401
|
Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol 2018; 152:94-103. [PMID: 29577871 DOI: 10.1016/j.bcp.2018.03.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS.
Collapse
|
402
|
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, Maciejewski J, Yi Q, Zhao JJ. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia 2018; 32:2250-2262. [PMID: 29632340 PMCID: PMC6151178 DOI: 10.1038/s41375-018-0104-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/12/2018] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Metastasis-associated lung adenocarcinoma transcript 1(MALAT1) is a highly conserved long non-coding RNA (lncRNA). Overexpression of MALAT1 has been demonstrated to related to poor prognosis of multiple myeloma(MM) patients. Here, we demonstrated that MALAT1 plays important roles in MM DNA repair and cell death. We found bone marrow plasma cells from patients with monoclonal gammopathy of undetermined significance (MGUS) and MM express elevated MALAT1 and involve in alternative-non-homozygous end joining (A-NHEJ) pathway by binding to PARP1 and LIG3, two key components of the A-NHEJ protein complex. Degradation of the MALAT1 RNA by RNase H using antisense gapmer DNA oligos in MM cells stimulated poly-ADP-ribosylation of nuclear proteins, defected the DNA repair pathway, and further provoked apoptotic pathways. Anti-MALAT1 therapy combined with PARP1 inhibitor or proteasome inhibitor in MM cells showed a synergistic effect in vitro. Furthermore, using novel single wall carbon nanotube (SWCNT) conjugated with anti-MALAT1 oligos, we successfully knocked down MALAT1 RNA in cultured MM cell lines and xenograft murine models. Most importantly, anti-MALAT1 therapy induced DNA damage and cell apoptosis in vivo, indicating that MALAT1 could serve as a potential novel therapeutic target for MM treatment.
Collapse
Affiliation(s)
- Yi Hu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jianhong Lin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Hua Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Oncology, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Jing Fang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chen Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071000, China
| | - Wei Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Shuang Liu
- Department of Pathology, Norman Bethune International Peace Hospital, Shijiazhuang, Hebei, 050082, China
| | - Sarah Ondrejka
- Department of Laboratory Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Frederic Reu
- Department of Translational Hematology & Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jaroslaw Maciejewski
- Department of Translational Hematology & Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jian-Jun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
403
|
Romero-Barrios N, Legascue MF, Benhamed M, Ariel F, Crespi M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res 2018; 46:2169-2184. [PMID: 29425321 PMCID: PMC5861421 DOI: 10.1093/nar/gky095] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Massive high-throughput sequencing techniques allowed the identification of thousands of noncoding RNAs (ncRNAs) and a plethora of different mRNA processing events occurring in higher organisms. Long ncRNAs can act directly as long transcripts or can be processed into active small si/miRNAs. They can modulate mRNA cleavage, translational repression or the epigenetic landscape of their target genes. Recently, certain long ncRNAs have been shown to play a crucial role in the regulation of alternative splicing in response to several stimuli or during disease. In this review, we focus on recent discoveries linking gene regulation by alternative splicing and its modulation by long and small ncRNAs.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Maria Florencia Legascue
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000 Santa Fe, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
404
|
NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death Dis 2018. [PMID: 29515109 PMCID: PMC5841310 DOI: 10.1038/s41419-018-0418-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA (lncRNA), is a core structural component of paraspeckles and is essential for paraspeckle formation. NEAT1 comprises two different isoforms: NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb). Recently, NEAT1 has been shown to have oncogenic roles and to facilitate tumorigenesis in various human cancers. However, the function of NEAT1 in papillary thyroid cancer (PTC) is not well understood. The relative expression levels of NEAT1_2, ATPase family AAA domain-containing protein 2 (ATAD2), and microRNA-106b-5p (miR-106b-5p) were assessed via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Four PTC cell lines were used to detect the relative expression of NEAT1_2. The effects of NEAT1_2 on PTC cells were studied by RNA interference approaches in vitro. The effects of NEAT1_2 on downstream proteins were detected by western blotting. The underlying mechanism was clarified by a rescue experiment, and three dual-luciferase reporter assays. NEAT1_2 expression was markedly increased in PTC tissues and the PTC cell lines (K1 and TPC1). The relative expression level of NEAT1_2 was positively associated with TNM stage and tumor size. NEAT1_2 knockdown led to a significant inhibition of growth and metastasis, and induced apoptosis in PTC cells. Knockdown of NEAT1_2 significantly inhibited malignant biological behavior by downregulating the oncogene ATAD2. In addition, NEAT1_2 could act as a competing endogenous RNA to regulate the expression of ATAD2 through downregulating miR-106b-5p. Taken together, our results indicated that NEAT1_2 is overexpressed in PTC. NEAT1_2 could function as a competing endogenous RNA to regulate ATAD2 expression by sponging miR-106b-5p in PTC. Targeting NEAT1_2 could be a promising therapeutic strategy for patients with PTC.
Collapse
|
405
|
The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci 2018; 19:ijms19030682. [PMID: 29495592 PMCID: PMC5877543 DOI: 10.3390/ijms19030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being “transcriptional noise”, increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.
Collapse
|
406
|
Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep 2018; 8:2202. [PMID: 29396444 PMCID: PMC5797088 DOI: 10.1038/s41598-018-20727-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Progress in assisted reproductive technologies strongly relies on understanding the regulation of the dialogue between oocyte and cumulus cells (CCs). Little is known about the role of long non-coding RNAs (lncRNAs) in the human cumulus-oocyte complex (COC). To this aim, publicly available RNA-sequencing data were analyzed to identify lncRNAs that were abundant in metaphase II (MII) oocytes (BCAR4, C3orf56, TUNAR, OOEP-AS1, CASC18, and LINC01118) and CCs (NEAT1, MALAT1, ANXA2P2, MEG3, IL6STP1, and VIM-AS1). These data were validated by RT-qPCR analysis using independent oocytes and CC samples. The functions of the identified lncRNAs were then predicted by constructing lncRNA-mRNA co-expression networks. This analysis suggested that MII oocyte lncRNAs could be involved in chromatin remodeling, cell pluripotency and in driving early embryonic development. CC lncRNAs were co-expressed with genes involved in apoptosis and extracellular matrix-related functions. A bioinformatic analysis of RNA-sequencing data to identify CC lncRNAs that are affected by maternal age showed that lncRNAs with age-related altered expression in CCs are essential for oocyte growth. This comprehensive analysis of lncRNAs expressed in human MII oocytes and CCs could provide biomarkers of oocyte quality for the development of non-invasive tests to identify embryos with high developmental potential.
Collapse
|
407
|
Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. Trends Biochem Sci 2018; 43:124-135. [DOI: 10.1016/j.tibs.2017.12.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
|
408
|
Cheng Y, Imanirad P, Jutooru I, Hedrick E, Jin UH, Rodrigues Hoffman A, Leal de Araujo J, Morpurgo B, Golovko A, Safe S. Role of metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) in pancreatic cancer. PLoS One 2018; 13:e0192264. [PMID: 29389953 PMCID: PMC5794178 DOI: 10.1371/journal.pone.0192264] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) is a long non-coding RNA (lncRNA) that is a negative prognostic factor for patients with pancreatic cancer and several other tumors. In this study, we show that knockdown of MALAT-1 in Panc1 and other pancreatic cancer cell lines decreases cell proliferation, survival and migration. We previously observed similar results for the lncRNAs HOTTIP and HOTAIR in Panc1 cells; however, RNAseq comparison of genes regulated by MALAT-1 shows minimal overlap with HOTTIP/HOTAIR-regulated genes. Analysis of changes in gene expression after MALAT-1 knockdown shows that this lncRNA represses several tumor suppressor-like genes including N-myc downregulated gene-1 (NDRG-1), a tumor suppressor in pancreatic cancer that is also corepressed by EZH2 (a PRC2 complex member). We also observed that Specificity proteins Sp1, Sp3 and Sp4 are overexpressed in Panc1 cells and Sp knockdown or treatment with small molecules that decrease Sp proteins expression also decrease MALAT-1 expression. We also generated Kras-overexpressing p53L/L;LSL-KrasG12DL/+;p48Cre+/- (p53L/L/KrasG12D) and p53L/+;LSLKrasG12DL/+;p48Cre+/- (p53L/+/KrasG12D) mice which are p53 homo- and heterozygous, respectively. These mice rapidly develop pancreatic ductal adenocarcinoma-like tumors and were crossed with MALAT-1-/- mice. We observed that the loss of one or two MALAT-1 alleles in these Ras overexpressing mice does not significantly affect the time to death; however, the loss of MALAT-1 in the p53-/+ (heterozygote) mice slightly increases their lifespan.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Parisa Imanirad
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Aline Rodrigues Hoffman
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Jeann Leal de Araujo
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States of America
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, College Station, TX, United States of America
| | - Andrei Golovko
- Texas A&M Institute for Genomic Medicine, Texas A&M University, College Station, TX, United States of America
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
409
|
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key Regulators of Gene Expression. Trends Genet 2018; 34:142-157. [PMID: 29249332 PMCID: PMC6002860 DOI: 10.1016/j.tig.2017.11.005] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
A significant portion of the human genome encodes genes that transcribe long nonprotein-coding RNAs (lncRNAs). A large number of lncRNAs localize in the nucleus, either enriched on the chromatin or localized to specific subnuclear compartments. Nuclear lncRNAs participate in several biological processes, including chromatin organization, and transcriptional and post-transcriptional gene expression, and also act as structural scaffolds of nuclear domains. Here, we highlight recent studies demonstrating the role of lncRNAs in regulating gene expression and nuclear organization in mammalian cells. In addition, we update current knowledge about the involvement of the most-abundant and conserved lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in gene expression control.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA; These authors contributing equally
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
410
|
Vance KW. Mapping Long Noncoding RNA Chromatin Occupancy Using Capture Hybridization Analysis of RNA Targets (CHART). Methods Mol Biol 2018; 1468:39-50. [PMID: 27662869 DOI: 10.1007/978-1-4939-4035-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Capture Hybridization Analysis of RNA Targets (CHART) has recently been developed to map the genome-wide binding profile of chromatin-associated RNAs. This protocol uses a small number of 22-28 nucleotide biotinylated antisense oligonucleotides, complementary to regions of the target RNA that are accessible for hybridization, to purify RNAs from a cross-linked chromatin extract. RNA-chromatin complexes are next immobilized on beads, washed, and specifically eluted using RNase H. Associated genomic DNA is then sequenced using high-throughput sequencing technologies and mapped to the genome to identify RNA-chromatin associations on a large scale. CHART-based strategies can be applied to determine the nature and extent of long noncoding RNA (long ncRNA) association with chromatin genome-wide and identify direct long ncRNA transcriptional targets.
Collapse
Affiliation(s)
- Keith W Vance
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
411
|
Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, Ballarino M, Bozzoni I, Tartaglia GG, Brun C. Protein complex scaffolding predicted as a prevalent function of long non-coding RNAs. Nucleic Acids Res 2018; 46:917-928. [PMID: 29165713 PMCID: PMC5778612 DOI: 10.1093/nar/gkx1169] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/14/2022] Open
Abstract
The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity. However, only few scaffolding lncRNAs have been characterized and the prevalence of this function is unknown. Here, we propose the first computational approach aimed at predicting scaffolding lncRNAs at large scale. We predicted the largest human lncRNA-protein interaction network to date using the catRAPID omics algorithm. In combination with tissue expression and statistical approaches, we identified 847 lncRNAs (∼5% of the long non-coding transcriptome) predicted to scaffold half of the known protein complexes and network modules. Lastly, we show that the association of certain lncRNAs to disease may involve their scaffolding ability. Overall, our results suggest for the first time that RNA-mediated scaffolding of protein complexes and modules may be a common mechanism in human cells.
Collapse
Affiliation(s)
- Diogo M Ribeiro
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Andrea Cipriano
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Riccardo Delli Ponti
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Monica Ballarino
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Irene Bozzoni
- Dept. of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluıs Companys, 08010 Barcelona, Spain
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
412
|
Abstract
It is estimated that more than 90% of the mammalian genome is transcribed as non-coding RNAs. Recent evidences have established that these non-coding transcripts are not junk or just transcriptional noise, but they do serve important biological purpose. One of the rapidly expanding fields of this class of transcripts is the regulatory lncRNAs, which had been a major challenge in terms of their molecular functions and mechanisms of action. The emergence of high-throughput technologies and the development in various conventional approaches have led to the expansion of the lncRNA world. The combination of multidisciplinary approaches has proven to be essential to unravel the complexity of their regulatory networks and helped establish the importance of their existence. Here, we review the current methodologies available for discovering and investigating functions of long non-coding RNAs (lncRNAs) and focus on the powerful technological advancement available to specifically address their functional importance.
Collapse
|
413
|
Functional and prognostic significance of long non-coding RNA MALAT1 as a metastasis driver in ER negative lymph node negative breast cancer. Oncotarget 2018; 7:40418-40436. [PMID: 27250026 PMCID: PMC5130017 DOI: 10.18632/oncotarget.9622] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
MALAT1 (metastasis associated lung adenocarcinoma transcript1) is a conserved long non-coding RNA, known to regulate gene expression by modulating transcription and post-transcriptional pre-mRNA processing of a large number of genes. MALAT1 expression is deregulated in various tumors, including breast cancer. However, the significance of such abnormal expression is yet to be fully understood. In this study, we demonstrate that regulation of aggressive breast cancer cell traits by MALAT1 is not predicted solely based on an elevated expression level but is context specific. By performing loss- and gain-of-function studies, both under in vitro and in vivo conditions, we demonstrate that MALAT1 facilitates cell proliferation, tumor progression and metastasis of triple-negative breast cancer (TNBC) cells despite having a comparatively lower expression level than ER or HER2-positive breast cancer cells. Furthermore, MALAT1 regulates the expression of several cancer metastasis-related genes, but displays molecular subtype specific correlations with such genes. Assessment of the prognostic significance of MALAT1 in human breast cancer (n=1992) revealed elevated MALAT1 expression was associated with decreased disease-specific survival in ER negative, lymph node negative patients of the HER2 and TNBC molecular subtypes. Multivariable analysis confirmed MALAT1 to have independent prognostic significance in the TNBC lymph node negative patient subset (HR=2.64, 95%CI 1.35 − 5.16, p=0.005). We propose that the functional significance of MALAT1 as a metastasis driver and its potential use as a prognostic marker is most promising for those patients diagnosed with ER negative, lymph node negative breast cancer who might otherwise mistakenly be stratified to have low recurrence risk.
Collapse
|
414
|
Messemaker TC, van Leeuwen SM, van den Berg PR, 't Jong AEJ, Palstra RJ, Hoeben RC, Semrau S, Mikkers HMM. Allele-specific repression of Sox2 through the long non-coding RNA Sox2ot. Sci Rep 2018; 8:386. [PMID: 29321583 PMCID: PMC5762901 DOI: 10.1038/s41598-017-18649-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Sox2 controls the fate of pluripotent stem cells and neural stem cells. This gatekeeper function requires well-regulated Sox2 levels. We postulated that Sox2 regulation is partially controlled by the Sox2 overlapping long non-coding RNA (lncRNA) gene Sox2ot. Here we show that the RNA levels of Sox2ot and Sox2 are inversely correlated during neural differentiation of mouse embryonic stem cells (ESCs). Through allele-specific enhanced transcription of Sox2ot in mouse Sox2eGFP knockin ESCs we demonstrate that increased Sox2ot transcriptional activity reduces Sox2 RNA levels in an allele-specific manner. Enhanced Sox2ot transcription, yielding lower Sox2 RNA levels, correlates with a decreased chromatin interaction of the upstream regulatory sequence of Sox2 and the ESC-specific Sox2 super enhancer. Our study indicates that, in addition to previously reported in trans mechanisms, Sox2ot can regulate Sox2 by an allele-specific mechanism, in particular during development.
Collapse
Affiliation(s)
- Tobias C Messemaker
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.,Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Selina M van Leeuwen
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | | | - Anke E J 't Jong
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee634, 3000CA, Rotterdam, The Netherlands
| | - Rob C Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands
| | - Harald M M Mikkers
- Department of Molecular Cell Biology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.
| |
Collapse
|
415
|
Affiliation(s)
- Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| |
Collapse
|
416
|
Chiang JJ, Sparrer KMJ, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat Immunol 2018; 19:53-62. [PMID: 29180807 PMCID: PMC5815369 DOI: 10.1038/s41590-017-0005-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022]
Abstract
The sensor RIG-I detects double-stranded RNA derived from RNA viruses. Although RIG-I is also known to have a role in the antiviral response to DNA viruses, physiological RNA species recognized by RIG-I during infection with a DNA virus are largely unknown. Using next-generation RNA sequencing (RNAseq), we found that host-derived RNAs, most prominently 5S ribosomal RNA pseudogene 141 (RNA5SP141), bound to RIG-I during infection with herpes simplex virus 1 (HSV-1). Infection with HSV-1 induced relocalization of RNA5SP141 from the nucleus to the cytoplasm, and virus-induced shutoff of host protein synthesis downregulated the abundance of RNA5SP141-interacting proteins, which allowed RNA5SP141 to bind RIG-I and induce the expression of type I interferons. Silencing of RNA5SP141 strongly dampened the antiviral response to HSV-1 and the related virus Epstein-Barr virus (EBV), as well as influenza A virus (IAV). Our findings reveal that antiviral immunity can be triggered by host RNAs that are unshielded following depletion of their respective binding proteins by the virus.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chlorocebus aethiops
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- Gene Expression/immunology
- HEK293 Cells
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity/immunology
- Interferon Type I/genetics
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Mice, Knockout
- Pseudogenes/genetics
- RNA Transport/immunology
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/immunology
- RNA, Ribosomal, 5S/metabolism
- Receptors, Immunologic
- Vero Cells
Collapse
Affiliation(s)
- Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | - Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Charlotte Lässig
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Teng Huang
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
417
|
Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 2017; 7:16965. [PMID: 29208937 PMCID: PMC5717263 DOI: 10.1038/s41598-017-16793-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/17/2017] [Indexed: 02/05/2023] Open
Abstract
HIV-1 replication requires myriad interactions between cellular proteins and the viral unspliced RNA. These interactions are important in archetypal RNA processes such as transcription and translation as well as for more specialized functions including alternative splicing and packaging of unspliced genomic RNA into virions. We present here a hybridization capture strategy for purification of unspliced full-length HIV RNA-protein complexes preserved in vivo by formaldehyde crosslinking, and coupled with mass spectrometry to identify HIV RNA-protein interactors in HIV-1 infected cells. One hundred eighty-nine proteins were identified to interact with unspliced HIV RNA including Rev and Gag/Gag-Pol, 24 host proteins previously shown to bind segments of HIV RNA, and over 90 proteins previously shown to impact HIV replication. Further analysis using siRNA knockdown techniques against several of these proteins revealed significant changes to HIV expression. These results demonstrate the utility of the approach for the discovery of host proteins involved in HIV replication. Additionally, because this strategy only requires availability of 30 nucleotides of the HIV-RNA for hybridization with a capture oligonucleotide, it is readily applicable to any HIV system of interest regardless of cell type, HIV-1 virus strain, or experimental perturbation.
Collapse
|
418
|
Ma C, Karwacki-Neisius V, Tang H, Li W, Shi Z, Hu H, Xu W, Wang Z, Kong L, Lv R, Fan Z, Zhou W, Yang P, Wu F, Diao J, Tan L, Shi YG, Lan F, Shi Y. Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency. Cell Rep 2017; 17:997-1007. [PMID: 27760330 DOI: 10.1016/j.celrep.2016.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/29/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022] Open
Abstract
Nono is a component of the para-speckle, which stores and processes RNA. Mouse embryonic stem cells (mESCs) lack para-speckles, leaving the function of Nono in mESCs unclear. Here, we find that Nono functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We report that Nono loss results in robust self-renewing mESCs with epigenomic and transcriptomic features resembling the 2i (GSK and Erk inhibitors)-induced "ground state." Erk interacts with and is required for Nono localization to a subset of bivalent genes that have high levels of poised RNA polymerase. Nono loss compromises Erk activation and RNA polymerase poising at its target bivalent genes in undifferentiated mESCs, thus disrupting target gene activation and differentiation. These findings argue that Nono collaborates with Erk signaling to regulate the integrity of bivalent domains and mESC pluripotency.
Collapse
Affiliation(s)
- Chun Ma
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Violetta Karwacki-Neisius
- Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Haoran Tang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjing Li
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhennan Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haolin Hu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenqi Xu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhentian Wang
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lingchun Kong
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ruitu Lv
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Fan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China
| | - Pengyuan Yang
- Department of Systems Biology, Institutes of Biomedical Sciences, Fudan University, 138 Yixue Yuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianbo Diao
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li Tan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yujiang Geno Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Division of Endocrinology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Lan
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yang Shi
- Key Laboratory of Birth Defects, Children's Hospital and Key Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 201102, China; Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Newborn Medicine Division, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
419
|
Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 2017; 19:143-157. [PMID: 29138516 DOI: 10.1038/nrm.2017.104] [Citation(s) in RCA: 964] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Long intergenic non-coding RNA (lincRNA) genes have diverse features that distinguish them from mRNA-encoding genes and exercise functions such as remodelling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Some genes currently annotated as encoding lincRNAs include small open reading frames (smORFs) and encode functional peptides and thus may be more properly classified as coding RNAs. lincRNAs may broadly serve to fine-tune the expression of neighbouring genes with remarkable tissue specificity through a diversity of mechanisms, highlighting our rapidly evolving understanding of the non-coding genome.
Collapse
Affiliation(s)
- Julia D Ransohoff
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Yuning Wei
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, California 94305, USA.,Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA
| |
Collapse
|
420
|
Chen S, Nagel S, Schneider B, Dai H, Geffers R, Kaufmann M, Meyer C, Pommerenke C, Thress KS, Li J, Quentmeier H, Drexler HG, MacLeod RAF. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report. Cell Oncol (Dordr) 2017; 41:93-101. [PMID: 29119387 DOI: 10.1007/s13402-017-0356-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previously, the chromosomal translocation t(12;15)(p13;q25) has been found to recurrently occur in both solid tumors and leukemias. This translocation leads to ETV6-NTRK3 (EN) gene fusions resulting in ectopic expression of the NTRK3 neurotropic tyrosine receptor kinase moiety as well as oligomerization through the donated ETV6-sterile alpha motif domain. As yet, no in vitro cell line model carrying this anomaly is available. Here we genetically characterized the acute promyelocytic leukemia (APL) cell line AP-1060 and, by doing so, revealed the presence of a t(12;15)(p13;q25). Subsequently, we evaluated its suitability as a model for this important clinical entity. METHODS Spectral karyotyping, fluorescence in situ hybridization (FISH), and genomic and transcriptomic microarray-based profiling were used to screen for the presence of EN fusions. qRT-PCR was used for quantitative expression analyses. Responses to AZ-23 (NTRK) and wortmannin (PI3K) inhibitors, as well as to arsenic trioxide (ATO), were assessed using colorimetric assays. An AZ-23 microarray screen was used to define the EN targetome, which was parsed bioinformatically. MAPK1 and MALAT1 activation were assayed using Western blotting and RNA-FISH, respectively, whereas an AML patient cohort was used to assess the clinical occurrence of MALAT1 activation. RESULTS An EN fusion was detected in AP1060 cells which, accordingly, turned out to be hypersensitive to AZ-23. We also found that AZ-23 can potentiate the effect of ATO and inhibit the phosphorylation of its canonical target MAPK1. The AZ-23 microarray screen highlighted a novel EN target, MALAT1, which also proved sensitive to wortmannin. Finally, we found that MALAT1 was massively up-regulated in a subset of AML patients. CONCLUSIONS From our data we conclude that AP-1060 may serve as a first publicly available preclinical model for EN. In addition, we conclude that these EN-positive cells are sensitive to the NTRK inhibitor AZ-23 and that this inhibitor may potentiate the therapeutic efficacy of ATO. Our data also highlight a novel AML EN target, MALAT1, which was so far only conspicuous in solid tumors.
Collapse
Affiliation(s)
- Suning Chen
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Bjoern Schneider
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Institute of Pathology and Molecular Pathology, University of Rostock, Rostock, Germany
| | - Haiping Dai
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.,Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | | | - Jiao Li
- Department of Hematology, Yixing People's Hospital of Jiangsu Province, Yixing, People's Republic of China
| | - Hilmar Quentmeier
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany
| | - Roderick A F MacLeod
- Department of Human and Animal Cell Lines, DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, 38124, Braunschweig, Germany.
| |
Collapse
|
421
|
Wang Y, Fu L, Sun A, Tang D, Xu Y, Li Z, Chen M, Zhang G. C/EBPβ contributes to transcriptional activation of long non-coding RNA NEAT1 during APL cell differentiation. Biochem Biophys Res Commun 2017; 499:99-104. [PMID: 29111326 DOI: 10.1016/j.bbrc.2017.10.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/26/2017] [Indexed: 01/30/2023]
Abstract
Emerging evidences have shown that long non-coding RNAs (lncRNAs) play critical roles in cancer development and cancer therapy. LncRNA Nuclear Enriched Abundant Transcript 1 (NEAT1) is indispensable during acute promyelocytic leukemia (APL) cell differentiation induced by all-trans retinoic acid (ATRA). However, the precise mechanism of NEAT1 upregulation has not been fully understood. In this study, we performed chromatin immunoprecipitation and luciferase reporter assays to demonstrate that C/EBP family transcription factor C/EBPβ bind to and transactivate the promoter of lncRNA NEAT1 through the C/EBPβ binding sites both around -54 bp and -1453 bp upstream of the transcription start site. Moreover, the expression of C/EBPβ was increased after ATRA treatment, and the binding of C/EBPβ in the NEAT1 promoter was also dramatically increased. Finally, knockdown of C/EBPβ significantly reduced the ATRA-induced upregulation of NEAT1. In conclusion, C/EBPβ directly activates the expression of NEAT1 through binding to the promoter of NEAT1. Knockdown of C/EBPβ impairs ATRA-induced transcriptional activation of NEAT1. Our data indicate that C/EBPβ contributes to ATRA-induced activation of NEAT1 during APL cell differentiation. Our results enrich our knowledge on the regulation of lncRNAs and the regulatory role of C/EBPβ in APL cell differentiation.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Lei Fu
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Ailian Sun
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Doudou Tang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Yunxiao Xu
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Zheyuan Li
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, No.172 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Mingjie Chen
- Cloud-seq Bio-tech Inc., Building 71, No.1066 North Qinzhou Road, Shanghai 200233, China.
| | - Guangsen Zhang
- Department of Hematology/Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
422
|
Zhang X, Hamblin MH, Yin KJ. The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol 2017; 14:1705-1714. [PMID: 28837398 DOI: 10.1080/15476286.2017.1358347] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest that in humans, DNA sequences responsible for protein coding regions comprise only 2% of the total genome. The rest of the transcripts result in RNA transcripts without protein-coding ability, including long noncoding RNAs (lncRNAs). Different from most members in the lncRNA family, the metastasis-associated lung adenocarcinoma transcript 1 (Malat1) is abundantly expressed and evolutionarily conserved throughout various mammalian species. Malat1 is one of the first identified lncRNAs associated with human disease, and cumulative studies have indicated that Malat1 plays critical roles in the development and progression of various cancers. Malat1 is also actively involved in various physiologic processes, including alternative splicing, epigenetic modification of gene expression, synapse formation, and myogenesis. Furthermore, extensive evidences show that Malat1 plays pivotal roles in multiple pathological conditions as well. In this review, we will summarize latest findings related to the physiologic and pathophysiological processes of Malat1 and discuss its therapeutic potentials.
Collapse
Affiliation(s)
- Xuejing Zhang
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| | - Milton H Hamblin
- b Department of Pharmacology , Tulane University School of Medicine , New Orleans , LA , USA
| | - Ke-Jie Yin
- a Pittsburgh Institute of Brain Disorders & Recovery , Department of Neurology , University of Pittsburgh School of Medicine , Pittsburgh , PA USA
| |
Collapse
|
423
|
Li X, Zhou B, Chen L, Gou LT, Li H, Fu XD. GRID-seq reveals the global RNA-chromatin interactome. Nat Biotechnol 2017; 35:940-950. [PMID: 28922346 PMCID: PMC5953555 DOI: 10.1038/nbt.3968] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022]
Abstract
Higher eukaryotic genomes are bound by a large number of coding and non-coding RNAs, but approaches to comprehensively map the identity and binding sites of these RNAs are lacking. Here we report a method to capture in situ global RNA interactions with DNA by deep sequencing (GRID-seq), which enables the comprehensive identification of the entire repertoire of chromatin-interacting RNAs and their respective binding sites. In human, mouse, and Drosophila cells, we detected a large set of tissue-specific coding and non-coding RNAs that are bound to active promoters and enhancers, especially super-enhancers. Assuming that most mRNA-chromatin interactions indicate the physical proximity of a promoter and an enhancer, we constructed a three-dimensional global connectivity map of promoters and enhancers, revealing transcription-activity-linked genomic interactions in the nucleus.
Collapse
Affiliation(s)
- Xiao Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Lan-Tao Gou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| |
Collapse
|
424
|
Molecular Crosstalking among Noncoding RNAs: A New Network Layer of Genome Regulation in Cancer. Int J Genomics 2017; 2017:4723193. [PMID: 29147648 PMCID: PMC5632862 DOI: 10.1155/2017/4723193] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past few years, noncoding RNAs (ncRNAs) have been extensively studied because of the significant biological roles that they play in regulation of cellular mechanisms. ncRNAs are associated to higher eukaryotes complexity; accordingly, their dysfunction results in pathological phenotypes, including cancer. To date, most research efforts have been mainly focused on how ncRNAs could modulate the expression of protein-coding genes in pathological phenotypes. However, recent evidence has shown the existence of an unexpected interplay among ncRNAs that strongly influences cancer development and progression. ncRNAs can interact with and regulate each other through various molecular mechanisms generating a complex network including different species of RNAs (e.g., mRNAs, miRNAs, lncRNAs, and circRNAs). Such a hidden network of RNA-RNA competitive interactions pervades and modulates the physiological functioning of canonical protein-coding pathways involved in proliferation, differentiation, and metastasis in cancer. Moreover, the pivotal role of ncRNAs as keystones of network structural integrity makes them very attractive and promising targets for innovative RNA-based therapeutics. In this review we will discuss: (1) the current knowledge on complex crosstalk among ncRNAs, with a special focus on cancer; and (2) the main issues and criticisms concerning ncRNAs targeting in therapeutics.
Collapse
|
425
|
Song X, Zeng Z, Wei H, Wang Z. Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol 2017; 75:13-22. [PMID: 28919308 DOI: 10.1016/j.semcdb.2017.09.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Alternative splicing is one of the most common mechanisms for gene regulation in humans, and plays a vital role to increase the complexity of functional proteins. In this article, we seek to provide a general review on the relationships between alternative splicing and tumorigenesis. We briefly introduce the basic rules for regulation of alternative splicing, and discuss recent advances on dynamic regulation of alternative splicing in cancers by highlighting the roles of a variety of RNA splicing factors in tumorigenesis. We further discuss several important questions regarding the splicing of long noncoding RNAs and back-splicing of circular RNAs in cancers. Finally, we discuss the current technologies that can be used to manipulate alternative splicing and serve as potential cancer treatment.
Collapse
Affiliation(s)
- Xiaowei Song
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China.
| | - Zhenyu Zeng
- Department of Cardiology, Changhai Hospital, 168 Changhai Road, Shanghai 200433, China
| | - Huanhuan Wei
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Lab for Computational Biology, CAS Center for Excellence in Molecular Cell Science, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
426
|
Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK, Diehl JA, Howe PH. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 2017; 19:1105-1115. [PMID: 28825698 PMCID: PMC5578890 DOI: 10.1038/ncb3595] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
The contribution of lncRNAs to tumour progression and the regulatory mechanisms driving their expression are areas of intense investigation. Here, we characterize the binding of heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) to a nucleic acid structural element located in exon 12 of PNUTS (also known as PPP1R10) pre-RNA that regulates its alternative splicing. HnRNP E1 release from this structural element, following its silencing, nucleocytoplasmic translocation or in response to TGFβ, allows alternative splicing and generates a non-coding isoform of PNUTS. Functionally the lncRNA-PNUTS serves as a competitive sponge for miR-205 during epithelial-mesenchymal transition (EMT). In mesenchymal breast tumour cells and in breast tumour samples, the expression of lncRNA-PNUTS is elevated and correlates with levels of ZEB mRNAs. Thus, PNUTS is a bifunctional RNA encoding both PNUTS mRNA and lncRNA-PNUTS, each eliciting distinct biological functions. While PNUTS mRNA is ubiquitously expressed, lncRNA-PNUTS appears to be tightly regulated dependent on the status of hnRNP E1 and tumour context.
Collapse
Affiliation(s)
- Simon Grelet
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Laura A Link
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Breege Howley
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Clémence Obellianne
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Viswanathan Palanisamy
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - J Alan Diehl
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Philip H Howe
- Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
427
|
NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing. Nat Struct Mol Biol 2017; 24:816-824. [PMID: 28846091 PMCID: PMC5766049 DOI: 10.1038/nsmb.3455] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/01/2017] [Indexed: 12/27/2022]
Abstract
MicroRNA biogenesis is known to be modulated by a variety of RNA binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. We herein report that the RNA binding NONO/PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha/DGCR8 Microprocessor. Because NONO/PSF are key components of paraspeckles organized by the lncRNA NEAT1, we further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with NONO/PSF as well as many other RBPs, and that multiple RNA segments in NEAT1, including a “pseudo pri-miRNA” near its 3′ end, help attract the Microprocessor. These findings suggest a bird nest model for a large non-coding RNA to orchestrate efficient processing of almost an entire class of small non-coding RNAs in the nucleus.
Collapse
|
428
|
Li W, Zhang Z, Liu X, Cheng X, Zhang Y, Han X, Zhang Y, Liu S, Yang J, Xu B, He L, Sun L, Liang J, Shang Y. The FOXN3-NEAT1-SIN3A repressor complex promotes progression of hormonally responsive breast cancer. J Clin Invest 2017; 127:3421-3440. [PMID: 28805661 DOI: 10.1172/jci94233] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
The pathophysiological function of the forkhead transcription factor FOXN3 remains to be explored. Here we report that FOXN3 is a transcriptional repressor that is physically associated with the SIN3A repressor complex in estrogen receptor-positive (ER+) cells. RNA immunoprecipitation-coupled high-throughput sequencing identified that NEAT1, an estrogen-inducible long noncoding RNA, is required for FOXN3 interactions with the SIN3A complex. ChIP-Seq and deep sequencing of RNA genomic targets revealed that the FOXN3-NEAT1-SIN3A complex represses genes including GATA3 that are critically involved in epithelial-to-mesenchymal transition (EMT). We demonstrated that the FOXN3-NEAT1-SIN3A complex promotes EMT and invasion of breast cancer cells in vitro as well as dissemination and metastasis of breast cancer in vivo. Interestingly, the FOXN3-NEAT1-SIN3A complex transrepresses ER itself, forming a negative-feedback loop in transcription regulation. Elevation of both FOXN3 and NEAT1 expression during breast cancer progression corresponded to diminished GATA3 expression, and high levels of FOXN3 and NEAT1 strongly correlated with higher histological grades and poor prognosis. Our experiments uncovered that NEAT1 is a facultative component of the SIN3A complex, shedding light on the mechanistic actions of NEAT1 and the SIN3A complex. Further, our study identified the ERα-NEAT1-FOXN3/NEAT1/SIN3A-GATA3 axis that is implicated in breast cancer metastasis, providing a mechanistic insight into the pathophysiological function of FOXN3.
Collapse
Affiliation(s)
- Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zihan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shumeng Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Bosen Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
429
|
The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J 2017; 474:2925-2935. [PMID: 28801479 PMCID: PMC5553131 DOI: 10.1042/bcj20170280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as critical regulators of various biological processes and human diseases. The mechanisms of action involve their interactions with proteins, RNA and genomic DNA. Most lncRNAs display strong nuclear localization. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding proteins that are important for multiple aspects of nucleic acid metabolism. hnRNPs are also predominantly expressed in the nucleus. This review discusses the interactions of lncRNAs and hnRNPs in regulating gene expression at transcriptional and post-transcriptional levels or by changing genomic structure, highlighting their involvements in glucose and lipid metabolism, immune response, DNA damage response, and other cellular functions. Toward the end, several techniques that are used to identify lncRNA binding partners are summarized. There are still many questions that need to be answered in this relatively new research area, which might provide novel targets to control the biological outputs of cells in response to different stimuli.
Collapse
|
430
|
Postler TS, Pantry SN, Desrosiers RC, Ghosh S. Identification and characterization of a long non-coding RNA up-regulated during HIV-1 infection. Virology 2017; 511:30-39. [PMID: 28803142 PMCID: PMC5623643 DOI: 10.1016/j.virol.2017.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) are rapidly emerging as important regulators of a diverse array of cellular functions. Here, we describe a meta-analysis of two independent RNA-seq studies to identify lncRNAs that are differentially expressed upon HIV-1 infection. Only three lncRNA genes exhibited altered expression of ≥ 2-fold in HIV-1-infected cells. Of these, the uncharacterized lncRNA LINC00173 was chosen for further study. Both transcript variants of LINC00173 (lnc173 TSV1 and 2) could be detected by qPCR, localized predominantly to the nucleus and were reproducibly up-regulated during infection. Knock-out of the LINC00173 locus did not have detectable effects on HIV-1 replication. Interestingly, however, stimulation of Jurkat T cells with PMA/ionomycin resulted in a decrease of lnc173 expression, and Jurkat cells deficient for lnc173 on average expressed higher levels of specific cytokines than control cells. These data suggest that lnc173 may have a role in the regulation of cytokines in T cells.
Collapse
Affiliation(s)
- Thomas S Postler
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | - Shara N Pantry
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sankar Ghosh
- Department of Microbiology & Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
431
|
Long noncoding RNAs: lincs between human health and disease. Biochem Soc Trans 2017; 45:805-812. [PMID: 28620042 DOI: 10.1042/bst20160376] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) represent one of the largest classes of transcripts and are highly diverse in terms of characteristics and functions. Advances in high-throughput sequencing platforms have enabled the rapid discovery and identification of lncRNAs as key regulatory molecules involved in various cellular processes and their dysregulation in various human diseases. Here, we summarize the current knowledge of the functions and underlying mechanisms of lncRNA activity with a particular focus on cancer biology. We also discuss the potential of lncRNAs as diagnostic and therapeutic targets for clinical applications.
Collapse
|
432
|
Rogell B, Fischer B, Rettel M, Krijgsveld J, Castello A, Hentze MW. Specific RNP capture with antisense LNA/DNA mixmers. RNA (NEW YORK, N.Y.) 2017; 23:1290-1302. [PMID: 28476952 PMCID: PMC5513073 DOI: 10.1261/rna.060798.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/25/2017] [Indexed: 05/07/2023]
Abstract
RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins.
Collapse
Affiliation(s)
- Birgit Rogell
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alfredo Castello
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
433
|
Tani H, Okuda S, Nakamura K, Aoki M, Umemura T. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes. PLoS One 2017; 12:e0181628. [PMID: 28719640 PMCID: PMC5515456 DOI: 10.1371/journal.pone.0181628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although accumulating evidence demonstrates that lncRNAs play important roles in regulating gene expression, the detailed mechanisms of action of most lncRNAs remain unclear. We previously reported that a novel class of lncRNAs with a short half-life (t1/2 < 4 h) in HeLa cells, termed short-lived non-coding transcripts (SLiTs), are closely associated with physiological and pathological functions. In this study, we focused on 26 SLiTs and nuclear-enriched abundant lncRNA, MALAT1(t1/2 of 7.6 h in HeLa cells) in neural stem cells (NSCs) derived from human induced pluripotent stem cells, and identified four SLiTs (TUG1, GAS5, FAM222-AS1, and SNHG15) that were affected by the following typical chemical stresses (oxidative stress, heavy metal stress and protein synthesis stress). We also found the expression levels of LINC00152 (t1/2 of 2.1 h in NSCs), MALAT1 (t1/2 of 1.8 h in NSCs), and their neighboring genes were elevated proportionally to the chemical doses. Moreover, we confirmed that the overexpression of LINC00152 or MALAT1 upregulated the expressions of their neighboring genes even in the absence of chemical stress. These results reveal that LINC00152 and MALAT1 modulate their neighboring genes, and thus provide a deeper understanding of the functions of lncRNAs.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Sayaka Okuda
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1, Onogawa, Tsukuba, Ibaraki, Japan
| | - Motohide Aoki
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| | - Tomonari Umemura
- Department of Molecular Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo, Japan
| |
Collapse
|
434
|
Li X, Wang S, Li Z, Long X, Guo Z, Zhang G, Zu J, Chen Y, Wen L. The lncRNA NEAT1 facilitates cell growth and invasion via the miR-211/HMGA2 axis in breast cancer. Int J Biol Macromol 2017; 105:346-353. [PMID: 28720546 DOI: 10.1016/j.ijbiomac.2017.07.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/28/2017] [Accepted: 07/09/2017] [Indexed: 01/28/2023]
Abstract
Long non-coding RNAs play a significant role in cancer metastasis. Studies have demonstrated that LncRNA NEAT1 promotes cancer progression. We aimed to explore whether NEAT1 regulated growth and invasion in breast cancer cells. We provided evidence that lncRNA NEAT1 was up-regulated in breast cancer cell lines and tissues. NEAT1 promoted invasion through inducing Epithelial-mesenchymal transition (EMT) and NEAT1 played a role in 5-fluorouracil (5-FU) resistance. In addition, we revealed a reciprocal repression between NEAT1 and miR-211. Furthermore, the EMT-inducer HMGA2 was identified as a down-stream target of miR-211. LncRNA NEAT1 induced EMT and 5-FU resistance through the miR-211/HMGA2 axis. Our findings suggest that lncRNA NEAT1 could be a new diagnostic biomarker and therapy target for breast cancer.
Collapse
Affiliation(s)
- Xuerui Li
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Shuxia Wang
- Department of Nuclear Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenzhong Li
- Department of Pharmacy, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyu Long
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zibai Guo
- Department of Breast Cancer, Zhongshan City People's Hospital, Zhongshan, China
| | - Guochun Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Zu
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Chen
- Department of Medical Research Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Linzhu Wen
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
435
|
Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, Imam JFC, Vogel H, Wood LD, Sage J, Hirose T, Nakagawa S, Rinn J, Attardi LD. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 2017; 31:1095-1108. [PMID: 28698299 PMCID: PMC5538433 DOI: 10.1101/gad.284661.116] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
Mello et al. identify Neat1, a ncRNA constituent of paraspeckles, as a p53 target gene that plays a crucial role in suppressing transformation in response to oncogenic signals. The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1−/− mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Carolyn Sinow
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Pawel K Mazur
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathryn Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniela Kenzelmann Broz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jamie F Conklin Imam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - John Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
436
|
Lin Z, Li X, Zhan X, Sun L, Gao J, Cao Y, Qiu H. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med 2017. [PMID: 28643459 PMCID: PMC5706502 DOI: 10.1111/jcmm.13224] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increasing epidemic of type 2 diabetes mellitus (T2DM) and its comorbidities makes it urgent to understand the pathogenesis and regulatory mechanism. However, little is known about the regulatory role of lncRNAs in diabetes. Here, we constructed a T2DM‐related competitive endogenous RNA (ceRNA) network (DMCN) to explore biological function of lncRNAs during the development of diabetes mellitus. This network contained 351 nodes including 98 mRNAs, 86 microRNAs and 167 lncRNAs. Functional analysis showed that the mRNAs in DMCN were annotated into some diabetes‐related pathways. Furthermore, mTOR‐centred subnetwork was extracted and ncRNA‐involved mTOR pathway was established. Finally, we validated that NEAT1 was potentially communicated with mTOR signalling target protein mLST8 via the association with miR‐181b. These findings provide significant insight into lncRNA regulatory network in T2DM.
Collapse
Affiliation(s)
- Zijing Lin
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinyu Li
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaorong Zhan
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lijie Sun
- Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jie Gao
- Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yan Cao
- Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hui Qiu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
437
|
Salehi S, Taheri MN, Azarpira N, Zare A, Behzad-Behbahani A. State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 2017. [PMID: 28631377 PMCID: PMC5706582 DOI: 10.1111/jcmm.13238] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) comprise a vast repertoire of RNAs playing a wide variety of crucial roles in tissue physiology in a cell‐specific manner. Despite being engaged in myriads of regulatory mechanisms, many lncRNAs have still remained to be assigned any functions. A constellation of experimental techniques including single‐molecule RNA in situ hybridization (sm‐RNA FISH), cross‐linking and immunoprecipitation (CLIP), RNA interference (RNAi), Clustered regularly interspaced short palindromic repeats (CRISPR) and so forth has been employed to shed light on lncRNA cellular localization, structure, interaction networks and functions. Here, we review these and other experimental approaches in common use for identification and characterization of lncRNAs, particularly those involved in different types of cancer, with focus on merits and demerits of each technique.
Collapse
Affiliation(s)
- Saeede Salehi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Naser Taheri
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolhossein Zare
- Transplant Research Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
438
|
Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications. Oncotarget 2017; 8:81538-81557. [PMID: 29113413 PMCID: PMC5655308 DOI: 10.18632/oncotarget.18432] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far.
Collapse
|
439
|
Sawyer IA, Dundr M. Chromatin loops and causality loops: the influence of RNA upon spatial nuclear architecture. Chromosoma 2017; 126:541-557. [PMID: 28593374 DOI: 10.1007/s00412-017-0632-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 01/18/2023]
Abstract
An intrinsic and essential trait exhibited by cells is the properly coordinated and integrated regulation of an astoundingly large number of simultaneous molecular decisions and reactions to maintain biochemical homeostasis. This is especially true inside the cell nucleus, where the recognition of DNA and RNA by a vast range of nucleic acid-interacting proteins organizes gene expression patterns. However, this dynamic system is not regulated by simple "on" or "off" signals. Instead, transcription factor and RNA polymerase recruitment to DNA are influenced by the local chromatin and epigenetic environment, a gene's relative position within the nucleus and the action of noncoding RNAs. In addition, major phase-separated structural features of the nucleus, such as nucleoli and paraspeckles, assemble in direct response to specific transcriptional activities and, in turn, influence global genomic function. Currently, the interpretation of these data is trapped in a causality dilemma reminiscent of the "chicken and the egg" paradox as it is unclear whether changes in nuclear architecture promote RNA function or vice versa. Here, we review recent advances that suggest a complex and interdependent interaction network between gene expression, chromatin topology, and noncoding RNA function. We also discuss the functional links between these essential nuclear processes from the nanoscale (gene looping) to the macroscale (sub-nuclear gene positioning and nuclear body function) and briefly highlight some of the challenges that researchers may encounter when studying these phenomena.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miroslav Dundr
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
440
|
Mannen T, Yamashita S, Tomita K, Goshima N, Hirose T. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J Cell Biol 2017; 214:45-59. [PMID: 27377249 PMCID: PMC4932371 DOI: 10.1083/jcb.201601024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/14/2016] [Indexed: 01/21/2023] Open
Abstract
The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures.
Collapse
Affiliation(s)
- Taro Mannen
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Seisuke Yamashita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kozo Tomita
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koutou 135-0064, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
441
|
Li R, Harvey AR, Hodgetts SI, Fox AH. Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1_1 isoform outside paraspeckles. RNA (NEW YORK, N.Y.) 2017; 23:872-881. [PMID: 28325845 PMCID: PMC5435860 DOI: 10.1261/rna.059477.116] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/07/2017] [Indexed: 05/16/2023]
Abstract
Large numbers of long noncoding RNAs have been discovered in recent years, but only a few have been characterized. NEAT1 (nuclear paraspeckle assembly transcript 1) is a mammalian long noncoding RNA that is important for the reproductive physiology of mice, cancer development, and the formation of subnuclear bodies termed paraspeckles. The two major isoforms of NEAT1 (3.7 kb NEAT1_1 and 23 kb NEAT1_2 in human) are generated from a common promoter and are produced through the use of alternative transcription termination sites. This gene structure has made the functional relationship between the two isoforms difficult to dissect. Here we used CRISPR-Cas9 genome editing to create several different cell lines: total NEAT1 knockout cells, cells that only express the short form NEAT1_1, and cells with twofold more NEAT1_2. Using these reagents, we obtained evidence that NEAT1_1 is not a major component of paraspeckles. In addition, our data suggest NEAT1_1 localizes in numerous nonparaspeckle foci we termed "microspeckles," which may carry paraspeckle-independent functions. This study highlights the complexity of lncRNA and showcases how genome editing tools are useful in dissecting the structural and functional roles of overlapping transcripts.
Collapse
Affiliation(s)
- Ruohan Li
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
- Western Australian Neuroscience Research Institute, Nedlands, Western Australia 6009, Australia
| | - Archa H Fox
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
442
|
Zhang B, Mao YS, Diermeier SD, Novikova IV, Nawrocki EP, Jones TA, Lazar Z, Tung CS, Luo W, Eddy SR, Sanbonmatsu KY, Spector DL. Identification and Characterization of a Class of MALAT1-like Genomic Loci. Cell Rep 2017; 19:1723-1738. [PMID: 28538188 PMCID: PMC5505346 DOI: 10.1016/j.celrep.2017.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/27/2016] [Accepted: 04/28/2017] [Indexed: 02/09/2023] Open
Abstract
The MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) gene encodes a noncoding RNA that is processed into a long nuclear retained transcript (MALAT1) and a small cytoplasmic tRNA-like transcript (mascRNA). Using an RNA sequence- and structure-based covariance model, we identified more than 130 genomic loci in vertebrate genomes containing the MALAT1 3' end triple-helix structure and its immediate downstream tRNA-like structure, including 44 in the green lizard Anolis carolinensis. Structural and computational analyses revealed a co-occurrence of components of the 3' end module. MALAT1-like genes in Anolis carolinensis are highly expressed in adult testis, thus we named them testis-abundant long noncoding RNAs (tancRNAs). MALAT1-like loci also produce multiple small RNA species, including PIWI-interacting RNAs (piRNAs), from the antisense strand. The 3' ends of tancRNAs serve as potential targets for the PIWI-piRNA complex. Thus, we have identified an evolutionarily conserved class of long noncoding RNAs (lncRNAs) with similar structural constraints, post-transcriptional processing, and subcellular localization and a distinct function in spermatocytes.
Collapse
Affiliation(s)
- Bin Zhang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA; Department of Pathology and Laboratory Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Yuntao S Mao
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Irina V Novikova
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - Eric P Nawrocki
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA; National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD 20894, USA
| | - Tom A Jones
- Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Zsolt Lazar
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Chang-Shung Tung
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - Weijun Luo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Sean R Eddy
- Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, MS K710 Los Alamos, NM 87545, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
443
|
Deveson IW, Hardwick SA, Mercer TR, Mattick JS. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet 2017; 33:464-478. [PMID: 28535931 DOI: 10.1016/j.tig.2017.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
The combination of pervasive transcription and prolific alternative splicing produces a mammalian transcriptome of great breadth and diversity. The majority of transcribed genomic bases are intronic, antisense, or intergenic to protein-coding genes, yielding a plethora of short and long non-protein-coding regulatory RNAs. Long noncoding RNAs (lncRNAs) share most aspects of their biogenesis, processing, and regulation with mRNAs. However, lncRNAs are typically expressed in more restricted patterns, frequently from enhancers, and exhibit almost universal alternative splicing. These features are consistent with their role as modular epigenetic regulators. We describe here the key studies and technological advances that have shaped our understanding of the dimensions, dynamics, and biological relevance of the mammalian noncoding transcriptome.
Collapse
Affiliation(s)
- Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Simon A Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John S Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
444
|
Chujo T, Yamazaki T, Kawaguchi T, Kurosaka S, Takumi T, Nakagawa S, Hirose T. Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J 2017; 36:1447-1462. [PMID: 28404604 PMCID: PMC5430218 DOI: 10.15252/embj.201695848] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/02/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
NEAT1_2 long noncoding RNA (lncRNA) is the molecular scaffold of paraspeckle nuclear bodies. Here, we report an improved RNA extraction method: extensive needle shearing or heating of cell lysate in RNA extraction reagent improved NEAT1_2 extraction by 20-fold (a property we term "semi-extractability"), whereas using a conventional method NEAT1_2 was trapped in the protein phase. The improved extraction method enabled us to estimate that approximately 50 NEAT1_2 molecules are present in a single paraspeckle. Another architectural lncRNA, IGS16, also exhibited similar semi-extractability. A comparison of RNA-seq data from needle-sheared and control samples revealed the existence of multiple semi-extractable RNAs, many of which were localized in subnuclear granule-like structures. The semi-extractability of NEAT1_2 correlated with its association with paraspeckle proteins and required the prion-like domain of the RNA-binding protein FUS This observation suggests that tenacious RNA-protein and protein-protein interactions, which drive nuclear body formation, are responsible for semi-extractability. Our findings provide a foundation for the discovery of the architectural RNAs that constitute nuclear bodies.
Collapse
Affiliation(s)
- Takeshi Chujo
- Institute for Genetic Medicine, Hokkaido University, Sapporo Hokkaido, Japan
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo Hokkaido, Japan
| | - Tetsuya Kawaguchi
- Institute for Genetic Medicine, Hokkaido University, Sapporo Hokkaido, Japan
| | | | - Toru Takumi
- Brain Science Institute, RIKEN, Wako Saitama, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo Hokkaido, Japan
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo Hokkaido, Japan
| |
Collapse
|
445
|
Li X, Song Y, Liu F, Liu D, Miao H, Ren J, Xu J, Ding L, Hu Y, Wang Z, Hou Y, Zhao G. Long Non-Coding RNA MALAT1 Promotes Proliferation, Angiogenesis, and Immunosuppressive Properties of Mesenchymal Stem Cells by Inducing VEGF and IDO. J Cell Biochem 2017; 118:2780-2791. [PMID: 28176360 DOI: 10.1002/jcb.25927] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) play an important role in regulating angiogenesis and immune balance. The abnormal MSCs in proliferation and function were reported at maternal fetal interface in patients with pre-eclampsia (PE). Long non-coding RNA MALAT1 was known to regulate the function of trophoblast cells. However, it is not clear whether MALAT1 regulates MSCs to be related to PE. In the present study, we found that the expression of MALAT1 was significantly reduced in both umbilical cord tissues and MSCs in patients with severe PE. MALAT1 did not affect the phenotype and differentiation of MSCs. Of note, transfection with MALAT1 plasmid into MSCs drove the cell cycle into G2/M phase and inhibited cell apoptosis. The supernatants from MALAT1-overexpressed MSCs promoted the migration of MSCs, invasion of HTR-8/SVneo and tube formation of HUVEC, while si-MALAT1 had the opposite effects. Moreover, we found that MALAT1-induced VEGF mediated these effects of MALAT1 on MSCs. Furthermore, we found that MALAT1-overexpressed MSCs promoted M2 macrophage polarization and this effect was mediated by MALAT1-induced IDO expression, suggesting that MALAT1 may enhance the immunosuppressive properties of MSCs in vivo. In addition, we also investigated the factors that inhibit MALAT1 expression in PE and found that peroxide was a cause for MALAT1 downregulation. Taken together, our data demonstrate that MALAT1 is an important endogenous regulator in the proliferation, angiogenesis, and immunosuppressive properties of MSCs, suggesting it may be involved in the pathogenesis of PE. J. Cell. Biochem. 118: 2780-2791, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiujun Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuxian Song
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Fei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Jingjing Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Liang Ding
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Zhiqun Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
446
|
Rao AKDM, Rajkumar T, Mani S. Perspectives of long non-coding RNAs in cancer. Mol Biol Rep 2017; 44:203-218. [PMID: 28391434 DOI: 10.1007/s11033-017-4103-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/31/2017] [Indexed: 01/17/2023]
Abstract
A recent advance in transcriptomics has spawned the 'Decade of non-coding RNAs' by potentiating the growing numbers of long non-coding RNA in cancer. LncRNA involvement in cancer denotes its significance beyond our perception as they participate in tumor suppression and promoting oncogenesis, which raises them as a mighty class of effectors or regulators. Aberrantly expressed lncRNAs interact with major protein and coding partners, which ultimately deregulate normal cellular processes and drive the cell towards malignant state. Identification of theses interactions are utmost important as lncRNAs can be ideal targets for therapy. Dysregulation of lncRNAs by genomic alterations like single nucleotide variations and gene fusions are also potential modulators of their secondary structure. In this review, we discuss the various molecular interactions of lncRNAs with major bio-molecules and genetic variations in lncRNA genes and their importance in cancer. This systematic review outlines the vivid role of lncRNAs in cancer context and opens up future conceptual applications.
Collapse
Affiliation(s)
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India
| | - Samson Mani
- Department of Molecular Oncology, Cancer Institute (WIA), No:38, Sardar Patel Road, Adyar, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
447
|
Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. Cell Discov 2017; 3:17002. [PMID: 28326190 PMCID: PMC5348715 DOI: 10.1038/celldisc.2017.2] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/29/2016] [Indexed: 12/21/2022] Open
Abstract
Malat1 is one of the most abundant long non-coding RNAs in various cell types; its exact cellular function is still a matter of intense investigation. In this study we characterized the function of Malat1 in skeletal muscle cells and muscle regeneration. Utilizing both in vitro and in vivo assays, we demonstrate that Malat1 has a role in regulating gene expression during myogenic differentiation of myoblast cells. Specifically, we found that knockdown of Malat1 accelerates the myogenic differentiation in cultured cells. Consistently, Malat1 knockout mice display enhanced muscle regeneration after injury and deletion of Malat1 in dystrophic mdx mice also improves the muscle regeneration. Mechanistically, in the proliferating myoblasts, Malat1 recruits Suv39h1 to MyoD-binding loci, causing trimethylation of histone 3 lysine 9 (H3K9me3), which suppresses the target gene expression. Upon differentiation, the pro-myogenic miR-181a is increased and targets the nuclear Malat1 transcripts for degradation through Ago2-dependent nuclear RNA-induced silencing complex machinery; the Malat1 decrease subsequently leads to the destabilization of Suv39h1/HP1β/HDAC1-repressive complex and displacement by a Set7-containing activating complex, which allows MyoD trans-activation to occur. Together, our findings identify a regulatory axis of miR-181a-Malat1-MyoD/Suv39h1 in myogenesis and uncover a previously unknown molecular mechanism of Malat1 action in gene regulation.
Collapse
|
448
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
449
|
Abstract
Most of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) may affect normal gene expression and disease progression, making them a new class of targets for drug discovery. Because their mechanisms of action are often novel, developing drugs to target ncRNAs will involve equally novel challenges. However, many potential problems may already have been solved during the development of technologies to target mRNA. Here, we discuss the growing field of ncRNA - including microRNA, intronic RNA, repetitive RNA and long non-coding RNA - and assess the potential and challenges in their therapeutic exploitation.
Collapse
Affiliation(s)
- Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern, Dallas, Texas 75390-9041, USA
| |
Collapse
|
450
|
Malakar P, Shilo A, Mogilevsky A, Stein I, Pikarsky E, Nevo Y, Benyamini H, Elgavish S, Zong X, Prasanth KV, Karni R. Long Noncoding RNA MALAT1 Promotes Hepatocellular Carcinoma Development by SRSF1 Upregulation and mTOR Activation. Cancer Res 2017; 77:1155-1167. [PMID: 27993818 PMCID: PMC5334181 DOI: 10.1158/0008-5472.can-16-1508] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 12/30/2022]
Abstract
Several long noncoding RNAs (lncRNA) are abrogated in cancer but their precise contributions to oncogenesis are still emerging. Here we report that the lncRNA MALAT1 is upregulated in hepatocellular carcinoma and acts as a proto-oncogene through Wnt pathway activation and induction of the oncogenic splicing factor SRSF1. Induction of SRSF1 by MALAT1 modulates SRSF1 splicing targets, enhancing the production of antiapoptotic splicing isoforms and activating the mTOR pathway by modulating the alternative splicing of S6K1. Inhibition of SRSF1 expression or mTOR activity abolishes the oncogenic properties of MALAT1, suggesting that SRSF1 induction and mTOR activation are essential for MALAT1-induced transformation. Our results reveal a mechanism by which lncRNA MALAT1 acts as a proto-oncogene in hepatocellular carcinoma, modulating oncogenic alternative splicing through SRSF1 upregulation. Cancer Res; 77(5); 1155-67. ©2016 AACR.
Collapse
Affiliation(s)
- Pushkar Malakar
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Asaf Shilo
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Adi Mogilevsky
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Ilan Stein
- Department of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Yuval Nevo
- Bioinformatics unit, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Hadar Benyamini
- Bioinformatics unit, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics unit, the Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Hebrew University-Hadassah Medical School, Ein Karem, Jerusalem, Israel.
| |
Collapse
|