS The LSVC appears to be indicative for both cardiac and extra-cardiac anomalies (e.g. septal defects, tetralogy of Fallot, VACTERL and CHARGE association). Disorders in the development of the secondary heart field may be causal to this combination of anomalies.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/diagnostic imaging
- Abnormalities, Multiple/epidemiology
- Adolescent
- Age Distribution
- Child
- Child, Preschool
- Cohort Studies
- Comorbidity
- Echocardiography, Transesophageal
- Female
- Heart Defects, Congenital/diagnosis
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/epidemiology
- Humans
- Incidence
- Infant
- Infant, Newborn
- Male
- Netherlands/epidemiology
- Odds Ratio
- Probability
- Retrospective Studies
- Risk Assessment
- Sex Distribution
- Survival Rate
- Vena Cava, Superior/abnormalities
Collapse
Affiliation(s)
- Pieter G Postema
- Department of Pediatric Cardiology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
305
|
Abstract
The origins of vascular smooth muscle are far more diverse than previously thought. Lineage mapping studies show that the segmental organization of early vertebrate embryos leaves footprints on the adult vascular system in the form of a mosaic pattern of different smooth muscle types. Moreover, evolutionarily conserved tissue forming pathways produce vascular smooth muscle from a variety of unanticipated sources. A closer look at the diversity of smooth muscle origins in vascular development provides new perspectives about how blood vessels differ from one another and why they respond in disparate ways to common risk factors associated with vascular disease. The origins of vascular smooth muscle are far more diverse than previously thought. A closer look at the diversity of smooth muscle origins in vascular development provides new perspectives about how blood vessels differ from one another and why they respond in disparate ways to common risk factors associated with vascular disease.
Collapse
Affiliation(s)
- Mark W Majesky
- Department of Medicine, Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, NC 27599-7126, USA.
| |
Collapse
|
306
|
Prall OWJ, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H, Stennard FA, Wise N, Schaft D, Wolstein O, Furtado MB, Shiratori H, Chien KR, Hamada H, Black BL, Saga Y, Robertson EJ, Buckingham ME, Harvey RP. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 2007; 128:947-59. [PMID: 17350578 PMCID: PMC2092439 DOI: 10.1016/j.cell.2007.01.042] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/15/2006] [Accepted: 01/06/2007] [Indexed: 11/16/2022]
Abstract
During heart development the second heart field (SHF) provides progenitor cells for most cardiomyocytes and expresses the homeodomain factor Nkx2-5. We now show that feedback repression of Bmp2/Smad1 signaling by Nkx2-5 critically regulates SHF proliferation and outflow tract (OFT) morphology. In the cardiac fields of Nkx2-5 mutants, genes controlling cardiac specification (including Bmp2) and maintenance of the progenitor state were upregulated, leading initially to progenitor overspecification, but subsequently to failed SHF proliferation and OFT truncation. In Smad1 mutants, SHF proliferation and deployment to the OFT were increased, while Smad1 deletion in Nkx2-5 mutants rescued SHF proliferation and OFT development. In Nkx2-5 hypomorphic mice, which recapitulate human congenital heart disease (CHD), OFT anomalies were also rescued by Smad1 deletion. Our findings demonstrate that Nkx2-5 orchestrates the transition between periods of cardiac induction, progenitor proliferation, and OFT morphogenesis via a Smad1-dependent negative feedback loop, which may be a frequent molecular target in CHD.
Collapse
Affiliation(s)
- Owen WJ Prall
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Mary K Menon
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Mark J Solloway
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Yusuke Watanabe
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, Paris, France
| | - Stéphane Zaffran
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, Paris, France
| | - Fanny Bajolle
- Department of Developmental Biology, CNRS URA2578, Pasteur Institute, Paris, France
| | - Christine Biben
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Jim J McBride
- Garvan Institute of Medical Research, Sydney 2010, Australia
| | - Bronwyn R Robertson
- Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, Australia
| | - Hervé Chaulet
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | | | - Natalie Wise
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Daniel Schaft
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | - Orit Wolstein
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
| | | | | | - Kenneth R Chien
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hiroshi Hamada
- Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - Yumiko Saga
- Division of Mammalian Development National Institute of Genetics, Mishima 411-8540, Japan
| | | | | | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Sydney 2010, Australia
- Faculties of Life Sciences and Medicine, University of New South Wales, Kensington 2053, Australia
| |
Collapse
|
307
|
Rana MS, Horsten NCA, Tesink-Taekema S, Lamers WH, Moorman AFM, van den Hoff MJB. Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 2007; 100:1000-7. [PMID: 17347476 DOI: 10.1161/01.res.0000262688.14288.b8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent molecular lineage analyses in mouse have demonstrated that the right ventricle is recruited from anterior mesoderm in later stages of cardiac development. This is in contrast to current views of development in the chicken heart, which suggest that the initial heart tube contains a subset of right ventricular precursors. We investigated the fate of the outflow tract myocardium using immunofluorescent staining of the myocardium, and lineage tracer, as well as cell death experiments. These analyses showed that the outflow tract is initially myocardial in its entirety, increasing in length up to HH24. The outflow tract myocardium, subsequently, shortens as a result of ventricularization, contributing to the trabeculated free wall, as well as the infundibulum, of the right ventricle. During this shortening, the overall length of the outflow tract is maintained because of the formation of a nonmyocardial portion between the distal myocardial border and the pericardial reflections. Cell death and transdifferentiation were found to play a more limited contribution to the initial shortening than is generally appreciated, if they play any part at all. Cell death, nonetheless, plays an important role in the disappearance of the myocardial collar that continues to invest the aorta and pulmonary trunk around HH30, and in the separation of the intrapericardial arterial vessels. Taken together, we show, as opposed to some current beliefs, the development of the arterial pole is similar in mammals and birds.
Collapse
Affiliation(s)
- M Sameer Rana
- Heart Failure Research Center, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
308
|
Breckenridge R, Kotecha S, Towers N, Bennett M, Mohun T. Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 2007; 45:135-44. [PMID: 17334998 DOI: 10.1002/dvg.20275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse-lines expressing Cre recombinase in a tissue-specific manner are a powerful tool in developmental biology. Here, we report that a 3 kb fragment of the Xenopus laevis myosin light-chain 2 (XMLC2) promoter drives Cre recombinase expression in a cardiac-restricted fashion in the mouse embryo. We have isolated two XMLC2-Cre lines that express recombinase exclusively within cardiomyocytes, from the onset of their differentiation in the cardiac crescent of the early embryo. Expression is maintained throughout the myocardium of the embryonic heart tube and subsequently the mature myocardium of the chambered heart. Recombinase activity is detected in all myocardial tissue, including the pulmonary veins. One XMLC2-Cre line shows uniform expression while the other only expresses recombinase in a mosaic fashion encompassing less than 50% of the myocardial cells. Both lines cause severe cardiac malformations when crossed to a conditional Tbx5 line, resulting in embryonic death at midgestation. Optical projection tomography reveals that the spectrum of developmental abnormalities includes a shortening of the outflow tract and its abnormal alignment, along with a dramatic reduction in trabeculation of the ventricular segment of the looping heart tube.
Collapse
Affiliation(s)
- Ross Breckenridge
- Division of Developmental Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill,London, United Kingdom
| | | | | | | | | |
Collapse
|
309
|
Choi M, Stottmann RW, Yang YP, Meyers EN, Klingensmith J. The bone morphogenetic protein antagonist noggin regulates mammalian cardiac morphogenesis. Circ Res 2007; 100:220-8. [PMID: 17218603 DOI: 10.1161/01.res.0000257780.60484.6a] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) play many roles in mammalian cardiac development. Here we address the functions of Noggin, a dedicated BMP antagonist, in the developing mouse heart. In early cardiac tissues, the Noggin gene is mainly expressed in the myocardial cells of the outflow tract, atrioventricular canal, and future right ventricle. The major heart phenotypes of Noggin mutant embryos are thicker myocardium and larger endocardial cushions. Both defects result from increased cell number. Cell proliferation is increased and cell cycle exit is decreased in the myocardium. Although we find evidence of increased BMP signal transduction in the myocardium and endocardium, we show that the cardiac defects of Noggin mutants are rescued by halving the gene dosage of Bmp4. In culture, BMP increases the epithelial-to-mesenchymal transformation (EMT) of endocardial explant cells. Increased EMT likely accounts for the enlarged atrioventricular cushion. In the outflow tract cushion, we observed an increased contribution of cardiac neural crest cells to the mutant cushion mesenchyme, although many cells of the cushion were not derived from neural crest. Thus the enlarged outflow tract cushion of Noggin mutants likely arises by increased contributions both of endocardial cells that have undergone EMT as well as cells that have migrated from the neural crest. These data indicate that antagonism of BMP signaling by Noggin plays a critical role in ensuring proper levels of cell proliferation and EMT during cardiac morphogenesis in the mouse.
Collapse
Affiliation(s)
- Murim Choi
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
310
|
Dunwoodie SL. Combinatorial signaling in the heart orchestrates cardiac induction, lineage specification and chamber formation. Semin Cell Dev Biol 2007; 18:54-66. [PMID: 17236794 DOI: 10.1016/j.semcdb.2006.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The complexity of mammalian cardiogenesis is compounded, as the heart must function in the embryo whilst it is still being formed. Great advances have been made recently as additional cardiac progenitor cell populations have been identified. The induction and maintenance of these progenitors, and their deployment to the developing heart relies on combinatorial molecular signalling, a feature also of cardiac chamber formation. Many forms of congenital heart disease in humans are likely to arise from defects in the early stages of heart development; therefore it is important to understand the molecular pathways that underlie some of the key events that shape the heart during the early stages of it development.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Developmental Biology Program, Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst, NSW, Australia.
| |
Collapse
|
311
|
Xu H, Baldini A. Genetic pathways to mammalian heart development: Recent progress from manipulation of the mouse genome. Semin Cell Dev Biol 2007; 18:77-83. [PMID: 17178242 PMCID: PMC1934561 DOI: 10.1016/j.semcdb.2006.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian heart development requires multiple genetic networks, only some of which are becoming known in all their complexity. Substantial new information has become available thanks to an expanding toolkit that offers more and more mouse gene manipulation options, and that is taking the mouse closer to more powerful invertebrate genetic models. We review examples of recent data with a cardiac-lineage-based view of heart development, especially outflow tract and right ventricle. The medical significance of these studies is not only relevant to congenital heart disease, but also to the biology of cardiac cell regeneration.
Collapse
Affiliation(s)
- Huansheng Xu
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
| | - Antonio Baldini
- Institute of Biosciences and Technology, Texas A&M University System, Houston, TX, 77030
- Department of Biochemistry, University Federico II, and Tigem, Via P. Castellino Naples, Italy
| |
Collapse
|
312
|
Abstract
The heart is the first organ to form and function during vertebrate development and is absolutely essential for life. The left ventricle is derived from the classical primary or first heart field (FHF), while the right ventricle and outflow tract are derived from a distinct second heart field (SHF). The recent discovery of the SHF has raised several fundamental and important questions about how the two heart fields are integrated into a single organ and whether unique molecular programs control the development of the two heart fields. This review briefly highlights the contributions of the SHF to the developing and mature heart and then focuses primarily on our current understanding of the transcriptional pathways that function in the development of the SHF and its derivatives.
Collapse
Affiliation(s)
- Brian L Black
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, Mail Code 2240, University of California, San Francisco, California 94158-2517, USA.
| |
Collapse
|
313
|
Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 2007; 11:723-32. [PMID: 17084363 DOI: 10.1016/j.devcel.2006.10.002] [Citation(s) in RCA: 544] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 09/16/2006] [Accepted: 10/05/2006] [Indexed: 01/06/2023]
Abstract
Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based on the temporal expression of the primitive streak (PS) marker brachyury and Flk-1. Comparable progenitors could also be isolated from head-fold stage embryos. When cultured with cytokines known to function during cardiogenesis, individual cardiovascular progenitors generated colonies that displayed cardiomyocyte, endothelial, and vascular smooth muscle (VSM) potential. Isolation and characterization of this previously unidentified population suggests that the mammalian cardiovascular system develops from multipotential progenitors.
Collapse
Affiliation(s)
- Steven J Kattman
- Department of Gene and Cell Medicine, The Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
314
|
Baravelli M, Borghi A, Rogiani S, Preda L, Quattrociocchi M, Fantoni C, Crupi G, Tiraboschi R. Clinical, anatomopathological and genetic pattern of 10 patients with cervical aortic arch. Int J Cardiol 2007; 114:236-40. [DOI: 10.1016/j.ijcard.2005.12.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/14/2005] [Accepted: 12/07/2005] [Indexed: 10/24/2022]
|
315
|
Gittenberger-de Groot AC, Mahtab EAF, Hahurij ND, Wisse LJ, Deruiter MC, Wijffels MCEF, Poelmann RE. Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system. Anat Rec (Hoboken) 2007; 290:115-22. [PMID: 17441204 DOI: 10.1002/ar.20406] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent advances in the study of cardiac development have shown the relevance of addition of myocardium to the primary myocardial heart tube. In wild-type mouse embryos (E9.5-15.5), we have studied the myocardium at the venous pole of the heart using immunohistochemistry and 3D reconstructions of expression patterns of MLC-2a, Nkx2.5, and podoplanin, a novel coelomic and myocardial marker. Podoplanin-positive coelomic epithelium was continuous with adjacent podoplanin- and MLC-2a-positive myocardium that formed a conspicuous band along the left cardinal vein extending through the base of the atrial septum to the posterior myocardium of the atrioventricular canal, the atrioventricular nodal region, and the His-Purkinje system. Later on, podoplanin expression was also found in the myocardium surrounding the pulmonary vein. On the right side, podoplanin-positive cells were seen along the right cardinal vein, which during development persisted in the sinoatrial node and part of the venous valves. In the MLC-2a- and podoplanin-positive myocardium, Nkx2.5 expression was absent in the sinoatrial node and the wall of the cardinal veins. There was a mosaic positivity in the wall of the common pulmonary vein and the atrioventricular conduction system as opposed to the overall Nkx2.5 expression seen in the chamber myocardium. We conclude that we have found podoplanin as a marker that links a novel Nkx2.5-negative sinus venosus myocardial area, which we refer to as the posterior heart field, with the cardiac conduction system.
Collapse
|
316
|
Zhu H, Wlodarczyk BJ, Scott M, Yu W, Merriweather M, Gelineau-van Waes J, Schwartz RJ, Finnell RH. Cardiovascular abnormalities inFolr1 knockout mice and folate rescue. ACTA ACUST UNITED AC 2007; 79:257-68. [PMID: 17286298 DOI: 10.1002/bdra.20347] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Periconceptional folic acid supplementation is widely believed to aid in the prevention of neural tube defects (NTDs), orofacial clefts, and congenital heart defects. Folate-binding proteins or receptors serve to bind folic acid and 5-methyltetrahydrofolate, representing one of the two major mechanisms of cellular folate uptake. METHODS We herein describe abnormal cardiovascular development in mouse fetuses lacking a functional folate-binding protein gene (Folr1). We also performed a dose-response study with folinic acid and determined the impact of maternal folate supplementation on Folr1 nullizygous cardiac development. RESULTS Partially rescued preterm Folr1(-/-) (formerly referred to as Folbp1) fetuses were found to have outflow tract defects, aortic arch artery abnormalities, and isolated dextracardia. Maternal supplementation with folinic acid rescued the embryonic lethality and the observed cardiovascular phenotypes in a dose-dependant manner. Maternal genotype exhibited significant impact on the rescue efficiency, suggesting an important role of in utero folate status in embryonic development. Abnormal heart looping was observed during early development of Folr1(-/-) embryos partially rescued by maternal folinic acid supplementation. Migration pattern of cardiac neural crest cells, genetic signals in pharyngeal arches, and the secondary heart field were also found to be affected in the mutant embryos. CONCLUSIONS Our observations suggest that the beneficial effect of folic acid for congenital heart defects might be mediated via its impact on neural crest cells and by gene regulation of signaling pathways involved in the development of the pharyngeal arches and the secondary heart field.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
317
|
|
318
|
Kelly RG, Papaioannou VE. Visualization of outflow tract development in the absence ofTbx1 using anFgF10 enhancer trap transgene. Dev Dyn 2007; 236:821-8. [PMID: 17238155 DOI: 10.1002/dvdy.21063] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tbx1, the major gene underlying del22q11.2 or DiGeorge syndrome in humans, is required for normal development and septation of the cardiac outflow tract. The fibroblast growth factor 10 gene (Fgf10) and an Fgf10 enhancer trap transgene are expressed in outflow tract myocardial progenitor cells of the anterior heart field. To visualize outflow tract development in the absence of Tbx1, we have analyzed the expression profile of the Fgf10 enhancer trap transgene during outflow tract development in Tbx1(-/-) embryos. Transgene expression confirms hypoplasia of the distal outflow tract in the absence of Tbx1, and altered expression in pharyngeal mesoderm reveals loss of specific bilateral subpopulations of outflow tract progenitor cells and disruption of the posterior boundary of the anterior heart field. Our results support the conclusion that Tbx1 controls deployment of Fgf10-expressing progenitor cells during heart tube extension. Furthermore, although normal Fgf10 levels are dependent on Tbx1, loss of Fgf10 alleles does not significantly modify the cardiac phenotype of Tbx1 heterozygous or homozygous mutant embryos.
Collapse
Affiliation(s)
- Robert G Kelly
- Department of Genetics and Development, Columbia University, New York, NY, USA.
| | | |
Collapse
|
319
|
Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, Chen J, Evans SM. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 2006; 304:286-96. [PMID: 17258700 PMCID: PMC2582044 DOI: 10.1016/j.ydbio.2006.12.048] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/08/2006] [Accepted: 12/15/2006] [Indexed: 11/30/2022]
Abstract
Islet1 (Isl1) is a LIM homedomain protein that plays a pivotal role in cardiac progenitors of the second heart field. Here, lineage studies with an inducible isl1-cre demonstrated that most Isl1 progenitors have migrated into the heart by E9. Although Isl1 expression is downregulated in most cardiac progenitors as they differentiate, analysis of an isl1-nlacZ mouse and coimmunostaining for Isl1 and lineage markers demonstrated that Isl1 is expressed in distinct subdomains of the heart, and in diverse cardiovascular lineages. Isl1 expression was observed in myocardial lineages of the distal outflow tract, atrial septum, and in sinoatrial and atrioventricular node. The myocardialized septum of the outflow tract was found to derive from Isl1 expressing cells. Isl1 expressing cells also contribute to endothelial and vascular smooth muscle lineages including smooth muscle of the coronary vessels. Our data indicate that Isl1 is a specific marker for a subset of pacemaker cells at developmental stages examined, and suggest genetic heterogeneity within the central conduction system and coronary smooth muscle. Our studies suggest a role for Isl1 in these distinct domains of expression within the heart.
Collapse
Affiliation(s)
- Yunfu Sun
- Skaggs School of Pharmacy, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
320
|
Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 2006; 127:1151-65. [PMID: 17123592 DOI: 10.1016/j.cell.2006.10.029] [Citation(s) in RCA: 739] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 09/26/2006] [Accepted: 10/20/2006] [Indexed: 01/08/2023]
Abstract
Cardiogenesis requires the generation of endothelial, cardiac, and smooth muscle cells, thought to arise from distinct embryonic precursors. We use genetic fate-mapping studies to document that isl1(+) precursors from the second heart field can generate each of these diverse cardiovascular cell types in vivo. Utilizing embryonic stem (ES) cells, we clonally amplified a cellular hierarchy of isl1(+) cardiovascular progenitors, which resemble the developmental precursors in the embryonic heart. The transcriptional signature of isl1(+)/Nkx2.5(+)/flk1(+) defines a multipotent cardiovascular progenitor, which can give rise to cells of all three lineages. These studies document a developmental paradigm for cardiogenesis, where muscle and endothelial lineage diversification arises from a single cell-level decision of a multipotent isl1(+) cardiovascular progenitor cell (MICP). The discovery of ES cell-derived MICPs suggests a strategy for cardiovascular tissue regeneration via their isolation, renewal, and directed differentiation into specific mature cardiac, pacemaker, smooth muscle, and endothelial cell types.
Collapse
Affiliation(s)
- Alessandra Moretti
- Massachusetts General Hospital - Cardiovascular Research Center, Charles River Plaza/CPZN 3208, 185 Cambridge Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
321
|
Vong L, Bi W, O'Connor-Halligan KE, Li C, Cserjesi P, Schwarz JJ. MEF2C is required for the normal allocation of cells between the ventricular and sinoatrial precursors of the primary heart field. Dev Dyn 2006; 235:1809-21. [PMID: 16680724 DOI: 10.1002/dvdy.20828] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeted deletion of the mef2c gene results in a small left ventricle and complete loss of the right ventricle (Lin et al. [1997] Science 276:1404-1407). Absence of the right ventricle is from defective differentiation of cells from the secondary heart field. Our studies of the dysmorphogenesis of the left ventricle uncovered morphological and transcriptional abnormalities at the transition from the cardiac crescent to the linear-tube stage heart. Use of the cgata6LacZ transgene demonstrated that lacZ-positive cells, which normally mark the precursors to the atrioventricular canal and adjacent regions of the left ventricle and atria, remain in the sinoatrial region of the mutant. This, along with the absence of a morphologically distinct atrioventricular canal, indicates a misapportioning of cells between the inflow and outflow segments. The underlying genetic program was also affected with altered expression of mlc2a, mlc2v, and irx4 in outflow segment precursors of the primary heart field. In addition, the sinoatrial-enriched transcription factor, tbx5, was ectopically expressed in the primitive ventricle and ventricle-specific splicing of mef2b was lost, suggesting that the mutant ventricle had acquired atrial-specific characteristics. Collectively, these results suggest a fundamental role of MEF2C in ventricular cardiomyocyte differentiation and apportioning of cells between inflow and outflow precursors in the primary heart field.
Collapse
Affiliation(s)
- Linh Vong
- Center for Cardiovascular Sciences, Albany Medical Center, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
322
|
Restivo A, Piacentini G, Placidi S, Saffirio C, Marino B. Cardiac outflow tract: a review of some embryogenetic aspects of the conotruncal region of the heart. ACTA ACUST UNITED AC 2006; 288:936-43. [PMID: 16892424 DOI: 10.1002/ar.a.20367] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A review concerning some embryogenetic aspects of the cardiac outflow tract is presented. Two main topics are discussed: the truncal septation and the secondary heart field. In the context of the septation of the truncus arteriosus, the development of the arterial valves is largely discussed, particularly in reference to the sinuses of Valsalva. Emphasis is also given to the fate of the external myocardial wall of the truncus arteriosus, as this primordial myocardial surface disappears later in the development. Molecular genetics data concerning Sox4 and NF-Atc transcription factors are correlated in the present review with rare forms of truncus malformations encountered in human pathology. The roles exerted by the secondary heart field and the neural crest on the development and growth of the conotruncal musculature are largely discussed. Reported experimental ablations of both secondary heart field and neural crest, showed conotruncal defects such as persistent truncus arteriosus, tetralogy of Fallot, and double-outlet right ventricle, which were considered as the result of a short outflow tract causing, ultimately, a lack of conotruncal rotation. In this regard, some morphologic correlations are carried out, in the present review, between these experimental animal models and human malformations, and it is thought that this sort of conotruncal defects cannot be explained always in terms of conotruncal hypoplasia. Finally, influence of Pitx2c, a left-right laterality signaling gene, on the modulation of the conotruncal rotation, as most recently reported, is emphasized in terms of very likely multifactorial contributions in the embryogenesis of the conotruncal region of the heart.
Collapse
Affiliation(s)
- Angelo Restivo
- Pediatric Cardiology, Department of Pediatrics, University of Rome La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
323
|
Visconti RP, Markwald RR. Recruitment of New Cells into the Postnatal Heart: Potential Modification of Phenotype by Periostin. Ann N Y Acad Sci 2006; 1080:19-33. [PMID: 17132772 DOI: 10.1196/annals.1380.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Establishment of the circulatory system occurs very early in development to support the rapid growth of the embryo. Therefore, the heart is the first functional organ to be formed during both avian and mammalian development. Historically, cardiac development has been considered to occur only during embryogenesis from cell sources located within the primordial structures that generate the myocardium and associated coronary vascular endothelium and smooth muscle and cardiac fibroblasts. Recently, however, contribution to the cardiac structures has been demonstrated to occur during embryonic development from extracardiac sources, like the anterior heart field, raising questions as to whether cardiogenesis may be an ongoing process that extends into adult life. In this brief article, we describe the contribution of circulating adult bone marrow hematopoietic stem cells to the cardiac cell populations and the potential regulation of their differentiation by the extracellular matrix protein, periostin.
Collapse
Affiliation(s)
- Richard P Visconti
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, CRI605 Charleston, SC 29425, USA
| | | |
Collapse
|
324
|
Aggarwal VS, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanske A, Campione M, Morrow BE. Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet 2006; 15:3219-28. [PMID: 17000704 DOI: 10.1093/hmg/ddl399] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 22q11 deletion syndrome (22q11DS) is characterized by abnormal development of the pharyngeal apparatus. Mouse genetic studies have identified Tbx1 as a key gene in the etiology of the syndrome, in part, via interaction with the fibroblast growth factor (Fgf) genes. Three murine Fgfs, Fgf3, Fgf8 and Fgf10 are coexpressed in different combinations with Tbx1. They are all strongly downregulated in Tbx1-/- embryos, implicating epistatic interactions. Supporting this, Tbx1 and Fgf8 have been shown to genetically interact in the development of the fourth pharyngeal arch artery (PAA) and Fgf10 was identified to be a direct downstream target of Tbx1. To dissect the epistatic relationships of these genes during embryonic development and the molecular pathogenesis of the Tbx1 mutant phenotype, we generated Fgf10+/-;Tbx1+/- and Fgf3-/-;Tbx1+/- mice. Despite strong hypotheses that Fgf10 is the key gene downstream of Tbx1 in the development of the anterior heart field, we do not find evidence for genetic interaction between Tbx1 and Fgf10. Also, the Fgf3-/-;Tbx1+/- mutant mice do not show an additive phenotype. Furthermore, more severe defects do not occur in Fgf8+/-;Tbx1+/- mutants by crossing in the Fgf3 null allele. There is a possible additive effect only in PAA remodeling in the Fgf10+/-;Tbx1+/-;Fgf8+/- embryos. Our findings underscore the importance of potential functional redundancy with additional Fgfs in the development of the pharyngeal apparatus and cardiovascular system via Tbx1. This redundancy should be considered when looking at individual FGF genes as modifiers of 22q11DS.
Collapse
Affiliation(s)
- Vimla S Aggarwal
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
325
|
Luo Y, High FA, Epstein JA, Radice GL. N-cadherin is required for neural crest remodeling of the cardiac outflow tract. Dev Biol 2006; 299:517-28. [PMID: 17014840 PMCID: PMC1866362 DOI: 10.1016/j.ydbio.2006.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 08/24/2006] [Accepted: 09/05/2006] [Indexed: 01/09/2023]
Abstract
Cardiac neural crest cells undergo extensive cell rearrangements during the formation of the aorticopulmonary septum in the outflow tract. However, the morphogenetic mechanisms involved in this fundamental process remain poorly understood. To determine the function of the Ca2+-dependent cell adhesion molecule, N-cadherin, in murine neural crest, we applied the Cre/loxP system and created mouse embryos genetically mosaic for N-cadherin. Specifically, deletion of N-cadherin in neural crest cells led to embryonic lethality with distinct cardiovascular defects. Neural crest cell migration and homing to the cardiac outflow tract niche were unaffected by loss of N-cadherin. However, N-cadherin-deficient neural crest cells were unable to undergo the normal morphogenetic changes associated with outflow tract remodeling, resulting in persistent truncus arteriosus in the majority of mutant embryos. Other mutant embryos initiated aorticopulmonary septum formation; however, the neural crest cells were unable to elongate and align properly along the midline and remained rounded with limited contact with their neighbors. Interestingly, rotation of the outflow tract was incomplete in these mutants suggesting that alignment of the channels is dependent on N-cadherin-generated cytoskeletal forces. A second cardiac phenotype was observed where loss of N-cadherin in the epicardium led to disruption of heterotypic cell interactions between the epicardium and myocardium resulting in a thinned ventricular myocardium. Thus, we conclude that in addition to its role in myocardial cell adhesion, N-cadherin is required for neural crest cell rearrangements critical for patterning of the cardiac outflow tract and in the maintenance of epicardial-myocardial cell interactions.
Collapse
Affiliation(s)
- Yang Luo
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- Cardiovascular Institute, Department of Medicine and the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Frances A. High
- Cardiovascular Institute, Department of Medicine and the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Jonathan A. Epstein
- Cardiovascular Institute, Department of Medicine and the Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Glenn L. Radice
- Center for Research on Reproduction and Women’s Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
- #Correspondence to: Dr. Glenn Radice, Center for Research on Reproduction and Women’s Health, University of Pennsylvania, 1355 Biomedical Research Building II/III, 421 Curie Blvd., Philadelphia, PA 19104, Tel: (215) 898-0164, Fax: (215) 573-5408, e-mail:
| |
Collapse
|
326
|
Ai D, Liu W, Ma L, Dong F, Lu MF, Wang D, Verzi MP, Cai C, Gage PJ, Evans S, Black BL, Brown NA, Martin JF. Pitx2 regulates cardiac left-right asymmetry by patterning second cardiac lineage-derived myocardium. Dev Biol 2006; 296:437-49. [PMID: 16836994 PMCID: PMC5851592 DOI: 10.1016/j.ydbio.2006.06.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/01/2006] [Accepted: 06/01/2006] [Indexed: 11/28/2022]
Abstract
Current models of left-right asymmetry hold that an early asymmetric signal is generated at the node and transduced to lateral plate mesoderm in a linear signal transduction cascade through the function of the Nodal signaling molecule. The Pitx2 homeobox gene functions at the final stages of this cascade to direct asymmetric morphogenesis of selected organs including the heart. We previously showed that Pitx2 regulated an asymmetric pathway that was independent of cardiac looping suggesting a second asymmetric cardiac pathway. It has been proposed that in the cardiac outflow tract Pitx2 functions in both cardiac neural crest, as a target of canonical Wnt-signaling, and in the mesoderm-derived cardiac second lineage. We used fate mapping, conditional loss of function, and chimera analysis in mice to investigate the role of Pitx2 in outflow tract morphogenesis. Our findings reveal that Pitx2 is dispensable in the cardiac neural crest but functions in second lineage myocardium revealing that this cardiac progenitor field is patterned asymmetrically.
Collapse
Affiliation(s)
- Di Ai
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Wei Liu
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Lijiang Ma
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Feiyan Dong
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Mei-Fang Lu
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Degang Wang
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| | - Michael P. Verzi
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2240, USA
| | - Chenleng Cai
- Institute of Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philip J. Gage
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvia Evans
- Institute of Molecular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian L. Black
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-2240, USA
| | - Nigel A. Brown
- Division of Basic Medical Sciences, St. George’s Hospital Medical School, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - James F. Martin
- Institute of Biosciences and Technology, Texas A and M System, Health Science Center, 2121 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
327
|
Kruithof BPT, van Wijk B, Somi S, Kruithof-de Julio M, Pérez Pomares JM, Weesie F, Wessels A, Moorman AFM, van den Hoff MJB. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 2006; 295:507-22. [PMID: 16753139 DOI: 10.1016/j.ydbio.2006.03.033] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/17/2006] [Accepted: 03/22/2006] [Indexed: 11/28/2022]
Abstract
Proepicardial cells give rise to epicardium, coronary vasculature and cardiac fibroblasts. The proepicardium is derived from the mesodermal lining of the prospective pericardial cavity that simultaneously contributes myocardium to the venous pole of the elongating primitive heart tube. Using proepicardial explant cultures, we show that proepicardial cells have the potential to differentiate into cardiac muscle cells, reflecting the multipotency of this pericardial mesoderm. The differentiation into the myocardial or epicardial lineage is mediated by the cooperative action of BMP and FGF signaling. BMP2 is expressed in the distal IFT myocardium and stimulates cardiomyocyte formation. FGF2 is expressed in the proepicardium and stimulates differentiation into the epicardial lineage. In the base of the proepicardium, coexpression of BMP2 and FGF2 inhibits both myocardial and epicardial differentiation. We conclude that the epicardial/myocardial lineage decisions are mediated by an extrinsic, inductive mechanism, which is determined by the position of the cells in the pericardial mesoderm.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Experimental and Molecular Cardiology Group, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Hutson MR, Zhang P, Stadt HA, Sato AK, Li YX, Burch J, Creazzo TL, Kirby ML. Cardiac arterial pole alignment is sensitive to FGF8 signaling in the pharynx. Dev Biol 2006; 295:486-97. [PMID: 16765936 DOI: 10.1016/j.ydbio.2006.02.052] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/21/2006] [Accepted: 02/27/2006] [Indexed: 11/26/2022]
Abstract
Morphogenesis of the cardiac arterial pole is dependent on addition of myocardium and smooth muscle from the secondary heart field and septation by cardiac neural crest cells. Cardiac neural crest ablation results in persistent truncus arteriosus and failure of addition of myocardium from the secondary heart field leading to malalignment of the arterial pole with the ventricles. Previously, we have shown that elevated FGF signaling after neural crest ablation causes depressed Ca2+ transients in the primary heart tube. We hypothesized that neural crest ablation results in elevated FGF8 signaling in the caudal pharynx that disrupts secondary heart field development. In this study, we show that FGF8 signaling is elevated in the caudal pharynx after cardiac neural crest ablation. In addition, treatment of cardiac neural crest-ablated embryos with FGF8b blocking antibody or an FGF receptor blocker rescues secondary heart field myocardial development in a time- and dose-dependent manner. Interestingly, reduction of FGF8 signaling in normal embryos disrupts myocardial secondary heart field development, resulting in arterial pole malalignment. These results indicate that the secondary heart field myocardium is particularly sensitive to FGF8 signaling for normal conotruncal development, and further, that cardiac neural crest cells modulate FGF8 signaling in the caudal pharynx.
Collapse
Affiliation(s)
- Mary R Hutson
- Neonatal-Perinatal Research Institute, Division of Neonatology, Department of Pediatrics, Box 3179, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
329
|
Seo S, Kume T. Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev Biol 2006; 296:421-36. [PMID: 16839542 DOI: 10.1016/j.ydbio.2006.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/21/2006] [Accepted: 06/05/2006] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that Foxc1 and Foxc2, closely related Fox transcription factors, have interactive roles in cardiovascular development. However, little is known about their functional overlap during early heart morphogenesis. Here, we show that Foxc genes are coexpressed in a novel heart field, the second heart field, as well as the cardiac neural crest cells (NCCs), endocardium, and proepicardium. Notably, compound Foxc1; Foxc2 mutants have a wide spectrum of cardiac abnormalities, including hypoplasia or lack of the outflow tract (OFT) and right ventricle as well as the inflow tract, dysplasia of the OFT and atrioventricular cushions, and abnormal formation of the epicardium, in a dose-dependent manner. Most importantly, in the second heart field, compound mutants exhibit significant downregulation of Tbx1 and Fgf8/10 and a reduction in cell proliferation. Moreover, NCCs in compound mutants show extensive apoptosis during migration, leading to a failure of the OFT septation. Taken together, our results demonstrate that Foxc1 and Foxc2 play pivotal roles in the early processes of heart development, especially acting upstream of the Tbx1-FGF cascade during the morphogenesis of the OFT.
Collapse
Affiliation(s)
- Seungwoon Seo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 332 PRB, 2220 Pierce Ave, Nashville, TN 37232-6300, USA
| | | |
Collapse
|
330
|
Abstract
Although there have been important advances in diagnostic modalities and therapeutic strategies for congenital heart defects (CHD), these malformations still lead to significant morbidity and mortality in the human population. Over the past 10 years, characterization of the genetic causes of CHD has begun to elucidate some of the molecular causes of these defects. Linkage analysis and candidate-gene approaches have been used to identify gene mutations that are associated with both familial and sporadic cases of CHD. Complementation of the human studies with developmental studies in mouse models provides information for the roles of these genes in normal development as well as indications for disease pathogenesis. Biochemical analysis of these gene mutations has provided further insight into the molecular effects of these genetic mutations. Here we review genetic, developmental, and biochemical studies of six cardiac transcription factors that have been identified as genetic causes for CHD in humans.
Collapse
Affiliation(s)
- Krista L Clark
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
331
|
Sato M, Tsai HJ, Yost HJ. Semaphorin3D regulates invasion of cardiac neural crest cells into the primary heart field. Dev Biol 2006; 298:12-21. [PMID: 16860789 DOI: 10.1016/j.ydbio.2006.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 11/25/2022]
Abstract
The primary heart field in all vertebrates is thought to be derived exclusively from lateral plate mesoderm (LPM), which gives rise to a cardiac tube shortly after gastrulation. The heart tube then begins looping and additional cells are added from other embryonic regions, including the secondary heart field, cardiac neural crest and the proepicardial organ. Here we show in zebrafish that neural crest cells invade and contribute cardiac myosin light chain2 (cmlc2)-positive cardiomyocytes to the primary heart field. Knockdown of semaphorin3D, which is expressed in the neural crest but apparently not in LPM, reduces the size of the primary heart field and the number of cardiomyocytes in the primary heart field by 20% before formation of the primary heart tube. Sema3D morphants have subsequent complex congenital heart defects, including hypertrophic cardiomyocytes, decreased ventricular size and defects in trabeculation and in atrioventricular (AV) valve development. Neuropilin1A, a semaphorin receptor, is expressed in LPM but apparently not in the neural crest, and nrp1A morphants have cardiac development defects. We propose that a population of sema3D-dependent neural crest cells follow a novel migratory pathway, perhaps toward nrp1A-expressing LPM, and serve as an important early source of cardiomyocytes in the primary heart field.
Collapse
Affiliation(s)
- Mariko Sato
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
332
|
Restivo A, Sarkozy A, Digilio MC, Dallapiccola B, Marino B. 22q11 deletion syndrome: a review of some developmental biology aspects of the cardiovascular system. J Cardiovasc Med (Hagerstown) 2006; 7:77-85. [PMID: 16645366 DOI: 10.2459/01.jcm.0000203848.90267.3e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The morphology and molecular genetics of the 22q11 deletion syndrome cardiovascular anomalies are reviewed. Special emphasis is given to TBX1, recently identified and considered to be the potential key gene for this clinical syndrome. The TBX1 downstream molecular pathways modulating the normal development of the pharyngeal apparatus are also discussed, and emphasis is given to the possible, equally fundamental role of downstream molecular pathway disruption in causing the clinical 22q11 deletion phenotype features.
Collapse
Affiliation(s)
- Angelo Restivo
- Department of Paediatrics, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
333
|
Männer J. Extracardiac tissues and the epigenetic control of myocardial development in vertebrate embryos. Ann Anat 2006; 188:199-212. [PMID: 16711159 DOI: 10.1016/j.aanat.2006.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the past few years, research on the developing cardiovascular system has given new insights into the origin and development of the myocardium in vertebrate embryos. In the present paper, a review is given on our current knowledge about two aspects of myocardial development that have been found to depend on signals from extracardiac tissues. These two aspects are, firstly, the development of the so-called heart-forming fields and, secondly, the morphogenesis of the outer compact layer of the myocardial wall.
Collapse
Affiliation(s)
- Jörg Männer
- Abteilung Anatomie und Embryologie, Georg-August-Universität zu Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| |
Collapse
|
334
|
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 2006; 103:4753-8. [PMID: 16537386 PMCID: PMC1450242 DOI: 10.1073/pnas.0509378103] [Citation(s) in RCA: 356] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca(2+) sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca(2+) transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca(2+) waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo.
Collapse
Affiliation(s)
- Yvonne N. Tallini
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Masamichi Ohkura
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka 882-8508, Japan; Departments of
| | | | - Guangju Ji
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Keiji Imoto
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Robert Doran
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jane Lee
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | | | - Jason Wilson
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Hong-Bo Xin
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Atsushi Sanbe
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - James Gulick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - John Mathai
- **Medicine, University of Pittsburgh School of Medicine, Room S 314 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | | | - Junichi Nakai
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Michael I. Kotlikoff
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
335
|
Martinsen BJ, Neumann AN, Frasier AJ, Baker CVH, Krull CE, Lohr JL. PINCH-1 expression during early avian embryogenesis: implications for neural crest and heart development. Dev Dyn 2006; 235:152-62. [PMID: 16258920 DOI: 10.1002/dvdy.20616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The invasion of the cardiac neural crest (CNC) into the outflow tract (OFT) and subsequent OFT septation are critical events during vertebrate heart development. We previously had performed four modified differential display (DD) screens in the chick embryo to identify genes that may be involved in CNC and heart development. Full-length sequence of one of the DD clones has been obtained and identified as chick PINCH-1. This particularly interesting new cysteine-histidine-rich protein contains five protein-binding LIM domains (five double zinc fingers), a nuclear localization signal, and a nuclear export signal, allowing it to participate in integrin and growth factor signaling and possibly act as a transcription factor. We show here for the first time that chick PINCH-1 is expressed in neural crest cells, both in the neural fold and cardiac OFT, and is also expressed in mesoderm derived-structures, including the myocardium, during avian embryogenesis. The normal expression pattern and overexpression in neural crest cell explants suggest that PINCH-1 may be a regulator of neural crest cell adhesion and migration.
Collapse
Affiliation(s)
- Brad J Martinsen
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
336
|
Moreno-Rodriguez RA, Krug EL, Reyes L, Villavicencio L, Mjaatvedt CH, Markwald RR. Bidirectional fusion of the heart-forming fields in the developing chick embryo. Dev Dyn 2006; 235:191-202. [PMID: 16252277 PMCID: PMC1855217 DOI: 10.1002/dvdy.20601] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory "butterfly"-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a bi-conal heart. A theoretical role of the ventral fusion line acting as a "heart organizer" and its role in cardia bifida is discussed.
Collapse
Affiliation(s)
- R A Moreno-Rodriguez
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | |
Collapse
|
337
|
Maeda J, Yamagishi H, McAnally J, Yamagisihi C, Srivastava D. Tbx1 is regulated by forkhead proteins in the secondary heart field. Dev Dyn 2006; 235:701-10. [PMID: 16444712 PMCID: PMC3316489 DOI: 10.1002/dvdy.20686] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transcriptional regulation in a tissue-specific and quantitative manner is essential for developmental events, including those involved in cardiovascular morphogenesis. Tbx1 is a T-box-containing transcription factor that is responsible for many of the defects observed in 22q11 deletion syndrome in humans. Tbx1 is expressed in the secondary heart field (SHF) and is essential for cardiac outflow tract (OFT) development. We previously reported that Tbx1 is regulated by sonic hedgehog by means of forkhead (Fox) transcription factors in the head mesenchyme and pharyngeal endoderm, but how it is regulated in the SHF is unknown. Here, we show that Tbx1 expression in the SHF is regulated by Fox proteins through a combination of two evolutionarily conserved Fox binding sites in a dose-dependent manner. Cell fate analysis using the Tbx1 enhancer suggests that SHF-derived Tbx1-expressing cells contribute extensively to the right ventricular myocardium as well as the OFT during early development and ultimately give rise to the right ventricular infundibulum, pulmonary trunk, and pulmonary valves. These results suggest that Fox proteins are involved in most, if not all, Tbx1 expression domains and that Tbx1 marks a subset of SHF-derived cells, particularly those that uniquely contribute to the right-sided outflow tract and proximal pulmonary artery.
Collapse
Affiliation(s)
- Jun Maeda
- Department of Pediatrics, Division of Pediatric Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, TX
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Division of Pediatric Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, TX
| | - John McAnally
- Department of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, TX
| | - Chihiro Yamagisihi
- Department of Pediatrics, Division of Pediatric Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, TX
| | - Deepak Srivastava
- Department of Pediatrics and Molecular Biology, University of Texas Southwestern Medical Center, TX
| |
Collapse
|
338
|
Epstein JA, Parmacek MS. Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation 2006; 112:592-7. [PMID: 16043659 DOI: 10.1161/circulationaha.104.479857] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jonathan A Epstein
- Molecular Cardiology Research Center, Penn Cardiovascular Institute, University of Pennsylvania Health System, Philadelphia, USA.
| | | |
Collapse
|
339
|
Bajolle F, Zaffran S, Kelly RG, Hadchouel J, Bonnet D, Brown NA, Buckingham ME. Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 2006; 98:421-8. [PMID: 16397144 DOI: 10.1161/01.res.0000202800.85341.6e] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Congenital heart defects frequently involve a failure of outflow tract (OFT) formation during development. We analyzed the remodeling of the OFT, using the y96-Myf5-nlacZ-16 transgene, which marks a subpopulation of myocardial cells of the pulmonary trunk. Expression analyses of reporter transcript and protein suggest that the myocardial wall of the OFT rotates before and during the formation of the great arteries. Rotational movement was confirmed by Di-I injection experiments with cultured embryos. We subsequently examined the expression of the transgene in mouse models for OFT defects. In hearts with persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), or transposition of the great arteries, rotation of the myocardial wall of the OFT is arrested or fails to initiate. This is observed in Splotch (Pax3) mutants with PTA or DORV and may be a result of defects in neural crest migration, known to affect OFT septation. However, in Pitx2deltac mutant embryos, where cardiac neural crest cells are present in the heart, PTA and DORV are again associated with a rotation defect. This is also seen in Pitx2deltac mutants, which have transposition of the great arteries. Because Pitx2c is involved in left-right signaling, these results suggest that embryonic laterality affects rotation of the myocardial wall during OFT maturation. We propose that failure of normal rotation of OFT myocardium may underlie major forms of congenital heart disease.
Collapse
Affiliation(s)
- Fanny Bajolle
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, Paris, France
| | | | | | | | | | | | | |
Collapse
|
340
|
Abstract
Unraveling the complex tissue interactions necessary to generate the structural and functional diversity present among craniofacial muscles is challenging. These muscles initiate their development within a mesenchymal population bounded by the brain, pharyngeal endoderm, surface ectoderm, and neural crest cells. This set of spatial relations, and in particular the segmental properties of these adjacent tissues, are unique to the head. Additionally, the lack of early epithelialization in head mesoderm necessitates strategies for generating discrete myogenic foci that may differ from those operating in the trunk. Molecular data indeed indicate dissimilar methods of regulation, yet transplantation studies suggest that some head and trunk myogenic populations are interchangeable. The first goal of this review is to present key features of these diversities, identifying and comparing tissue and molecular interactions regulating myogenesis in the head and trunk. Our second focus is on the diverse morphogenetic movements exhibited by craniofacial muscles. Precursors of tongue muscles partly mimic migrations of appendicular myoblasts, whereas myoblasts destined to form extraocular muscles condense within paraxial mesoderm, then as large cohorts they cross the mesoderm:neural crest interface en route to periocular regions. Branchial muscle precursors exhibit yet another strategy, establishing contacts with neural crest populations before branchial arch formation and maintaining these relations through subsequent stages of morphogenesis. With many of the prerequisite stepping-stones in our knowledge of craniofacial myogenesis now in place, discovering the cellular and molecular interactions necessary to initiate and sustain the differentiation and morphogenesis of these neglected craniofacial muscles is now an attainable goal.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
341
|
Ward C, Stadt H, Hutson M, Kirby ML. Ablation of the secondary heart field leads to tetralogy of Fallot and pulmonary atresia. Dev Biol 2005; 284:72-83. [PMID: 15950213 DOI: 10.1016/j.ydbio.2005.05.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/22/2005] [Accepted: 05/04/2005] [Indexed: 11/23/2022]
Abstract
Recent studies in chick and mouse embryos have identified a previously unrecognized secondary heart field (SHF), located in the ventral midline splanchnic mesenchyme, which provides additional myocardial cells to the outflow tract as the heart tube lengthens during cardiac looping. In order to further delineate the contribution of this secondary myocardium to outflow development, we labeled the right SHF of Hamburger-Hamilton (HH) stage 14 chick embryos via microinjection of DiI/rhodamine and followed the fluorescently labeled cells over a 96-h time period. These experiments confirmed the movement of the SHF into the outflow and its spiraling migration distally, with the right side of the SHF contributing to the left side of the outflow. In contrast, when the right SHF was labeled at HH18, the fluorescence was limited to the caudal wall of the lengthening aortic sac. We then injected a combination of DiI and neutral red dye, and ablated the SHF in HH14 or 18 chick embryos. Embryos were allowed to develop until day 9, and harvested for assessment of outflow alignment. Of the embryos ablated at HH14, 76% demonstrated cardiac defects including overriding aorta and pulmonary atresia, while none of the sham-operated controls were affected. In addition, the more severely affected embryos demonstrated coronary artery anomalies. The embryos ablated at HH18 also manifested coronary artery anomalies but maintained normal outflow alignment. Therefore, the myocardium added to the outflow by the SHF at earlier stages is required for the elongation and appropriate alignment of the outflow tract. However, at later stages, the SHF contributes to the smooth muscle component of the outflow vessels above the pulmonary and aortic valves which is important for the development of the coronary artery stems. This work suggests a role for the SHF in a subset of congenital heart defects that have overriding aorta and coronary artery anomalies, such as tetralogy of Fallot and double outlet right ventricle.
Collapse
Affiliation(s)
- Cary Ward
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
342
|
Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005; 6:826-35. [PMID: 16304598 DOI: 10.1038/nrg1710] [Citation(s) in RCA: 871] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiogenesis is an exquisitely sensitive process. Any perturbation in the cells that contribute to the building of the heart leads to cardiac malformations, which frequently result in the death of the embryo. Previously, the myocardium was thought to be derived from a single source of cells. However, the recent identification of a second source of myocardial cells that make an important contribution to the cardiac chambers has modified the classical view of heart formation. It also has an important influence on the interpretation of mutant phenotypes in the mouse, with consequences for the classification and prognosis of human congenital heart defects.
Collapse
Affiliation(s)
- Margaret Buckingham
- Department of Developmental Biology, CNRS URA 2578, Pasteur Institute, 25 Rue du Dr Roux, 75015 Paris, France.
| | | | | |
Collapse
|
343
|
Mjaatvedt CH, Kern CB, Norris RA, Fairey S, Cave CL. Normal distribution of melanocytes in the mouse heart. ACTA ACUST UNITED AC 2005; 285:748-57. [PMID: 15977222 DOI: 10.1002/ar.a.20210] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report the consistent distribution of a population of pigmented trp-1-positive cells in several important septal and valvular structures of the normal mouse (C57BL/6) heart. The pigmented cell population was first apparent by E16.5 p.c. in the right atrial wall and extended into the atrium along the interatrial septum. By E17.5, these cells were found along the apical membranous interventricular septum near or below the surface of the endocardium. The most striking distribution of dark pigmented cells was found in the tricuspid and mitral valvular leaflets and chordae tendineae. The normal distribution of pigmented cells in the valvuloseptal apparatus of C57BL/6 adult heart suggests that a premelanocytic lineage may participate in the earlier morphogenesis of the valve leaflets and chordae tendineae. The origin of the premelanocyte lineage is currently unknown. The most likely candidate populations include the neural crest and the epicardially derived cells. The only cell type in the heart previously shown to form melanocytes is the neural crest. The presence of neural crest cells, but not melanocytes, in some of the regions we describe has been reported by others. However, previous reports have not shown a contribution of melanocytes or neural crest derivatives to the atrioventricular valve leaflets or chordae tendineae in mouse hearts. If these cells are of neural crest origin, it would suggest a possibly greater contribution and persistence of neural crest cells to the valvuloseptal apparatus than has been previously understood.
Collapse
Affiliation(s)
- Corey H Mjaatvedt
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
344
|
Latacha KS, Rémond MC, Ramasubramanian A, Chen AY, Elson EL, Taber LA. Role of actin polymerization in bending of the early heart tube. Dev Dyn 2005; 233:1272-86. [PMID: 15986456 DOI: 10.1002/dvdy.20488] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During cardiac c-looping, the heart transforms from a straight tube into a c-shaped tube, presenting the first evidence of left-right asymmetry in the embryo. C-looping consists of two primary deformation components: ventral bending and dextral rotation. This study examines the role of actin polymerization in bending of the heart tube. Exposure of stage 9-11 chick embryos to low concentrations of the actin polymerization inhibitors cytochalasin D (5 nM-2.0 microM) and latrunculin A (LA; 25 nM-2.0 microM) suppressed looping in a stage- and concentration-dependent manner in both whole embryos and isolated hearts. Local exposure of either the dorsal or ventral sides of isolated hearts to LA also inhibited looping, but less than global exposure, indicating that both sides contribute to the bending mechanism. Taken together, these data suggest that ongoing actin polymerization is required for the bending component of cardiac c-looping, and we speculate that polymerization-driven myocardial cell shape changes cause this deformation.
Collapse
Affiliation(s)
- Kimberly S Latacha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
345
|
Abstract
Cardiac progenitors of the splanchnic mesoderm (primary and secondary heart field), cardiac neural crest, and the proepicardium are the major embryonic contributors to chick heart development. Their contribution to cardiac development occurs with precise timing and regulation during such processes as primary heart tube fusion, cardiac looping and accretion, cardiac septation, and the development of the coronary vasculature. Heart development is even more complex if one follows the development of the cardiac innervation, cardiac pacemaking and conduction system, endocardial cushions, valves, and even the importance of apoptosis for proper cardiac formation. This review is meant to provide a reference guide (Table 1) on the developmental timing according to the staging of Hamburger and Hamilton (1951) (HH) of these important topics in heart development for those individuals new to a chick heart research laboratory. Even individuals outside of the heart field, who are working on a gene that is also expressed in the heart, will gain information on what to look for during chick heart development. This reference guide provides complete and easy reference to the stages involved in heart development, as well as a global perspective of how these cardiac developmental events overlap temporally and spatially, making it a good bench top companion to the many recently written in-depth cardiac reviews of the molecular aspects of cardiac development.
Collapse
Affiliation(s)
- Brad J Martinsen
- Department of Pediatrics, Division of Pediatric Cardiology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| |
Collapse
|
346
|
Sakabe M, Matsui H, Sakata H, Ando K, Yamagishi T, Nakajima Y. Understanding heart development and congenital heart defects through developmental biology: a segmental approach. Congenit Anom (Kyoto) 2005; 45:107-18. [PMID: 16359490 DOI: 10.1111/j.1741-4520.2005.00079.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
ABSTRACT The heart is the first organ to form and function during development. In the pregastrula chick embryo, cells contributing to the heart are found in the postero-lateral epiblast. During the pregastrula stages, interaction between the posterior epiblast and hypoblast is required for the anterior lateral plate mesoderm (ALM) to form, from which the heart will later develop. This tissue interaction is replaced by an Activin-like signal in culture. During gastrulation, the ALM is committed to the heart lineage by endoderm-secreted BMP and subsequently differentiates into cardiomyocyte. The right and left precardiac mesoderms migrate toward the ventral midline to form the beating primitive heart tube. Then, the heart tube generates a right-side bend, and the d-loop and presumptive heart segments begin to appear segmentally: outflow tract (OT), right ventricle, left ventricle, atrioventricular (AV) canal, atrium and sinus venosus. T-box transcription factors are involved in the formation of the heart segments: Tbx5 identifies the left ventricle and Tbx20 the right ventricle. After the formation of the heart segments, endothelial cells in the OT and AV regions transform into mesenchyme and generate valvuloseptal endocardial cushion tissue. This phenomenon is called endocardial EMT (epithelial-mesenchymal transformation) and is regulated mainly by BMP and TGFbeta. Finally, heart septa that have developed in the OT, ventricle, AV canal and atrium come into alignment and fuse, resulting in the completion of the four-chambered heart. Altered development seen in the cardiogenetic process is involved in the pathogenesis of congenital heart defects. Therefore, understanding the molecular nature regulating the 'nodal point' during heart development is important in order to understand the etiology of congenital heart defects, as well as normal heart development.
Collapse
Affiliation(s)
- Masahide Sakabe
- Department of Anatomy, Graduate School of Medicine, Osaka City University, Abenoku, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
347
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
348
|
Eisenberg LM, Moreno R, Markwald RR. Multiple stem cell populations contribute to the formation of the myocardium. Ann N Y Acad Sci 2005; 1047:38-49. [PMID: 16093483 DOI: 10.1196/annals.1341.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Owing to the very rapid growth of the vertebrate embryo following fertilization, an efficient circulatory system needs to be established during the initial stages of development. For that reason, the first functional organ that develops in both the bird and mammalian embryo is the heart. Until recently, the narrative of cardiac development was portrayed in a straightforward manner, with all the myocardium in the mature heart being generated from the expansion of an original pool of myocardial cells present in the early gastrula. It is now known that the story of the developing myocardium is more dynamic, as it is comprises cellular components of multiple ancestries. The de novo addition of myocytes to the developing heart occurs at various points during embryogenesis, as cardiac muscle takes on new members by the absorption of cells that either reside in neighboring nonmuscle tissue or come into contact with the myocardium by entering the heart upon migration or via the circulation. This article reviews what is presently known about cellular populations that contribute to the myocardium and examine reasons why the embryo utilizes multiple cellular sources for forming the cardiac muscle.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Medical University of South Carolina, Department of Cell Biology and Anatomy, BSB Rm. 642, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | |
Collapse
|
349
|
Linask KK, Han M, Cai DH, Brauer PR, Maisastry SM. Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dyn 2005; 233:739-53. [PMID: 15844197 DOI: 10.1002/dvdy.20377] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During heart organogenesis, the spatiotemporal organization of the extracellular matrix (ECM) undergoes significant remodeling. Because matrix metalloproteinases (MMPs) are known to be key regulators of cell-matrix interactions, we analyzed the role(s) of MMPs, and specifically MMP-2, in early heart development. Both MMP-2 neutralizing antibody and the broad-spectrum MMP inhibitor Ilomastat in a temporal manner, when applied between chick embryonic stages 5 (primitive streak stage) to stage 12 ( approximately 16-somites), produced severe heart tube defects. Exposure to the MMP inhibitor at stage 5 produced various degrees of cardia bifida. At the seven-somite stage, MMP-2/Ilomastat inhibition caused a shift in normal left-right patterning of cell proliferation within the dorsal mesocardium and mesoderm of the anterior heart field that correlated with a change in looping direction. MMP inhibition at the 10- to 12-somite stage resulted in an arrest of heart tube bending by inhibiting the breakdown of the dorsal mesocardial ECM. The experimental observations suggest that MMP activity regulates the coordination of early heart organogenesis by affecting ventral closure of the heart and gut tubes, asymmetric cell proliferation in the dorsal mesocardium to drive looping direction, and ECM degradation within the dorsal mesocardium allowing looping to proceed toward completion.
Collapse
Affiliation(s)
- Kersti K Linask
- University of South Florida, Department of Pediatrics, The Children's Research Institute, St. Petersburg, Florida 33701, USA.
| | | | | | | | | |
Collapse
|
350
|
Verzi MP, McCulley DJ, De Val S, Dodou E, Black BL. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol 2005; 287:134-45. [PMID: 16188249 DOI: 10.1016/j.ydbio.2005.08.041] [Citation(s) in RCA: 405] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 08/13/2005] [Accepted: 08/29/2005] [Indexed: 11/25/2022]
Abstract
The vertebrate heart arises from the fusion of bilateral regions of anterior mesoderm to form a linear heart tube. Recent studies in mouse and chick have demonstrated that a second cardiac progenitor population, known as the anterior or secondary heart field, is progressively added to the heart at the time of cardiac looping. While it is clear that this second field contributes to the myocardium, its precise boundaries, other lineages derived from this population, and its contributions to the postnatal heart remain unclear. In this study, we used regulatory elements from the mouse mef2c gene to direct the expression of Cre recombinase exclusively in the anterior heart field and its derivatives in transgenic mice. By crossing these mice, termed mef2c-AHF-Cre, to Cre-dependent lacZ reporter mice, we generated a fate map of the embryonic, fetal, and postnatal heart. These studies show that the endothelial and myocardial components of the outflow tract, right ventricle, and ventricular septum are derivatives of mef2c-AHF-Cre expressing cells within the anterior heart field and its derivatives. These studies also show that the atria, epicardium, coronary vessels, and the majority of outflow tract smooth muscle are not derived from this anterior heart field population. Furthermore, a transgene marker specific for the anterior heart field is expressed in the common ventricular chamber in mef2c mutant mice, suggesting that the cardiac looping defect in these mice is not due to a failure in anterior heart field addition to the heart. Finally, the Cre transgenic mice described here will be a crucial tool for conditional gene inactivation exclusively in the anterior heart field and its derivatives.
Collapse
Affiliation(s)
- Michael P Verzi
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-2240, USA
| | | | | | | | | |
Collapse
|