351
|
Abstract
The origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing the global coronavirus disease 19 (COVID-19) pandemic, remains a mystery. Current evidence suggests a likely spillover into humans from an animal reservoir. Understanding the host range and identifying animal species that are susceptible to SARS-CoV-2 infection may help to elucidate the origin of the virus and the mechanisms underlying cross-species transmission to humans. Here we demonstrated that white-tailed deer (Odocoileus virginianus), an animal species in which the angiotensin converting enzyme 2 (ACE2) - the SARS-CoV-2 receptor - shares a high degree of similarity to humans, are highly susceptible to infection. Intranasal inoculation of deer fawns with SARS-CoV-2 resulted in established subclinical viral infection and shedding of infectious virus in nasal secretions. Notably, infected animals transmitted the virus to non-inoculated contact deer. Viral RNA was detected in multiple tissues 21 days post-inoculation (pi). All inoculated and indirect contact animals seroconverted and developed neutralizing antibodies as early as day 7 pi. The work provides important insights into the animal host range of SARS-CoV-2 and identifies white-tailed deer as a susceptible wild animal species to the virus.IMPORTANCEGiven the presumed zoonotic origin of SARS-CoV-2, the human-animal-environment interface of COVID-19 pandemic is an area of great scientific and public- and animal-health interest. Identification of animal species that are susceptible to infection by SARS-CoV-2 may help to elucidate the potential origin of the virus, identify potential reservoirs or intermediate hosts, and define the mechanisms underlying cross-species transmission to humans. Additionally, it may also provide information and help to prevent potential reverse zoonosis that could lead to the establishment of a new wildlife hosts. Our data show that upon intranasal inoculation, white-tailed deer became subclinically infected and shed infectious SARS-CoV-2 in nasal secretions and feces. Importantly, indirect contact animals were infected and shed infectious virus, indicating efficient SARS-CoV-2 transmission from inoculated animals. These findings support the inclusion of wild cervid species in investigations conducted to assess potential reservoirs or sources of SARS-CoV-2 of infection.
Collapse
|
352
|
Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021; 8:644678. [PMID: 34026781 PMCID: PMC8139419 DOI: 10.3389/fmed.2021.644678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused considerable socio-economic burden, which fueled the development of treatment strategies and vaccines at an unprecedented speed. However, our knowledge on disease recovery is sparse and concerns about long-term pulmonary impairments are increasing. Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic remodeling and persistent reduced oxygenation in some patients. It is currently not known whether tissue scaring fully resolves or progresses to interstitial pulmonary fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium may be induced by inhalation of micro-particles, pathophysiological mechanical stress or viral infections, which can result in abnormal wound healing response. However, the exact underlying causes and molecular mechanisms of lung fibrosis are poorly understood due to the limited availability of clinically relevant models. Recently, the emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis and address drug options, has led to the broad application of in vivo and in vitro models to study lung diseases. In particular, advanced in vitro models including precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip (LOC) models have been successfully employed for drug screens. In order to gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling. Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of classical and novel lung models will be discussed in this review.
Collapse
Affiliation(s)
- Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
- Organoid Core, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
353
|
Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, Perez DR. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Sci Rep 2021; 11:9609. [PMID: 33953295 PMCID: PMC8100161 DOI: 10.1038/s41598-021-89013-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the defining global health emergency of this century. GC-376 is a Mpro inhibitor with antiviral activity against SARS-CoV-2 in vitro. Using the K18-hACE2 mouse model, the in vivo antiviral efficacy of GC-376 against SARS-CoV-2 was evaluated. GC-376 treatment was not toxic in K18-hACE2 mice. Overall outcome of clinical symptoms and survival upon SARS-CoV-2 challenge were not improved in mice treated with GC-376 compared to controls. The treatment with GC-376 slightly improved survival from 0 to 20% in mice challenged with a high virus dose at 105 TCID50/mouse. Most notably, GC-376 treatment led to milder tissue lesions, reduced viral loads, fewer presence of viral antigen, and reduced inflammation in comparison to vehicle-treated controls in mice challenged with a low virus dose at 103 TCID50/mouse. This was particularly the case in the brain where a 5-log reduction in viral titers was observed in GC-376 treated mice compared to vehicle controls. This study supports the notion that GC-376 represents a promising lead candidate for further development to treat SARS-CoV-2 infection and that the K18-hACE2 mouse model is suitable to study antiviral therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Silvia Carnaccini
- Tifton Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
354
|
Glezer I, Bruni‐Cardoso A, Schechtman D, Malnic B. Viral infection and smell loss: The case of COVID-19. J Neurochem 2021; 157:930-943. [PMID: 32970861 PMCID: PMC7537178 DOI: 10.1111/jnc.15197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Olfactory disorders have been increasingly reported in individuals infected with SARS-CoV-2, the virus causing the coronavirus disease 2019 (COVID-19). Losing the sense of smell has a strong impact on the quality of life, since it may lead to malnutrition, weight loss, food poisoning, depression, and exposure to dangerous chemicals. Individuals who suffer from anosmia (inability to smell) also cannot sense the flavor of food, which is a combination of taste and smell. Interestingly, infected individuals have reported sudden loss of smell with no congested nose, as is frequently observed in common colds or other upper respiratory tract infections. These observations suggest that SARS-CoV-2 infection leads to olfactory loss through a distinct mechanism, which is still unclear. This article provides an overview of olfactory loss and the recent findings relating to COVID-19. Possible mechanisms of SARS-CoV-2-induced olfactory loss are also discussed.
Collapse
Affiliation(s)
- Isaias Glezer
- Department of BiochemistryUNIFESPEscola Paulista de MedicinaUniversidade Federal de São PauloRua Tres de MaioSão PauloBrazil
| | | | | | - Bettina Malnic
- Department of BiochemistryUniversity of São PauloSão PauloBrazil
| |
Collapse
|
355
|
Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z, Klimstra WB, Reed DS, Crossland NA, Shi Y, Duprex WP. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. SCIENCE ADVANCES 2021; 7:eabh0319. [PMID: 34039613 PMCID: PMC8153718 DOI: 10.1126/sciadv.abh0319] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/05/2021] [Indexed: 05/18/2023]
Abstract
Globally, there is an urgency to develop effective, low-cost therapeutic interventions for coronavirus disease 2019 (COVID-19). We previously generated the stable and ultrapotent homotrimeric Pittsburgh inhalable Nanobody 21 (PiN-21). Using Syrian hamsters that model moderate to severe COVID-19 disease, we demonstrate the high efficacy of PiN-21 to prevent and treat SARS-CoV-2 infection. Intranasal delivery of PiN-21 at 0.6 mg/kg protects infected animals from weight loss and substantially reduces viral burdens in both lower and upper airways compared to control. Aerosol delivery of PiN-21 facilitates deposition throughout the respiratory tract and dose minimization to 0.2 mg/kg. Inhalation treatment quickly reverses animals' weight loss after infection, decreases lung viral titers by 6 logs leading to drastically mitigated lung pathology, and prevents viral pneumonia. Combined with the marked stability and low production cost, this innovative therapy may provide a convenient and cost-effective option to mitigate the ongoing pandemic.
Collapse
Affiliation(s)
- Sham Nambulli
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Natasha L Tilston-Lunel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda J Rennick
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhe Sang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas A Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- University of Pittsburgh-Carnegie Mellon University Program in Computational Biology, Pittsburgh, PA, USA
| | - W Paul Duprex
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
356
|
O'Brien B, Goodridge L, Ronholm J, Nasheri N. Exploring the potential of foodborne transmission of respiratory viruses. Food Microbiol 2021; 95:103709. [PMID: 33397626 PMCID: PMC8035669 DOI: 10.1016/j.fm.2020.103709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
The ongoing pandemic involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised the question whether this virus, which is known to be spread primarily though respiratory droplets, could be spread through the fecal-oral route or via contaminated food. In this article, we present a critical review of the literature exploring the potential foodborne transmission of several respiratory viruses including human coronaviruses, avian influenza virus (AVI), parainfluenza viruses, human respiratory syncytial virus, adenoviruses, rhinoviruses, and Nipah virus. Multiple lines of evidence, including documented expression of receptor proteins on gastrointestinal epithelial cells, in vivo viral replication in gastrointestinal epithelial cell lines, extended fecal shedding of respiratory viruses, and the ability to remain infectious in food environments for extended periods of time raises the theoretical ability of some human respiratory viruses, particularly human coronaviruses and AVI, to spread via food. However, to date, neither epidemiological data nor case reports of clear foodborne transmission of either viruses exist. Thus, foodborne transmission of human respiratory viruses remains only a theoretical possibility.
Collapse
Affiliation(s)
- Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON, Canada.
| |
Collapse
|
357
|
Golden JW, Zeng X, Cline CR, Garrison AR, White LE, Fitzpatrick CJ, Kwilas SA, Bowling PA, Fiallos JO, Moore JL, Sifford WB, Ricks KM, Mucker EM, Smith JM, Hooper JW. Human convalescent plasma protects K18-hACE2 mice against severe respiratory disease. J Gen Virol 2021; 102. [PMID: 33961540 PMCID: PMC8295914 DOI: 10.1099/jgv.0.001599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.
Collapse
MESH Headings
- Acute Lung Injury/prevention & control
- Acute Lung Injury/virology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Brain/pathology
- Brain/virology
- COVID-19/immunology
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Disease Models, Animal
- Female
- Humans
- Immunization, Passive
- Lung/pathology
- Lung/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Coronavirus/genetics
- Receptors, Coronavirus/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/isolation & purification
- SARS-CoV-2/physiology
- Severity of Illness Index
- Viral Load
- Virus Replication
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Xiankun Zeng
- Pathology, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Curtis R Cline
- Pathology, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lauren E White
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Philip A Bowling
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jimmy O Fiallos
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Joshua L Moore
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Willie B Sifford
- Veterinary Medicine Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Keersten M Ricks
- Diagnostic Services Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Eric M Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jeffrey M Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| |
Collapse
|
358
|
Bertho N, Meurens F. The pig as a medical model for acquired respiratory diseases and dysfunctions: An immunological perspective. Mol Immunol 2021; 135:254-267. [PMID: 33933817 DOI: 10.1016/j.molimm.2021.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022]
Abstract
By definition no model is perfect, and this also holds for biology and health sciences. In medicine, murine models are, and will be indispensable for long, thanks to their reasonable cost and huge choice of transgenic strains and molecular tools. On the other side, non-human primates remain the best animal models although their use is limited because of financial and obvious ethical reasons. In the field of respiratory diseases, specific clinical models such as sheep and cotton rat for bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully developed, however, in these species, the toolbox for biological analysis remains scarce. In this view the porcine medical model is appearing as the third, intermediate, choice, between murine and primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory conditions, through an immunological point of view. Indeed, important progresses have been made in pig immunology during the last decade that allowed the precise description of immune molecules and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of human respiratory diseases but also as a species of interest to perform basic research explorations.
Collapse
Affiliation(s)
| | - François Meurens
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada
| |
Collapse
|
359
|
Jia W, Wang J, Sun B, Zhou J, Shi Y, Zhou Z. The Mechanisms and Animal Models of SARS-CoV-2 Infection. Front Cell Dev Biol 2021; 9:578825. [PMID: 33987176 PMCID: PMC8111004 DOI: 10.3389/fcell.2021.578825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has aroused great public health concern worldwide. Currently, COVID-19 epidemic is spreading in many countries and regions around the world. However, the study of SARS-CoV-2 is still in its infancy, and there is no specific therapeutics. Here, we summarize the genomic characteristics of SARS-CoV-2. In addition, we focus on the mechanisms of SARS-CoV-2 infection, including the roles of angiotensin converting enzyme II (ACE2) in cell entry, COVID-19 susceptibility and COVID-19 symptoms, as well as immunopathology such as antibody responses, lymphocyte dysregulation, and cytokine storm. Finally, we introduce the research progress of animal models of COVID-19, aiming at a better understanding of the pathogenesis of COVID-19 and providing new ideas for the treatment of this contagious disease.
Collapse
Affiliation(s)
- Wenrui Jia
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yamin Shi
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
360
|
Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model. Proc Natl Acad Sci U S A 2021; 118:2025622118. [PMID: 33858942 PMCID: PMC8106328 DOI: 10.1073/pnas.2025622118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic rages on, it is important to explore new evolution-resistant vaccine antigens and new vaccine platforms that can produce readily scalable, inexpensive vaccines with easier storage and transport. We report here a synthetic biology-based vaccine platform that employs an expression vector with an inducible gram-negative autotransporter to express vaccine antigens on the surface of genome-reduced bacteria to enhance interaction of vaccine antigen with the immune system. As a proof-of-principle, we utilized genome-reduced Escherichia coli to express SARS-CoV-2 and porcine epidemic diarrhea virus (PEDV) fusion peptide (FP) on the cell surface, and evaluated their use as killed whole-cell vaccines. The FP sequence is highly conserved across coronaviruses; the six FP core amino acid residues, along with the four adjacent residues upstream and the three residues downstream from the core, are identical between SARS-CoV-2 and PEDV. We tested the efficacy of PEDV FP and SARS-CoV-2 FP vaccines in a PEDV challenge pig model. We demonstrated that both vaccines induced potent anamnestic responses upon virus challenge, potentiated interferon-γ responses, reduced viral RNA loads in jejunum tissue, and provided significant protection against clinical disease. However, neither vaccines elicited sterilizing immunity. Since SARS-CoV-2 FP and PEDV FP vaccines provided similar clinical protection, the coronavirus FP could be a target for a broadly protective vaccine using any platform. Importantly, the genome-reduced bacterial surface-expressed vaccine platform, when using a vaccine-appropriate bacterial vector, has potential utility as an inexpensive, readily manufactured, and rapid vaccine platform for other pathogens.
Collapse
|
361
|
Jiao L, Yang Y, Yu W, Zhao Y, Long H, Gao J, Ding K, Ma C, Li J, Zhao S, Wang H, Li H, Yang M, Xu J, Wang J, Yang J, Kuang D, Luo F, Qian X, Xu L, Yin B, Liu W, Liu H, Lu S, Peng X. The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduct Target Ther 2021; 6:169. [PMID: 33895780 PMCID: PMC8065334 DOI: 10.1038/s41392-021-00591-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/08/2023] Open
Abstract
Neurological manifestations are frequently reported in the COVID-19 patients. Neuromechanism of SARS-CoV-2 remains to be elucidated. In this study, we explored the mechanisms of SARS-CoV-2 neurotropism via our established non-human primate model of COVID-19. In rhesus monkey, SARS-CoV-2 invades the CNS primarily via the olfactory bulb. Thereafter, viruses rapidly spread to functional areas of the central nervous system, such as hippocampus, thalamus, and medulla oblongata. The infection of SARS-CoV-2 induces the inflammation possibly by targeting neurons, microglia, and astrocytes in the CNS. Consistently, SARS-CoV-2 infects neuro-derived SK-N-SH, glial-derived U251, and brain microvascular endothelial cells in vitro. To our knowledge, this is the first experimental evidence of SARS-CoV-2 neuroinvasion in the NHP model, which provides important insights into the CNS-related pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Li Jiao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yun Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Wenhai Yu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Yuan Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Haiting Long
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jiahong Gao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Kaiyun Ding
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Chunxia Ma
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jingmei Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Siwen Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Haixuan Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Haiyan Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Mengli Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jingwen Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Junbin Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Fangyu Luo
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xingli Qian
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Longjiang Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Liu
- Department of Anatomy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hongqi Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China.
| | - Shuaiyao Lu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China. .,State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China. .,State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
362
|
Ding R, Long J, Yuan M, Jin Y, Yang H, Chen M, Chen S, Duan G. CRISPR/Cas System: A Potential Technology for the Prevention and Control of COVID-19 and Emerging Infectious Diseases. Front Cell Infect Microbiol 2021; 11:639108. [PMID: 33968799 PMCID: PMC8102830 DOI: 10.3389/fcimb.2021.639108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
The continued global pandemic of coronavirus disease 2019 (COVID-19) poses a serious threat to global public health and social stability and it has become a serious global public health problem. Unfortunately, existing diagnostic and therapeutic approaches for the prevention and control of COVID-19 have many shortcomings. In recent years, the emerging CRISPR/Cas technology can complement the problems of traditional methods. Biological tools based on CRISPR/Cas systems have been widely used in biomedicine. In particular, they are advantageous in pathogen detection, clinical antiviral therapy, drug, and vaccine development. Therefore, CRISPR/Cas technology may have great potential for application in the prevention and control of COVID-19 and emerging infectious diseases in the future. This article summarizes the existing applications of CRISPR/Cas technology in infectious diseases with the aim of providing effective strategies for the prevention and control of COVID-19 and other emerging infectious diseases in the future.
Collapse
Affiliation(s)
- Ronghua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingzhu Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Molecular Medicine in Henan Province, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
363
|
Wong LYR, Zheng J, Wilhelmsen K, Li K, Ortiz ME, Schnicker NJ, Pezzulo AA, Szachowicz PJ, Klumpp K, Aswad F, Rebo J, Narumiya S, Murakami M, Meyerholz DK, Fortney K, McCray PB, Perlman S. Eicosanoid signaling as a therapeutic target in middle-aged mice with severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.04.20.440676. [PMID: 33907749 PMCID: PMC8077574 DOI: 10.1101/2021.04.20.440676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Resolution of the COVID-19 pandemic has been advanced by the recent development of SARS-CoV-2 vaccines, but vaccine efficacy is partly compromised by the recent emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially in aged populations. Here, we describe the isolation of a new set of highly virulent mouse-adapted viruses and use them to test a novel therapeutic drug useful in infections of aged animals. Initially, we show that many of the mutations observed in SARS-CoV-2 during mouse adaptation (at positions 417, 484, 501 of the spike protein) also arise in humans in variants of concern (VOC)2. Their appearance during mouse adaptation indicates that immune pressure is not required for their selection. Similar to the human infection, aged mice infected with mouse-adapted SARS-CoV-2 develop more severe disease than young mice. In murine SARS, in which severity is also age-dependent, we showed that elevated levels of an eicosanoid, prostaglandin D2 (PGD2) and of a phospholipase, PLA2G2D, contributed to poor outcomes in aged mice3,4. Using our virulent mouse-adapted SARS-CoV-2, we show that infection of middle-aged mice lacking expression of DP1, a PGD2 receptor, or PLA2G2D are protected from severe disease. Further, treatment with a DP1 antagonist, asapiprant, protected aged mice from a lethal infection. DP1 antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, and demonstrates that the PLA2G2D-PGD2/DP1 pathway is a useful target for therapeutic interventions.
Collapse
Affiliation(s)
- Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Kun Li
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Miguel E. Ortiz
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University, Kyoto, Japan 606-8501
| | - Makoto Murakami
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | | | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
364
|
Infectious Clones Produce SARS-CoV-2 That Causes Severe Pulmonary Disease in Infected K18-Human ACE2 Mice. mBio 2021; 12:mBio.00819-21. [PMID: 33879586 PMCID: PMC8092263 DOI: 10.1128/mbio.00819-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To develop COVID-19 countermeasures, powerful research tools are essential. We produced a SARS-COV-2 reverse genetic (RG) infectious clone toolkit that will benefit a variety of investigations. Newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, which has caused extensive mortality and morbidity and wreaked havoc on socioeconomic structures. The urgent need to better understand SARS-CoV-2 biology and enable continued development of effective countermeasures is aided by the production of laboratory tools that facilitate SARS-CoV-2 research. We previously created a directly accessible SARS-CoV-2 toolkit containing user-friendly reverse genetic (RG) infectious clones of SARS-CoV-2. Here, using K18-human ACE2 (hACE2) mice, we confirmed the validity of RG-rescued SARS-CoV-2 viruses to reproduce the infection profile, clinical disease, and pathogenesis already established in mice infected with natural SARS-CoV-2 isolates, often patient derived. RG-rescued SARS-CoV-2-infected K18-hACE2 mice developed substantial clinical disease and weight loss by day 6 postinfection. RG-rescued SARS-CoV-2 was recovered from the lungs and brains of infected K18-hACE2 mice, and infection resulted in viral pneumonia with considerable changes in lung pathology, as seen previously with natural SARS-CoV-2 infection. In mice infected with RG-rescued SARS-CoV-2-mCherry, mCherry was detected in areas of lung consolidation and colocalized with clinically relevant SARS-CoV-2-assocated immunopathology. RG-rescued SARS-CoV-2 viruses successfully recapitulated many of the features of severe COVID-19 associated with the K18-hACE2 model of SARS-CoV-2 infection. With utility in vivo, the RG-rescued SARS-CoV-2 viruses will be valuable resources to advance numerous areas of SARS-CoV-2 basic research and COVID-19 vaccine development.
Collapse
|
365
|
Maurin M, Fenollar F, Mediannikov O, Davoust B, Devaux C, Raoult D. Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms 2021; 9:868. [PMID: 33920724 PMCID: PMC8072559 DOI: 10.3390/microorganisms9040868] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.
Collapse
Affiliation(s)
- Max Maurin
- University Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, 38000 Grenoble, France;
| | - Florence Fenollar
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Christian Devaux
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
- Centre National de la Recherche Scientifique, 13005 Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 13005 Marseille, France; (F.F.); (O.M.); (B.D.); (C.D.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
366
|
Wang G, Gaikwad H, McCarthy MK, Gonzalez-Juarrero M, Li Y, Armstrong M, Reisdorph N, Morrison TE, Simberg D. Lipid nanoparticle formulation of niclosamide (nano NCM) effectively inhibits SARS-CoV-2 replication in vitro. PRECISION NANOMEDICINE 2021; 4:724-737. [PMID: 34676370 PMCID: PMC8528232 DOI: 10.33218/001c.18813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As exemplified by the COVID-19 pandemic, highly infective respiratory viruses can spread rapidly in the population because of lack of effective approaches to control viral replication and spread. Niclosamide (NCM) is an old anthelminthic drug (World Health Organization essential medicine list) with pleiotropic pharmacological activities. Several recent publications demonstrated that NCM has broad antiviral activities and potently inhibits viral replication, including replication of SARS-CoV-2, SARS-CoV, and dengue viruses. Unfortunately, NCM is almost completely insoluble in water, which limits its clinical use. We developed a cost-effective lipid nanoparticle formulation of NCM (nano NCM) using only FDA-approved excipient and demonstrated potency against SARS-CoV-2 infection in cells (Vero E6 and ACE2-expressing lung epithelium cells).
Collapse
Affiliation(s)
- Guankui Wang
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mary K McCarthy
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80521
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| |
Collapse
|
367
|
Munshi I, Khandvilkar A, Chavan SM, Sachdeva G, Mahale SD, Chaudhari UK. An overview of preclinical animal models for SARS-CoV-2 pathogenicity. Indian J Med Res 2021; 153:17-25. [PMID: 33818465 PMCID: PMC8184076 DOI: 10.4103/ijmr.ijmr_3215_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of fatalities globally since its origin in November 2019. The SARS-CoV-2 shares 79 and 50 per cent genome similarity with its predecessors, severe SARS-CoV and Middle East respiratory syndrome (MERS) coronavirus, all belonging to the same genus, Betacoronavirus. This relatively new virus has stymied the effective control of COVID-19 pandemic and caused huge social and economic impact worldwide. The FDA-approved drugs were re-purposed to reduce the number of fatalities caused by SARS-CoV-2. However, controversy surrounds about the efficacy of these re-purposed antiviral drugs against SARS-CoV-2.This necessitates the identification of new drug targets for SARS-CoV-2. Hence, the development of pre-clinical animal model is warranted. Such animal models may help us gain better understanding of the pathophysiology of SARS-CoV-2 infection and will be effective tools for the evaluation and licensure of therapeutic strategies against SARS-CoV-2. This review provides a summary of the attempts made till to develop a suitable animal model to understand pathophysiology and effectiveness of therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Itti Munshi
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Aditya Khandvilkar
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shrinivas M. Chavan
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Geetanjali Sachdeva
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Smita D. Mahale
- Department of Structural Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Uddhav K. Chaudhari
- Department of Primate Biology, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| |
Collapse
|
368
|
Joma M, Fovet CM, Seddiki N, Gressens P, Laforge M. COVID-19 and Pregnancy: Vertical Transmission and Inflammation Impact on Newborns. Vaccines (Basel) 2021; 9:391. [PMID: 33921113 PMCID: PMC8071483 DOI: 10.3390/vaccines9040391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 pandemic is ongoing and we are still compiling new findings to decipher and understand SARS-CoV-2 infection during pregnancy. No reports encompass any conclusive confirmation of vertical transmission. Nevertheless, cases of fetal distress and multiple organ failure have been reported, as well as rare cases of fetal demise. While clinicians and scientists continue to seek proof of vertical transmission, they miss the greater point, namely the cause of preterm delivery. In this review, we suggest that the cause might not be due to the viral infection but the fetal exposure to maternal inflammation or cytokine storm that translates into a complication of COVID-19. This statement is extrapolated from previous experience with infections and inflammation which were reported to be fatal by increasing the risk of preterm delivery and causing abnormal neonatal brain development and resulting in neurological disorders like atypical behavioral phenotype or autistic syndrome. Given the potentially fatal consequences on neonate health, we highlight the urgent need for an animal model to study vertical transmission. The preclinical model will allow us to make the link between SARS-COV-2 infection, inflammation and long-term follow-up of child brain development.
Collapse
Affiliation(s)
- Mohamed Joma
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Claire-Maelle Fovet
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Nabila Seddiki
- INSERM U1184, CEA, IDMIT Department, Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB), Université Paris-Saclay, 92265 Fontenay-aux-Roses, France; (C.-M.F.); (N.S.)
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| | - Mireille Laforge
- Université de Paris, NeuroDiderot, Inserm, 75019 Paris, France; (M.J.); (P.G.)
| |
Collapse
|
369
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 DOI: 10.20944/preprints202007.0613.v3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
370
|
Karimzadeh S, Bhopal R, Nguyen Tien H. Review of infective dose, routes of transmission and outcome of COVID-19 caused by the SARS-COV-2: comparison with other respiratory viruses. Epidemiol Infect 2021; 149:e96. [PMID: 33849679 PMCID: PMC8082124 DOI: 10.1017/s0950268821000790] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is pandemic. Prevention and control strategies require an improved understanding of SARS-CoV-2 dynamics. We did a rapid review of the literature on SARS-CoV-2 viral dynamics with a focus on infective dose. We sought comparisons of SARS-CoV-2 with other respiratory viruses including SARS-CoV-1 and Middle East respiratory syndrome coronavirus. We examined laboratory animal and human studies. The literature on infective dose, transmission and routes of exposure was limited specially in humans, and varying endpoints were used for measurement of infection. Despite variability in animal studies, there was some evidence that increased dose at exposure correlated with higher viral load clinically, and severe symptoms. Higher viral load measures did not reflect coronavirus disease 2019 severity. Aerosol transmission seemed to raise the risk of more severe respiratory complications in animals. An accurate quantitative estimate of the infective dose of SARS-CoV-2 in humans is not currently feasible and needs further research. Our review suggests that it is small, perhaps about 100 particles. Further work is also required on the relationship between routes of transmission, infective dose, co-infection and outcomes.
Collapse
Affiliation(s)
- Sedighe Karimzadeh
- School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Raj Bhopal
- Usher Institute, University of Edinburgh, EdinburghEH3 9AG, UK
| | - Huy Nguyen Tien
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
371
|
Pacheco-Herrero M, Soto-Rojas LO, Harrington CR, Flores-Martinez YM, Villegas-Rojas MM, León-Aguilar AM, Martínez-Gómez PA, Campa-Córdoba BB, Apátiga-Pérez R, Corniel-Taveras CN, Dominguez-García JDJ, Blanco-Alvarez VM, Luna-Muñoz J. Elucidating the Neuropathologic Mechanisms of SARS-CoV-2 Infection. Front Neurol 2021; 12:660087. [PMID: 33912129 PMCID: PMC8072392 DOI: 10.3389/fneur.2021.660087] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/09/2021] [Indexed: 01/08/2023] Open
Abstract
The current pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency. To date, March 1, 2021, coronavirus disease 2019 (COVID-19) has caused about 114 million accumulated cases and 2.53 million deaths worldwide. Previous pieces of evidence suggest that SARS-CoV-2 may affect the central nervous system (CNS) and cause neurological symptoms in COVID-19 patients. It is also known that angiotensin-converting enzyme-2 (ACE2), the primary receptor for SARS-CoV-2 infection, is expressed in different brain areas and cell types. Thus, it is hypothesized that infection by this virus could generate or exacerbate neuropathological alterations. However, the molecular mechanisms that link COVID-19 disease and nerve damage are unclear. In this review, we describe the routes of SARS-CoV-2 invasion into the central nervous system. We also analyze the neuropathologic mechanisms underlying this viral infection, and their potential relationship with the neurological manifestations described in patients with COVID-19, and the appearance or exacerbation of some neurodegenerative diseases.
Collapse
Affiliation(s)
- Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Luis O. Soto-Rojas
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Yazmin M. Flores-Martinez
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marcos M. Villegas-Rojas
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Alfredo M. León-Aguilar
- Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional (UPIBI- IPN), Mexico City, Mexico
| | - Paola A. Martínez-Gómez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - B. Berenice Campa-Córdoba
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Ricardo Apátiga-Pérez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
| | - Carolin N. Corniel-Taveras
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Jesabelle de J. Dominguez-García
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | | | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, Mexico
- Banco Estado de Cerebros-UNPHU, Universidad Nacional Pedro Henriquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
372
|
Lee G, Budhathoki S, Lee GY, Oh KJ, Ham YK, Kim YJ, Lim YR, Hoang PT, Lee Y, Lim SW, Kim JM, Cho S, Kim TH, Song JW, Lee S, Kim WK. Broad-Spectrum Antiviral Activity of 3D8, a Nucleic Acid-Hydrolyzing Single-Chain Variable Fragment (scFv), Targeting SARS-CoV-2 and Multiple Coronaviruses In Vitro. Viruses 2021; 13:650. [PMID: 33918914 PMCID: PMC8068894 DOI: 10.3390/v13040650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
The virus behind the current pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the etiology of novel coronavirus disease (COVID-19) and poses a critical public health threat worldwide. Effective therapeutics and vaccines against multiple coronaviruses remain unavailable. Single-chain variable fragment (scFv), a recombinant antibody, exhibits broad-spectrum antiviral activity against DNA and RNA viruses owing to its nucleic acid-hydrolyzing property. The antiviral activity of 3D8 scFv against SARS-CoV-2 and other coronaviruses was evaluated in Vero E6 cell cultures. Viral growth was quantified with quantitative RT-qPCR and plaque assay. The nucleic acid-hydrolyzing activity of 3D8 was assessed through abzyme assays of in vitro viral transcripts and cell viability was determined by MTT assay. We found that 3D8 inhibited the replication of SARS-CoV-2, human coronavirus OC43 (HCoV-OC43), and porcine epidemic diarrhea virus (PEDV). Our results revealed the prophylactic and therapeutic effects of 3D8 scFv against SARS-CoV-2 in Vero E6 cells. Immunoblot and plaque assays showed the reduction of coronavirus nucleoproteins and infectious particles, respectively, in 3D8 scFv-treated cells. These data demonstrate the broad-spectrum antiviral activity of 3D8 against SARS-CoV-2 and other coronaviruses. Thus, it could be considered a potential antiviral countermeasure against SARS-CoV-2 and zoonotic coronaviruses.
Collapse
Affiliation(s)
- Gunsup Lee
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
| | - Shailesh Budhathoki
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea; (G.-Y.L.); (S.C.); (J.-W.S.)
| | - Kwang-ji Oh
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
| | - Yeon Kyoung Ham
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
| | - Young-Jun Kim
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
| | - Ye Rin Lim
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Phuong Thi Hoang
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea; (P.T.H.); (Y.L.)
| | - Yongjun Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea; (P.T.H.); (Y.L.)
| | - Seok-Won Lim
- Animal Functional Genomics & Bioinformatics Lab., Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.-W.L.); (J.-M.K.)
| | - Jun-Mo Kim
- Animal Functional Genomics & Bioinformatics Lab., Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea; (S.-W.L.); (J.-M.K.)
| | - Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea; (G.-Y.L.); (S.C.); (J.-W.S.)
| | - Tai-Hyun Kim
- R&D Center, Novelgen Co., Ltd., 77, Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Korea; (G.L.); (K.-j.O.); (Y.K.H.); (Y.-J.K.); (Y.R.L.); (T.-H.K.)
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea; (G.-Y.L.); (S.C.); (J.-W.S.)
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea; (P.T.H.); (Y.L.)
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea;
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
373
|
Michelitsch A, Wernike K, Ulrich L, Mettenleiter TC, Beer M. SARS-CoV-2 in animals: From potential hosts to animal models. Adv Virus Res 2021; 110:59-102. [PMID: 34353482 PMCID: PMC8025072 DOI: 10.1016/bs.aivir.2021.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.
Collapse
Affiliation(s)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lorenz Ulrich
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
374
|
Nie J, Li Q, Zhang L, Cao Y, Zhang Y, Li T, Wu J, Liu S, Zhang M, Zhao C, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Liu J, Liang H, Jiang T, Duan K, Yang X, Shen Y, Huang W, Wang Y. Functional comparison of SARS-CoV-2 with closely related pangolin and bat coronaviruses. Cell Discov 2021; 7:21. [PMID: 33824288 PMCID: PMC8022302 DOI: 10.1038/s41421-021-00256-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
The origin and intermediate host for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is yet to be determined. Coronaviruses found to be closely related to SARS-CoV-2 include RaTG13 derived from bat and two clusters (PCoV-GD and PCoV-GX) of coronaviruses identified in pangolin. Here, we studied the infectivity and antigenicity patterns of SARS-CoV-2 and the three related coronaviruses. Compared with the other three viruses, RaTG13 showed almost no infectivity to a variety of cell lines. The two pangolin coronaviruses and SARS-CoV-2 showed similar infectious activity. However, in SARS-CoV-2-susceptible cell lines, the pangolin coronaviruses presented even higher infectivity. The striking difference between the SARS-CoV-2 and pangolin coronaviruses is that the latter can infect porcine cells, which could be partially attributed to an amino acid difference at the position of 498 of the spike protein. The infection by SARS-CoV-2 was mainly mediated by Furin and TMPRSS2, while PCoV-GD and PCoV-GX mainly depend on Cathepsin L. Extensive cross-neutralization was found between SARS-CoV-2 and PCoV-GD. However, almost no cross-neutralization was observed between PCoV-GX and SARS-CoV-2 or PCoV-GD. More attention should be paid to pangolin coronaviruses and to investigate the possibility of these coronaviruses spreading across species to become zoonoses among pigs or humans.
Collapse
Affiliation(s)
- Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- Graduate School of Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Mengyi Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Huan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Haoyu Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Kai Duan
- China National Biotec Group Company Limited, Beijing 100029, China
| | - Xiaoming Yang
- China National Biotec Group Company Limited, Beijing 100029, China
| | - Yuelei Shen
- Beijing Biocytogen Co., Ltd., Beijing 101111, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China.
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China.
- Graduate School of Peking Union Medical College, No. 9 Dongdan Santiao, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
375
|
Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol 2021; 18:269-283. [PMID: 33589829 PMCID: PMC7883337 DOI: 10.1038/s41575-021-00416-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to more than 200 countries and regions globally. SARS-CoV-2 is thought to spread mainly through respiratory droplets and close contact. However, reports have shown that a notable proportion of patients with coronavirus disease 2019 (COVID-19) develop gastrointestinal symptoms and nearly half of patients confirmed to have COVID-19 have shown detectable SARS-CoV-2 RNA in their faecal samples. Moreover, SARS-CoV-2 infection reportedly alters intestinal microbiota, which correlated with the expression of inflammatory factors. Furthermore, multiple in vitro and in vivo animal studies have provided direct evidence of intestinal infection by SARS-CoV-2. These lines of evidence highlight the nature of SARS-CoV-2 gastrointestinal infection and its potential faecal-oral transmission. Here, we summarize the current findings on the gastrointestinal manifestations of COVID-19 and its possible mechanisms. We also discuss how SARS-CoV-2 gastrointestinal infection might occur and the current evidence and future studies needed to establish the occurrence of faecal-oral transmission.
Collapse
Affiliation(s)
- Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- School of Data Science, University of Science and Technology of China, Hefei, China.
- CAS Centre for Excellence in Cell and Molecular Biology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
376
|
Bodnar B, Patel K, Ho W, Luo JJ, Hu W. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol 2021; 93:1983-1998. [PMID: 33300152 PMCID: PMC7897247 DOI: 10.1002/jmv.26720] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection manifest mainly respiratory symptoms. However, clinical observations frequently identified neurological symptoms and neuropsychiatric disorders related to COVID-19 (Neuro-SARS2). Accumulated robust evidence indicates that Neuro-SARS2 may play an important role in aggravating the disease severity and mortality. Understanding the neuropathogenesis and cellular mechanisms underlying Neuro-SARS2 is crucial for both basic research and clinical practice to establish effective strategies for early detection/diagnosis, prevention, and treatment. In this review, we comprehensively examine current evidence of SARS-CoV-2 infection in various neural cells including neurons, microglia/macrophages, astrocytes, pericytes/endothelial cells, ependymocytes/choroid epithelial cells, and neural stem/progenitor cells. Although significant progress has been made in studying Neuro-SARS2, much remains to be learned about the neuroinvasive routes (transneuronal and hematogenous) of the virus and the cellular/molecular mechanisms underlying the development/progression of this disease. Future and ongoing studies require the establishment of more clinically relevant and suitable neural cell models using human induced pluripotent stem cells, brain organoids, and postmortem specimens.
Collapse
Affiliation(s)
- Brittany Bodnar
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| | - Kena Patel
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Undergraduate Research Program, Temple University College of Science and Technology, 1803 North Broad Street, Philadelphia, PA, USA
| | - Wenzhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology and Pharmacology, Temple University Lewis Katz School of Medicine, 3401 N Broad Street, Philadelphia, PA, USA
| | - Wenhui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
- Biomedical Sciences Graduate Program, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140
| |
Collapse
|
377
|
Jiao L, Li H, Xu J, Yang M, Ma C, Li J, Zhao S, Wang H, Yang Y, Yu W, Wang J, Yang J, Long H, Gao J, Ding K, Wu D, Kuang D, Zhao Y, Liu J, Lu S, Liu H, Peng X. The Gastrointestinal Tract Is an Alternative Route for SARS-CoV-2 Infection in a Nonhuman Primate Model. Gastroenterology 2021; 160:1647-1661. [PMID: 33307034 PMCID: PMC7725054 DOI: 10.1053/j.gastro.2020.12.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Gastrointestinal (GI) manifestations have been increasingly reported in patients with coronavirus disease 2019 (COVID-19). However, the roles of the GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We investigated how the GI tract is involved in SARS-CoV-2 infection to elucidate the pathogenesis of COVID-19. METHODS Our previously established nonhuman primate (NHP) model of COVID-19 was modified in this study to test our hypothesis. Rhesus monkeys were infected with an intragastric or intranasal challenge with SARS-CoV-2. Clinical signs were recorded after infection. Viral genomic RNA was quantified by quantitative reverse transcription polymerase chain reaction. Host responses to SARS-CoV-2 infection were evaluated by examining inflammatory cytokines, macrophages, histopathology, and mucin barrier integrity. RESULTS Intranasal inoculation with SARS-CoV-2 led to infections and pathologic changes not only in respiratory tissues but also in digestive tissues. Expectedly, intragastric inoculation with SARS-CoV-2 resulted in the productive infection of digestive tissues and inflammation in both the lung and digestive tissues. Inflammatory cytokines were induced by both types of inoculation with SARS-CoV-2, consistent with the increased expression of CD68. Immunohistochemistry and Alcian blue/periodic acid-Schiff staining showed decreased Ki67, increased cleaved caspase 3, and decreased numbers of mucin-containing goblet cells, suggesting that the inflammation induced by these 2 types of inoculation with SARS-CoV-2 impaired the GI barrier and caused severe infections. CONCLUSIONS Both intranasal and intragastric inoculation with SARS-CoV-2 caused pneumonia and GI dysfunction in our rhesus monkey model. Inflammatory cytokines are possible connections for the pathogenesis of SARS-CoV-2 between the respiratory and digestive systems.
Collapse
Affiliation(s)
- Li Jiao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiyan Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingwen Xu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Chunxia Ma
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingmei Li
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Siwen Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haixuan Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yun Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jing Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiting Long
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jiahong Gao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Kaiyun Ding
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Daoju Wu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Dexuan Kuang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yuan Zhao
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jiansheng Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Shuaiyao Lu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Hongqi Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China; State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
378
|
Oz M, Lorke DE. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136:111193. [PMID: 33461019 PMCID: PMC7836742 DOI: 10.1016/j.biopha.2020.111193] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a pandemic affecting millions of individuals has raised great concern throughout the world, and the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was identified as the causative agent for COVID-19. The multifunctional protein angiotensin converting enzyme 2 (ACE2) is accepted as its primary target for entry into host cells. In its enzymatic function, ACE2, like its homologue ACE, regulates the renin-angiotensin system (RAS) critical for cardiovascular and renal homeostasis in mammals. Unlike ACE, however, ACE2 drives an alternative RAS pathway by degrading Ang-II and thus operates to balance RAS homeostasis in the context of hypertension, heart failure, and cardiovascular as well as renal complications of diabetes. Outside the RAS, ACE2 hydrolyzes key peptides, such as amyloid-β, apelin, and [des-Arg9]-bradykinin. In addition to its enzymatic functions, ACE2 is found to regulate intestinal amino acid homeostasis and the gut microbiome. Although the non-enzymatic function of ACE2 as the entry receptor for SARS-CoV-2 has been well established, the contribution of enzymatic functions of ACE2 to the pathogenesis of COVID-19-related lung injury has been a matter of debate. A complete understanding of this central enzyme may begin to explain the various symptoms and pathologies seen in SARS-CoV-2 infected individuals, and may aid in the development of novel treatments for COVID-19.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
379
|
Luchiari HR, Giordano RJ, Sidman RL, Pasqualini R, Arap W. Does the RAAS play a role in loss of taste and smell during COVID-19 infections? THE PHARMACOGENOMICS JOURNAL 2021; 21:109-115. [PMID: 33323946 PMCID: PMC7737200 DOI: 10.1038/s41397-020-00202-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Heloise R Luchiari
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo J Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
380
|
Winkler MS, Skirecki T, Brunkhorst FM, Cajander S, Cavaillon JM, Ferrer R, Flohé SB, García-Salido A, Giamarellos-Bourboulis EJ, Girardis M, Kox M, Lachmann G, Martin-Loeches I, Netea MG, Spinetti T, Schefold JC, Torres A, Uhle F, Venet F, Weis S, Scherag A, Rubio I, Osuchowski MF. Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine 2021; 66:103291. [PMID: 33813139 PMCID: PMC8016444 DOI: 10.1016/j.ebiom.2021.103291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.
Collapse
Affiliation(s)
- Martin S Winkler
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Robert-Koch-Str. 40, 37085 Göttingen, Germany
| | - Tomasz Skirecki
- Laboratory of Flow Cytometry, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Frank M Brunkhorst
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Center for Clinical Studies, Jena University Hospital, 07747 Jena, Germany
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Sweden
| | | | - Ricard Ferrer
- Intensive Care Department and Shock, Organ Dysfunction and Resuscitation Research Group, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, Barcelona, 08035, Spain; Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Alberto García-Salido
- Pediatric Critical Care Unit, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Massimo Girardis
- Department of Anesthesia and Intensive Care, University Hospital of Modena, Italy
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Gunnar Lachmann
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, James's St N, Ushers, Dublin, D03 VX82, Ireland
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Antoni Torres
- Pneumology Department, Respiratory Institute (ICR), Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - University of Barcelona (UB), Spain
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France; EA 7426 "Pathophysiology of Injury-Induced Immunosuppression - PI3", Université Claude Bernard Lyon 1/bioMérieux/Hospices Civils de Lyon, Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Sebastian Weis
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany; Institute for Infectious Disease and Infection Control, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital-Friedrich Schiller University, Bachstrasse 18, 07743 Jena, Germany
| | - Ignacio Rubio
- Dept. of Anesthesiology and Intensive Care Medicine & Center for Sepsis Control and Care (CSCC), Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Donaueschingenstrasse 13, 1200, Vienna, Austria.
| |
Collapse
|
381
|
Gender associates with both susceptibility to infection and pathogenesis of SARS-CoV-2 in Syrian hamster. Signal Transduct Target Ther 2021; 6:136. [PMID: 33790236 PMCID: PMC8009924 DOI: 10.1038/s41392-021-00552-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 01/06/2023] Open
Abstract
Epidemiological studies of the COVID-19 patients have suggested the male bias in outcomes of lung illness. To experimentally demonstrate the epidemiological results, we performed animal studies to infect male and female Syrian hamsters with SARS-CoV-2. Remarkably, high viral titer in nasal washings was detectable in male hamsters who presented symptoms of weight loss, weakness, piloerection, hunched back and abdominal respiration, as well as severe pneumonia, pulmonary edema, consolidation, and fibrosis. In contrast with the males, the female hamsters showed much lower shedding viral titers, moderate symptoms, and relatively mild lung pathogenesis. The obvious differences in the susceptibility to SARS-CoV-2 and severity of lung pathogenesis between male and female hamsters provided experimental evidence that SARS-CoV-2 infection and the severity of COVID-19 are associated with gender.
Collapse
|
382
|
Kim YI, Yu KM, Koh JY, Kim EH, Kim SM, Kim EJ, Casel MA, Rollon R, Jang SG, Song MS, Park SJ, Jeong HW, Kim EG, Lee OJ, Choi Y, Lee SA, Park SH, Jung JU, Choi YK. Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. RESEARCH SQUARE 2021:rs.3.rs-131380. [PMID: 33821260 PMCID: PMC8020987 DOI: 10.21203/rs.3.rs-131380/v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets were infected with SARS-CoV-2. Although SARS-CoV-2 was isolated from all ferrets regardless of age, aged ferrets (≥ 3 years old) showed higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration and clinical symptoms compared to juvenile (≤ 6 months) and young adult (1-2 years) groups. Transcriptome analysis of aged ferret lungs revealed strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Young-Il Kim
- College of Medicine and Medical Research Institute, Chungbuk National University
| | | | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)
| | | | | | - Eun Ji Kim
- College of Medicine and Medical Research Institute, Chungbuk National University
| | - Mark Anthony Casel
- College of Medicine and Medical Research Institute, Chungbuk National University
| | - Rare Rollon
- College of Medicine and Medical Research Institute, Chungbuk National University
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University
| | | | - Su-Jin Park
- Division of Applied Life Science and Research Institute of Life Sciences, Gyeongsang National University
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine
| | | | | | | | | | | | - Jae U Jung
- Lerner Research Institute, Cleveland Clinic
| | | |
Collapse
|
383
|
Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W, Fan CF, Jin RH, Feng YM, Wang YC, Yang JK. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 2021; 6:134. [PMID: 33774649 PMCID: PMC7997800 DOI: 10.1038/s41392-021-00558-8] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.
Collapse
Affiliation(s)
- Miao-Miao Zhao
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei-Li Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fang-Yuan Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Wei-Jin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Wei Hou
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chang-Fa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rong-Hua Jin
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ying-Mei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - You-Chun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, China.
| | - Jin-Kui Yang
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
384
|
Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature 2021; 593:424-428. [PMID: 33767445 DOI: 10.1038/s41586-021-03461-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Neutralizing antibodies that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein are among the most promising approaches against COVID-191,2. A bispecific IgG1-like molecule (CoV-X2) has been developed on the basis of C121 and C135, two antibodies derived from donors who had recovered from COVID-193. Here we show that CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable spike binding to the cellular receptor of the virus, angiotensin-converting enzyme 2 (ACE2). Furthermore, CoV-X2 neutralizes wild-type SARS-CoV-2 and its variants of concern, as well as escape mutants generated by the parental monoclonal antibodies. We also found that in a mouse model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, the simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, and combines the advantages of antibody cocktails with those of single-molecule approaches.
Collapse
|
385
|
Ren W, Zhu Y, Wang Y, Shi H, Yu Y, Hu G, Feng F, Zhao X, Lan J, Wu J, Kenney DJ, Douam F, Tong Y, Zhong J, Xie Y, Wang X, Yuan Z, Zhou D, Zhang R, Ding Q. Comparative analysis reveals the species-specific genetic determinants of ACE2 required for SARS-CoV-2 entry. PLoS Pathog 2021; 17:e1009392. [PMID: 33760889 PMCID: PMC7990223 DOI: 10.1371/journal.ppat.1009392] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus interaction with its viral receptor is a primary genetic determinant of host range and tissue tropism. SARS-CoV-2 utilizes ACE2 as the receptor to enter host cell in a species-specific manner. We and others have previously shown that ACE2 orthologs from New World monkey, koala and mouse cannot interact with SARS-CoV-2 to mediate viral entry, and this defect can be restored by humanization of the restrictive residues in New World monkey ACE2. To better understand the genetic determinants behind the ability of ACE2 orthologs to support viral entry, we compared koala and mouse ACE2 sequences with that of human and identified the key residues in koala and mouse ACE2 that restrict viral receptor activity. Humanization of these critical residues rendered both koala and mouse ACE2 capable of binding the spike protein and facilitating viral entry. Our study shed more lights into the genetic determinants of ACE2 as the functional receptor of SARS-CoV-2, which facilitates our understanding of viral entry. SARS-CoV-2 spike protein could bind cellular receptor ACE2 for cell entry in a species-specific manner. A diverse of mammalian ACE2 proteins could be used by SARS-CoV-2 for entry, but ACE2 proteins of koala or mouse cannot bind with viral spike protein. We compared the koala or mouse ACE2 with human ACE2, and found Thr at 31 position of koala ACE2 or His at 353 position of mouse ACE2 as the restrictive residue which limits its function as the viral receptor, respectively. Interestingly, koala or mouse ACE2 could gain the receptor function once the restrictive reside was replaced by human counterpart by genetic engineering. This study could facilitate our understanding of the genetic basis of ACE2 as the functional receptor of SARS-CoV-2, which could inform the animal model development.
Collapse
Affiliation(s)
- Wenlin Ren
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Hongyang Shi
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Xiaomin Zhao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jun Lan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Wu
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Devin J. Kenney
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Xinquan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Fudan University, Shanghai, China
- * E-mail: (RZ); (QD)
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing China
- * E-mail: (RZ); (QD)
| |
Collapse
|
386
|
Zaeck LM, Scheibner D, Sehl J, Müller M, Hoffmann D, Beer M, Abdelwhab EM, Mettenleiter TC, Breithaupt A, Finke S. Light Sheet Microscopy-Assisted 3D Analysis of SARS-CoV-2 Infection in the Respiratory Tract of the Ferret Model. Viruses 2021; 13:529. [PMID: 33807059 PMCID: PMC8004956 DOI: 10.3390/v13030529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
The visualization of viral pathogens in infected tissues is an invaluable tool to understand spatial virus distribution, localization, and cell tropism in vivo. Commonly, virus-infected tissues are analyzed using conventional immunohistochemistry in paraffin-embedded thin sections. Here, we demonstrate the utility of volumetric three-dimensional (3D) immunofluorescence imaging using tissue optical clearing and light sheet microscopy to investigate host-pathogen interactions of pandemic SARS-CoV-2 in ferrets at a mesoscopic scale. The superior spatial context of large, intact samples (>150 mm3) allowed detailed quantification of interrelated parameters like focus-to-focus distance or SARS-CoV-2-infected area, facilitating an in-depth description of SARS-CoV-2 infection foci. Accordingly, we could confirm a preferential infection of the ferret upper respiratory tract by SARS-CoV-2 and suggest clustering of infection foci in close proximity. Conclusively, we present a proof-of-concept study for investigating critically important respiratory pathogens in their spatial tissue morphology and demonstrate the first specific 3D visualization of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Julia Sehl
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (J.S.); (A.B.)
| | - Martin Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (D.H.); (M.B.)
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (J.S.); (A.B.)
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (D.S.); (M.M.); (E.M.A.)
| |
Collapse
|
387
|
Grabherr S, Ludewig B, Pikor NB. Insights into coronavirus immunity taught by the murine coronavirus. Eur J Immunol 2021; 51:1062-1070. [PMID: 33687066 PMCID: PMC8250324 DOI: 10.1002/eji.202048984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
Coronaviruses (CoVs) represent enveloped, ss RNA viruses with the ability to infect a range of vertebrates causing mainly lung, CNS, enteric, and hepatic disease. While the infection with human CoV is commonly associated with mild respiratory symptoms, the emergence of SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 highlights the potential for CoVs to cause severe respiratory and systemic disease. The devastating global health burden caused by SARS‐CoV‐2 has spawned countless studies seeking clinical correlates of disease severity and host susceptibility factors, revealing a complex network of antiviral immune circuits. The mouse hepatitis virus (MHV) is, like SARS‐CoV‐2, a beta‐CoV and is endemic in wild mice. Laboratory MHV strains have been extensively studied to reveal coronavirus virulence factors and elucidate host mechanisms of antiviral immunity. These are reviewed here with the aim to identify translational insights for SARS‐CoV‐2 learned from murine CoVs.
Collapse
Affiliation(s)
- Sarah Grabherr
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
388
|
Sefik E, Israelow B, Zhao J, Qu R, Song E, Mirza H, Kaffe E, Halene S, Meffre E, Kluger Y, Nussenzweig M, Wilen CB, Iwasaki A, Flavell RA. A humanized mouse model of chronic COVID-19 to evaluate disease mechanisms and treatment options. RESEARCH SQUARE 2021:rs.3.rs-279341. [PMID: 33758831 PMCID: PMC7987100 DOI: 10.21203/rs.3.rs-279341/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus-associated acute respiratory disease, called coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 90 million people have been infected with SARS-CoV-2 and more than 2 million people have died of complications due to COVID-19 worldwide. COVID-19, in its severe form, presents with an uncontrolled, hyperactive immune response and severe immunological injury or organ damage that accounts for morbidity and mortality. Even in the absence of complications, COVID-19 can last for several months with lingering effects of an overactive immune system. Dysregulated myeloid and lymphocyte compartments have been implicated in lung immunopathology. Currently, there are limited clinically-tested treatments of COVID-19 with disparities in the apparent efficacy in patients. Accurate model systems are essential to rapidly evaluate promising discoveries but most currently available in mice, ferrets and hamsters do not recapitulate sustained immunopathology described in COVID19 patients. Here, we present a comprehensively humanized mouse COVID-19 model that faithfully recapitulates the innate and adaptive human immune responses during infection with SARS-CoV-2 by adapting recombinant adeno-associated virus (AAV)-driven gene therapy to deliver human ACE2 to the lungs 1 of MISTRG6 mice. Our unique model allows for the first time the study of chronic disease due to infection with SARS-CoV-2 in the context of patient-derived antibodies to characterize in real time the potential culprits of the observed human driving immunopathology; most importantly this model provides a live view into the aberrant macrophage response that is thought to be the effector of disease morbidity and ARDS in patients. Application of therapeutics such as patient-derived antibodies and steroids to our model allowed separation of the two aspects of the immune response, infectious viral clearance and immunopathology. Inflammatory cells seeded early in infection drove immune-patholgy later, but this very same early anti-viral response was also crucial to contain infection.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ben Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Jun Zhao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Stephanie Halene
- Section of Hematology, Yale Cancer Center and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT,USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
389
|
Mussa BM, Srivastava A, Verberne AJM. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021; 13:v13030498. [PMID: 33802995 PMCID: PMC8002703 DOI: 10.3390/v13030498] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
In December 2019, a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, the capital of Hubei, China. The virus infection, coronavirus disease 2019 (COVID-19), represents a global concern, as almost all countries around the world are affected. Clinical reports have confirmed several neurological manifestations in COVID-19 patients such as headaches, vomiting, and nausea, indicating the involvement of the central nervous system (CNS) and peripheral nervous system (PNS). Neuroinvasion of coronaviruses is not a new phenomenon, as it has been demonstrated by previous autopsies of severe acute respiratory syndrome coronavirus (SARS-CoV) patients who experienced similar neurologic symptoms. The hypothalamus is a complex structure that is composed of many nuclei and diverse neuronal cell groups. It is characterized by intricate intrahypothalamic circuits that orchestrate a finely tuned communication within the CNS and with the PNS. Hypothalamic circuits are critical for maintaining homeostatic challenges including immune responses to viral infections. The present article reviews the possible routes and mechanisms of neuroinvasion of SARS-CoV-2, with a specific focus on the role of the hypothalamic circuits in mediating the neurological symptoms noted during COVID-19 infection.
Collapse
Affiliation(s)
- Bashair M. Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-65057220
| | - Ankita Srivastava
- Sharjah Institute for Medical Research and College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Anthony J. M. Verberne
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg 3084, Australia;
| |
Collapse
|
390
|
Adams LE, Dinnon KH, Hou YJ, Sheahan TP, Heise MT, Baric RS. Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. mBio 2021; 12:e03149-20. [PMID: 33727353 PMCID: PMC8092278 DOI: 10.1128/mbio.03149-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) receptor is a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) host range determinant, and understanding SARS-CoV-2-ACE2 interactions will provide important insights into COVID-19 pathogenesis and animal model development. SARS-CoV-2 cannot infect mice due to incompatibility between its receptor binding domain and the murine ACE2 receptor. Through molecular modeling and empirical in vitro validation, we identified 5 key amino acid differences between murine and human ACE2 that mediate SARS-CoV-2 infection, generating a chimeric humanized murine ACE2. Additionally, we examined the ability of the humanized murine ACE2 receptor to permit infection by an additional preemergent group 2B coronavirus, WIV-1, providing evidence for the potential pan-virus capabilities of this chimeric receptor. Finally, we predicted the ability of these determinants to inform host range identification of preemergent coronaviruses by evaluating hot spot contacts between SARS-CoV-2 and additional potential host receptors. Our results identify residue determinants that mediate coronavirus receptor usage and host range for application in SARS-CoV-2 and emerging coronavirus animal model development.IMPORTANCE SARS-CoV-2 (the causative agent of COVID-19) is a major public health threat and one of two related coronaviruses that have caused epidemics in modern history. A method of screening potential infectible hosts for preemergent and future emergent coronaviruses would aid in mounting rapid response and intervention strategies during future emergence events. Here, we evaluated determinants of SARS-CoV-2 receptor interactions, identifying key changes that enable or prevent infection. The analysis detailed in this study will aid in the development of model systems to screen emergent coronaviruses as well as treatments to counteract infections.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kenneth H Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T Heise
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
391
|
Kazemian N, Kao D, Pakpour S. Fecal Microbiota Transplantation during and Post-COVID-19 Pandemic. Int J Mol Sci 2021; 22:3004. [PMID: 33809421 PMCID: PMC7998826 DOI: 10.3390/ijms22063004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
COVID-19 is a major pandemic facing the world today, which has implications on current microbiome-based treatments such as fecal microbiota transplantation (FMT) used for recurrent Clostridioides difficile infections. The bidirectional relationship between the inhabitants of our gut, the gut microbiota, and COVID-19 pathogenesis, as well as the underlying mechanism involved, must be elucidated in order to increase FMT safety and efficacy. In this perspective, we discuss the crucial cross-talk between the gut microbiota and the lungs, known as the gut-lung axis, during COVID-19 infection, as well as the putative effect of these microorganisms and their functional activity (i.e., short chain fatty acids and bile acids) on FMT treatment. In addition, we highlight the urgent need to investigate the possible impact of COVID-19 on FMT safety and efficacy, as well as instilling stringent screening protocols of donors and recipients during COVID-19 and post-COVID-19 pandemic to produce a cohesive and optimized FMT treatment plan across all centers and in all countries across the globe.
Collapse
Affiliation(s)
- Negin Kazemian
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| |
Collapse
|
392
|
Fang KY, Cao WC, Xie TA, Lv J, Chen JX, Cao XJ, Li ZW, Deng ST, Guo XG. Exploration and validation of related hub gene expression during SARS-CoV-2 infection of human bronchial organoids. Hum Genomics 2021; 15:18. [PMID: 33726831 PMCID: PMC7962432 DOI: 10.1186/s40246-021-00316-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background In the novel coronavirus pandemic, the high infection rate and high mortality have seriously affected people’s health and social order. To better explore the infection mechanism and treatment, the three-dimensional structure of human bronchus has been employed in a better in-depth study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods We downloaded a separate microarray from the Integrated Gene Expression System (GEO) on a human bronchial organoids sample to identify differentially expressed genes (DEGS) and analyzed it with R software. After processing with R software, Gene Ontology (GO) and Kyoto PBMCs of Genes and Genomes (KEGG) were analyzed, while a protein–protein interaction (PPI) network was constructed to show the interactions and influence relationships between these differential genes. Finally, the selected highly connected genes, which are called hub genes, were verified in CytoHubba plug-in. Results In this study, a total of 966 differentially expressed genes, including 490 upregulated genes and 476 downregulated genes were used. Analysis of GO and KEGG revealed that these differentially expressed genes were significantly enriched in pathways related to immune response and cytokines. We construct protein-protein interaction network and identify 10 hub genes, including IL6, MMP9, IL1B, CXCL8, ICAM1, FGF2, EGF, CXCL10, CCL2, CCL5, CXCL1, and FN1. Finally, with the help of GSE150728, we verified that CXCl1, CXCL8, CXCL10, CCL5, EGF differently expressed before and after SARS-CoV-2 infection in clinical patients. Conclusions In this study, we used mRNA expression data from GSE150819 to preliminarily confirm the feasibility of hBO as an in vitro model to further study the pathogenesis and potential treatment of COVID-19. Moreover, based on the mRNA differentiated expression of this model, we found that CXCL8, CXCL10, and EGF are hub genes in the process of SARS-COV-2 infection, and we emphasized their key roles in SARS-CoV-2 infection. And we also suggested that further study of these hub genes may be beneficial to treatment, prognostic prediction of COVID-19.
Collapse
Affiliation(s)
- Ke-Ying Fang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wen-Chao Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Tian-Ao Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Lv
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhong-Wei Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shu-Ting Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
393
|
Ipekci AM, Buitrago-Garcia D, Meili KW, Krauer F, Prajapati N, Thapa S, Wildisen L, Araujo-Chaveron L, Baumann L, Shah S, Whiteley T, Solís-García G, Tsotra F, Zhelyazkov I, Imeri H, Low N, Counotte MJ. Outbreaks of publications about emerging infectious diseases: the case of SARS-CoV-2 and Zika virus. BMC Med Res Methodol 2021; 21:50. [PMID: 33706715 PMCID: PMC7948668 DOI: 10.1186/s12874-021-01244-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Outbreaks of infectious diseases generate outbreaks of scientific evidence. In 2016 epidemics of Zika virus emerged, and in 2020, a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of coronavirus disease 2019 (COVID-19). We compared patterns of scientific publications for the two infections to analyse the evolution of the evidence. METHODS We annotated publications on Zika virus and SARS-CoV-2 that we collected using living evidence databases according to study design. We used descriptive statistics to categorise and compare study designs over time. RESULTS We found 2286 publications about Zika virus in 2016 and 21,990 about SARS-CoV-2 up to 24 May 2020, of which we analysed a random sample of 5294 (24%). For both infections, there were more epidemiological than laboratory science studies. Amongst epidemiological studies for both infections, case reports, case series and cross-sectional studies emerged first, cohort and case-control studies were published later. Trials were the last to emerge. The number of preprints was much higher for SARS-CoV-2 than for Zika virus. CONCLUSIONS Similarities in the overall pattern of publications might be generalizable, whereas differences are compatible with differences in the characteristics of a disease. Understanding how evidence accumulates during disease outbreaks helps us understand which types of public health questions we can answer and when.
Collapse
Affiliation(s)
- Aziz Mert Ipekci
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Diana Buitrago-Garcia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | | | - Fabienne Krauer
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Nirmala Prajapati
- École des Hautes Études en Santé Publique (EHESP), Saint Denis, France
| | - Shabnam Thapa
- Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Lea Wildisen
- Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | | | - Lukas Baumann
- Department of Internal Medicine, Kantonsspital Olten, Olten, Switzerland
| | - Sanam Shah
- École des Hautes Études en Santé Publique (EHESP), Saint Denis, France
| | - Tessa Whiteley
- École des Hautes Études en Santé Publique (EHESP), Saint Denis, France
| | - Gonzalo Solís-García
- Pediatrics Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Foteini Tsotra
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Ivan Zhelyazkov
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Hira Imeri
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
394
|
Chen JS, Alfajaro MM, Chow RD, Wei J, Filler RB, Eisenbarth SC, Wilen CB. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J Virol 2021; 95:JVI.00014-21. [PMID: 33441348 PMCID: PMC8092681 DOI: 10.1128/jvi.00014-21] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). As PGs play diverse biological roles in homeostasis and inflammatory responses, inhibiting PG production with NSAIDs could affect COVID-19 pathogenesis in multiple ways, including: (1) altering susceptibility to infection by modifying expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2; (2) regulating replication of SARS-CoV-2 in host cells; and (3) modulating the immune response to SARS-CoV-2. Here, we investigate these potential roles. We demonstrate that SARS-CoV-2 infection upregulates COX-2 in diverse human cell culture and mouse systems. However, suppression of COX-2 by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. In contrast, in a mouse model of SARS-CoV-2 infection, NSAID treatment reduced production of pro-inflammatory cytokines and impaired the humoral immune response to SARS-CoV-2 as demonstrated by reduced neutralizing antibody titers. Our findings indicate that NSAID treatment may influence COVID-19 outcomes by dampening the inflammatory response and production of protective antibodies rather than modifying susceptibility to infection or viral replication.ImportancePublic health officials have raised concerns about the use of nonsteroidal anti-inflammatory drugs (NSAIDs) for treating symptoms of coronavirus disease 2019 (COVID-19). NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which are critical for the generation of prostaglandins - lipid molecules with diverse roles in homeostasis and inflammation. Inhibition of prostaglandin production by NSAIDs could therefore have multiple effects on COVID-19 pathogenesis. Here, we demonstrate that NSAID treatment reduced both the antibody and pro-inflammatory cytokine response to SARS-CoV-2 infection. The ability of NSAIDs to modulate the immune response to SARS-CoV-2 infection has important implications for COVID-19 pathogenesis in patients. Whether this occurs in humans and whether it is beneficial or detrimental to the host remains an important area of future investigation. This also raises the possibility that NSAIDs may alter the immune response to SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
395
|
Yiangou L, Davis RP, Mummery CL. Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports 2021; 16:385-397. [PMID: 33306986 PMCID: PMC7833904 DOI: 10.1016/j.stemcr.2020.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the coronavirus disease (COVID-19) outbreak that became a pandemic in 2020, causing more than 30 million infections and 1 million deaths to date. As the scientific community has looked for vaccines and drugs to treat or eliminate the virus, unexpected features of the disease have emerged. Apart from respiratory complications, cardiovascular disease has emerged as a major indicator of poor prognosis in COVID-19. It has therefore become of utmost importance to understand how SARS-CoV-2 damages the heart. Human pluripotent stem cell (hPSC) cardiovascular derivatives were rapidly recognized as an invaluable tool to address this, not least because one of the major receptors for the virus is not recognized by SARS-CoV-2 in mice. Here, we outline how hPSC-derived cardiovascular cells have been utilized to study COVID-19, and their potential for further understanding the cardiac pathology and in therapeutic development.
Collapse
Affiliation(s)
- Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
396
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
397
|
De Gasparo R, Pedotti M, Simonelli L, Nickl P, Muecksch F, Cassaniti I, Percivalle E, Lorenzi JCC, Mazzola F, Magrì D, Michalcikova T, Haviernik J, Honig V, Mrazkova B, Polakova N, Fortova A, Tureckova J, Iatsiuk V, Girolamo SD, Palus M, Zudova D, Bednar P, Bukova I, Bianchini F, Mehn D, Nencka R, Strakova P, Pavlis O, Rozman J, Gioria S, Camilla Sammartino J, Giardina F, Gaiarsa S, Hammarström QP, Barnes CO, Bjorkman PJ, Calzolai L, Piralla A, Baldanti F, Nussenzweig MC, Bieniasz PD, Hatziioannou T, Prochazka J, Sedlacek R, Robbiani DF, Ruzek D, Varani L. Bispecific antibody neutralizes circulating SARS-CoV-2 variants, prevents escape and protects mice from disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.22.427567. [PMID: 33501434 PMCID: PMC7836104 DOI: 10.1101/2021.01.22.427567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Neutralizing antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) are among the most promising approaches against coronavirus disease 2019 (COVID-19) 1,2 . We developed a bispecific, IgG1-like molecule (CoV-X2) based on two antibodies derived from COVID-19 convalescent donors, C121 and C135 3 . CoV-X2 simultaneously binds two independent sites on the RBD and, unlike its parental antibodies, prevents detectable S binding to Angiotensin-Converting Enzyme 2 (ACE2), the virus cellular receptor. Furthermore, CoV-X2 neutralizes SARS-CoV-2 and its variants of concern, as well as the escape mutants generated by the parental monoclonals. In a novel animal model of SARS-CoV-2 infection with lung inflammation, CoV-X2 protects mice from disease and suppresses viral escape. Thus, simultaneous targeting of non-overlapping RBD epitopes by IgG-like bispecific antibodies is feasible and effective, combining into a single molecule the advantages of antibody cocktails.
Collapse
|
398
|
Watters KE, Kirkpatrick J, Palmer MJ, Koblentz GD. The CRISPR revolution and its potential impact on global health security. Pathog Glob Health 2021; 115:80-92. [PMID: 33590814 PMCID: PMC8550201 DOI: 10.1080/20477724.2021.1880202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Global health security is constantly under threat from infectious diseases. Despite advances in biotechnology that have improved diagnosis and treatment of such diseases, delays in detecting outbreaks and the lack of countermeasures for some biological agents continue to pose severe challenges to global health security. In this review, we describe some of the challenges facing global health security and how genome editing technologies can help overcome them. We provide specific examples of how the genome-editing tool CRISPR is being used to develop new tools to characterize pathogenic agents, diagnose infectious disease, and develop vaccines and therapeutics to mitigate the effects of an outbreak. The article also discusses some of the challenges associated with genome-editing technologies and the efforts that scientists are undertaking to mitigate them. Overall, CRISPR and genome-editing technologies are poised to have a significant positive influence on global health security over the years to come.
Collapse
Affiliation(s)
- Kyle E Watters
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jesse Kirkpatrick
- Institute for Philosophy and Public Policy, George Mason University, Fairfax, VA, USA
| | - Megan J Palmer
- Department of Bioengineering, Stanford University, Stanford, CA, USAs
| | - Gregory D Koblentz
- Schar School of Policy and Government, George Mason University, Fairfax, VA, USA
| |
Collapse
|
399
|
Liu J, Tan B, Wu S, Gui Y, Suo J, Li Y. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol 2021; 93:1304-1313. [PMID: 33002209 PMCID: PMC7537172 DOI: 10.1002/jmv.26570] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a significant and urgent threat to global health. This review provided strong support for central nervous system (CNS) infection with SARS-CoV-2 and shed light on the neurological mechanism underlying the lethality of SARS-CoV-2 infection. Among the published data, only 1.28% COVID-19 patients who underwent cerebrospinal fluid (CSF) tests were positive for SARS-CoV-2 in CSF. However, this does not mean the absence of CNS infection in most COVID-19 patients because postmortem studies revealed that some patients with CNS infection showed negative results in CSF tests for SARS-CoV-2. Among 20 neuropathological studies reported so far, SARS-CoV-2 was detected in the brain of 58 cases in nine studies, and three studies have provided sufficient details on the CNS infection in COVID-19 patients. Almost all in vitro and in vivo experiments support the neuroinvasive potential of SARS-CoV-2. In infected animals, SARS-CoV-2 was found within neurons in different brain areas with a wide spectrum of neuropathology, consistent with the reported clinical symptoms in COVID-19 patients. Several lines of evidence indicate that SARS-CoV-2 used the hematopoietic route to enter the CNS. But more evidence supports the trans-neuronal hypothesis. SARS-CoV-2 has been found to invade the brain via the olfactory, gustatory, and trigeminal pathways, especially at the early stage of infection. Severe COVID-19 patients with neurological deficits are at a higher risk of mortality, and only the infected animals showing neurological symptoms became dead, suggesting that neurological involvement may be one cause of death.
Collapse
Affiliation(s)
- Jia‐Mei Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of MedicineJilin UniversityChangchunJilinChina
| | - Bai‐Hong Tan
- Laboratory Teaching Center of Basic MedicineNorman Bethune Health Science Center of Jilin UniversityJilin ProvinceChina
| | - Shuang Wu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of MedicineJilin UniversityChangchunJilinChina
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of MedicineJilin UniversityChangchunJilinChina
| | - Jia‐Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of MedicineJilin UniversityChangchunJilinChina
| | - Yan‐Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of MedicineJilin UniversityChangchunJilinChina
| |
Collapse
|
400
|
Maciorowski D, Ogaugwu C, Durvasula SR, Durvasula R, Kunamneni A. Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:311-329. [PMID: 33319627 PMCID: PMC8940856 DOI: 10.1177/2472555220979579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
An outbreak of the coronavirus disease 2019 (COVID-19) caused by an infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, in December 2019. This new virus belongs to the group of enveloped RNA beta-coronaviruses. Symptoms may differ in various infected persons, but major presentations include dry cough, nasal congestion, shortness of breath, fever, and general malaise. The disease appears to be more severe in patients above the age of 60 years and those with underlying conditions such as diabetes, cancer, cardiovascular diseases, chronic respiratory disease, and hypertension. There is still no approved vaccine against COVID-19, but more than a hundred are at different stages of development. It is known that the development of new drugs takes a relatively long time, so several known and already-approved drugs are being repurposed for the treatment of this disease. In this review, we explore the therapeutic and vaccine options that are available for COVID-19 6 months after its outbreak. Most noteworthy among the therapeutic options are dexamethasone, remdesivir, Avigan (favipiravir) and convalescent plasma.
Collapse
Affiliation(s)
- Dawid Maciorowski
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Christian Ogaugwu
- Department of Animal and Environmental Biology, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | | | - Ravi Durvasula
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | |
Collapse
|