351
|
Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Baruch-Oren T, Berliner JA, Kirchgessner TG, Lusis AJ. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 2006; 26:2490-6. [PMID: 16931790 DOI: 10.1161/01.atv.0000242903.41158.a1] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Oxidized 1-palmitoyl-2-arachidonyl-sn-3-glycero-phosphorylcholine (oxPAPC) accumulates in atherosclerotic lesions and in vitro studies suggest that it mediates chronic inflammatory response in endothelial cells (ECs). The goal of our studies was to identify pathways mediating the induction of inflammatory genes by oxPAPC. METHODS AND RESULTS Using expression arrays, quantitative polymerase chain reaction (PCR), and immunoblotting we demonstrate that oxPAPC leads to endoplasmic reticulum stress and activation of the unfolded protein response (UPR) in human aortic ECs. Immunohistochemistry analysis of human atherosclerotic lesions indicated that UPR is induced in areas containing oxidized phospholipids. Using the UPR inducing agent tunicamycin and selective siRNA targeting of the ATF4 and XBP1 branches of the UPR, we demonstrate that these transcription factors are essential mediators of IL8, IL6, and MCP1 expression in human aortic ECs required for maximal inflammatory gene expression in the basal state and after oxPAPC treatment. We also identify a novel oxPAPC-induced chemokine, the CXC motif ligand 3 (CXCL3), and show that its expression requires XBP1. CONCLUSIONS These data suggest that the UPR pathway is a general mediator of vascular inflammation and EC dysfunction in atherosclerosis, and, likely, other inflammatory disorders.
Collapse
|
352
|
Nakamura M, Gotoh T, Okuno Y, Tatetsu H, Sonoki T, Uneda S, Mori M, Mitsuya H, Hata H. Activation of the endoplasmic reticulum stress pathway is associated with survival of myeloma cells. Leuk Lymphoma 2006; 47:531-9. [PMID: 16396777 DOI: 10.1080/10428190500312196] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle in which proteins are modified. When unfolded proteins accumulate in the ER under various stresses, ER stress (ERS) pathways, including the induction of chaperones, are activated to protect the cell. However, when ERS is excessive, the cell undergoes apoptosis. This study investigated ERS in multiple myeloma cells (MMCs) because they contain a well-developed ER due to M-protein production. The myeloma cell line 12-PE underwent apoptosis via caspase-3 after treatment with thapsigargin (thap), an ERS inducer, while another cell line, U266, did not. To understand the mechanism regulating this heterogeneity, the induction of chaperones by thap was analysed. Chaperones were up-regulated in U266 cells but down-regulated in 12-PE cells, suggesting that chaperones contribute to cell survival under ERS. Analysis of XBP-1, a transcriptional inducer of chaperones, in freshly isolated MMCs from 22 myeloma cases revealed 10 cases with active XBP-1, who also showed significantly poorer survival (p < 0.05), suggesting that chaperone expression protects MMCs from apoptosis, thereby allowing tumor cell expansion. These results suggest that MMCs are subjected to ERS under certain circumstances and that chaperones are induced to protect the cells against such ERS. Inhibition of chaperones could be a new target for myeloma therapy.
Collapse
Affiliation(s)
- Miki Nakamura
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
353
|
Kubisch CH, Sans MD, Arumugam T, Ernst SA, Williams JA, Logsdon CD. Early activation of endoplasmic reticulum stress is associated with arginine-induced acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2006; 291:G238-45. [PMID: 16574987 DOI: 10.1152/ajpgi.00471.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress mechanisms have been found to play critical roles in a number of diseases states, such as diabetes mellitus and Alzheimer disease, but whether they are involved in acute pancreatitis is unknown. Here we show for the first time that all major ER stress sensing and signaling mechanisms are present in exocrine acini and are activated early in the arginine model of experimental acute pancreatitis. Pancreatitis was induced in rats by intraperitoneal injection of 4.0 g/kg body wt arginine. Pancreatitis severity was assessed by analysis of serum amylase, pancreatic trypsin activity, water content, and histology. ER stress-related molecules PERK, eIF2alpha, ATF6, XBP-1, BiP, CHOP, and caspase-12 were analyzed. Arginine treatment induced rapid and severe pancreatitis, as indicated by increased serum amylase, pancreatic tissue edema, and acinar cell damage within 4 h. Arginine treatment also caused an early activation of ER stress, as indicated by phosphorylation of PERK and its downstream target eIF2alpha, ATF6 translocation into the nucleus (within 1 h), and upregulation of BiP (within 4 h). XBP-1 splicing and CHOP expression were observed within 8 h. After 24 h, increased activation of the ER stress-related proapoptotic molecule caspase-12 was observed along with an increase in caspase-3 activity and TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labeling (TUNEL) staining in exocrine acini. These results indicate that ER stress is an important early acinar cell event that likely contributes to the development of acute pancreatitis in the arginine model.
Collapse
Affiliation(s)
- Constanze H Kubisch
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX 77230-1429, USA
| | | | | | | | | | | |
Collapse
|
354
|
Carnevalli L, Pereira C, Jaqueta C, Alves V, Paiva V, Vattem K, Wek R, Mello L, Castilho B. Phosphorylation of the alpha subunit of translation initiation factor-2 by PKR mediates protein synthesis inhibition in the mouse brain during status epilepticus. Biochem J 2006; 397:187-94. [PMID: 16492139 PMCID: PMC1479748 DOI: 10.1042/bj20051643] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In response to different cellular stresses, a family of protein kinases phosphorylates eIF2alpha (alpha subunit of eukaryotic initiation factor-2), contributing to regulation of both general and genespecific translation proposed to alleviate cellular injury or alternatively induce apoptosis. Recently, we reported eIF2alpha(P) (phosphorylated eIF2alpha) in the brain during SE (status epilepticus) induced by pilocarpine in mice, an animal model of TLE (temporal lobe epilepsy) [Carnevalli, Pereira, Longo, Jaqueta, Avedissian, Mello and Castilho (2004) Neurosci. Lett. 357, 191-194]. We show in the present study that one eIF2alpha kinase family member, PKR (double-stranded-RNA-dependent protein kinase), is activated in the cortex and hippocampus at 30 min of SE, reflecting the levels of eIF2alpha(P) in these areas. In PKR-deficient animals subjected to SE, eIF2alpha phosphorylation was clearly evident coincident with activation of a secondary eIF2alpha kinase, PEK/PERK (pancreatic eIF2alpha kinase/RNA-dependent-protein-kinase-like endoplasmic reticulum kinase), denoting a compensatory mechanism between the two kinases. The extent of eIF2alpha phosphorylation correlated with the inhibition of protein synthesis in the brain, as determined from polysome profiles. We also found that C57BL/6 mice, which enter SE upon pilocarpine administration but are more resistant to seizure-induced neuronal degeneration, showed very low levels of eIF2alpha(P) and no inhibition of protein synthesis during SE. These results taken together suggest that PKR-mediated phosphorylation of eIF2alpha contributes to inhibition of protein synthesis in the brain during SE and that sustained high levels of eIF2alpha phosphorylation may facilitate ensuing cell death in the most affected areas of the brain in TLE.
Collapse
Affiliation(s)
- Larissa S. Carnevalli
- *Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
| | - Catia M. Pereira
- *Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
| | - Carolina B. Jaqueta
- †Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP, Brazil
| | - Viviane S. Alves
- *Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
| | - Vanessa N. Paiva
- *Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
| | - Krishna M. Vattem
- ‡Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| | - Ronald C. Wek
- ‡Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, U.S.A
| | - Luiz Eugênio A. M. Mello
- †Departamento de Fisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP, Brazil
| | - Beatriz A. Castilho
- *Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu, 862, São Paulo, SP 04023-062, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
355
|
Guerra S, López-Fernández LA, García MA, Zaballos A, Esteban M. Human Gene Profiling in Response to the Active Protein Kinase, Interferon-induced Serine/threonine Protein Kinase (PKR), in Infected Cells. J Biol Chem 2006; 281:18734-45. [PMID: 16613840 DOI: 10.1074/jbc.m511983200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The interferon-induced serine/threonine protein kinase (PKR) has an essential role in cell survival and cell death after viral infection and under stress conditions, but the host genes involved in these processes are not well defined. We used human cDNA microarrays to identify, in infected cells, genes differentially expressed after PKR expression and analyzed the requirement of catalytic activity of the enzyme. To express PKR, we used vaccinia virus (VV) recombinants producing wild type PKR (VV-PKR) and the catalytically inactive mutant K296R (VV-PKR-K296R). Most regulated genes were classified according to biological function, including apoptosis, stress, defense, and immune response. Transcriptional changes detected by microarray analysis were confirmed for selected genes by quantitative real time reverse transcription PCR. A total of 111 genes were regulated specifically by PKR catalytic activity. Of these, 97 were up-regulated, and 14 were down-regulated. The ATF-3 transcription factor, involved in stress-induced beta-cell apoptosis, was up-regulated. Activation of endogenous PKR with a VV mutant lacking the viral protein E3L (VVDeltaE3L), a PKR inhibitor, triggered an increase in ATF-3 expression that was not observed in PKR(-/-) cells. Using null cells for ATF-3 and for the p65 subunit of NF-kappaB, we showed that induction of apoptosis by PKR at late times of infection was dependent on ATF-3 expression and regulated by NF-kappaB activation. Here, we identified human genes selectively induced by expression of active PKR in infected cells and linked ATF-3 to a novel mechanism used by PKR to induce apoptosis.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
356
|
Kubisch CH, Gukovsky I, Lugea A, Pandol SJ, Kuick R, Misek DE, Hanash SM, Logsdon CD. Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury. Pancreas 2006; 33:68-76. [PMID: 16804415 DOI: 10.1097/01.mpa.0000226878.81377.94] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Long-term ethanol consumption does not cause acute pancreatitis but rather sensitizes the pancreas to subsequent insults. The mechanisms responsible for this sensitization are unknown. To determine whether alterations in pancreatic gene expression might participate in ethanol-mediated sensitization, we performed gene-profiling analysis. METHODS Animals were fed ethanol-containing Lieber-DeCarli or control diet (pair-fed). After 8 weeks, pancreatic RNA expression was analyzed using Affimetrix GeneChips. Changes in specific genes were verified using quantitative reverse transcriptase-polymerase chain reaction. RESULTS Long-term ethanol feeding caused a significant alteration of pancreatic gene expression. Selection criteria of changes more than 3-fold and P < 0.05 yielded 114 probe sets. Activating transcription factor 3, heat shock protein 70, heat shock protein 27, and mesotrypsinogen were increased, whereas pancreatitis associate protein, folate carrier, and metallothionein were decreased. CONCLUSIONS Ethanol had a profound effect on pancreatic gene expression. The genes identified as elevated and reduced in this study may contribute to pancreatic sensitivity to stress. This study indicates for the first time the identities of multiple genes whose expression levels are dramatically influenced by long-term ethanol feeding. The identified genes may help explain the relationship between long-term ethanol abuse and pancreatic disease and lead to possible preventative or therapeutic approaches to ethanol-induced pancreatic disease.
Collapse
MESH Headings
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Ethanol/toxicity
- Gene Expression Profiling
- Gene Expression Regulation
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Oligonucleotide Array Sequence Analysis
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreatitis, Alcoholic/chemically induced
- Pancreatitis, Alcoholic/genetics
- Pancreatitis, Alcoholic/metabolism
- Pancreatitis-Associated Proteins
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Time Factors
Collapse
Affiliation(s)
- Constanze H Kubisch
- Department of Cancer Biology, MD Anderson Cancer Center, University of Texas, Houston, TX 77230-1429, USA
| | | | | | | | | | | | | | | |
Collapse
|
357
|
Abstract
The endoplasmic reticulum (ER) lumen, which actively monitors the synthesis, folding, and modification of newly synthesized transmembrane and secretory proteins as well as lipids, is quite sensitive to homeostatic perturbations. The biochemical, molecular, and physiological events that elevate cellular ER stress levels and disrupt Ca2+ homeostasis trigger secondary reactions. These reactions are factors in the ongoing neurological pathology contributing to the continual tissue loss. However, the cells are not without defensive systems. One of the reactive mechanisms, the unfolded protein response (UPR), when evoked, provides some measure of protection, unless the stress conditions become prolonged or overwhelming. UPR activation occurs when key ER membrane-bound sensor proteins detect the excess accumulation of misfolded or unfolded proteins within the ER lumen. The activation of these sensors leads to a general protein translation shut-down, transcriptional induction, and translation of select proteins to deal with the difficult and miscreant protein or to encourage their degradation so they will do no harm. If the stress is prolonged, caspase-12, along with other apoptotic proteins, are activated, triggering programmed cell death. UPR, once considered to be a rather simple response, can now be characterized as a multifaceted labyrinth of reactions that continues expanding as research intensifies. This review will examine what has been learned to date about how this highly efficient and specific signaling pathway copes with ER stress, by centering on the basic components, their roles, and the complex interactions engendered. Finally, the UPR impact in various central nervous system injuries is summarized.
Collapse
Affiliation(s)
- Stephen F Larner
- Center for Traumatic Brain Injury Studies, Department of Neuroscience, McKnight Brain Institute of the University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
358
|
Oh RS, Bai X, Rommens JM. Human homologs of Ubc6p ubiquitin-conjugating enzyme and phosphorylation of HsUbc6e in response to endoplasmic reticulum stress. J Biol Chem 2006; 281:21480-21490. [PMID: 16720581 DOI: 10.1074/jbc.m601843200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme Ubc6p is a tail-anchored protein that is localized to the cytoplasmic face of the endoplasmic reticulum (ER) membrane and has been implicated in the degradation of many misfolded membrane proteins in yeast. We have undertaken characterization studies of two human homologs, hsUbc6 and hsUbc6e. Both possess tail-anchored protein motifs, display high conservation in their catalytic domains, and are functional ubiquitin-conjugating enzymes as determined by in vitro thiol-ester assay. Both also display induction by the unfolded protein response, a feature of many ER-associated degradation (ERAD) components. Post-translational modification involving phosphorylation of hsUbc6e was observed to be ER-stress-related and dependent on signaling of the PRK-like ER kinase (PERK). The phosphorylation site was mapped to Ser-184, which resides within the uncharacterized region linking the highly conserved catalytic core and the C-terminal transmembrane domain. Phosphorylation of hsUbc6e also did not alter stability, subcellular localization, or interaction with a partner ubiquitin-protein isopeptide ligase. Assays of hsUbc6e(S184D) and hsUbc6e(S184E), which mimic the phosphorylated state, suggest that phosphorylation may reduce capacity for forming ubiquitin-enzyme thiol-esters. The occurrence of two distinct Ubc6p homologs in vertebrates, including one with phosphorylation modification in response to ER stress, emphasizes diversity in function between these Ub-conjugating enzymes during ERAD processes.
Collapse
Affiliation(s)
- Ray S Oh
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Xinli Bai
- Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Johanna M Rommens
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8; Program in Genetics & Genomic Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
359
|
Tabuchi Y, Takasaki I, Kondo T. Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells. Biochem Biophys Res Commun 2006; 345:1044-50. [PMID: 16713995 DOI: 10.1016/j.bbrc.2006.04.177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 04/29/2006] [Indexed: 12/20/2022]
Abstract
To identify detailed mechanisms by which bisphenol A (BPA), an endocrine-disrupting chemical, induces cell injury in mouse testicular Sertoli TTE3 cells, we performed genome-wide microarray and computational gene network analyses. BPA (200muM) significantly decreased cell viability and simultaneously induced an increase in mRNA levels of HSPA5 and DDIT3, endoplasmic reticulum (ER) stress marker genes. Of the 22,690 probe sets analyzed, BPA down-regulated 661 probe sets and up-regulated 604 probe sets by >2.0-fold. Hierarchical cluster analysis demonstrated nine gene clusters. In decreased gene clusters, two significant genetic networks were associated with cell growth and proliferation and the cell cycle. In increased gene clusters, two significant genetic networks including many basic-region leucine zipper transcription factors were associated with cell death and DNA replication, recombination, and repair. The present results will provide additional novel insights into the detailed molecular mechanisms of cell injury accompanying ER stress induced by BPA in Sertoli cells.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan.
| | | | | |
Collapse
|
360
|
Palii S, Thiaville M, Pan YX, Zhong C, Kilberg M. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) System A transporter gene. Biochem J 2006; 395:517-27. [PMID: 16445384 PMCID: PMC1462688 DOI: 10.1042/bj20051867] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neutral amino acid transport activity, System A, is enhanced by amino acid limitation of mammalian cells. Of the three gene products that encode System A activity, the one that exhibits this regulation is SNAT2 (sodium-coupled neutral amino acid transporter 2). Fibroblasts that are deficient in the amino acid response pathway exhibited little or no induction of SNAT2 mRNA. Synthesis of SNAT2 mRNA increased within 1-2 h after amino acid removal from HepG2 human hepatoma cells. The amino acid responsive SNAT2 genomic element that mediates the regulation has been localized to the first intron. Increased binding of selected members of the ATF (activating transcription factor) and C/EBP (CCAAT/enhancer-binding protein) families to the intronic enhancer was established both in vitro and in vivo. In contrast, there was no significant association of these factors with the SNAT2 promoter. Expression of exogenous individual ATF and C/EBP proteins documented that specific family members are associated with either activation or repression of SNAT2 transcription. Chromatin immunoprecipitation analysis established in vivo that amino acid deprivation led to increased RNA polymerase II recruitment to the SNAT2 promoter.
Collapse
Affiliation(s)
- Stela S. Palii
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, and the Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michelle M. Thiaville
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, and the Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Yuan-Xiang Pan
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, and the Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Can Zhong
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, and the Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, Shands Cancer Center, and the Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
361
|
Kim HB, Kong M, Kim TM, Suh YH, Kim WH, Lim JH, Song JH, Jung MH. NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 2006; 55:1342-52. [PMID: 16644691 DOI: 10.2337/db05-1507] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of adiponectin decreases with obesity and insulin resistance. At present, the mechanisms responsible for negatively regulating adiponectin expression in adipocytes are poorly understood. In this investigation, we analyzed the effects of 5' serial deletion constructs on the murine adiponectin promoter. Here, we identified the repressor region located between -472 and -313 bp of the promoter. Removal of the putative nuclear factor of activated T-cells (NFATs) binding site increased the promoter activity, and overexpression of NFATc4 reduced the promoter activity. Treatment with the calcium ionophore A23187, an activator of NFAT, reduced mRNA as well as promoter activity. The binding of NFATc4 to the promoter was associated with increased recruitment of histone deacetylase 1 and reduced acetylation of histone H3 at the promoter site. In addition, binding of activating transcription factor 3 (ATF3) to the putative activator protein-1 site located adjacent to the NFAT binding site also repressed the promoter activity. Treatment with thapsigargin, an inducer of ATF3, reduced both mRNA and promoter activity. Importantly, the binding activities of NFATc4 and ATF3, increased significantly in white adipose tissues of ob/ob and db/db mice compared with controls. Taken together, this study demonstrates for the first time that NFATc4 and ATF3 function as negative regulators of adiponectin gene expression, which may play critical roles in downregulating adiponectin expression in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Hyun Bae Kim
- Division of Metabolic Diseases, Center for Biomedical Science, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Boyce M, Yuan J. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 2006; 13:363-73. [PMID: 16397583 DOI: 10.1038/sj.cdd.4401817] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is critical for numerous aspects of cell physiology. Accordingly, all eukaryotes react rapidly to ER dysfunction through a set of adaptive pathways known collectively as the ER stress response (ESR). Normally, this suite of responses succeeds in restoring ER homeostasis. However, in metazoans, persistent or intense ER stress can also trigger programmed cell death, or apoptosis. ER stress and the apoptotic program coupled to it have been implicated in many important pathologies but the regulation and execution of ER stress-induced apoptosis in mammals remain incompletely understood. Here, we review what is known about the ESR in both yeast and mammals, and highlight recent findings on the mechanism and pathophysiological importance of ER stress-induced apoptosis.
Collapse
Affiliation(s)
- M Boyce
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
363
|
Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 2006; 281:17929-40. [PMID: 16621798 DOI: 10.1074/jbc.m600341200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nutritional stress caused by amino acid starvation involves a coordinated cellular response that includes the global decrease of protein synthesis and the increased production of cell defense proteins. Part of this response is the induction of transport system A for neutral amino acids that leads to the recovery of cell volume and amino acid levels once extracellular amino acid availability is restored. Hypertonic stress also increases system A activity as a mechanism to promote a rapid recovery of cell volume. Both a starvation-dependent and a hypertonic increase of system A transport activity are due to the induction of SNAT2, the ubiquitous member of SLC38 family. The molecular mechanisms underlying SNAT2 induction were investigated in tissue culture cells. We show that the increase in system A transport activity and SNAT2 mRNA levels upon amino acid starvation were blunted in cells with a mutant eIF2alpha that cannot be phosphorylated. In contrast, the induction of system A activity and SNAT2 mRNA levels by hypertonic stress were independent of eIF2alpha phosphorylation. The translational control of the SNAT2 mRNA during amino acid starvation was also investigated. It is shown that the 5'-untranslated region contains an internal ribosome entry site that is constitutively active in amino acid-fed and -deficient cells and in a cell-free system. We also show that amino acid starvation caused a 2.5-fold increase in mRNA and protein expression from a reporter construct containing both the SNAT2 intronic amino acid response element and the SNAT2-untranslated region. We conclude that the adaptive response of system A activity to amino acid starvation requires eukaryotic initiation factor 2alpha phosphorylation, increased gene transcription, and internal ribosome entry site-mediated translation. In contrast, the response to hypertonic stress does not involve eukaryotic initiation factor 2alpha phosphorylation, suggesting that SNAT2 expression can be modulated by specific signaling pathways in response to different stresses.
Collapse
Affiliation(s)
- Francesca Gaccioli
- Departments of Nutrition and Biochemistry, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
364
|
Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M, Mima S, Hoshino T, Mizushima T. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 2006; 25:1018-29. [PMID: 16205636 DOI: 10.1038/sj.onc.1209139] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in cancer cells and this effect is involved in their antitumor activity. We recently demonstrated that NSAIDs upregulate GRP78, an endoplasmic reticulum (ER) chaperone, in gastric mucosal cells in primary culture. In the present study, induction of ER chaperones by NSAIDs and the effect of those chaperones on NSAID-induced apoptosis were examined in human gastric carcinoma cells. Celecoxib, an NSAID, upregulated ER chaperones (GRP78 and its cochaperones ERdj3 and ERdj4) but also C/EBP homologous transcription factor (CHOP), a transcription factor involved in apoptosis. Celecoxib also upregulated GRP78 in xenograft tumors, accompanying with the suppression of tumor growth in nude mice. Celecoxib caused phosphorylation of eukaryotic translation initiation factor 2 kinase (PERK) and eukaryotic initiation factor-2alpha (eIF2alpha) and production of activating transcription factor (ATF)4 mRNA. Suppression of ATF4 expression by small interfering RNA (siRNA) partially inhibited the celecoxib-dependent upregulation of GRP78. Celecoxib increased the intracellular Ca2+ concentration, while 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid, an intracellular Ca2+ chelator, inhibited the upregulation of GRP78 and ATF4. These results suggest that the Ca2+-dependent activation of the PERK-eIF2alpha-ATF4 pathway is involved in the upregulation of ER chaperones by celecoxib. Overexpression of GRP78 partially suppressed the apoptosis and induction of CHOP in the presence of celecoxib and this suppression was stimulated by coexpression of either ERdj3 or ERdj4. On the other hand, suppression of GRP78 expression by siRNA drastically stimulated cellular apoptosis and production of CHOP in the presence of celecoxib. These results show that upregulation of ER chaperones by celecoxib protects cancer cells from celecoxib-induced apoptosis, thus may decrease the potential antitumor activity of celecoxib.
Collapse
Affiliation(s)
- S Tsutsumi
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Liang SH, Zhang W, Mcgrath B, Zhang P, Cavener D. PERK (eIF2alpha kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis. Biochem J 2006; 393:201-9. [PMID: 16124869 PMCID: PMC1383678 DOI: 10.1042/bj20050374] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The eIF2alpha (eukaryotic initiation factor-2alpha) kinase PERK (doublestranded RNA-activated protein kinase-like ER kinase) is essential for the normal function of highly secretory cells in the pancreas and skeletal system, as well as the UPR (unfolded protein response) in mammalian cells. To delineate the regulatory machinery underlying PERK-dependent stress-responses, gene profiling was employed to assess global changes in gene expression in PERK-deficient MEFs (mouse embryonic fibroblasts). Several IE (immediate-early) genes, including c-myc, c-jun, egr-1 (early growth response factor-1), and fra-1 (fos-related antigen-1), displayed PERK-dependent expression in MEFs upon disruption of calcium homoeostasis by inhibiting the ER (endoplasmic reticulum) transmembrane SERCA (sarcoplasmic/ER Ca2+-ATPase) calcium pump. Induction of c-myc and egr-1 by other reagents that elicit the UPR, however, showed variable dependence upon PERK. Induction of c-myc expression by thapsigargin was shown to be linked to key signalling enzymes including PLC (phospholipase C), PI3K (phosphatidylinositol 3-kinase) and p38 MAPK (mitogen-activated protein kinase). Analysis of the phosphorylated status of major components in MAPK signalling pathways indicated that thapsigargin and DTT (dithiothreitol) but not tunicamycin could trigger the PERK-dependent activation of JNK (c-Jun N-terminal kinase) and p38 MAPK. However, activation of JNK and p38 MAPK by non-ER stress stimuli including UV irradiation, anisomycin, and TNF-alpha (tumour necrosis factor-alpha) was found to be independent of PERK. PERK plays a particularly important role in mediating the global cellular response to ER stress that is elicited by the depletion of calcium from the ER. We suggest that this specificity of PERK function in the UPR is an extension of the normal physiological function of PERK to act as a calcium sensor in the ER.
Collapse
Affiliation(s)
- Shun-Hsin Liang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Wei Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Barbara C. Mcgrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Peichuan Zhang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Douglas R. Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
366
|
Chen C, Dudenhausen E, Chen H, Pan YX, Gjymishka A, Kilberg M. Amino-acid limitation induces transcription from the human C/EBPbeta gene via an enhancer activity located downstream of the protein coding sequence. Biochem J 2006; 391:649-58. [PMID: 16026328 PMCID: PMC1276966 DOI: 10.1042/bj20050882] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For animals, dietary protein is critical for the nutrition of the organism and, at the cellular level, protein nutrition translates into amino acid availability. Amino acid deprivation triggers the AAR (amino acid response) pathway, which causes enhanced transcription from specific target genes. The present results show that C/EBPbeta (CCAAT/enhancer-binding protein beta) mRNA and protein content were increased following the deprivation of HepG2 human hepatoma cells of a single amino acid. Although there was a modest increase in mRNA half-life following histidine limitation, the primary mechanism for the elevated steady-state mRNA was increased transcription. Transient transfection documented that C/EBPbeta genomic fragments containing the 8451 bp 5' upstream of the transcription start site did not contain amino-acid-responsive elements. However, deletion analysis of the genomic region located 3' downstream of the protein coding sequence revealed that a 93 bp fragment contained an amino-acid-responsive activity that functioned as an enhancer. Exogenous expression of ATF4 (activating transcription factor 4), known to activate other genes through amino acid response elements, caused increased transcription from reporter constructs containing the C/EBPbeta enhancer in cells maintained in complete amino acid medium. Chromatin immunoprecipitation demonstrated that RNA polymerase II is bound at the C/EBPbeta promoter and at the 93 bp regulatory region in vivo, whereas ATF4 binds to the enhancer region only. Immediately following amino acid removal, the kinetics of binding for ATF4, ATF3, and C/EBPbeta itself to the 93 bp regulatory region were similar to those observed for the amino-acid-responsive asparagine synthetase gene. Collectively the findings show that expression of C/EBPbeta, which contributes to the regulation of amino-acid-responsive genes, is itself controlled by amino acid availability through transcription.
Collapse
Affiliation(s)
- Chin Chen
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Elizabeth Dudenhausen
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Hong Chen
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Yuan-Xiang Pan
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Altin Gjymishka
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
367
|
Ito K, Kiyosawa N, Kumagai K, Manabe S, Matsunuma N, Yamoto T. Molecular mechanism investigation of cycloheximide-induced hepatocyte apoptosis in rat livers by morphological and microarray analysis. Toxicology 2006; 219:175-86. [PMID: 16368179 DOI: 10.1016/j.tox.2005.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/15/2005] [Accepted: 11/15/2005] [Indexed: 12/31/2022]
Abstract
Male F344 rats were intravenously treated with 6 mg/kg cycloheximide (CHX), and microarray analysis was conducted on their livers 1, 2 and 6h after the CHX treatment. The histopathological examination and serum chemistry results indicated a mild hepatic cell death 2 and 6h after the CHX treatment, respectively. Multi-focal hepatocellular necrosis with slight neutrophil infiltration was observed 6h after the CHX treatment. The TUNEL staining results showed that the number of apoptotic hepatocytes was the highest 2h after the CHX treatment. Dramatic increases in the mRNA levels of ATF3 and CHOP genes, both of which were reported to play roles in the ER stress-mediated apoptosis pathway, were observed from 1h after the CHX treatment. In addition, increase of GADD45, p21 and p53 mRNA levels also suggested a time course-related stimulation of hepatocellular apoptotic signals. These results suggest that the hepatocyte apoptosis induced by the CHX treatment is triggered by ER stress. The hepatic mRNA levels of proinflammatory genes, such as TNFalpha, IL-1alpha and beta, were also increased 1 and 2h after the CHX treatment, supposedly mediated by the activated Kupffer cells engulfing the apoptotic hepatocytes.
Collapse
Affiliation(s)
- Kazumi Ito
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan. ,jp
| | | | | | | | | | | |
Collapse
|
368
|
Koritzinsky M, Seigneuric R, Magagnin MG, van den Beucken T, Lambin P, Wouters BG. The hypoxic proteome is influenced by gene-specific changes in mRNA translation. Radiother Oncol 2006; 76:177-86. [PMID: 16098621 DOI: 10.1016/j.radonc.2005.06.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 05/24/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND PURPOSE Hypoxia causes a rapid reduction in mRNA translation efficiency. This inhibition does not affect all mRNA species to the same extent and can therefore contribute significantly to hypoxia-induced differential protein expression. Our aim in this study was to characterize changes in gene expression during acute hypoxia and evaluate the contribution of regulation via mRNA translation on these changes. For each gene, the contribution of changes in mRNA abundance versus mRNA translation was determined. MATERIALS AND METHODS DU145 prostate carcinoma cells were exposed to 4h of hypoxia (<0.02% O2). Efficiently translated mRNAs were isolated by sedimentation through a sucrose gradient. Affymetrix microarray technology was used to evaluate both the transcriptional and translational contribution to gene expression. Results were validated by quantitative PCR. RESULTS One hundred and twenty genes were more than 4-fold upregulated by hypoxia in the efficiently translated fraction of mRNA, in comparison to only 76 genes at the level of transcription. Of the 50 genes demonstrating the largest changes in translation, 11 were found to be more than 2-fold over represented in the translated fraction in comparison to their overall transcriptional level. The gene with the highest translational contribution to its induction was CITED-2, which is a negative regulator of HIF-1 transcriptional activity. CONCLUSIONS Gene-specific regulation of mRNA translation contributes significantly to differential gene expression during hypoxia.
Collapse
Affiliation(s)
- Marianne Koritzinsky
- Department of Radiation Oncology (MAASTRO Lab), Research Institute Growth and Development, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
369
|
Abstract
In response to environmental stresses, a family of protein kinases phosphorylate eIF2 (eukaryotic initiation factor 2) to alleviate cellular injury or alternatively induce apoptosis. Phosphorylation of eIF2 reduces global translation, allowing cells to conserve resources and to initiate a reconfiguration of gene expression to effectively manage stress conditions. Accompanying this general protein synthesis control, eIF2 phosphorylation induces translation of specific mRNAs, such as that encoding the bZIP (basic leucine zipper) transcriptional regulator ATF4 (activating transcription factor 4). ATF4 also enhances the expression of additional transcription factors, ATF3 and CHOP (CCAAT/enhancer-binding protein homologous protein)/GADD153 (growth arrest and DNA-damage-inducible protein), that assist in the regulation of genes involved in metabolism, the redox status of the cells and apoptosis. Reduced translation by eIF2 phosphorylation can also lead to activation of stress-related transcription factors, such as NF-κB (nuclear factor κB), by lowering the steady-state levels of short-lived regulatory proteins such as IκB (inhibitor of NF-κB). While many of the genes induced by eIF2 phosphorylation are shared between different environmental stresses, eIF2 kinases function in conjunction with other stress-response pathways, such as those regulated by mitogen-activated protein kinases, to elicit gene expression programmes that are tailored for the specific stress condition. Loss of eIF2 kinase pathways can have important health consequences. Mice devoid of the eIF2 kinase GCN2 [general control non-derepressible-2 or EIF2AK4 (eIF2α kinase 4)] show sensitivity to nutritional deficiencies and aberrant eating behaviours, and deletion of PEK [pancreatic eIF2α kinase or PERK (RNA-dependent protein kinase-like endoplasmic reticulum kinase) or EIF2AK3] leads to neonatal insulin-dependent diabetes, epiphyseal dysplasia and hepatic and renal complications.
Collapse
|
370
|
Kraemer K, Schmidt U, Fuessel S, Herr A, Wirth MP, Meye A. Microarray analyses in bladder cancer cells: Inhibition of hTERT expression down-regulates EGFR. Int J Cancer 2006; 119:1276-84. [PMID: 16615118 DOI: 10.1002/ijc.21975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human telomerase reverse transcriptase (hTERT) contributes to the immortal phenotype of the majority of cancers. Targeting hTERT by transfection with antisense oligonucleotides (AS-ODNs) induced immediate growth inhibition in human bladder cancer (BCa) cells. The molecular basis of the antiproliferative capacity of hTERT AS-ODNs was investigated by oligonucleotide microarray analyses and was compared to effects caused by siRNA-mediated knock-down of hTERT in EJ28 BCa cells. Two different AS-ODNs -- both down-regulated the expression of hTERT -- changed the expression of different genes mainly involved in stress response (including EGR1, ATF3 and GDF15), but without an association to telomerase function. This indicates that the immediate growth inhibition was caused, at least in part, by off-target effects. In comparison to that the blockade of the expression of hTERT using 2 different siRNAs was accompanied by the down-regulation of the oncogenes FOS-like antigen 1 (FOSL1) and epidermal growth factor receptor (EGFR), known to be overexpressed in BCa. We show here for the first time that repression of the hTERT transcript number decreased the expression of EGFR both at the mRNA and protein levels, suggesting a potential new function of hTERT in the regulation of EGFR-stimulated proliferation. Furthermore, the suppression of hTERT by siRNAs caused an enhancement of the antiproliferative capacity of the chemotherapeutics mitomycin C and cisplatin. The results presented herein may support the hypothesis that hTERT promotes the growth of tumor cells by mechanisms independent from telomere lengthening. The detailed clarification of these processes will shed light on the question, whether telomerase inhibitors might constitute suitable anticancer tools.
Collapse
Affiliation(s)
- Kai Kraemer
- Department of Urology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
371
|
Zhang Z, Lee YC, Kim SJ, Choi MS, Tsai PC, Xu Y, Xiao YJ, Zhang P, Heffer A, Mukherjee AB. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 2005; 15:337-46. [PMID: 16368712 DOI: 10.1093/hmg/ddi451] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Numerous proteins undergo modification by palmitic acid (S-acylation) for their biological functions including signal transduction, vesicular transport and maintenance of cellular architecture. Although palmitoylation is an essential modification, these proteins must also undergo depalmitoylation for their degradation by lysosomal proteases. Palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme, cleaves thioester linkages in S-acylated proteins and removes palmitate residues facilitating the degradation of these proteins. Thus, inactivating mutations in the PPT1 gene cause infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative storage disorder of childhood. Although rapidly progressing brain atrophy is the most dramatic pathological manifestation of INCL, the molecular mechanism(s) remains unclear. Using PPT1-knockout (PPT1-KO) mice that mimic human INCL, we report here that the endoplasmic reticulum (ER) in the brain cells of these mice is structurally abnormal. Further, we demonstrate that the level of growth-associated protein-43 (GAP-43), a palmitoylated neuronal protein, is elevated in the brains of PPT1-KO mice. Moreover, forced expression of GAP-43 in PPT1-deficient cells results in the abnormal accumulation of this protein in the ER. Consistent with these results, we found evidence for the activation of unfolded protein response (UPR) marked by elevated levels of phosphorylated translation initiation factor, eIF2alpha, increased expression of chaperone proteins such as glucose-regulated protein-78 and activation of caspase-12, a cysteine proteinase in the ER, mediating caspase-3 activation and apoptosis. Our results, for the first time, link PPT1 deficiency with the activation of UPR, apoptosis and neurodegeneration in INCL and identify potential targets for therapeutic intervention in this uniformly fatal disease.
Collapse
Affiliation(s)
- Zhongjian Zhang
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
372
|
Vlug AS, Teuling E, Haasdijk ED, French P, Hoogenraad CC, Jaarsma D. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 2005; 22:1881-94. [PMID: 16262628 DOI: 10.1111/j.1460-9568.2005.04389.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription factors' ATF3 and phospho-c-Jun. Immunocytochemistry and in situ hybridization showed that a subset of motoneurons express ATF3 from a relatively early phase of disease before the onset of active caspase 3 expression and motoneuron loss. The highest number of ATF3-expressing motoneurons occurred at symptom onset. The onset of ATF3 expression correlated with the appearance of ubiquitinated neurites. Confocal double-labelling immunofluorescence showed that all ATF3-positive motoneurons were immunoreactive for phosphorylated c-Jun. Furthermore, the majority of ATF3 and phospho-c-Jun-positive motoneurons were also immunoreactive for CHOP (GADD153) and showed Golgi fragmentation. A subset of ATF3 and phosphorylated c-Jun-immunoreactive motoneurons showed an abnormal appearance characterized by a number of distinctive features, including an eccentric flattened nucleus, perikaryal accumulation of ubiquitin immunoreactivity, juxta-nuclear accumulation of the Golgi apparatus and the endoplasmic reticulum, and intense Hsp70 immunoreactivity. These abnormal cells were not immunoreactive for active caspase 3. We conclude that motoneurons in ALS-SOD1 mice prior to their death and disappearance experience a prolonged sick phase, characterized by the gradual accumulation of ubiquitinated material first in the neurites and subsequently the cell body.
Collapse
Affiliation(s)
- Angela S Vlug
- Department of Neuroscience, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
373
|
Kline CLB, Schrufer TL, Jefferson LS, Kimball SR. Glucosamine-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is mediated by the protein kinase R-like endoplasmic-reticulum associated kinase. Int J Biochem Cell Biol 2005; 38:1004-14. [PMID: 16324875 DOI: 10.1016/j.biocel.2005.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/14/2005] [Accepted: 10/21/2005] [Indexed: 01/19/2023]
Abstract
In diabetic animals, enhanced production of vascular endothelial growth factor is thought to be a major contributor to the development of diabetic retinopathy. In the present study, glucosamine-treated R28 retinal neuronal cells were used as an experimental model system to explore the possible involvement of the hexosamine biosynthetic pathway in the diabetes-induced changes in mRNA translation. Glucosamine treatment enhanced vascular endothelial growth factor production subsequent to changes in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2, with no change in vascular endothelial growth factor mRNA content. Possible mechanisms through which glucosamine might act to increase eukaryotic initiation factor 2alpha phosphorylation include enhanced O-linked glycosylation of protein kinase or phosphatase regulatory proteins and/or induction of oxidative stress. However, increasing global protein O-glycosylation through inhibition of O-beta-N-acetylglucosaminidase did not mimic the effect of glucosamine on eukaryotic initiation factor 2alpha phosphorylation. Likewise, attenuating glucosamine-induced oxidative stress with two different antioxidants did not reduce glucosamine-induced eukaryotic initiation factor 2alpha phosphorylation. Glucosamine treatment was also found to promote eukaryotic initiation factor 2alpha phosphorylation in wild-type mouse embryonic fibroblasts, but not in mouse embryonic fibroblasts lacking the eukaryotic initiation factor 2alpha kinase referred to as RNA-dependent protein kinase-like endoplasmic-reticulum associated kinase, implicating the kinase in the glucosamine-induced increase in eukaryotic initiation factor 2alpha phosphorylation. Overall, the results are consistent with glucosamine causing activation of RNA-dependent protein kinase-like endoplasmic-reticulum associated kinase, which phosphorylates eukaryotic initiation factor 2alpha and consequently upregulates translation of mRNAs encoding specific proteins, such as vascular endothelial growth factor.
Collapse
Affiliation(s)
- Christina Leah B Kline
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | | | |
Collapse
|
374
|
Bhattacharjee RN, Park KS, Uematsu S, Okada K, Hoshino K, Takeda K, Takeuchi O, Akira S, Iida T, Honda T. Escherichia coliverotoxin 1 mediates apoptosis in human HCT116 colon cancer cells by inducing overexpression of the GADD family of genes and S phase arrest. FEBS Lett 2005; 579:6604-10. [PMID: 16297916 DOI: 10.1016/j.febslet.2005.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 09/29/2005] [Accepted: 10/27/2005] [Indexed: 10/25/2022]
Abstract
The Escherichia coli verotoxin 1 (VT1) inhibits protein synthesis, cell proliferation, and damages endothelial cell in the hemolytic uremic syndrome. VT1 can specifically bind and act on endothelial cells as well as on many tumor cells because these cells express its high affinity receptor, globotriaosylceramide. This indicates that VT1 may have both antiangiogenic and antineoplastic activities. We investigated this potential of VT1 by incubating several colon cancer cell lines with VT1 for different time periods and found that HCT116 cells were especially sensitive to VT1. A combination of morphological studies, flow cytometry, DNA laddering and annexin V staining confirmed that VT1 irreversibly arrests these cells in S phase within 24 h and prolonged incubation triggers DNA fragmentation. Concomitant to the activation of the S phase checkpoint, increased levels of mRNA and proteins of growth arrest and DNA damage-inducible gene family that include GADD34, GADD45alpha, and GADD45beta was observed. Interestingly, no significant changes in expression of key cell cycle related proteins such as cdk2, cdk4, p21, p27, and p53 was found during the S phase arrest and apoptosis. We therefore suggest that GADD proteins might play an important role in VT1 induced S phase arrest and programmed cell death in HCT116 cells.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
375
|
Dow GS, Caridha D, Goldberg M, Wolf L, Koenig ML, Yourick DL, Wang Z. Transcriptional profiling of mefloquine-induced disruption of calcium homeostasis in neurons in vitro. Genomics 2005; 86:539-50. [PMID: 16109470 DOI: 10.1016/j.ygeno.2005.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 07/07/2005] [Accepted: 07/14/2005] [Indexed: 11/26/2022]
Abstract
Mefloquine is associated with adverse neurological effects that are mediated via unknown mechanisms. Recent in vitro studies have shown that mefloquine disrupts neuronal calcium homeostasis via liberation of the endoplasmic reticulum (ER) store and induction of calcium influx across the plasma membrane. In the present study, global changes in gene expression induced in neurons in response to mefloquine-induced disruption of calcium homeostasis and appropriate control agents were investigated in vitro using Affymetrix arrays. The mefloquine transcriptome was found to be enriched for important regulatory sequences of the unfolded protein response and the drug was also found to induce key ER stress proteins, albeit in a manner dissimilar to, and at higher equivalent concentrations than, known ER-tropic agents like thapsigargin. Mefloquine also down-regulated several important functional categories of genes, including transcripts encoding G proteins and ion channels. These effects may be related to intrusion of extracellular calcium since they were also observed after glutamate, but not thapsigargin, hydrogen peroxide, or low-dose mefloquine treatment. Mefloquine could be successfully differentiated from other treatments on the basis of principle component analysis of its "calcium-relevant" transcriptome. These data may aid interpretation of expression of results from future in vivo studies.
Collapse
Affiliation(s)
- Geoffrey S Dow
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | |
Collapse
|
376
|
Kilberg MS, Pan YX, Chen H, Leung-Pineda V. Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 2005; 25:59-85. [PMID: 16011459 PMCID: PMC3600373 DOI: 10.1146/annurev.nutr.24.012003.132145] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amino acid response (AAR) pathway in mammalian cells is designed to detect and respond to amino acid deficiency. Limiting any essential amino acid initiates this signaling cascade, which leads to increased translation of a "master regulator," activating transcription factor (ATF) 4, and ultimately, to regulation of many steps along the pathway of DNA to RNA to protein. These regulated events include chromatin remodeling, RNA splicing, nuclear RNA export, mRNA stabilization, and translational control. Proteins that are increased in their expression as targets of the AAR pathway include membrane transporters, transcription factors from the basic region/leucine zipper (bZIP) superfamily, growth factors, and metabolic enzymes. Significant progress has been achieved in understanding the molecular mechanisms by which amino acids control the synthesis and turnover of mRNA and protein. Beyond gaining additional knowledge of these important regulatory pathways, further characterization of how these processes contribute to the pathology of various disease states represents an interesting aspect of future research in molecular nutrition.
Collapse
Affiliation(s)
- M S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, USA.
| | | | | | | |
Collapse
|
377
|
Abstract
In the endoplasmic reticulum (ER), secretory and transmembrane proteins fold into their native conformation and undergo posttranslational modifications important for their activity and structure. When protein folding in the ER is inhibited, signal transduction pathways, which increase the biosynthetic capacity and decrease the biosynthetic burden of the ER to maintain the homeostasis of this organelle, are activated. These pathways are called the unfolded protein response (UPR). In this review, we briefly summarize principles of protein folding and molecular chaperone function important for a mechanistic understanding of UPR-signaling events. We then discuss mechanisms of signal transduction employed by the UPR in mammals and our current understanding of the remodeling of cellular processes by the UPR. Finally, we summarize data that demonstrate that UPR signaling feeds into decision making in other processes previously thought to be unrelated to ER function, e.g., eukaryotic starvation responses and differentiation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
| | | |
Collapse
|
378
|
Hamanaka RB, Bennett BS, Cullinan SB, Diehl JA. PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol Biol Cell 2005; 16:5493-501. [PMID: 16176978 PMCID: PMC1289396 DOI: 10.1091/mbc.e05-03-0268] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Exposure of cells to endoplasmic reticulum (ER) stress leads to activation of PKR-like ER kinase (PERK), eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation, repression of cyclin D1 translation, and subsequent cell cycle arrest in G1 phase. However, whether PERK is solely responsible for regulating cyclin D1 accumulation after unfolded protein response pathway (UPR) activation has not been assessed. Herein, we demonstrate that repression of cyclin D1 translation after UPR activation occurs independently of PERK, but it remains dependent on eIF2alpha phosphorylation. Although phosphorylation of eIF2alpha in PERK-/- fibroblasts is attenuated in comparison with wild-type fibroblasts, it is not eliminated. The residual eIF2alpha phosphorylation correlates with the kinetics of cyclin D1 loss, suggesting that another eIF2alpha kinase functions in the absence of PERK. In cells harboring targeted deletion of both PERK and GCN2, cyclin D1 loss is attenuated, suggesting GCN2 functions as the redundant kinase. Consistent with these results, cyclin D1 translation is also stabilized in cells expressing a nonphosphorylatable allele of eIF2alpha; in contrast, repression of global protein translation still occurs in these cells, highlighting a high degree of specificity in transcripts targeted for translation inhibition by phosphorylated eIF2alpha. Our results demonstrate that PERK and GCN2 function to cooperatively regulate eIF2alpha phosphorylation and cyclin D1 translation after UPR activation.
Collapse
Affiliation(s)
- Robert B Hamanaka
- The Leonard and Madlyn Abramson Family Cancer Research Institute and Cancer Center, Department of Cancer Biology, University of Pennsylvania Cancer Center, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
379
|
Dimitrova DI, Yang X, Reichenbach NL, Karakasidis S, Sutton RE, Henderson EE, Rogers TJ, Suhadolnik RJ. Lentivirus-mediated transduction of PKR into CD34(+) hematopoietic stem cells inhibits HIV-1 replication in differentiated T cell progeny. J Interferon Cytokine Res 2005; 25:345-60. [PMID: 15957958 DOI: 10.1089/jir.2005.25.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies from this laboratory evaluated the role of p68 kinase (PKR) in the control of HIV-1 replication via retrovirus-mediated gene transfer. PKR was studied because it is a key component of the interferon (IFN)-associated innate antiviral defense pathway in mammalian cells. In this study, CD34(+) hematopoietic stem cells (HSC) were transduced with an HIV-1-based lentiviral vector encoding the PKR transgene (pHIV-PIB) and cultured under conditions that support in vitro differentiation. With high-titer pseudotyped vector stocks, the histogram suggests 100% transduction of the HSC because the cells were blasticidin resistant. Analysis of transduced cells by hybridization revealed an average proviral vector copy number of 1.8 and 2.1 copies of vector sequence per cell. Increased PKR expression and activity (phosphorylation of eukaryotic initiation factor 2alpha [eIF2alpha]) were demonstrated in PKR-transduced, differentiated HSC. There was minimal reduction in cell viability and no induction of apoptosis after transduction of PKR. HSC transduced with the pHIV-PIB lentiviral vector demonstrated normal differentiation into CD34-derived T cell progeny. Two days after HIV-1 infection, lentivirus-mediated transduction of PKR inhibited HIV-1 replication by 72% in T cell progeny compared with cells transduced with the empty vector control (pHIV-IB). By days 5 and 7 post-HIV-1 infection, the surviving PKR-transduced cells were protected from HIV-1 infection, as evidenced by a decrease in p24 antigen expression of at least two orders of magnitude. Our results demonstrate that PKR can be effectively delivered to HSC by a lentiviral vector and can protect CD34-derived T cell progeny from HIV-1 infection. These results provide support for application of the innate antiviral defense pathway in a gene therapy setting to the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dessislava I Dimitrova
- Departments of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
380
|
Bhattacharjee RN, Park KS, Okada K, Kumagai Y, Uematsu S, Takeuchi O, Akira S, Iida T, Honda T. Microarray analysis identifies apoptosis regulatory gene expression in HCT116 cells infected with thermostable direct hemolysin-deletion mutant of Vibrio parahaemolyticus. Biochem Biophys Res Commun 2005; 335:328-34. [PMID: 16061205 DOI: 10.1016/j.bbrc.2005.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
The thermostable direct hemolysin (TDH) is considered as a major virulence factor of Vibrio parahaemolyticus. We observed this potential in several human cancer cell lines by using the TDH-producing wild-type (RIMD2210633) as well as tdh-deletion mutant of V. parahaemolyticus and found that the deletion of tdh did not affect cytotoxicity to any of the cell lines tested. DNA fragmentation and annexin V staining showed that both wild-type and tdh-mutant trigger apoptosis in these cells. To understand the molecular basis of cell death in the absence of TDH, gene expression profile of human colon cancer cell line HCT116 infected with tdh-deletion mutant was carried out using human cDNA microarrays consisting of 33,000 known genes. In infected cells, differentially expressed genes including genes for early growth response, growth arrest and DNA damage, and activating transcription factor that affect programmed cell death pathways were detected. Interestingly, mutant strains having a deletion in type III secretion system 1 (TTSS1) failed to elicit DNA fragmentation in HCT116 cells. Our results strongly suggest that apoptosis requires functional TTSS1 and TTSS1-dependent translocation factor(s) to be associated with the host cell death, and thus pathogenesis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Rabindra N Bhattacharjee
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
381
|
Pan YX, Chen H, Kilberg MS. Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3'-untranslated region regulates its amino acid limitation-induced stabilization. J Biol Chem 2005; 280:34609-16. [PMID: 16109718 PMCID: PMC3600371 DOI: 10.1074/jbc.m507802200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
ATF3 expression is induced in cells exposed to a variety of stress conditions, including nutrient limitation. Here we demonstrated that the mechanism by which the ATF3 mRNA content is increased following amino acid limitation of human HepG2 hepatoma cells is mRNA stabilization. Analysis of ATF3 mRNA turnover revealed that the half-life was increased from about 1 h in control cells to greater than 8 h in the histidine-deprived state, demonstrating mRNA stabilization in response to nutrient deprivation. Treatment of HepG2 cells with thapsigargin, which causes endoplasmic reticulum stress, also increased the half-life of ATF3 mRNA. HuR is an RNA-binding protein that regulates both the stability and cytoplasmic/nuclear localization of mRNA species containing AU-rich elements. Another RNA-binding protein, AUF1, regulates target mRNA molecules by enhancing their decay. Amino acid limitation caused a slightly elevated mRNA level for HuR and AUF1 mRNA. The nuclear HuR protein content was unchanged, and AUF1 protein increased slightly after amino acid limitation, whereas the cytoplasmic levels of both HuR and AUF1 protein increased. Immunoprecipitation of HuR-RNA complexes followed by reverse transcriptase-PCR analysis showed that HuR interacted with ATF3 mRNA in vivo and that this interaction increased following amino acid limitation. In contrast, the interaction of AUF1 with the ATF3 mRNA is decreased in histidine-deprived cells relative to control cells. Suppression of HuR expression by RNA interference partially blocked the accumulation of ATF3 mRNA following amino acid deprivation. The results demonstrated that coordinated regulation of mRNA stability by HuR and AUF1 proteins contributes to the observed increase in ATF3 expression following amino acid limitation.
Collapse
Affiliation(s)
| | | | - Michael S. Kilberg
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Florida College of Medicine, Box 100245,, Gainesville, FL 32610-0245. Tel.: 352-392-2711; Fax: 352-392-6511;
| |
Collapse
|
382
|
Anand S, Chakrabarti E, Kawamura H, Taylor CR, Maytin EV. Ultraviolet Light (UVB and UVA) Induces the Damage-Responsive Transcription Factor CHOP/gadd153 in Murine and Human Epidermis: Evidence for a Mechanism Specific to Intact Skin. J Invest Dermatol 2005; 125:323-33. [PMID: 16098044 DOI: 10.1111/j.0022-202x.2005.23784.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
C/EBP-homologous protein (CHOP)/gadd153 (or CHOP) is a transcription factor induced by endoplasmic reticulum (ER) stress. Forcible overexpression of CHOP causes apoptosis in keratinocytes in culture. Here, we asked whether CHOP might be increased in the skin after UVB (280-320 nm) exposure, thus implicating CHOP in sunburn cell (SBC) formation. SKH-1 hairless mice were exposed to a ultraviolet (UV) source (80 mJ per cm2; approximately 74% UVB, approximately 16% UVA), and skin biopsies examined by immunohistology and immunoprecipitation. Compared with non-irradiated epidermis, CHOP expression was significantly increased at 30 min, and reached maximal levels by 24 h. Similar increases in CHOP following UVB exposure were observed in human buttock skin. The time course of CHOP expression preceded SBC formation and another marker of apoptosis, caspase-3 cleavage. Intracellular CHOP accumulated mainly in cytoplasmic and perinuclear locations, with little remaining in the nucleus. To examine mechanisms, cultured keratinocytes were irradiated in vitro and examined by western blotting. Under conditions that eliminated ER stress because of cell handling, CHOP did not accumulate (and was in fact decreased) in the cells. Thus, induction of CHOP in keratinocytes requires factors present only in the native skin. Overall, the data suggest that CHOP participates in adaptive responses of the epidermis following UVB/UVA exposure in vivo.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
383
|
Jiang HY, Wek R. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 2005; 385:371-80. [PMID: 15355306 PMCID: PMC1134707 DOI: 10.1042/bj20041164] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In response to UV irradiation, mammalian cells elicit a gene expression programme designed to repair damage and control cell proliferation and apoptosis. Important members of this stress response include the NF-kappaB (nuclear factor-kappaB) family. However, the mechanisms by which UV irradiation activates NF-kappaB are not well understood. In eukaryotes, a variety of environmental stresses are recognized and remediated by a family of protein kinases that phosphorylate the alpha subunit of eIF2 (eukaryotic initiation factor-2). In the present study we show that NF-kappaB in MEF (murine embryo fibroblast) cells is activated by UV-C and UV-B irradiation through a mechanism requiring eIF2alpha phosphorylation. The primary eIF2alpha kinase in response to UV is GCN2 (general control non-derepressible-2), with PEK/PERK (pancreatic eIF2alpha kinase/RNA-dependent-protein-kinase-like endoplasmic-reticulum kinase) carrying out a secondary function. Our studies indicate that lowered protein synthesis accompanying eIF2alpha phosphorylation, combined with eIF2alpha kinase-independent turnover of IkappaBalpha (inhibitor of kappaBalpha), reduces the levels of IkappaBalpha in response to UV irradiation. Release of NF-kappaB from the inhibitory IkappaBalpha would facilitate NF-kappaB entry into the nucleus and targeted transcriptional control. We also find that loss of GCN2 in MEF cells significantly enhances apoptosis in response to UV exposure similar to that measured in cells deleted for the RelA/p65 subunit of NF-kappaB. These results demonstrate that GCN2 is central to recognition of UV stress, and that eIF2alpha phosphorylation provides resistance to apoptosis in response to this environmental insult.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- To whom correspondence should be addressed (email )
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| |
Collapse
|
384
|
Zhan K, Narasimhan J, Wek RC. Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe. Genetics 2005; 168:1867-75. [PMID: 15611163 PMCID: PMC1448706 DOI: 10.1534/genetics.104.031443] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Phosphorylation of eukaryotic initiation factor-2 (eIF2) is an important mechanism mitigating cellular injury in response to diverse environmental stresses. While all eukaryotic organisms characterized to date contain an eIF2 kinase stress response pathway, the composition of eIF2 kinases differs, with mammals containing four distinct family members and the well-studied lower eukaryote Saccharomyces cerevisiae expressing only a single eIF2 kinase. We are interested in the mechanisms by which multiple eIF2 kinases interface with complex stress signals and elicit response pathways. In this report we find that in addition to two previously described eIF2 kinases related to mammalian HRI, designated Hri1p and Hri2p, the yeast Schizosaccharomyces pombe expresses a third eIF2 kinase, a Gcn2p ortholog. To delineate the roles of each eIF2 kinase, we constructed S. pombe strains expressing only a single eIF2 kinase gene or deleted for the entire eIF2 kinase family. We find that Hri2p is the primary activated eIF2 kinase in response to exposure to heat shock, arsenite, or cadmium. Gcn2p serves as the primary eIF2 kinase induced during a nutrient downshift, treatment with the amino acid biosynthetic inhibitor 3-aminotriazole, or upon exposure to high concentrations of sodium chloride. In one stress example, exposure to H(2)O(2), there is early tandem activation of both Hri2p and Gcn2p. Interestingly, with extended stress conditions there is activation of alternative secondary eIF2 kinases, suggesting that eukaryotes have mechanisms of coordinate activation of eIF2 kinase in their stress remediation responses. Deletion of these eIF2 kinases renders S. pombe more sensitive to many of these stress conditions.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
385
|
Pereira CM, Sattlegger E, Jiang HY, Longo BM, Jaqueta CB, Hinnebusch AG, Wek RC, Mello LEAM, Castilho BA. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J Biol Chem 2005; 280:28316-23. [PMID: 15937339 DOI: 10.1074/jbc.m408571200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translational control directed by the eukaryotic translation initiation factor 2 alpha-subunit (eIF2alpha) kinase GCN2 is important for coordinating gene expression programs in response to nutritional deprivation. The GCN2 stress response, conserved from yeast to mammals, is critical for resistance to nutritional deficiencies and for the control of feeding behaviors in rodents. The mouse protein IMPACT has sequence similarities to the yeast YIH1 protein, an inhibitor of GCN2. YIH1 competes with GCN2 for binding to a positive regulator, GCN1. Here, we present evidence that IMPACT is the functional counterpart of YIH1. Overexpression of IMPACT in yeast lowered both basal and amino acid starvation-induced levels of phosphorylated eIF2alpha, as described for YIH1 (31). Overexpression of IMPACT in mouse embryonic fibroblasts inhibited phosphorylation of eIF2alpha by GCN2 under leucine starvation conditions, abolishing expression of its downstream target genes, ATF4 (CREB-2) and CHOP (GADD153). IMPACT bound to the minimal yeast GCN1 segment required for interaction with yeast GCN2 and YIH1 and to native mouse GCN1. At the protein level, IMPACT was detected mainly in the brain. IMPACT was found to be abundant in the majority of hypothalamic neurons. Scattered neurons expressing this protein at higher levels were detected in other regions such as the hippocampus and piriform cortex. The abundance of IMPACT correlated inversely with phosphorylated eIF2alpha levels in different brain areas. These results suggest that IMPACT ensures constant high levels of translation and low levels of ATF4 and CHOP in specific neuronal cells under amino acid starvation conditions.
Collapse
Affiliation(s)
- Cátia M Pereira
- Departamentos de Microbiologia, Imunologia, e Parasitologia and Fisiologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
386
|
Parker RA, Flint OP, Mulvey R, Elosua C, Wang F, Fenderson W, Wang S, Yang WP, Noor MA. Endoplasmic reticulum stress links dyslipidemia to inhibition of proteasome activity and glucose transport by HIV protease inhibitors. Mol Pharmacol 2005; 67:1909-19. [PMID: 15755908 DOI: 10.1124/mol.104.010165] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lipid and metabolic disturbances associated with human immunodeficiency virus (HIV) protease inhibitor therapy in AIDS have stimulated interest in developing new agents that minimize these side effects in the clinic. The underlying explanation of mechanism remains enigmatic, but a recently described link between endoplasmic reticulum (ER) stress and dysregulation of lipid metabolism suggests a provocative integration of existing and emerging data. We provide new evidence from in vitro models indicating that proteasome inhibition and differential glucose transport blockade by protease inhibitors are proximal events eliciting an ER stress transcriptional response that can regulate lipogenic pathways in hepatocytes or adipocytes. Proteasome activity was inhibited in vitro by several protease inhibitors at clinically relevant (micromolar) levels. In the intact cells, protease inhibitors rapidly elicited a pattern of gene expression diagnostic of intracellular proteasome inhibition and activation of an ER stress response. This included induction of transcription factors GADD153, ATF4, and ATF3; amino acid metabolic enzymes; proteasome components; and certain ER chaperones. In hepatocyte lines, the ER stress response was closely linked to moderate increases in lipogenic and cholesterogenic gene expression. However, in adipocytes where GLUT4 was directly inhibited by some protease inhibitors, time-dependent suppression of lipogenic genes and triglyceride synthesis was observed in coordination with the ER stress response. These results further link ER stress to dyslipidemia and contribute to a unifying mechanism for the pathophysiology of protease inhibitor-associated lipodystrophy, helping explain differences in clinical metabolic profiles among protease inhibitors.
Collapse
Affiliation(s)
- Rex A Parker
- Metabolic and Cardiovascular Discovery Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
387
|
Ryu EJ, Angelastro JM, Greene LA. Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 2005; 18:54-74. [PMID: 15649696 DOI: 10.1016/j.nbd.2004.08.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/22/2004] [Accepted: 08/07/2004] [Indexed: 12/21/2022] Open
Abstract
We employed Serial Analysis of Gene Expression to identify transcriptional changes in a cellular model of Parkinson Disease (PD). The model consisted of neuronally differentiated PC12 cells compared before and after 8 hours' exposure to 6-hydroxydopamine. Approximately 1200 transcripts were significantly induced by 6-OHDA and approximately 500 of these are currently matched to known genes. Here, we categorize the regulated genes according to known functional activities and discuss their potential roles in neuron death and survival and in PD. We find induction of multiple death-associated genes as well as many with the capacity for neuroprotection. This suggests that survival or death of individual neurons in PD may reflect an integrated response to both protective and destructive gene changes. Our findings identify a number of regulated genes as candidates for involvement in PD and therefore as potential targets for therapeutic intervention. Such intervention may include both inhibiting the induction/activity of death-promoting genes and enhancing those with neuroprotective activity.
Collapse
Affiliation(s)
- Elizabeth J Ryu
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
388
|
Holtz WA, Turetzky JM, O'Malley KL. Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxid Redox Signal 2005; 7:639-48. [PMID: 15890008 DOI: 10.1089/ars.2005.7.639] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The parkinsonian mimetic 6-hydroxydopamine (6-OHDA) has been shown to cause transcriptional changes associated with cellular stress and the unfolded protein response. As these cellular sequelae depend on upstream signaling events, the present study used functional genomics and proteomic approaches to aid in deciphering toxin-mediated regulatory pathways. Microarray analysis of RNA collected from multiple time points following 6-OHDA treatment was combined with data mining and clustering techniques to identify distinct functional subgroups of genes. Notably, stress-induced transcription factors such as ATF3, ATF4, CHOP, and C/EBP beta were robustly up-regulated, yet exhibited unique kinetic patterns. Genes involved in the synthesis and modification of proteins (various tRNA synthetases), protein degradation (e.g., ubiquitin, Herpud1, Sqstm1), and oxidative stress (Hmox1, Por) could be subgrouped into distinct kinetic profiles as well. Realtime PCR and/or two-dimensional electrophoresis combined with western blotting validated data derived from microarray analyses. Taken together, these data support the notion that oxidative stress and protein dysfunction play a role in Parkinson's disease, as well as provide a time course for many of the molecular events associated with 6-OHDA neurotoxicity.
Collapse
Affiliation(s)
- William A Holtz
- Washington University School of Medicine, Anatomy and Neurobiology Department, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
389
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1335] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
390
|
Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem 2005; 280:14189-202. [PMID: 15684420 DOI: 10.1074/jbc.m413660200] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitination and subsequent degradation by the proteasome are important mechanisms regulating cell cycle, growth and differentiation, and apoptosis. Recent studies in cancer therapy suggest that drugs that disrupt the ubiquitin/proteasome pathway induce apoptosis and sensitize malignant cells and tumors to conventional chemotherapy. In this study we addressed the role of phosphorylation of the alpha-subunit eukaryotic initiation factor-2 (eIF2), and its attendant regulation of gene expression, in the cellular stress response to proteasome inhibition. Phosphorylation of eIF2alpha in mouse embryo fibroblast (MEF) cells subjected to proteasome inhibition leads to a significant reduction in protein synthesis, concomitant with induced expression of the bZIP transcription regulator, ATF4, and its target gene CHOP/GADD153. The primary eIF2alpha kinase activated by exposure of these fibroblast cells to proteasome inhibition is GCN2 (EIF2AK4), which has a central role in the recognition of cytoplasmic stress signals. Endoplasmic reticulum (ER) stress is not effectively induced in MEF cells subjected to proteasome inhibition, with minimal activation of the ER stress sensory proteins, eIF2alpha kinase PEK (PERK/EIF2AK3), IRE1 protein kinase and the transcription regulator ATF6 following up to 6 h of proteasome inhibitor treatment. Loss of eIF2alpha phosphorylation thwarts caspase activation and delays apoptosis. Central to this pro-apoptotic function of eIF2alpha kinases during proteasome inhibition is the transcriptional regulator CHOP, as deletion of CHOP in MEF cells impedes apoptosis. We conclude that eIF2alpha kinases are integral to cellular stress pathways induced by proteasome inhibitors, and may be central to the efficacy of anticancer drugs that target the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
391
|
Ho HK, Hu ZH, Tzung SP, Hockenbery DM, Fausto N, Nelson SD, Bruschi SA. BCL-xL overexpression effectively protects against tetrafluoroethylcysteine-induced intramitochondrial damage and cell death. Biochem Pharmacol 2005; 69:147-57. [PMID: 15588723 DOI: 10.1016/j.bcp.2004.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 08/27/2004] [Indexed: 12/01/2022]
Abstract
S-(1,1,2,2-Tetrafluoroethyl)-L-cysteine (TFEC), a major metabolite of the industrial gas tetrafluoroethylene, has been shown to mediate nephrotoxicity by necrosis. TFEC-induced cell death is associated with an early covalent modification of specific intramitochondrial proteins; including aconitase, alpha-ketoglutarate dehydrogenase (KGDH) subunits, HSP60 and HSP70. Previous studies have indicated that the TAMH line accurately models TFEC-induced in vivo cell death with dose- and time-dependent inhibitions of both KGDH and aconitase activities. Here, we show that the molecular pathway leading to TFEC-mediated cell death is associated with an early cytosolic to mitochondrial translocation of BAX, a pro-apoptotic member of the BCL-2 family. Immunoblot analyses indicated movement of BAX (21 kDa) to the mitochondrial fraction after exposure to a cytotoxic concentration of TFEC (250 microM). Subsequent cytochrome c release from mitochondria was also demonstrated, but only a modest increase in caspase activities was observed, suggesting a degeneration of early apoptotic signals into secondary necrosis. Significantly, TAMH cells overexpressing BCL-xL preserved cell viability even to supratoxicological concentrations of TFEC (< or =600 microM), and this cytoprotection was associated with decreased HSP70i upregulation, indicating suppression of TFEC-induced proteotoxicity. Hence, TFEC-induced necrotic cell death in the TAMH cell line is mediated by BAX and antagonized by the anti-apoptotic BCL-2 family member, BCL-xL.
Collapse
Affiliation(s)
- Han K Ho
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
392
|
Abstract
Eukaryotic initiation factor eIF2 and its 'exchange factor' eIF2B play a key role in the regulation of protein synthesis in eukaryotes from yeast to mammals. Phosphorylation of eIF2 inhibits eIF2B and thus translation initiation. Four eIF2 kinases are now known in mammalian cells and these are activated in response to specific stress conditions. While phosphorylation of eIF2 serves to impair general protein synthesis, it causes upregulation of the translation of certain specific mRNAs that encode transcription factors. It can, therefore, exert effects on gene expression at multiple levels. The importance of correct control of eIF2 and eIF2B for normal physiology is exemplified by data from transgenic mice carrying knock-in or knock-out mutations and by the fact that mutations in the genes for the eIF2 kinase PERK or for eIF2B give rise to serious human diseases.
Collapse
Affiliation(s)
- Christopher G Proud
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dunde DD15EH, United Kingdom.
| |
Collapse
|
393
|
Fribley A, Zeng Q, Wang CY. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol Cell Biol 2004; 24:9695-704. [PMID: 15509775 PMCID: PMC525474 DOI: 10.1128/mcb.24.22.9695-9704.2004] [Citation(s) in RCA: 324] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PS-341, also known as Velcade or Bortezomib, represents a new class of anticancer drugs which has been shown to potently inhibit the growth and/or progression of human cancers, including head and neck squamous cell carcinoma (HNSCC). Although it has been logically hypothesized that NF-kappaB is a major target of PS-341, the underlying mechanism by which PS-341 inhibits tumor cell growth is unclear. Here we found that PS-341 potently activated the caspase cascade and induced apoptosis in human HNSCC cell lines. Although PS-341 could inhibit NF-kappaB activation, the inhibition of NF-kappaB was not sufficient to initiate apoptosis in HNSCC cells. Using biochemical and microarray approaches, we found that proteasome inhibition by PS-341 induced endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in HNSCC cells. The inhibition of ROS significantly suppressed caspase activation and apoptosis induced by PS-341. Consistently, PS-341 could not induce the ER stress-ROS in PS-341-resistant HNSCC cells. Taken together, our results suggest that in addition to the abolishment of the prosurvival NF-kappaB, PS-341 might directly induce apoptosis by activating proapoptotic ER stress-ROS signaling cascades in HNSCC cells, providing novel insights into the PS-341-mediated antitumor activity.
Collapse
Affiliation(s)
- Andrew Fribley
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
394
|
Ito D, Walker JR, Thompson CS, Moroz I, Lin W, Veselits ML, Hakim AM, Fienberg AA, Thinakaran G. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol Cell Biol 2004; 24:9456-69. [PMID: 15485913 PMCID: PMC522226 DOI: 10.1128/mcb.24.21.9456-9469.2004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces a highly conserved homeostatic response in all eukaryotic cells, termed the unfolded-protein response (UPR). Here we describe the characterization of stanniocalcin 2 (STC2), a mammalian homologue of a calcium- and phosphate-regulating hormone first identified in fish, as a novel target of the UPR. Expression of STC2 gene is rapidly upregulated in cultured cells after exposure to tunicamycin and thapsigargin, by ATF4 after activation of the ER-resident kinase PERK. In addition, STC2 expression is also activated in neuronal cells by oxidative stress and hypoxia but not by several cellular stresses unrelated to the UPR. In contrast, expression of another homologue, STC1, is only upregulated by hypoxia independent of PERK or ATF4 expression. In vivo studies revealed that rat cortical neurons rapidly upregulate STC2 after transient middle cerebral artery occlusion. Finally, siRNA-mediated inhibition of STC2 expression renders N2a neuroblastoma cells and HeLa cells significantly more vulnerable to apoptotic cell death after treatment with thapsigargin, and overexpression of STC2 attenuated thapsigargin-induced cell death. Consequently, induced STC2 expression is an essential feature of survival component of the UPR.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurobiology, Pharmacology, and Physiology, The University of Chicago, Knapp R212, 924 East 57th St., Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
395
|
Sullivan WJ, Narasimhan J, Bhatti MM, Wek RC. Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. Biochem J 2004; 380:523-31. [PMID: 14989696 PMCID: PMC1224182 DOI: 10.1042/bj20040262] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 02/27/2004] [Accepted: 03/01/2004] [Indexed: 01/31/2023]
Abstract
The ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Sciences Bldg, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
396
|
Haneda M, Xiao H, Hasegawa T, Kimura Y, Nakashima I, Isobe KI. Regulation of mouse GADD34 gene transcription after DNA damaging agent methylmethane sulfonate. Gene 2004; 336:139-46. [PMID: 15225883 DOI: 10.1016/j.gene.2004.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/23/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The GADD34 gene is transcriptionally induced by growth arrest and DNA damage. However, the mechanisms underlying the transcriptional regulation are still unclear. We analyzed the promoter of mouse GADD34 gene and the methylmethane sulfonate (MMS)-induced transcriptional regulation of this gene. By introducing genome mutants, which were linked to the luciferase reporter, into NIH3T3 cells, we defined a 100-bp fragment upstream of the transcriptional initiating site as the minimal promoter of the GADD34 gene. Subsequent study revealed that CRE-binding site located in this minimal promoter was critical for MMS-induced transcription of the GADD34 gene. In vitro binding experiments showed that phosphorylated c-Jun was contained in the CRE/DNA complex. Overexpression of the dominant negative form of c-Jun led to a decrease of MMS-responsive promoter activity. From these results, we conclude that the CRE site of the GADD34 promoter is indispensable to the MMS-responsive cis-element that c-Jun is the essential transcription factor for MMS-stimulated regulation of GADD34 gene expression and that the upstream signaling is dependent on JNK.
Collapse
Affiliation(s)
- Masataka Haneda
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
397
|
Chen H, Pan YX, Dudenhausen EE, Kilberg MS. Amino acid deprivation induces the transcription rate of the human asparagine synthetase gene through a timed program of expression and promoter binding of nutrient-responsive basic region/leucine zipper transcription factors as well as localized histone acetylation. J Biol Chem 2004; 279:50829-39. [PMID: 15385533 DOI: 10.1074/jbc.m409173200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of human asparagine synthetase (ASNS), which catalyzes asparagine and glutamate biosynthesis, is transcriptionally induced following amino acid deprivation. Previous overexpression and electrophoresis mobility shift analysis showed the involvement of the transcription factors ATF4, C/EBPbeta, and ATF3-FL through the nutrient-sensing response element-1 (NSRE-1) within the ASNS promoter. Amino acid deprivation caused an elevated mRNA level for ATF4, C/EBPbeta, and ATF3-FL, and the present study established that the nuclear protein content for ATF4 and ATF3-FL were increased during amino acid limitation, whereas C/EBPbeta-LIP declined slightly. The total amount of C/EBPbeta-LAP protein was unchanged, but changes in the distribution among multiple C/EBPbeta-LAP forms were observed. Overexpression studies established that ATF4, ATF3-FL, and C/EBPbeta-LAP could coordinately modulate the transcription from the human ASNS promoter. Chromatin immunoprecipitation demonstrated that amino acid deprivation increased ATF3-FL, ATF4, and C/EBPbeta binding to the ASNS promoter and enhanced promoter association of RNA polymerase II, TATA-binding protein, and TFIIB of the general transcription machinery. A time course revealed a markedly different temporal order of interaction between these transcription factors and the ASNS promoter. During the initial 2 h, there was a 20-fold increase in ATF4 binding and a rapid increase in histone H3 and H4 acetylation, which closely paralleled the increased transcription rate of the ASNS gene, whereas the increase in ATF3-FL and C/EBPbeta binding was considerably slower and more closely correlated with the decline in transcription rate between 2 and 6 h. The data suggest that ATF3-FL and C/EBPbeta act as transcriptional suppressors for the ASNS gene to counterbalance the transcription rate activated by ATF4 following amino acid deprivation.
Collapse
Affiliation(s)
- Hong Chen
- Department of Biochemistry and Molecular Biology, Genetics Institute, and Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
398
|
Myllykangas S, Monni O, Nagy B, Rautelin H, Knuutila S. Helicobacter pylori infection activates FOS and stress-response genes and alters expression of genes in gastric cancer-specific loci. Genes Chromosomes Cancer 2004; 40:334-41. [PMID: 15188457 DOI: 10.1002/gcc.20047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We studied human gene expression changes caused by Helicobacter pylori infection by using an in vitro model and 13k cDNA microarrays. A gastric cancer cell line was infected with H. pylori strain NCTC 11637. H. pylori infection was found to induce differential expression of genes in chromosomal locations known to contain frequent chromosomal aberrations and gene mutations specific to gastric cancer. Based on the results of time series experiments, the primary transcription target of the infection seemed to be FOS, the expression of which significantly increased after H. pylori infection. H. pylori infection also activated transcription of several stress-response genes. H. pylori infection may predispose the host cell to DNA damage in the chromosomal locations specific to gastric cancer by activating transcription and promoting histone removal from these sites, thus exposing its target DNA to mutations.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Departments of Pathology and Medical Genetics, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
399
|
Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J, Wang X, Frankel WL, Guttridge D, Prentki M, Grey ST, Ron D, Hai T. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol Cell Biol 2004; 24:5721-32. [PMID: 15199129 PMCID: PMC480886 DOI: 10.1128/mcb.24.13.5721-5732.2004] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-inducible gene and encodes a member of the ATF/CREB family of transcription factors. However, the physiological significance of ATF3 induction by stress signals is not clear. In this report, we describe several lines of evidence supporting a role of ATF3 in stress-induced beta-cell apoptosis. First, ATF3 is induced in beta cells by signals relevant to beta-cell destruction: proinflammatory cytokines, nitric oxide, and high concentrations of glucose and palmitate. Second, induction of ATF3 is mediated in part by the NF-kappaB and Jun N-terminal kinase/stress-activated protein kinase signaling pathways, two stress-induced pathways implicated in both type 1 and type 2 diabetes. Third, transgenic mice expressing ATF3 in beta cells develop abnormal islets and defects secondary to beta-cell deficiency. Fourth, ATF3 knockout islets are partially protected from cytokine- or nitric oxide-induced apoptosis. Fifth, ATF3 is expressed in the islets of patients with type 1 or type 2 diabetes, and in the islets of nonobese diabetic mice that have developed insulitis or diabetes. Taken together, our results suggest ATF3 to be a novel regulator of stress-induced beta-cell apoptosis.
Collapse
Affiliation(s)
- Matthew G Hartman
- Department of Molecular and Cellular Biochemistry, Center for Molecular Neurobiology, Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 2004; 101:11269-74. [PMID: 15277680 PMCID: PMC509193 DOI: 10.1073/pnas.0400541101] [Citation(s) in RCA: 1279] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During cellular stresses, phosphorylation of eukaryotic initiation factor-2 (eIF2) elicits gene expression designed to ameliorate the underlying cellular disturbance. Central to this stress response is the transcriptional regulator activating transcription factor, ATF4. Here we describe the mechanism regulating ATF4 expression involving the differential contribution of two upstream ORFs (uORFs) in the 5' leader of the mouse ATF4 mRNA. The 5' proximal uORF1 is a positive-acting element that facilitates ribosome scanning and reinitiation at downstream coding regions in the ATF4 mRNA. When eIF2-GTP is abundant in nonstressed cells, ribosomes scanning downstream of uORF1 reinitiate at the next coding region, uORF2, an inhibitory element that blocks ATF4 expression. During stress conditions, phosphorylation of eIF2 and the accompanying reduction in the levels of eIF2-GTP increase the time required for the scanning ribosomes to become competent to reinitiate translation. This delayed reinitiation allows for ribosomes to scan through the inhibitory uORF2 and instead reinitiate at the ATF4-coding region. Increased expression of ATF4 would contribute to the expression of genes involved in remediation of cellular stress damage. These results suggest that the mechanism of translation reinitiation involving uORFs is conserved from yeast to mammals.
Collapse
Affiliation(s)
- Krishna M Vattem
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|