401
|
Hatcher EL, Wang C, Lefkowitz EJ. Genome variability and gene content in chordopoxviruses: dependence on microsatellites. Viruses 2015; 7:2126-46. [PMID: 25912716 PMCID: PMC4411693 DOI: 10.3390/v7042126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/24/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution.
Collapse
Affiliation(s)
- Eneida L Hatcher
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA.
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, BBRB 276/11, 845 19th St S, Birmingham, AL 35222, USA.
| |
Collapse
|
402
|
Lopera JG, Falendysz EA, Rocke TE, Osorio JE. Attenuation of monkeypox virus by deletion of genomic regions. Virology 2015; 475:129-38. [PMID: 25462353 PMCID: PMC4720520 DOI: 10.1016/j.virol.2014.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 01/04/2023]
Abstract
Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.
Collapse
Affiliation(s)
- Juan G Lopera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| | | | - Tonie E Rocke
- National Wildlife Health Center, U.S. Geological Survey, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
403
|
Radonić A, Metzger S, Dabrowski PW, Couacy-Hymann E, Schuenadel L, Kurth A, Mätz-Rensing K, Boesch C, Leendertz FH, Nitsche A. Fatal monkeypox in wild-living sooty mangabey, Côte d'Ivoire, 2012. Emerg Infect Dis 2015. [PMID: 24857667 PMCID: PMC4036778 DOI: 10.3201/eid2006.131329] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We isolated a monkeypox virus from a wild-living monkey, a sooty mangabey, found dead in Taï National Park, Côte d'Ivoire, in March 2012. The whole-genome sequence obtained from this isolate and directly from clinical specimens showed its close relationship to monkeypox viruses from Western Africa.
Collapse
|
404
|
Dangerous Viral Pathogens of Animal Origin: Risk and Biosecurity. ZOONOSES - INFECTIONS AFFECTING HUMANS AND ANIMALS 2015. [PMCID: PMC7121609 DOI: 10.1007/978-94-017-9457-2_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
405
|
Abstract
The first steps in tissue culture are dating back to the beginning of the nineteenth century when biosafety measures did not yet exist. Later on, animal cell culture became essential for scientific research, diagnosis and biotechnological activities. Along with this development, biosafety concerns have emerged pointing to the risks for human health and in a lesser extent for the environment associated to the handling of animal cell cultures. The management of these risks requires a thorough risk assessment of both the cell cultures and the type of manipulation prior the start of any activity. It involves a case-by-case evaluation of both the intrinsic properties of the cell culture genetically modified or not and the probability that it may inadvertently or intentionally become infected with pathogenic micro-organisms. The latter hazard is predominant when adventitious contaminants are pathogenic or have a better capacity to persist in unfavourable conditions. Consequently, most of the containment measures primarily aim at protecting cells from adventitious contamination. Cell cultures known to harbour an infectious etiologic agent should be manipulated in compliance with containment measures recommended for the etiologic agent itself. The manipulation of cell cultures from human or primate origin necessitates the use of a type II biosafety cabinet. The scope of this chapter is to highlight aspects relevant for the risk assessment and to summarize the main biosafety recommendations and the recent technological advances allowing a mitigation of the risk for the handling of animal cell cultures.
Collapse
|
406
|
Glycosylated and nonglycosylated complement control protein of the lister strain of vaccinia virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1330-8. [PMID: 25030055 DOI: 10.1128/cvi.00347-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP.
Collapse
|
407
|
Kindrachuk J, Falcinelli S, Wada J, Kuhn JH, Hensley LE, Jahrling PB. Systems kinomics for characterizing host responses to high-consequence pathogens at the NIH/NIAID Integrated Research Facility-Frederick. Pathog Dis 2014; 71:190-98. [PMID: 24585711 PMCID: PMC6136422 DOI: 10.1111/2049-632x.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022] Open
Abstract
Currently, there is a paucity of information regarding the molecular pathogenesis for many high-consequence pathogens (HCPs) that pose threats to both national and international public health. In spite of this, investigations of the molecular pathogenesis for many HCPs have been limited to gross pathological changes in animal models or global analysis of gene expression. Further, questions remain regarding the ability of animal models of disease to recapitulate human molecular pathogenesis or act as predictors of therapeutic efficacy. Thus, it is likely that medical countermeasure development for HCPs will rely on identifying therapeutic targets that are uniquely modulated during HCP infection. It is also appreciated that many cellular processes can be regulated independently of changes in transcription or translation through phosphorylation events. Cellular kinases, individually or collectively (the kinome), play critical roles in regulating complex biology, underlie various malignancies, and represent high-priority drug targets. The growing interest in kinases in both basic and translational research has driven efforts to develop technologies that enable characterization of phosphorylation-mediated signal transduction. To this end, enhanced technical capabilities at the IRF-Frederick provide the unique capability for characterizing host responses to HCP insult during the course of infection and identify novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Shane Falcinelli
- Emerging Viral Pathogens SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| | - Jiro Wada
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Lisa E. Hensley
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort DetrickDivision of Clinical ResearchNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthFrederickMDUSA
- Emerging Viral Pathogens SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
408
|
Okeke MI, Okoli AS, Nilssen Ø, Moens U, Tryland M, Bøhn T, Traavik T. Molecular characterization and phylogenetics of Fennoscandian cowpox virus isolates based on the p4c and atip genes. Virol J 2014; 11:119. [PMID: 24972911 PMCID: PMC4112975 DOI: 10.1186/1743-422x-11-119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/24/2014] [Indexed: 03/26/2023] Open
Abstract
Background Cowpox virus (CPXV), a rodent-borne Orthopoxvirus (OPV) that is indigenous to Eurasia can infect humans, cattle, felidae and other animals. Molecular characterization of CPXVs isolated from different geographic locations is important for the understanding of their biology, geographic distribution, classification and evolution. Our aim was to characterize CPXVs isolated from Fennoscandia on the basis of A-type inclusion (ATI) phenotype, restriction fragment length polymorphism (RFLP) profiles of atip gene fragment amplicon, and phylogenetic tree topology in conjunction with the patristic and genetic distances based on full length DNA sequence of the atip and p4c genes. Methods ATI phenotypes were determined by transmission electron microcopy and RFLP profiles were obtained by restriction enzyme digestion of the atip gene fragment PCR product. A 6.2 kbp region spanning the entire atip and p4c genes of Fennoscandian CPXV isolates was amplified and sequenced. The phylogenetic affinity of Fennoscandian CPXV isolates to OPVs isolated from other geographic regions was determined on the basis of the atip and p4c genes. Results Fennoscandian CPXV isolates encoded full length atip and p4c genes. They produce wild type V+ ATI except for CPXV-No-H2. CPXVs were resolved into six and seven species clusters based on the phylogeny of the atip and p4c genes respectively. The CPXVs isolated from Fennoscandia were grouped into three distinct clusters that corresponded to isolates from Norway, Sweden and Finland. Conclusion CPXV is a polyphyletic assemblage of six or seven distinct clusters and the current classification in which CPXVs are united as one single species should be re-considered. Our results are of significance to the classification and evolution of OPVs.
Collapse
|
409
|
Radonić A, Metzger S, Dabrowski PW, Couacy-Hymann E, Schuenadel L, Kurth A, Mätz-Rensing K, Boesch C, Leendertz FH, Nitsche A. Fatal monkeypox in wild-living sooty mangabey, Côte d'Ivoire, 2012. Emerg Infect Dis 2014; 20:1009-11. [PMID: 24857667 PMCID: PMC4036778 DOI: 10.3201/eid2006.13-1329] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We isolated a monkeypox virus from a wild-living monkey, a sooty mangabey, found dead in Taï National Park, Côte d'Ivoire, in March 2012. The whole-genome sequence obtained from this isolate and directly from clinical specimens showed its close relationship to monkeypox viruses from Western Africa.
Collapse
|
410
|
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Früh K. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123. [PMID: 24832205 PMCID: PMC4022744 DOI: 10.1371/journal.ppat.1004123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Collapse
Affiliation(s)
- Dina Alzhanova
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erin Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Stephanie Rawlings
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Caroline A. Ray
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Ben Bimber
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| |
Collapse
|
411
|
Abstract
Human monkeypox is a zoonotic Orthopoxvirus with a presentation similar to smallpox. Clinical differentiation of the disease from smallpox and varicella is difficult. Laboratory diagnostics are principal components to identification and surveillance of disease, and new tests are needed for a more precise and rapid diagnosis. The majority of human infections occur in Central Africa, where surveillance in rural areas with poor infrastructure is difficult but can be accomplished with evidence-guided tools and educational materials to inform public health workers of important principles. Contemporary epidemiological studies are needed now that populations do not receive routine smallpox vaccination. New therapeutics and vaccines offer hope for the treatment and prevention of monkeypox; however, more research must be done before they are ready to be deployed in an endemic setting. There is a need for more research in the epidemiology, ecology, and biology of the virus in endemic areas to better understand and prevent human infections.
Collapse
Affiliation(s)
- Andrea M McCollum
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
412
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
413
|
Bass J, Tack DM, McCollum AM, Kabamba J, Pakuta E, Malekani J, Nguete B, Monroe BP, Doty JB, Karhemere S, Damon IK, Balilo M, Okitolonda E, Shongo RL, Reynolds MG. Enhancing health care worker ability to detect and care for patients with monkeypox in the Democratic Republic of the Congo. Int Health 2013; 5:237-43. [PMID: 24246742 PMCID: PMC5688513 DOI: 10.1093/inthealth/iht029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Monkeypox (MPX) is an endemic disease of public health importance in the Democratic Republic of the Congo (DRC). In 2010, the DRC Ministry of Health joined with external partners to improve MPX surveillance in the Tshuapa Health District of DRC. A pivotal component of the program is training of health zone personnel in surveillance methods and patient care. In this report we evaluate outcomes of the training program. METHODS Health care worker knowledge of key concepts in the MPX training curriculum was assessed using an anonymous self-administered survey. Additionally, evaluators collected feedback about the capacity of participants to perform the surveillance tasks. Training impacts were determined by assessing various surveillance performance metrics. RESULTS Correct trainee responses to questions about MPX symptoms and patient care increased significantly upon completion of training events. During the 12 months after the initial training, the proportion of suspected cases investigated increased significantly (from 6.7 to 37.3%), as compared to the 5 months prior. However, the proportion of reported cases that were ultimately confirmed remained unchanged, 20.1% (5/24) vs 23.3% (60/257). CONCLUSIONS We have demonstrated that the MPX curriculum developed for this initiative was effective in transferring knowledge and was associated with improved detection of human MPX cases.
Collapse
Affiliation(s)
- Jennifer Bass
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| | - Danielle M. Tack
- US Centers for Disease Control and Prevention, Epidemic Intelligence Service, Atlanta, GA USA
| | - Andrea M. McCollum
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| | - Joelle Kabamba
- US Centers for Disease Control and Prevention, Country Operations Branch, Kinshasa, Democratic Republic of the Congo
| | - Elisabeth Pakuta
- National Institute for Biomedical Research, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Jean Malekani
- University of Kinshasa, Department of Biological Sciences, Kinshasa, Democratic Republic of the Congo
| | - Beatrice Nguete
- University of Kinshasa, Center for HIV/AIDS Strategic Information, Kinshasa, Democratic Republic of the Congo
| | - Benjamin P. Monroe
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| | - Jeffrey B. Doty
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| | - Stomy Karhemere
- National Institute for Biomedical Research, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Inger K. Damon
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| | - Marcel Balilo
- Hemorrhagic Fever and Monkeypox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Emile Okitolonda
- University of Kinshasa, Center for HIV/AIDS Strategic Information, Kinshasa, Democratic Republic of the Congo
| | - Robert L. Shongo
- Hemorrhagic Fever and Monkeypox Program, Ministry of Health, Kinshasa, Democratic Republic of the Congo
| | - Mary G. Reynolds
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, Atlanta, GA USA
| |
Collapse
|
414
|
Nakazawa Y, Lash RR, Carroll DS, Damon IK, Karem KL, Reynolds MG, Osorio JE, Rocke TE, Malekani JM, Muyembe JJ, Formenty P, Peterson AT. Mapping monkeypox transmission risk through time and space in the Congo Basin. PLoS One 2013; 8:e74816. [PMID: 24040344 PMCID: PMC3764067 DOI: 10.1371/journal.pone.0074816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/09/2013] [Indexed: 11/22/2022] Open
Abstract
Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.
Collapse
Affiliation(s)
- Yoshinori Nakazawa
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - R. Ryan Lash
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Darin S. Carroll
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Inger K. Damon
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kevin L. Karem
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mary G. Reynolds
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jorge E. Osorio
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tonie E. Rocke
- USGS National Wildlife Health Center, Madison, Wisconsin, United States of America
| | | | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Pierre Formenty
- Department of Communicable Diseases Surveillance and Response, World Health Organization, Geneva, Switzerland
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
415
|
Lloyd-Smith JO. Vacated niches, competitive release and the community ecology of pathogen eradication. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120150. [PMID: 23798698 PMCID: PMC3720048 DOI: 10.1098/rstb.2012.0150] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A recurring theme in the epidemiological literature on disease eradication is that each pathogen occupies an ecological niche, and eradication of one pathogen leaves a vacant niche that favours the emergence of new pathogens to replace it. However, eminent figures have rejected this view unequivocally, stating that there is no basis to fear pathogen replacement and even that pathogen niches do not exist. After exploring the roots of this controversy, I propose resolutions to disputed issues by drawing on broader ecological theory, and advance a new consensus based on robust mechanistic principles. I argue that pathogen eradication (and cessation of vaccination) leads to a 'vacated niche', which could be re-invaded by the original pathogen if introduced. Consequences for other pathogens will vary, with the crucial mechanisms being competitive release, whereby the decline of one species allows its competitors to perform better, and evolutionary adaptation. Hence, eradication can cause a quantitative rise in the incidence of another infection, but whether this leads to emergence as an endemic pathogen depends on additional factors. I focus on the case study of human monkeypox and its rise following smallpox eradication, but also survey how these ideas apply to other pathogens and discuss implications for eradication policy.
Collapse
Affiliation(s)
- James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 610 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| |
Collapse
|
416
|
Bhanuprakash V, Hosamani M, Venkatesan G, Balamurugan V, Yogisharadhya R, Singh RK. Animal poxvirus vaccines: a comprehensive review. Expert Rev Vaccines 2013; 11:1355-74. [PMID: 23249235 DOI: 10.1586/erv.12.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.
Collapse
|
417
|
Bourquain D, Dabrowski PW, Nitsche A. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes. Virol J 2013; 10:61. [PMID: 23425254 PMCID: PMC3599072 DOI: 10.1186/1743-422x-10-61] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/08/2013] [Indexed: 12/31/2022] Open
Abstract
Background Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell’s gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Results Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Conclusion Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus infections in certain host species.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Threats and Special Pathogens 1, Robert Koch Institute, Nordufer 20, Berlin, Germany.
| | | | | |
Collapse
|
418
|
Hutson CL, Gallardo-Romero N, Carroll DS, Clemmons C, Salzer JS, Nagy T, Hughes CM, Olson VA, Karem KL, Damon IK. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system. PLoS One 2013; 8:e55488. [PMID: 23408990 PMCID: PMC3567100 DOI: 10.1371/journal.pone.0055488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022] Open
Abstract
Monkeypox virus (MPXV) is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV) related to MPXV) and cessation of routine smallpox vaccination (with the live OPXV vaccinia), there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively). Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.
Collapse
Affiliation(s)
- Christina L. Hutson
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Nadia Gallardo-Romero
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Darin S. Carroll
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Cody Clemmons
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Johanna S. Salzer
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
- Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Christine M. Hughes
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Victoria A. Olson
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Kevin L. Karem
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| | - Inger K. Damon
- Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Diseases, Atlanta, Georgia, United States of America
| |
Collapse
|
419
|
Nakazawa Y, Emerson GL, Carroll DS, Zhao H, Li Y, Reynolds MG, Karem KL, Olson VA, Lash RR, Davidson WB, Smith SK, Levine RS, Regnery RL, Sammons SA, Frace MA, Mutasim EM, Karsani MEM, Muntasir MO, Babiker AA, Opoka L, Chowdhary V, Damon IK. Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg Infect Dis 2013; 19:237-45. [PMID: 23347770 PMCID: PMC3559062 DOI: 10.3201/eid1902.121220] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Identification of human monkeypox cases during 2005 in southern Sudan (now South Sudan) raised several questions about the natural history of monkeypox virus (MPXV) in Africa. The outbreak area, characterized by seasonally dry riverine grasslands, is not identified as environmentally suitable for MPXV transmission. We examined possible origins of this outbreak by performing phylogenetic analysis of genome sequences of MPXV isolates from the outbreak in Sudan and from differing localities. We also compared the environmental suitability of study localities for monkeypox transmission. Phylogenetically, the viruses isolated from Sudan outbreak specimens belong to a clade identified in the Congo Basin. This finding, added to the political instability of the area during the time of the outbreak, supports the hypothesis of importation by infected animals or humans entering Sudan from the Congo Basin, and person-to-person transmission of virus, rather than transmission of indigenous virus from infected animals to humans.
Collapse
Affiliation(s)
- Yoshinori Nakazawa
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
420
|
Benhnia MREI, Maybeno M, Blum D, Aguilar-Sino R, Matho M, Meng X, Head S, Felgner PL, Zajonc DM, Koriazova L, Kato S, Burton DR, Xiang Y, Crowe JE, Peters B, Crotty S. Unusual features of vaccinia virus extracellular virion form neutralization resistance revealed in human antibody responses to the smallpox vaccine. J Virol 2013; 87:1569-85. [PMID: 23152530 PMCID: PMC3554146 DOI: 10.1128/jvi.02152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/07/2012] [Indexed: 11/20/2022] Open
Abstract
The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201-1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33.
Collapse
Affiliation(s)
| | | | - David Blum
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rowena Aguilar-Sino
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Matho
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | - Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Steven Head
- DNA Array Core Facility and Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, California, USA
| | - Philip L. Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, California, USA
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology (LIAI), La Jolla, California, USA
| | | | | | - Dennis R. Burton
- Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, USA
| | - Yan Xiang
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
421
|
Parker S, Buller RM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol 2013; 8:129-157. [PMID: 23626656 DOI: 10.2217/fvl.12.130] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monkeypox virus (MPXV) was discovered in 1958 during an outbreak in an animal facility in Copenhagen, Denmark. Since its discovery, MPXV has revealed a propensity to infect and induce disease in a large number of animals within the mammalia class from pan-geographical locations. This finding has impeded the elucidation of the natural host, although the strongest candidates are African squirrels and/or other rodents. Experimentally, MPXV can infect animals via a variety of multiple different inoculation routes; however, the natural route of transmission is unknown and is likely to be somewhat species specific. In this review we have attempted to compile and discuss all published articles that describe experimental or natural infections with MPXV, dating from the initial discovery of the virus through to the year 2012. We further discuss the comparative disease courses and pathologies of the host species.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd, Saint Louis, MO 63104, USA
| | | |
Collapse
|
422
|
Cann JA, Jahrling PB, Hensley LE, Wahl-Jensen V. Comparative pathology of smallpox and monkeypox in man and macaques. J Comp Pathol 2013; 148:6-21. [PMID: 22884034 PMCID: PMC3498598 DOI: 10.1016/j.jcpa.2012.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 06/01/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022]
Abstract
In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques.
Collapse
Affiliation(s)
- J A Cann
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA.
| | | | | | | |
Collapse
|
423
|
Townsend MB, MacNeil A, Reynolds MG, Hughes CM, Olson VA, Damon IK, Karem KL. Evaluation of the Tetracore Orthopox BioThreat® antigen detection assay using laboratory grown orthopoxviruses and rash illness clinical specimens. J Virol Methods 2013; 187:37-42. [PMID: 22981983 PMCID: PMC9534008 DOI: 10.1016/j.jviromet.2012.08.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 11/18/2022]
Abstract
The commercially available Orthopox BioThreat® Alert assay for orthopoxvirus (OPV) detection is piloted. This antibody-based lateral-flow assay labels and captures OPV viral agents to detect their presence. Serial dilutions of cultured Vaccinia virus (VACV) and Monkeypox virus (MPXV) were used to evaluate the sensitivity of the Tetracore assay by visual and quantitative determinations; specificity was assessed using a small but diverse set of diagnostically relevant blinded samples from viral lesions submitted for routine OPV diagnostic testing. The BioThreat® Alert assay reproducibly detected samples at concentrations of 10(7)pfu/ml for VACV and MPXV and positively identified samples containing 10(6)pfu/ml in 4 of 7 independent experiments. The assay correctly identified 9 of 11 OPV clinical samples and had only one false positive when testing 11 non-OPV samples. Results suggest applicability for use of the BioThreat® Alert assay as a rapid screening assay and point of care diagnosis for suspect human monkeypox cases.
Collapse
Affiliation(s)
- Michael B Townsend
- Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Road NE, Atlanta, GA 30333, United States.
| | | | | | | | | | | | | |
Collapse
|
424
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
425
|
Bourquain D, Nitsche A. Cowpox virus but not Vaccinia virus induces secretion of CXCL1, IL-8 and IL-6 and chemotaxis of monocytes in vitro. Virus Res 2012. [PMID: 23207068 PMCID: PMC9533815 DOI: 10.1016/j.virusres.2012.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Today, after eradication of Variola virus and the end of vaccination against smallpox, zoonotic Orthopoxvirus infections are emerging as potential threat to human health. The most common causes of zoonotic Orthopoxvirus infections are Cowpox virus in Europe, Monkeypox virus in Africa and Vaccinia virus in South America. Although all three viruses are genetically and antigenically closely related, the human diseases caused by each virus differ considerably. This observation may reflect different capabilities of these viruses to modulate the hosts' immune response. Therefore, we aimed at characterizing the specific cytokine response induced by Orthopoxvirus infection in vitro. We analysed the gene expression of nine human pro-inflammatory cytokines and chemokines in response to infection of HeLa cells and could identify an upregulation of cytokine gene expression following Cowpox virus and Monkeypox virus infection but not following Vaccinia virus infection. This was verified by a strong induction of especially IL-6, IL-8 and CXCL1 secretion into the cell culture supernatant following Cowpox virus infection. We could further show that supernatants derived from Cowpox virus-infected cells exhibit an increased chemotactic activity towards monocytic and macrophage-like cells. On the one hand, increased cytokine secretion by Cowpox virus-infected cells and subsequent monocyte/macrophage recruitment may contribute to host defence and facilitate clearance of the infection. On the other hand, given the assumed important role of circulating macrophages in viral spread, this may also point towards a mechanism facilitating delivery of the virus to further tissues in vivo.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Security 1, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | |
Collapse
|
426
|
Earl PL, Americo JL, Moss B. Lethal monkeypox virus infection of CAST/EiJ mice is associated with a deficient gamma interferon response. J Virol 2012; 86:9105-12. [PMID: 22696658 PMCID: PMC3416162 DOI: 10.1128/jvi.00162-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/05/2012] [Indexed: 11/20/2022] Open
Abstract
Monkeypox virus (MPXV) is endemic in Africa, where it causes disease in humans resembling smallpox. A recent importation of MPXV-infected animals into the United States raises the possibility of global spread. Rodents comprise the major reservoir of MPXV, and a variety of such animals, even those native to North America, are susceptible. In contrast, common inbred strains of mice, including BALB/c and C57BL/6, are greatly resistant to MPXV. However, several inbred strains of mice derived from wild mice, including CAST/EiJ, exhibit morbidity and mortality at relatively low inoculums of MPXV. Elucidating the basis for the susceptibility of CAST/EiJ mice could contribute to an understanding of MPXV pathogenicity and host defense mechanisms and enhance the value of this mouse strain as a model system for evaluation of therapeutics and vaccines. Here we compared virus dissemination and induced cytokine production in CAST/EiJ mice to those in the resistant BALB/c strain. Following intranasal infection, robust virus replication occurred in the lungs of both strains, although a relatively higher inoculum was required for BALB/c. However, while spread to other internal organs was rapid and efficient in CAST/EiJ mice, the virus was largely restricted to the lungs in BALB/c mice. Gamma interferon (IFN-γ) and CCL5 were induced in lungs of BALB/c mice concomitant with virus replication but not in CAST/EiJ mice. The importance of IFN-γ in protection against MPXV disease was demonstrated by the intranasal administration of the mouse cytokine to CAST/EiJ mice and the resulting protection against MPXV. Furthermore, C57BL/6 mice with inactivation of the IFN-γ gene or the IFN-γ receptor gene exhibited enhanced sensitivity to MPXV.
Collapse
Affiliation(s)
- Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
427
|
Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, Jahrling PB, Blaney JE. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol Cell Proteomics 2012; 11:M111.015701. [PMID: 22205724 PMCID: PMC3433897 DOI: 10.1074/mcp.m111.015701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Indexed: 01/04/2023] Open
Abstract
Monkeypox virus (MPXV) is comprised of two clades: Congo Basin MPXV, with an associated case fatality rate of 10%, and Western African MPXV, which is associated with less severe infection and minimal lethality. We thus postulated that Congo Basin and West African MPXV would differentially modulate host cell responses and, as many host responses are regulated through phosphorylation independent of transcription or translation, we employed systems kinomics with peptide arrays to investigate these functional host responses. Using this approach we have demonstrated that Congo Basin MPXV infection selectively down-regulates host responses as compared with West African MPXV, including growth factor- and apoptosis-related responses. These results were confirmed using fluorescence-activated cell sorting analysis demonstrating that West African MPXV infection resulted in a significant increase in apoptosis in human monocytes as compared with Congo Basin MPXV. Further, differentially phosphorylated kinases were identified through comparison of our MPXV data sets and validated as potential targets for pharmacological inhibition of Congo Basin MPXV infection, including increased Akt S473 phosphorylation and decreased p53 S15 phosphorylation. Inhibition of Akt S473 phosphorylation resulted in a significant decrease in Congo Basin MPXV virus yield (261-fold) but did not affect West African MPXV. In addition, treatment with staurosporine, an apoptosis activator resulted in a 49-fold greater decrease in Congo Basin MPXV yields as compared with West African MPXV. Thus, using a systems kinomics approach, our investigation demonstrates that West African and Congo Basin MPXV differentially modulate host cell responses and has identified potential host targets of therapeutic interest.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
428
|
Reynolds MG, Carroll DS, Karem KL. Factors affecting the likelihood of monkeypox's emergence and spread in the post-smallpox era. Curr Opin Virol 2012; 2:335-43. [PMID: 22709519 PMCID: PMC9533834 DOI: 10.1016/j.coviro.2012.02.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 11/19/2022]
Abstract
In 1980, the World Health Assembly announced that smallpox had been successfully eradicated as a disease of humans. The disease clinically and immunologically most similar to smallpox is monkeypox, a zoonosis endemic to moist forested regions in West and Central Africa. Smallpox vaccine provided protection against both infections. Monkeypox virus is a less efficient human pathogen than the agent of smallpox, but absent smallpox and the population-wide immunity engendered during eradication efforts, could monkeypox now gain a foothold in human communities? We discuss possible ecologic and epidemiologic limitations that could impede monkeypox's emergence as a significant pathogen of humans, and evaluate whether genetic constrains are sufficient to diminish monkeypox virus' capacity for enhanced specificity as a parasite of humans.
Collapse
Affiliation(s)
- Mary G Reynolds
- US Centers for Disease Control and Prevention, Poxvirus and Rabies Branch, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
429
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
430
|
Hudson PN, Self J, Weiss S, Braden Z, Xiao Y, Girgis NM, Emerson G, Hughes C, Sammons SA, Isaacs SN, Damon IK, Olson VA. Elucidating the role of the complement control protein in monkeypox pathogenicity. PLoS One 2012; 7:e35086. [PMID: 22496894 PMCID: PMC3322148 DOI: 10.1371/journal.pone.0035086] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus.
Collapse
Affiliation(s)
- Paul N Hudson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases and Biotechnology Core Facility Branch, Division of Safety Research, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
431
|
Biological characterization and next-generation genome sequencing of the unclassified Cotia virus SPAn232 (Poxviridae). J Virol 2012; 86:5039-54. [PMID: 22345477 DOI: 10.1128/jvi.07162-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cotia virus (COTV) SPAn232 was isolated in 1961 from sentinel mice at Cotia field station, São Paulo, Brazil. Attempts to classify COTV within a recognized genus of the Poxviridae have generated contradictory findings. Studies by different researchers suggested some similarity to myxoma virus and swinepox virus, whereas another investigation characterized COTV SPAn232 as a vaccinia virus strain. Because of the lack of consensus, we have conducted an independent biological and molecular characterization of COTV. Virus growth curves reached maximum yields at approximately 24 to 48 h and were accompanied by virus DNA replication and a characteristic early/late pattern of viral protein synthesis. Interestingly, COTV did not induce detectable cytopathic effects in BSC-40 cells until 4 days postinfection and generated viral plaques only after 8 days. We determined the complete genomic sequence of COTV by using a combination of the next-generation DNA sequencing technologies 454 and Illumina. A unique contiguous sequence of 185,139 bp containing 185 genes, including the 90 genes conserved in all chordopoxviruses, was obtained. COTV has an interesting panel of open reading frames (ORFs) related to the evasion of host defense, including two novel genes encoding C-C chemokine-like proteins, each present in duplicate copies. Phylogenetic analysis revealed the highest amino acid identity scores with Cervidpoxvirus, Capripoxvirus, Suipoxvirus, Leporipoxvirus, and Yatapoxvirus. However, COTV grouped as an independent branch within this clade, which clearly excluded its classification as an Orthopoxvirus. Therefore, our data suggest that COTV could represent a new poxvirus genus.
Collapse
|
432
|
Reynolds MG, Damon IK. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol 2012; 20:80-7. [PMID: 22239910 DOI: 10.1016/j.tim.2011.12.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022]
Abstract
The recent observation of a surge in human monkeypox in the Democratic Republic of the Congo (DRC) prompts the question of whether cessation of smallpox vaccination is driving the phenomenon, and if so, why is re-emergence not universal throughout the historic geographic range of the virus? Research addressing the virus's mechanisms for immune evasion and induction, as well as that directed at elucidating the genes involved in pathogenesis in different viral lineages (West African vs Congo Basin), provide insights to help explain why emergence appears to be geographically limited. Novel vaccines offer one solution to curtail the spread of this disease.
Collapse
Affiliation(s)
- Mary G Reynolds
- Division of High-consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop G-43, Atlanta, GA 30333, USA
| | | |
Collapse
|
433
|
Cohen JI, Davila W, Ali MA, Turk SP, Cowen EW, Freeman AF, Wang K. Detection of molluscum contagiosum virus (MCV) DNA in the plasma of an immunocompromised patient and possible reduction of MCV DNA with CMX-001. J Infect Dis 2012; 205:794-7. [PMID: 22262788 DOI: 10.1093/infdis/jir853] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Molluscum contagiosum virus (MCV) is a poxvirus that causes localized papules in healthy persons. We evaluated a woman with severe immunodeficiency and disseminated MCV. During treatment with CMX-001, an antiviral with activity against other poxviruses, MCV DNA was detected in 20% of plasma samples. When the patient was not receiving CMX-001, MCV DNA was detected in 50% of samples. We also noted improvement in warts on her fingers during CMX-001 therapy. Although MCV is caused by direct inoculation of virus into skin in healthy persons, in a severely immunocompromised person MCV DNA was present in blood and may spread by viremia.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA
| | | | | | | | | | | | | |
Collapse
|
434
|
|
435
|
Rimoin AW, Graham BS. Whither monkeypox vaccination. Vaccine 2011; 29 Suppl 4:D60-4. [PMID: 22188935 PMCID: PMC3311705 DOI: 10.1016/j.vaccine.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/26/2011] [Accepted: 09/01/2011] [Indexed: 10/14/2022]
Abstract
Monkeypox (MPX) is a virulent orthopoxvirus that is endemic in some regions of Central Africa. MPX incidence has been rising since the cessation of routine smallpox immunization. While it causes significant disease, there is limited person-to-person spread, the incidence is still relatively low, and cases are generally restricted to remote areas that are difficult to access. Therefore, initiating vaccine trials or implementing vaccination programs would be challenging. This paper considers the factors that may influence future decisions on whether MPX vaccination should be pursued.
Collapse
Affiliation(s)
- Anne W. Rimoin
- University of California, Los Angeles School of Public Health, Los Angeles, California, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
436
|
Damon IK. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine 2011; 29 Suppl 4:D54-9. [PMID: 22185831 DOI: 10.1016/j.vaccine.2011.04.014] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/17/2011] [Accepted: 04/04/2011] [Indexed: 11/15/2022]
Abstract
Monkeypox, a vesiculo-pustular rash illness, was initially discovered to cause human infection in 1970 through the World Health Organization (WHO)-sponsored efforts of the Commission to Certify Smallpox Eradication in Western Africa and the Congo Basin. The virus had been discovered to cause a nonhuman primate rash illness in 1958, and was thus named monkeypox. The causative agents of monkeypox and smallpox diseases both are species of Orthopoxvirus. Orthopoxvirus monkeypox, when it infects humans as an epizootic, produces a similar clinical picture to that of ordinary human smallpox. Since 1970, extensive epidemiology, virology, ecology and public health research has enabled better characterization of monkeypox virus and the associated human disease. This work reviews the progress in this body of research, and reviews studies of this "newly" emerging zoonotic disease.
Collapse
Affiliation(s)
- Inger K Damon
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Office of Infectious Diseases, CDC, 1600 Clifton Rd. NE, Atlanta, GA 30333, USA.
| |
Collapse
|
437
|
Dyall J, Johnson RF, Chen DY, Huzella L, Ragland DR, Mollura DJ, Byrum R, Reba RC, Jennings G, Jahrling PB, Blaney JE, Paragas J. Evaluation of monkeypox disease progression by molecular imaging. J Infect Dis 2011; 204:1902-11. [PMID: 22013221 PMCID: PMC3209815 DOI: 10.1093/infdis/jir663] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/09/2011] [Indexed: 11/13/2022] Open
Abstract
Infection of nonhuman primates (NHPs) with monkeypox virus (MPXV) is currently being developed as an animal model of variola infection in humans. We used positron emission tomography and computed tomography (PET/CT) to identify inflammatory patterns as predictors for the outcome of MPXV disease in NHPs. Two NHPs were sublethally inoculated by the intravenous (IV) or intrabronchial (IB) routes and imaged sequentially using fluorine-18 fluorodeoxyglucose ((18)FDG) uptake as a nonspecific marker of inflammation/immune activation. Inflammation was observed in the lungs of IB-infected NHPs, and bilobular involvement was associated with morbidity. Lymphadenopathy and immune activation in the axillary lymph nodes were evident in IV- and IB-infected NHPs. Interestingly, the surviving NHPs had significant (18)FDG uptake in the axillary lymph nodes at the time of MPXV challenge with no clinical signs of illness, suggesting an association between preexisting immune activation and survival. Molecular imaging identified patterns of inflammation/immune activation that may allow risk assessment of monkeypox disease.
Collapse
Affiliation(s)
- Julie Dyall
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases
| | - Dar-Yeong Chen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Louis Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Dan R. Ragland
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Daniel J. Mollura
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Russell Byrum
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Richard C. Reba
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Gerald Jennings
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| | - Peter B. Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases
| | - Joseph E. Blaney
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases
| | - Jason Paragas
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
438
|
Hutson CL, Carroll DS, Gallardo-Romero N, Weiss S, Clemmons C, Hughes CM, Salzer JS, Olson VA, Abel J, Karem KL, Damon IK. Monkeypox disease transmission in an experimental setting: prairie dog animal model. PLoS One 2011; 6:e28295. [PMID: 22164263 PMCID: PMC3229555 DOI: 10.1371/journal.pone.0028295] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022] Open
Abstract
Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission.
Collapse
Affiliation(s)
- Christina L Hutson
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
439
|
Tack DM, Reynolds MG. Zoonotic Poxviruses Associated with Companion Animals. Animals (Basel) 2011; 1:377-95. [PMID: 26486622 PMCID: PMC4513476 DOI: 10.3390/ani1040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals.
Collapse
Affiliation(s)
- Danielle M Tack
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Mary G Reynolds
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
440
|
Estep RD, Messaoudi I, O'Connor MA, Li H, Sprague J, Barron A, Engelmann F, Yen B, Powers MF, Jones JM, Robinson BA, Orzechowska BU, Manoharan M, Legasse A, Planer S, Wilk J, Axthelm MK, Wong SW. Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection. J Virol 2011; 85:9527-42. [PMID: 21752919 PMCID: PMC3165757 DOI: 10.1128/jvi.00199-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 06/26/2011] [Indexed: 01/13/2023] Open
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.
Collapse
Affiliation(s)
- Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon
| | - Megan A. O'Connor
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Helen Li
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Alexander Barron
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Flora Engelmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Bonnie Yen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Michael F. Powers
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - John M. Jones
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Bridget A. Robinson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Beata U. Orzechowska
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon
| | - Jennifer Wilk
- Division of Animal Resources, Oregon National Primate Research Center, Beaverton, Oregon
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon
| |
Collapse
|
441
|
Smith SK, Self J, Weiss S, Carroll D, Braden Z, Regnery RL, Davidson W, Jordan R, Hruby DE, Damon IK. Effective antiviral treatment of systemic orthopoxvirus disease: ST-246 treatment of prairie dogs infected with monkeypox virus. J Virol 2011; 85:9176-87. [PMID: 21697474 PMCID: PMC3165798 DOI: 10.1128/jvi.02173-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/09/2011] [Indexed: 12/17/2022] Open
Abstract
Smallpox preparedness research has led to development of antiviral therapies for treatment of serious orthopoxvirus infections. Monkeypox virus is an emerging, zoonotic orthopoxvirus which can cause severe and transmissible disease in humans, generating concerns for public health. Monkeypox virus infection results in a systemic, febrile-rash illness closely resembling smallpox. Currently, there are no small-molecule antiviral therapeutics approved to treat orthopoxvirus infections of humans. The prairie dog, using monkeypox virus as a challenge virus, has provided a valuable nonhuman animal model in which monkeypox virus infection closely resembles human systemic orthopoxvirus illness. Here, we assess the efficacy of the antiorthopoxvirus compound ST-246 in prairie dogs against a monkeypox virus challenge of 65 times the 50% lethal dose (LD(50)). Animals were infected intranasally and administered ST-246 for 14 days, beginning on days 0, 3, or after rash onset. Swab and blood samples were collected every 2 days and analyzed for presence of viral DNA by real-time PCR and for viable virus by tissue culture. Seventy-five percent of infected animals that received vehicle alone succumbed to infection. One hundred percent of animals that received ST-246 survived challenge, and animals that received treatment before symptom onset remained largely asymptomatic. Viable virus and viral DNA were undetected or at greatly reduced levels in animals that began treatment on 0 or 3 days postinfection, compared to control animals or animals treated post-rash onset. Animals treated after rash onset manifested illness, but all recovered. Our results indicate that ST-246 can be used therapeutically, following onset of rash illness, to treat systemic orthopoxvirus infections.
Collapse
Affiliation(s)
- Scott K Smith
- Poxvirus Team, Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Johnson RF, Yellayi S, Cann JA, Johnson A, Smith AL, Paragas J, Jahrling PB, Blaney JE. Cowpox virus infection of cynomolgus macaques as a model of hemorrhagic smallpox. Virology 2011; 418:102-12. [PMID: 21840027 DOI: 10.1016/j.virol.2011.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 01/27/2023]
Abstract
Hemorrhagic smallpox was a rare but severe manifestation of variola virus infection that resulted in nearly 100% mortality. Here we describe intravenous (IV) inoculation of cowpox virus Brighton Red strain in cynomolgus macaques (Macaca fascicularis) which resulted in disease similar in presentation to hemorrhagic smallpox in humans. IV inoculation of macaques resulted in a uniformly lethal disease within 12 days post-inoculation in two independent experiments. Clinical observations and hematological and histopathological findings support hemorrhagic disease. Cowpox virus replicated to high levels in blood (8.0-9.0 log(10) gene copies/mL) and tissues including lymph nodes, thymus, spleen, bone marrow, and lungs. This unique model of hemorrhagic orthopoxvirus infection provides an accessible means to further study orthopoxvirus pathogenesis and to identify virus-specific and nonspecific therapies. Such studies will serve to complement the existing nonhuman primate models of more classical poxviral disease.
Collapse
Affiliation(s)
- Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
443
|
Keckler MS, Carroll DS, Gallardo-Romero NF, Lash RR, Salzer JS, Weiss SL, Patel N, Clemmons CJ, Smith SK, Hutson CL, Karem KL, Damon IK. Establishment of the black-tailed prairie dog (Cynomys ludovicianus) as a novel animal model for comparing smallpox vaccines administered preexposure in both high- and low-dose monkeypox virus challenges. J Virol 2011; 85:7683-98. [PMID: 21632764 PMCID: PMC3147922 DOI: 10.1128/jvi.02174-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/21/2011] [Indexed: 11/20/2022] Open
Abstract
The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 10(5) or 10(6) PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.
Collapse
Affiliation(s)
- M S Keckler
- Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Road, Mailstop G-06, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
444
|
Sonnberg S, Fleming SB, Mercer AA. Phylogenetic analysis of the large family of poxvirus ankyrin-repeat proteins reveals orthologue groups within and across chordopoxvirus genera. J Gen Virol 2011; 92:2596-2607. [PMID: 21752962 DOI: 10.1099/vir.0.033654-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ankyrin-repeat (ANK) protein-interaction domains are common in cellular proteins but are relatively rare in viruses. Chordopoxviruses, however, encode a large number of ANK domain-containing ORFs of largely unknown function. Recently, a second protein-interaction domain, an F-box-like motif, was identified in several poxvirus ANK proteins. Cellular F-box proteins recruit substrates to the ubiquitination machinery of the cell, a putative function for ANK/poxviral F-box proteins. Using publicly available genome sequence data we examined all 328 predicted ANK proteins encoded by 27 chordopoxviruses that represented the eight vertebrate poxvirus genera whose members encode ANK proteins. Within these we identified 15 putative ANK protein orthologue groups within orthopoxviruses, five within parapoxviruses, 23 within avipoxviruses and seven across members of the genera Leporipoxvirus, Capripoxvirus, Yatapoxvirus, Suipoxvirus and Cervidpoxvirus. Sequence comparisons showed that members of each of these four clusters of orthologues were not closely related to members of any of the other clusters. Of these ORFs, 67% encoded a C-terminal poxviral F-box-like motif, whose absence could largely be attributed to fragmentation of ORFs. Our findings suggest that the large family of poxvirus ANK proteins arose by extensive gene duplication and divergence that occurred independently in four major genus-based groups after the groups diverged from each other. It seems likely that the ancestor ANK proteins of poxviruses contained both the N-terminal ANK repeats and a C-terminal F-box-like domain, with the latter domain subsequently being lost in a small subset of these proteins.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
445
|
Montanuy I, Alejo A, Alcami A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J 2011; 25:1960-71. [PMID: 21372110 PMCID: PMC3101028 DOI: 10.1096/fj.10-177188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/17/2011] [Indexed: 12/24/2022]
Abstract
Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.
Collapse
Affiliation(s)
- Imma Montanuy
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Madrid, Spain
| | - Ali Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid, Spain; and
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Madrid, Spain
- Department of Medicine, University of Cambridge, Addenbrooke′s Hospital, Cambridge, UK
| |
Collapse
|
446
|
da Fonseca FG, Kroon EG, Nogueira ML, de Souza Trindade G. Zoonotic vaccinia virus outbreaks in Brazil. Future Virol 2011. [DOI: 10.2217/fvl.11.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vaccinia virus (VACV) was used as a live vaccine during the WHO-led smallpox eradication campaign in the second half of the 20th century. The program culminated with the obliteration of the disease, one of the most important achievements in modern medicine. Interestingly, one of the key factors in the successful vaccination campaign – the VACV itself – is poorly understood in relation to its natural reservoirs, evolutionary history and origins, being frequently considered extinct as a naturally occurring virus. Nevertheless, orthopoxviruses other than variola virus have been known to circulate in Brazil since the early 1960s. More specifically, VACV has been associated with naturally acquired infections in humans, cattle and possibly other reservoirs since 1999, when bovine vaccinia outbreaks started to be consistently described year after year. In this article, we list and discuss the most important VACV outbreaks that have occurred in Brazil in the last 20 years. Phylogenetic issues are considered, as the latest studies point to large genetic variance among isolates. Clinical and epidemiological data, both published and new, are presented.
Collapse
Affiliation(s)
- Flávio Guimarães da Fonseca
- Instituto René Rachou (IRR), Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, MG 30190-002, Brazil
| | - Erna Geessien Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São José do Rio Preto (FAMERP), Departamento de Doenças Infecciosas e Parasitárias, Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, SP 15090-000, Brazil
| | - Giliane de Souza Trindade
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte, MG 31270-901, Brazil
| |
Collapse
|
447
|
Johnson RF, Dyall J, Ragland DR, Huzella L, Byrum R, Jett C, St Claire M, Smith AL, Paragas J, Blaney JE, Jahrling PB. Comparative analysis of monkeypox virus infection of cynomolgus macaques by the intravenous or intrabronchial inoculation route. J Virol 2011; 85:2112-25. [PMID: 21147922 PMCID: PMC3067809 DOI: 10.1128/jvi.01931-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022] Open
Abstract
Monkeypox virus (MPXV) infection has recently expanded in geographic distribution and can be fatal in up to 10% of cases. The intravenous (i.v.) inoculation of nonhuman primates (NHPs) results in an accelerated fulminant disease course compared to that of naturally occurring MPXV infection in humans. Alternative routes of inoculation are being investigated to define an NHP model of infection that more closely resembles natural disease progression. Our goal was to determine if the intrabronchial (i.b.) exposure of NHPs to MPXV results in a systemic disease that better resembles the progression of human MPXV infection. Here, we compared the disease course following an i.v. or i.b. inoculation of NHPs with 10-fold serial doses of MPXV Zaire. Classical pox-like disease was observed in NHPs administered a high virus dose by either route. Several key events were delayed in the highest doses tested of the i.b. model compared to the timing of the i.v. model, including the onset of fever, lesion appearance, peak viremia, viral shedding in nasal and oral swabs, peak cytokine levels, and time to reach endpoint criteria. Virus distribution across 19 tissues was largely unaffected by the inoculation route at the highest doses tested. The NHPs inoculated by the i.b. route developed a viral pneumonia that likely exacerbated disease progression. Based on the observations of the delayed onset of clinical and virological parameters and endpoint criteria that may more closely resemble those of human MPXV infection, the i.b. MPXV model should be considered for the further investigation of viral pathogenesis and countermeasures.
Collapse
Affiliation(s)
- Reed F Johnson
- National Institutes of Health, NIAID/EVPS, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
448
|
Keasey S, Pugh C, Tikhonov A, Chen G, Schweitzer B, Nalca A, Ulrich RG. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PLoS One 2010; 5:e15547. [PMID: 21209900 PMCID: PMC3012712 DOI: 10.1371/journal.pone.0015547] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/11/2010] [Indexed: 01/31/2023] Open
Abstract
Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92-95% (166-192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome.
Collapse
Affiliation(s)
- Sarah Keasey
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Christine Pugh
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Gengxin Chen
- Life Technologies, Carlsbad, California, United States of America
| | - Barry Schweitzer
- Life Technologies, Carlsbad, California, United States of America
| | - Aysegul Nalca
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Robert G. Ulrich
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| |
Collapse
|
449
|
The Vaccinia virus complement control protein modulates adaptive immune responses during infection. J Virol 2010; 85:2547-56. [PMID: 21191012 DOI: 10.1128/jvi.01474-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement activation is an important component of the innate immune response against viral infection and also shapes adaptive immune responses. Despite compelling evidence that complement activation enhances T cell and antibody (Ab) responses during viral infection, it is unknown whether inhibition of complement by pathogens alters these responses. Vaccinia virus (VACV) modulates complement activation by encoding a complement regulatory protein called the vaccinia virus complement control protein (VCP). Although VCP has been described as a virulence factor, the mechanisms by which VCP enhances VACV pathogenesis have not been fully defined. Since complement is necessary for optimal adaptive immune responses to several viruses, we hypothesized that VCP contributes to pathogenesis by modulating anti-VACV T cell and Ab responses. In this study, we used an intradermal model of VACV infection to compare pathogenesis of wild-type virus (vv-VCPwt) and a virus lacking VCP (vv-VCPko). vv-VCPko formed smaller lesions in wild-type mice but not in complement-deficient mice. Attenuation of vv-VCPko correlated with increased accumulation of T cells at the site of infection, enhanced neutralizing antibody responses, and reduced viral titers. Importantly, depleting CD8(+) T cells together with CD4(+) T cells, which also eliminated T helper cell-dependent Ab responses, restored vv-VCPko to wild-type levels of virulence. These results suggest that VCP contributes to virulence by dampening both antibody and T cell responses. This work provides insight into how modulation of complement by poxviruses contributes to virulence and demonstrates that a pathogen-encoded complement regulatory protein can modulate adaptive immunity.
Collapse
|
450
|
Pauli G, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H, von König CHW. Orthopox Viruses: Infections in Humans. ACTA ACUST UNITED AC 2010; 37:351-364. [PMID: 21483466 DOI: 10.1159/000322101] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Georg Pauli
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|