1
|
Ikram M, Mahmud MAP, Kalyar AA, Alomayri T, Almahri A, Hussain D. 3D-bioprinting of MXenes: Developments, medical applications, challenges, and future roadmap. Colloids Surf B Biointerfaces 2025; 251:114568. [PMID: 40020571 DOI: 10.1016/j.colsurfb.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/03/2025]
Abstract
MXenes is a member of 2D transition metals carbides and nitrides with promising application prospects in energy storage, sensing, nanomedicine, tissue engineering, catalysis, and electronics. In the current era, MXenes have been widely applied in biomedical applications due to their unique rheological and electrochemical attributes. They have a larger surface area with more active sites, higher conductivity, lower cytotoxicity, and greater biocompatibility, making them highly suitable candidates for in-vivo biomedical applications. Due to recent advancemnets in MXenes 3D bioprinting, they are widely applied in regenerative medicine to combat challenges in suitable transplantation of tissues and organs. However, 3D bioprinting of MXenes has several complexities based on cell type, cytotoxicity, cell viability, and differentiation. To address these intricacies, surface modifications of MXene materials are done, which makes them highly fascinating for the 3D printing of tissues and organs. In the current review, we summarized recent progress in 3D bioprinting of MXene materials to construct scaffolds with desired rheological and biological properties, focusing on their potential applications in cancer phototherapy, tissue engineering, bone regeneration, and biosensing. We also discussed parameters affecting their biomedical applications and possible solutions by applying surface modifications. In addition, we addressed current challenges and future roadmaps for 3D bioprinting of MXene materials, such as generating high throughput 3D printed tissue constructs, drug delivery, drug discovery, and toxicology.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007, United States of America.
| | - M A Parvez Mahmud
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amina Akbar Kalyar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Pakistan
| | - Thamer Alomayri
- Department of Physics, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Albandary Almahri
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Song W, Yu BY, Ju L, Li G, Tang X, Xu K, Li MZ, Kou Z, Feng H, Zhao X, Chen H, Qiu T, Sun Z, Fan X, Lu WB. Interwoven MXene Sediment Architecture Empowers High-Performance Flexible Microwave Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503857. [PMID: 40341782 DOI: 10.1002/smll.202503857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Flexible microwave devices are critical in wearable electronic systems for wireless communication, where highly conductive materials are essential to ensure optimal electromagnetic performance. Titanium carbide (MXene), renowned for its excellent conductivity, lightweight, and easy fabrication, emerges as a promising alternative to conventional metal materials in wearable electronics. However, the technical limitation of MXene suspensions or sediments in fabricating high-performance microwave devices with low cost and scalable production present a huge challenge for their practical applications. Herein, an interwoven MXene sediment architecture is designed on natural cross-linked textiles, achieving high material yield and superior conductivity simultaneously. The architecture breaks up the planar conductive behavior of conventional stacked MXene films, facilitating multi-directional electron transport and pushing the conductivity of MXene sediment microwave devices up to 1.6 × 106 S m-1. The underlying mechanisms responsible for the improvement in conductivity are investigated using resistor network models and percolation theory. Moreover, the architecture demonstrates high performance in electromagnetic interference shielding, and supports high-quality and long-range wireless communications. This validation not only underscores the effectiveness of the interwoven MXene sediment architecture, but also establishes the MXene-based microwave devices as a transformative component for the next generation of high-performance flexible wireless communication technologies.
Collapse
Affiliation(s)
- Wenzhe Song
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Bu Yun Yu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Lu Ju
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| | - Guoqun Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Kaidi Xu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Meng Zi Li
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Zhenghao Kou
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Hongyuan Feng
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
| | - Teng Qiu
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xingce Fan
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Wei Bing Lu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing, 210096, China
- Purple Mountain Laboratories, Nanjing, 211111, China
| |
Collapse
|
3
|
Herber M, Hill EH. Optically-Directed Bubble Printing of MXenes on Flexible Substrates toward MXene-Enabled Wearable Electronics and Strain Sensors. NANO LETTERS 2025; 25:7258-7265. [PMID: 40240344 PMCID: PMC12063168 DOI: 10.1021/acs.nanolett.4c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
This study presents the use of laser-driven microbubbles for micropatterning Ti3C2TX MXenes on flexible polyethylene terephthalate films, yielding conductive micropatterns without the need for pre- or postprocessing. Characterization of the electrical properties under varying strain conditions revealed distinct responses; resistance decreased under compressive strain and increased under tensile strain, demonstrating their potential as strain sensors. The patterns maintained functional integrity over 1000 cycles of bending, with a significant increase in resistance observed under tensile strain (61.6%) compared to compressive strain (11.3%). In addition, narrower MXene lines exhibited greater strain sensitivity, while broader lines were more robust. This work underscores the potential of bubble printing as an effective approach for printing conductive micropatterns and emphasizes its potential for substantial advances in wearable technology, flexible electronics, and strain sensing technologies.
Collapse
Affiliation(s)
- Marcel Herber
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Eric H. Hill
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Lee J, Shin H, Sadeghi K, Seo J. Chlorine Dioxide (ClO 2)-Releasing Sachet for Preservation of Cherry Tomatoes. Molecules 2025; 30:2041. [PMID: 40363846 PMCID: PMC12073356 DOI: 10.3390/molecules30092041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Chlorine dioxide (ClO2) is a powerful sterilizing agent that is widely used to prevent the spoilage of fresh foods during delivery and storage. However, its practical applications are hindered by a short sterilization duration, complex deployment processes, and high treatment costs. To address these challenges, an innovative ClO2 self-releasing sachet was developed, which was specifically designed for use in retail and wholesale markets. The sachet utilizes polyether block amide (PEBAX®) as a hydrophilic polymer to facilitate the dissociation of sodium chlorite (NaClO2) and citric acid (CA), which generates ClO2. A PEBAX/CA composite film was coated onto kraft paper to construct the sachet. This design extended the ClO2 release period to over 3 d, with a controllable release rate being achieved by adjusting the concentrations of NaClO2 and CA. In practical tests, the sachets inhibited fungal growth by >50% over 14 d at 20 °C within a corrugated box. Furthermore, they preserved the quality of the cherry tomatoes for 16 d during storage. These results demonstrate that the newly developed sachet offers an economical and user-friendly solution for fresh-food packaging, effectively preserving product quality.
Collapse
Affiliation(s)
- Junseok Lee
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| | - Hojun Shin
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, AZ 85287, USA;
| | - Jongchul Seo
- Department of Packaging and Logistics, Yonsei University, 1 Yonseidae-gil, Wonju-si 26493, Gangwon State, Republic of Korea; (J.L.); (H.S.)
| |
Collapse
|
5
|
Dutta T, Alam P, Mishra SK. MXenes and MXene-based composites for biomedical applications. J Mater Chem B 2025; 13:4279-4312. [PMID: 40079066 DOI: 10.1039/d4tb02834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
MXenes, a novel class of two-dimensional materials, have recently emerged as promising candidates for biomedical applications due to their specific structural features and exceptional physicochemical and biological properties. These materials, characterized by unique structural features and superior conductivity, have applications in tissue engineering, cancer detection and therapy, sensing, imaging, drug delivery, wound treatment, antimicrobial therapy, and medical implantation. Additionally, MXene-based composites, incorporating polymers, metals, carbon nanomaterials, and metal oxides, offer enhanced electroactive and mechanical properties, making them highly suitable for engineering electroactive organs such as the heart, skeletal muscle, and nerves. However, several challenges, including biocompatibility, functional stability, and scalable synthesis methods, remain critical for advancing their clinical use. This review comprehensively overviews MXenes and MXene-based composites, their synthesis, properties, and broad biomedical applications. Furthermore, it highlights the latest progress, ongoing challenges, and future perspectives, aiming to inspire innovative approaches to harnessing these versatile materials for next-generation medical solutions.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, Howrah, W.B. - 711103, India
| | - Parvej Alam
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels, Spain.
| | - Satyendra Kumar Mishra
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China.
| |
Collapse
|
6
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
7
|
Rieger J, Ghosh A, Spellberg JL, Raab C, Mohan A, Joshi PP, King SB. Imaging and simulation of surface plasmon polaritons on layered 2D MXenes. SCIENCE ADVANCES 2025; 11:eads3689. [PMID: 40117370 PMCID: PMC11927638 DOI: 10.1126/sciadv.ads3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, commonly known as MXenes, are a class of 2D materials with high free carrier densities, making them highly attractive candidates for plasmonic 2D materials. In this study, we use multiphoton photoemission electron microscopy (nP-PEEM) to directly image the plasmonic near fields of multilayers of the prototypical MXene, Ti3C2Tx, with mixed surface terminations (Tx = F, O, and OH). Photon-energy dependent nP-PEEM reveals a dispersive surface plasmon polariton between 1.4 and 1.9 electron volts on MXene flakes thicker than 30 nanometers and waveguide modes above 1.9 electron volts. Combining experiments with finite-difference time-domain simulations, we reveal the emergence of a visible surface plasmon polariton in MXenes, opening avenues for exploration of polaritonic phenomena in MXenes in the visible portion of the electromagnetic spectrum.
Collapse
Affiliation(s)
- Janek Rieger
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Atreyie Ghosh
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Joseph L. Spellberg
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Calvin Raab
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Aishani Mohan
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Prakriti P. Joshi
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Sarah B. King
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Liu J, Chen C, Xia S, Zhang H, Khosla A. Gas-specific adsorption capability of titanium dioxide and MXene nanocomposite thin films prepared by ultrasonic spray printing using inks oxidized at room temperature. J Colloid Interface Sci 2025; 681:307-318. [PMID: 39612663 DOI: 10.1016/j.jcis.2024.11.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
The development of two-dimensional (2D) layered MXene materials has opened new possibilities for gas adsorption applications due to their high specific surface area, tunable surface chemistry, and excellent selectivity towards specific gases. These materials exhibit tremendous potential in adsorption-based gas separation and detection, particularly due to their strong interactions with target gas molecules, making them highly effective in gas removal and detection applications. However, currently available methods for synthesizing these oxidized nanocomposite inks are limited by the typically high temperatures involved. The present work addresses this issue by developing titanium dioxide and MXene (TiO2/Ti3C2 MXene) nanocomposite inks, where TiO2 nanoparticles are formed between the layers of the Ti3C2 MXene via oxidation in solution state under extended exposure in an oxygen rich atmosphere at room temperature. As a proof of concept, gas adsorption studies are conducted by applying the TiO2/Ti3C2 MXene nanocomposite inks onto gold-coated silicon wafers via an ultrasonic spray printing method. The gas adsorption results demonstrate that the TiO2/Ti3C2 MXene nanocomposites possess excellent adsorption selectivity toward methane and butane among alkane gases, and can achieve maximum adsorption capacities of 8.62 and 18.8 cm3/g, respectively. The results of ultrasonic spray printing quality tests conducted for different numbers of printed layers using the proposed TiO2/Ti3C2 MXene nanocomposite ink demonstrate that the film thickness can be regulated by controlling the number of printed layers, and the average thin film thickness remains only 0.313 μm for 10 printed layers. Meanwhile, the average roughness of the films resides between 0.130 μm (3 layers) and 0.220 μm (8 layers), which is uniformly and less than the average roughness of 0.225 μm measured for the original gold-plated silicon wafer. Hence, by employing facile ink-based printing techniques, such as ultrasonic spray printing, thin films with controlled thickness can be fabricated, thereby laying the foundation for their practical applications in environmental monitoring and industrial gas separation.
Collapse
Affiliation(s)
- Jinhong Liu
- Multimodal Sensing and Integrated Circuit Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Chen Chen
- Multimodal Sensing and Integrated Circuit Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Shenghui Xia
- Multimodal Sensing and Integrated Circuit Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Hui Zhang
- Multimodal Sensing and Integrated Circuit Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.
| | - Ajit Khosla
- Multimodal Sensing and Integrated Circuit Laboratory, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.
| |
Collapse
|
9
|
Li W, Xu Z, Yan Y, Gao Q, Song Y, Wang T, Dun H, Yang M, Huang Q, Zhang X, Zhao Y, Hou G. 2D MXenes: Synthesis, Properties, and Applications in Silicon-Based Optoelectronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410001. [PMID: 39822155 DOI: 10.1002/smll.202410001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/21/2024] [Indexed: 01/19/2025]
Abstract
MXenes, a rapidly emerging class of 2D transition metal carbides, nitrides, and carbonitrides, have attracted significant attention for their outstanding properties, including high electrical conductivity, tunable work function, and solution processability. These characteristics have made MXenes highly versatile and widely adopted in the next generation of optoelectronic devices, such as perovskite and organic solar cells. However, their integration into silicon-based optoelectronic devices remains relatively underexplored, despite silicon's dominance in the semiconductor industry. In this review, a timely summary of the recent progress in utilizing Ti-based MXenes, particularly Ti3C2Tx, in silicon-based optoelectronic devices is provided. The composition, synthesis methods, and key properties of MXenes that contribute to their potential for enhanced device performance are focused on. Furthermore, the latest advancements in MXene applications in silicon-based solar cells and photodetectors are discussed from fundamental and applied perspectives. Finally, the key challenges and future opportunities for the integration of MXenes in silicon-based optoelectronic devices are outlined.
Collapse
Affiliation(s)
- Wei Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Zhiyuan Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Yu Yan
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Qianfeng Gao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Yaya Song
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Taiqiang Wang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Hongyu Dun
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Mingyu Yang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Qian Huang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| | - Guofu Hou
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
| |
Collapse
|
10
|
Khalid Z, Hadi F, Xie J, Chandrabose V, Oh JM. The Future of MXenes: Exploring Oxidative Degradation Pathways and Coping with Surface/Edge Passivation Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407856. [PMID: 39822135 DOI: 10.1002/smll.202407856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Indexed: 01/19/2025]
Abstract
The MXene, which is usually transition metal carbide, nitride, and carbonitride, is one of the emerging family of 2D materials, exhibiting considerable potential across various research areas. Despite theoretical versatility, practical application of MXene is prohibited due to its spontaneous oxidative degradation. This review meticulously discusses the factors influencing the oxidation of MXenes, considering both thermodynamic and kinetic point of view. The potential mechanisms of oxidation are systematically introduced, based on experimental and theoretical models. Typically, the surfaces and edges of MXenes are susceptible to oxidation, as the surface terminal groups are easily attacked by oxygen and water molecules, ultimately leading to structural deformation. To retard oxidative degradation, ligand mediated surface/edge passivation is suggested as a promising strategy. In this regard, detailed passivation strategies for MXenes are systematically explained based on the types of chemistry at the MXene-ligand interface-covalent bonding, electrostatic interactions, and hydrogen bonding-and the type of stabilizing moieties-organic, inorganic, biomolecules, and polymers. The retardation of oxidation is discussed in relation with the interaction type and passivating moiety. This review aims to catalyze future research to identify efficient and cost-effective ligands for the surface engineering of MXenes, enhancing their oxidation stability.
Collapse
Affiliation(s)
- Zubair Khalid
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Farhan Hadi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Jing Xie
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Vidya Chandrabose
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, South Korea
| |
Collapse
|
11
|
Raab C, Rieger J, Ghosh A, Spellberg JL, King SB. Surface Plasmons in Two-Dimensional MXenes. J Phys Chem Lett 2024; 15:11643-11656. [PMID: 39540691 DOI: 10.1021/acs.jpclett.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MXenes, a class of layered two-dimensional transition metal carbides and nitrides, exhibit excellent optoelectronic properties and show promise for fields ranging from photonics and communications to energy storage and catalysis. Some members of the MXene family are metallic and exhibit large in-plane conductivity, making them possibly suited for 2D plasmonics. The highly variable chemical structure of MXenes offers a broad chemical space to tune material properties for plasmonic applications, including plasmon-enhanced catalysis, surface-enhanced Raman spectroscopy (SERS), and electromagnetic shielding. However, this synthetic complexity has also presented several roadblocks in the process of moving MXene plasmonics into applications. For example, in the prototypical MXene Ti3C2Tx, there remains disagreement over the bulk plasmon energy and the assignment of a prominent resonance around 1.7 eV. We discuss fundamental models and theories of plasmon physics and apply these models to MXenes in order to clarify some of these problems. We outline the potential for hyperbolic plasmons in MXenes and propose new avenues for MXene photonics research.
Collapse
Affiliation(s)
- Calvin Raab
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Janek Rieger
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Atreyie Ghosh
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph L Spellberg
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sarah B King
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
12
|
Han Y, Cao Y, Zhuang H, Yao Y, Cao H, Li Z, Wang Z, Zhu Z. Highly Elastic, Fatigue-Resistant, and Antifreezing MXene Functionalized Organohydrogels as Flexible Pressure Sensors for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64002-64011. [PMID: 39506450 DOI: 10.1021/acsami.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Conductive organohydrogels-based flexible pressure sensors have gained considerable attention in health monitoring, artificial skin, and human-computer interaction due to their excellent biocompatibility, wearability, and versatility. However, hydrogels' unsatisfactory mechanical and unstable electrical properties hinder their comprehensive application. Herein, an elastic, fatigue-resistant, and antifreezing poly(vinyl alcohol) (PVA)/lipoic acid (LA) organohydrogel with a double-network structure and reversible cross-linking interactions has been designed, and MXene as a conductive filler is functionalized into organohydrogel to further enhance the diverse sensing performance of flexible pressure sensors. The as-fabricated MXene-based PVA/LA organohydrogels (PLBM) exhibit stable fatigue resistance for over 450 cycles under 40% compressive strain, excellent elasticity, antifreezing properties (<-20 °C), and degradability. Furthermore, the pressure sensors based on the PLBM organohydrogels show a fast response time (62 ms), high sensitivity (S = 0.0402 kPa-1), and excellent stability (over 1000 cycles). The exceptional performance enables the sensors to monitor human movements, such as joint flexion and throat swallowing. Moreover, the sensors integrating with the one-dimensional convolutional neural networks and the long-short-term memory networks deep learning algorithms have been developed to recognize letters with a 93.75% accuracy, representing enormous potential in monitoring human motion and human-computer interaction.
Collapse
Affiliation(s)
- Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuzhong Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Haozhe Zhuang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yu Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Huina Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
13
|
Downes M, Shuck CE, Wang RJ, Michałowski PP, Shochat J, Zhang D, Shekhirev M, Yang Y, Zaluzec NJ, Arenal R, May SJ, Gogotsi Y. Synthesis of Three Isoelemental MXenes and Their Structure-Property Relationships. J Am Chem Soc 2024; 146:31159-31168. [PMID: 39479877 PMCID: PMC11565644 DOI: 10.1021/jacs.4c11111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The MXene family has rapidly expanded since its discovery in 2011 to include nearly 50 unique MXenes, not accounting for solid solutions and diverse surface terminations. However, a question raised since their discovery has been: What is the effect of n? In other words, how does the number of layers affect the MXene properties? To date, no direct study of the impact of n has been conducted due to the lack of isoelemental MXene compositions spanning more than two n values. Herein, we report on a system of three MXenes with identical M-site chemistries, (Mo2/3V1/3)n+1CnTx (n = 1, 2, and 3), allowing for the study of MXene structure-property relationships across n, for the first time. Chemical analysis of the samples shows complete and partial ordering of the M-elements in the n = 2 and 3 samples, respectively. We show that sample stability gradually evolves as n is increased from 1 to 3, while electronic and electrochemical properties exhibit more significant changes in going from n = 1 to 2 than from n = 2 to 3.
Collapse
Affiliation(s)
- Marley Downes
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher E Shuck
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ruocun John Wang
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Paweł Piotr Michałowski
- Łukasiewicz Research Network─Institute of Microelectronics and Photonics, Warsaw 02-668, Poland
| | - Jonathan Shochat
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Danzhen Zhang
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Mikhail Shekhirev
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Yizhou Yang
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nestor J Zaluzec
- Pritzker School of Molecular Engineering, Laboratory for Energy Storage and Conversion, Chicago, and Argonne National Laboratory, University of Chicago, Lemont, Illinois 60637, United States
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
- ARAID Foundation, Zaragoza 50018, Spain
| | - Steven J May
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Iravani S, Khosravi A, Nazarzadeh Zare E, Varma RS, Zarrabi A, Makvandi P. MXenes and artificial intelligence: fostering advancements in synthesis techniques and breakthroughs in applications. RSC Adv 2024; 14:36835-36851. [PMID: 39574930 PMCID: PMC11580157 DOI: 10.1039/d4ra06384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
This review explores the synergistic relationship between MXenes and artificial intelligence (AI), highlighting recent advancements in predicting and optimizing the properties, synthesis routes, and diverse applications of MXenes and their composites. MXenes possess fascinating characteristics that position them as promising candidates for a variety of technological applications, including energy storage, sensors/detectors, actuators, catalysis, and neuromorphic systems. The integration of AI methodologies provides a robust toolkit to tackle the complexities inherent in MXene research, facilitating property predictions and innovative applications. We discuss the challenges associated with the predictive capabilities for novel properties of MXenes and emphasize the necessity for sophisticated AI models to unravel the intricate relationships between structural features and material behaviors. Moreover, we examine the optimization of synthesis routes for MXenes through AI-driven approaches, underscoring the potential for streamlining and enhancing synthesis processes via data-driven insights. Furthermore, the role of AI is elucidated in enabling targeted applications of MXenes across multiple domains, illustrating the correlations between MXene properties and application performance. The synergistic integration of MXenes and AI marks the dawn of a new era in material design and innovation, with profound implications for advancing diverse technological frontiers.
Collapse
Affiliation(s)
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University Istanbul 34959 Turkiye
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University Damghan 36716-45667 Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos 13565-905 São Carlos SP Brazil
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University Istanbul Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University Taoyuan Taiwan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital 324000 Quzhou Zhejiang China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University Chennai-600077 India
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh 174103 India
| |
Collapse
|
15
|
Li W, Xu Z, Yan Y, Gao Q, Song Y, Wang J, Zhang M, Xue J, Xu S, Ding Y, Chen X, Li X, Zhang L, Huang Q, Liu W, Zhang X, Zhao Y, Hou G. Enhancing Conductivity in Silicon Heterojunction Solar Cells with Silver Nanowire-Assisted Ti 3C 2T x MXene Electrodes for Cost-Effective and Scalable Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406397. [PMID: 39223859 DOI: 10.1002/smll.202406397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Silicon heterojunction (SHJ) solar cells have set world-record efficiencies among single-junction silicon solar cells, accelerating their commercial deployment. Despite these clear efficiency advantages, the high costs associated with low-temperature silver pastes (LTSP) for metallization have driven the search for more economical alternatives in mass production. 2D transition metal carbides (MXenes) have attracted significant attention due to their tunable optoelectronic properties and metal-like conductivity, the highest among all solution-processed 2D materials. MXenes have emerged as a cost-effective alternative for rear-side electrodes in SHJ solar cells. However, the use of MXene electrodes has so far been limited to lab-scale SHJ solar cells. The efficiency of these devices has been constrained by a fill factor (FF) of under 73%, primarily due to suboptimal charge transport at the contact layer/MXene interface. Herein, a silver nanowire (AgNW)-assisted Ti3C2Tx MXene electrode contact is introduced and explores the potential of this hybrid electrode in industry-scale solar cells. By incorporating this hybrid electrode into SHJ solar cells, 9.0 cm2 cells are achieved with an efficiency of 24.04% (FF of 81.64%) and 252 cm2 cells with an efficiency of 22.17% (FF of 76.86%), among the top-performing SHJ devices with non-metallic electrodes to date. Additionally, the stability and cost-effectiveness of these solar cells are discussed.
Collapse
Affiliation(s)
- Wei Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Zhiyuan Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Yu Yan
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Qianfeng Gao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Yaya Song
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Jing Wang
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin, 300350, China
| | - Maobin Zhang
- JP-Solar Power (Fujian) Company LTD., Putian, Fujian, 351100, China
| | - Junming Xue
- JP-Solar Power (Fujian) Company LTD., Putian, Fujian, 351100, China
| | - Shengzhi Xu
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Yi Ding
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Xinliang Chen
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Liping Zhang
- Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Qian Huang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Wenzhu Liu
- Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| | - Guofu Hou
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin, 300350, China
- Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Tianjin, 300350, China
- Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Tianjin, 300350, China
- State Key Laboratory of Photovoltaic Materials and Solar Cells, Tianjin, 300350, China
| |
Collapse
|
16
|
Xu D, Bai N, Wang W, Wu X, Liu K, Liu M, Ping M, Zhou L, Jiang P, Zhao Y, Lu Y, Gao L. 3D Network Spacer-Embedded Flexible Iontronic Pressure Sensor Array with High Sensitivity over a Broad Sensing Range. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58780-58790. [PMID: 39413772 DOI: 10.1021/acsami.4c09659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Microstructure construction is a common strategy for enhancing the sensitivity of flexible pressure sensors, but it typically requires complex manufacturing techniques. In this study, we develop a flexible iontronic pressure sensor (FIPS) by embedding an isolated three-dimensional network spacer (3DNS) between an ionic gel and a flexible Ti3C2Tx MXene electrode, thereby avoiding complex microstructure construction techniques. By leveraging substantial deformation of the 3DNS and the high capacitance density resulting from the electrical double layer effect, the sensor exhibits high sensitivity (87.4 kPa-1) over a broad high-pressure range (400-1000 kPa) while maintaining linearity (R2 = 0.998). Additionally, the FIPS demonstrates a rapid response time of 46 ms, a low limit of detection at 50 Pa, and excellent stability over 10 000 cycles under a high pressure of 600 kPa. As practical demonstrations, the FIPS can effectively monitor human motion such as elbow bending and assist a robotic gripper in accurately sensing gripping tasks. Moreover, a real-time, adaptive 7 × 7 sensing array system is built and can recognize both numeric and alphabetic characters. Our design philosophy can be extended for fabricating pressure sensors with high sensing performance without involving complex techniques, facilitating the applications of flexible sensors in human motion monitoring, robotic tactile sensing, and human-machine interaction.
Collapse
Affiliation(s)
- Dandan Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Ningning Bai
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
| | - Xinyang Wu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Ke Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Min Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Mingda Ping
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Linxuan Zhou
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Peishuo Jiang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Yang Lu
- City U-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Shenzhen 518057, People's Republic of China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, 999077, Hong Kong Special Administrative Region, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
17
|
Hussain T, Chandio I, Ali A, Hyder A, Memon AA, Yang J, Thebo KH. Recent developments of artificial intelligence in MXene-based devices: from synthesis to applications. NANOSCALE 2024; 16:17723-17760. [PMID: 39258334 DOI: 10.1039/d4nr03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Two-dimensional transition metal carbides, nitrides, or carbonitrides (MXenes) have garnered remarkable attention in various energy and environmental applications due to their high electrical conductivity, good thermal properties, large surface area, high mechanical strength, rapid charge transport mechanism, and tunable surface properties. Recently, artificial intelligence has been considered an emerging technology, and has been widely used in materials science, engineering, and biomedical applications due to its high efficiency and precision. In this review, we focus on the role of artificial intelligence-based technology in MXene-based devices and discuss the latest research directions of artificial intelligence in MXene-based devices, especially the use of artificial intelligence-based modeling tools for energy storage devices, sensors, and memristors. In addition, emphasis is given to recent progress made in synthesis methods for various MXenes and their advantages and disadvantages. Finally, the review ends with several recommendations and suggestions regarding the role of artificial intelligence in fabricating MXene-based devices. We anticipate that this review will provide guidelines on future research directions suitable for practical applications.
Collapse
Affiliation(s)
- Talib Hussain
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan.
| | - Imamdin Chandio
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
| | - Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Sciences, Shenyang, China.
| |
Collapse
|
18
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
19
|
Yang Y, Yang S, Xia X, Hui S, Wang B, Zou B, Zhang Y, Sun J, Xin JH. MXenes for Wearable Physical Sensors toward Smart Healthcare. ACS NANO 2024; 18:24705-24740. [PMID: 39186373 DOI: 10.1021/acsnano.4c08258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The gradual rise of personal healthcare awareness is accelerating the deployment of wearable sensors, whose ability of acquiring physiological vital signs depends on sensing materials. MXenes have distinct chemical and physical superiorities over other 2D nanomaterials for wearable sensors. This review presents a comprehensive summary of the latest advancements in MXenes-based materials for wearable physical sensors. It begins with an introduction to special structural features of MXenes for sensing performance, followed by an in-depth exploration of versatile functionalities. A detailed description of different sensing mechanisms is also included to illustrate the contribution of MXenes to the sensing performance and its improvement. In addition, the real-world applications of MXenes-based physical sensors for monitoring different physiological signs are included as well. The remaining challenges of MXenes-based materials for wearable physical sensors and their promising opportunities are finally narrated, in conjunction with a prospective for future development.
Collapse
Affiliation(s)
- Yixuan Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shenglin Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Shigang Hui
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jianping Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - John H Xin
- Research Institute for Intelligent Wearable Systems School of Fashion and Textiles, The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
20
|
Li C, Wang G, Peng M, Liu C, Feng T, Wang Y, Qin F. Reconfigurable Origami/Kirigami Metamaterial Absorbers Developed by Fast Inverse Design and Low-Concentration MXene Inks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42448-42460. [PMID: 39078617 DOI: 10.1021/acsami.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Reconfigurable metamaterial absorbers (MAs), consisting of tunable elements or deformable structures, are able to transform their absorbing bandwidth and amplitude in response to environmental changes. Among the options for building reconfigurable MAs, origami/kirigami structures show great potential because of their ability to combine excellent mechanical and electromagnetic (EM) properties. However, neither the trial-and-error-based design method nor the complex fabrication process can meet the requirement of developing high-performance MAs. Accordingly, this work introduces a deep-learning-based algorithm to realize the fast inverse design of origami MAs. Then, an accordion-origami coding MA is generated with reconfigurable EM responses that can be smoothly transformed between ultrabroadband absorption (5.5-20 GHz, folding angle α = 82°) and high reflection (2-20 GHz, RL > -1.5 dB, α = 0°) under y-polarized waves. However, the asymmetric coding pattern and accordion-origami deformation lead to typical polarization-sensitive absorbing performance (2-20 GHz, RL > -4 dB, α < 90°) under x-polarized waves. For the first time, a kirigami polarization rotation surface with switchable operation band is adapted to balance the absorbing performance of accordion-origami MA under orthogonal polarized waves. As a result, the stacked origami-kirigami MA maintains polarization-insensitive ultrabroadband absorption (4.4-20 GHz) at β = 0° and could be transformed into a narrowband absorber through deformation. Besides, the adapted origami/kirigami structures possess excellent mechanical properties such as low relative density, negative Poisson's ratio, and tunable specific energy absorption. Moreover, by modulating the PEDOT:PSS conductive bridges among MXene nanosheets, a series of low-concentration MXene-PEDOT:PSS inks (∼46 mg·mL-1) with adjustable square resistance (5-32.5 Ω/sq) are developed to fabricate the metamaterials via screen printing. Owing to the universal design scheme, this work supplies a promising paradigm for developing low-cost and high-performance reconfigurable EM absorbers.
Collapse
Affiliation(s)
- Changfeng Li
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Ge Wang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Mengyue Peng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Chenwei Liu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Tangfeng Feng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Yunfei Wang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P.R. China
| |
Collapse
|
21
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
22
|
Park H, Park YH, Karima G, Kim S, Murali G, Hwang NS, In I, Kim HD. Fabrication of innovative multifunctional dye using MXene nanosheets. NANOSCALE HORIZONS 2024; 9:1301-1310. [PMID: 38808378 DOI: 10.1039/d4nh00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The increasing demand for natural and safer alternatives to traditional hair dyes has led to the investigation of nanomaterials as potential candidates for hair coloring applications. MXene nanosheets have emerged as a promising alternative in this context due to their unique optical and electronic properties. In this study, we aimed to evaluate the potential of Ti3C2Tx (Tx = -O, -OH, -F, etc.) MXene nanosheets as a hair dye. MXene nanosheet-based dyes have been demonstrated to exhibit not only coloring capabilities but also additional properties such as antistatic properties, heat dissipation, and electromagnetic wave shielding. Additionally, surface modification of MXene using collagen reduces the surface roughness of hair and upregulates keratinocyte markers KRT5 and KRT14, demonstrating the potential for tuning its physicochemical and biological properties. This conceptual advancement highlights the potential of MXene nanosheets to go beyond simple cosmetic improvements and provide improved comfort and safety by preventing the presence of hazardous ingredients and solvents while providing versatility.
Collapse
Affiliation(s)
- Hyeongtaek Park
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Young Ho Park
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Gul Karima
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sujin Kim
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - G Murali
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, Republic of Korea
- BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Insik In
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, South Korea
| | - Hwan D Kim
- Department of IT Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| |
Collapse
|
23
|
Zhuang F, Jing L, Xiang H, Li C, Lu B, Yan L, Wang J, Chen Y, Huang B. Engineering Photothermal Catalytic CO 2 Nanoreactor for Osteomyelitis Treatment by In Situ CO Generation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402256. [PMID: 38650112 PMCID: PMC11220635 DOI: 10.1002/advs.202402256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Photocatalytic carbon dioxide (CO2) reduction is an effective method for in vivo carbon monoxide (CO) generation for antibacterial use. However, the available strategies mainly focus on utilizing visible-light-responsive photocatalysts to achieve CO generation. The limited penetration capability of visible light hinders CO generation in deep-seated tissues. Herein, a photothermal CO2 catalyst (abbreviated as NNBCs) to achieve an efficient hyperthermic effect and in situ CO generation is rationally developed, to simultaneously suppress bacterial proliferation and relieve inflammatory responses. The NNBCs are modified with a special polyethylene glycol and further embellished by bicarbonate (BC) decoration via ferric ion-mediated coordination. Upon exposure to 1064 nm laser irradiation, the NNBCs facilitated efficient photothermal conversion and in situ CO generation through photothermal CO2 catalysis. Specifically, the photothermal effect accelerated the decomposition of BC to produce CO2 for photothermal catalytic CO production. Benefiting from the hyperthermic effect and in situ CO production, in vivo assessments using an osteomyelitis model confirmed that NNBCs can simultaneously inhibit bacterial proliferation and attenuate the photothermal effect-associated pro-inflammatory response. This study represents the first attempt to develop high-performance photothermal CO2 nanocatalysts to achieve in situ CO generation for the concurrent inhibition of bacterial growth and attenuation of inflammatory responses.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Luxia Jing
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Cuixian Li
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Beilei Lu
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Lixia Yan
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Jingjing Wang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative MedicineVision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
- Shanghai Institute of MaterdicineShanghai200051P. R. China
| | - Beijian Huang
- Department of UltrasoundZhongshan HospitalFudan Universityand Shanghai Institute of Medical ImagingShanghai200032P. R. China
| |
Collapse
|
24
|
Fan Y, Liu X, Yin S, Sun S. Patterned Micro Flexible Supercapacitors based on the Rapid Transfer-Printing Method. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28780-28790. [PMID: 38771252 DOI: 10.1021/acsami.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developing a simple and rapidly preparative method for patterned flexible supercapacitors is essential and indispensable for the swift advancement of portable devices integrated with micro devices. In this study, we employed a cost-effective and rapid fabrication method based on transfer-printing technology to produce patterned micro flexible supercapacitors with various substrates. The resulting flexible micro supercapacitors not only allow for customized patterns with strong flexibility and resistance to bending, while maintaining a certain level of performance, but also facilitate the creation of diverse circuits to tailor voltage and current to specific requirements. Patterned micro flexible supercapacitors with a thickness of 0.02 mm, based on accordion-like Ti3C2Tx MXene materials coated on a substrate, demonstrate a specific capacitance of 142.7 mF cm-2 at 0.5 mA cm-2. The devices exhibit satisfactory capacitance retention (91% after 5000 cycles) and superb mechanical flexibility (71% capacitance retention at 180° bending after 2000 cycles). At a power density of 2.9 mW cm-2, the energy density of the sandwich structure device reaches 126.8 μWh cm-2. This study is expected to contribute new ideas for the design and preparation of patterned flexible supercapacitors.
Collapse
Affiliation(s)
- Yanqi Fan
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaocheng Liu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China
| | - Shougen Yin
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
- Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384, China
| | - Shishuai Sun
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
25
|
Duan Z, Yuan M, Liu Z, Pei W, Jiang K, Li L, Shen G. An Ultrasensitive Ti 3C 2T x MXene-based Soft Contact Lens for Continuous and Nondestructive Intraocular Pressure Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309785. [PMID: 38377279 DOI: 10.1002/smll.202309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Wearable soft contact lens sensors for continuous and nondestructive intraocular pressure (IOP) monitoring are highly desired as glaucoma and postoperative myopia patients grow, especially as the eyestrain crowd increases. Herein, a smart closed-loop system is presented that combines a Ti3C2Tx MXene-based soft contact lens (MX-CLS) sensor, wireless data transmission units, display, and warning components to realize continuous and nondestructive IOP monitoring/real-time display. The fabricated MX-CLS device exhibits an extremely high sensitivity of 7.483 mV mmHg-1, good linearity on silicone eyeballs, excellent stability under long-term pressure-release measurement, sufficient transparency with 67.8% transmittance under visible illumination, and superior biocompatibility with no discomfort when putting the MX-CLS sensor onto the Rabbit eyes. After integrating with the wireless module, users can realize real-time monitoring and warning of IOP via smartphones, the demonstrated MX-CLS device together with the IOP monitoring/display system opens up promising platforms for Ti3C2Tx materials as the base for multifunctional contact lens-based sensors and continuous and nondestructive IOP measurement system.
Collapse
Affiliation(s)
- Zhongyi Duan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Miao Yuan
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhiduo Liu
- School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Kai Jiang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA & Key Laboratory of Digital Hepatobiliary Surgery, Beijing, 100853, P. R. China
| | - La Li
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
26
|
Qiu C, He M, Xu SF, Ali AM, Shen L, Wang JS. Self-adhesive, conductive, and multifunctional hybrid hydrogel for flexible/wearable electronics based on triboelectric and piezoresistive sensor. Int J Biol Macromol 2024; 269:131825. [PMID: 38679271 DOI: 10.1016/j.ijbiomac.2024.131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Flexible electronics are highly developed nowadays in human-machine interfaces (HMI). However, challenges such as lack of flexibility, conductivity, and versatility always greatly hindered flexible electronics applications. In this work, a multifunctional hybrid hydrogel (H-hydrogel) was prepared by combining two kinds of 1D polymer chains (polyacrylamide and polydopamine) and two kinds of 2D nanosheets (Ti3C2Tx MXene and graphene oxide nanosheets) as quadruple crosslinkers. The introduced Ti3C2Tx MXene and graphene oxide nanosheets are bonded with the PAM and PDA polymer chains by hydrogen bonds. This unique crosslinking and stable structure endow the H-hydrogel with advantages such as good flexibility, electrical conductivity, self-adhesion, and mechanical robustness. The two kinds of nanosheets not only improved the mechanical strength and conductivity of the H-hydrogel, but also helped to form the double electric layers (DELs) between the nanosheets and the bulk-free water phase inside the H-hydrogel. When utilized as the electrode of a triboelectric nanogenerator (TENG), high electrical output performances were realized due to the dynamic balance of the DELs between the nanosheets and the H-hydrogel's inside water molecules. Moreover, flexible sensors, including triboelectric, and strain/pressure sensors, were achieved for human motion detection at low frequencies. This hydrogel is promising for HMI and e-skin.
Collapse
Affiliation(s)
- Chuang Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Ming He
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Shi-Feng Xu
- College of Science, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
| | - Aasi Mohammad Ali
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Lin Shen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Jia-Shi Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
27
|
Zhang X, Liu X, Liu Q, Feng Y, Qiu S, Wang T, Xu H, Li H, Yin L, Kang H, Fan Z. Reversible Constrained Dissociation and Reassembly of MXene Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309171. [PMID: 38582527 PMCID: PMC11186054 DOI: 10.1002/advs.202309171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Indexed: 04/08/2024]
Abstract
Enabling materials to undergo reversible dynamic transformations akin to the behaviors of living organisms represents a critical challenge in the field of material assembly. The pursuit of such capabilities using conventional materials has largely been met with limited success. Herein, the discovery of reversible constrained dissociation and reconfiguration in MXene films, offering an effective solution to overcome this obstacle is reported. Specifically, MXene films permit rapid intercalation of water molecules between their distinctive layers, resulting in a significant expansion and exhibiting confined dissociation within constrained spaces. Meanwhile, the process of capillary compression driven by water evaporation reinstates the dissociated MXene film to its original compact state. Further, the adhesive properties emerging from the confined disassociation of MXene films can spontaneously induce fusion between separate films. Utilizing this attribute, complex structures of MXene films can be effortlessly foamed and interlayer porosity precisely controlled, using only water as the inducer. Additionally, a parallel phenomenon has been identified in graphene oxide films. This work not only provides fresh insights into the microscopic mechanisms of 2D materials such as MXene but also paves a transformative path for their macroscopic assembly applications in the future.
Collapse
Affiliation(s)
- Xuefeng Zhang
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Xudong Liu
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Qingqiang Liu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Yufa Feng
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Si Qiu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Ting Wang
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Huayu Xu
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Hao Li
- School of chemistry and Materials EngineeringGuangdong Provincial Key Laboratory for Electronic Functional Materials and DevicesHuizhou UniversityHuizhou516007China
| | - Liang Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Hui Kang
- Advanced Materials ThrustThe Hong Kong University of Science and Technology (Guangzhou)Guangzhou510000China
| | - Zhimin Fan
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
28
|
McNaughter PD, Moore J, Yeates SG, Lewis DJ. Semiconductor Deposition via Laser Printing of a Bespoke Toner Containing Metal Xanthate Complexes. ACS APPLIED ENGINEERING MATERIALS 2024; 2:1225-1233. [PMID: 38808267 PMCID: PMC11129185 DOI: 10.1021/acsaenm.3c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/30/2024]
Abstract
A methodology to use laser printing, a form of electrophotography, to print metal chalcogenide complexes on paper, is described. After fusing the toner to paper, a heating step is used to cause the printed metal xanthate complexes to thermolyze within the toner and form three target metal chalcogenides: CuS, SnS, and ZnS. To achieve this, we synthesize a poly(styrene-co-n-butyl acrylate) thermopolymer that emulates the thermal properties of a commercial toner and is also solution processable with the metal xanthate complexes used: [Zn(S2COEt)2], [Cu(S2COEt)·(PPh3)2], and [Sn(S2COEt)2]. We demonstrate through energy dispersive X-ray mapping that the toner is deposited following printing and that thermolysis of the metal xanthate complexes occurs in the fused toner, demonstrating the first example of laser printing of inorganic complexes and, in turn, semiconductors.
Collapse
Affiliation(s)
- Paul D. McNaughter
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Joshua Moore
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stephen G. Yeates
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - David J. Lewis
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| |
Collapse
|
29
|
Repon MR, Mikučionienė D, Paul TK, Al-Humaidi JY, Rahman MM, Islam T, Shukhratov S. Architectural design and affecting factors of MXene-based textronics for real-world application. RSC Adv 2024; 14:16093-16116. [PMID: 38769956 PMCID: PMC11103351 DOI: 10.1039/d4ra01820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Today, textile-based wearable electronic devices (textronics) have been developed by taking advantage of nanotechnology and textile substrates. Textile substrates offer flexibility, air permeability, breathability, and wearability, whereas, using nanomaterials offers numerous functional properties, like electrical conductivity, hydrophobicity, touch sensitivity, self-healing properties, joule heating properties, and many more. For these reasons, textronics have been extensively used in many applications. Recently, new emerging two-dimensional (2D) transition metal carbide and nitride, known as MXene, nanomaterials have been highly considered for developing textronics because the surface functional groups and hydrophilicity of MXene nanoflakes allow the facile fabrication of MXene-based textronics. In addition, MXene nanosheets possess excellent electroconductivity and mechanical properties as well as large surface area, which also give numerous opportunities to develop novel functional MXene/textile-based wearable electronic devices. Therefore, this review summarizes the recent advancements in the architectural design of MXene-based textronics, like fiber, yarn, and fabric. Regarding the fabrication of MXene/textile composites, numerous factors affect the functional properties (e.g. fabric structure, MXene size, etc.). All the crucial affecting parameters, which should be chosen carefully during the fabrication process, are critically discussed here. Next, the recent applications of MXene-based textronics in supercapacitors, thermotherapy, and sensors are elaborately delineated. Finally, the existing challenges and future scopes associated with the development of MXene-based textronics are presented.
Collapse
Affiliation(s)
- Md Reazuddin Repon
- Department of Textile Engineering, Daffodil International University Dhaka-1216 Bangladesh +88-37066227098
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University 02150 Espoo Finland
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | - Daiva Mikučionienė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology Studentų 56, LT-51424 Kaunas Lithuania
| | | | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Chemistry Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Tarekul Islam
- ZR Research Institute for Advanced Materials Sherpur-2100 Bangladesh
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Sharof Shukhratov
- Department of Technological Education, Fergana State University Fergana 150100 Uzbekistan
| |
Collapse
|
30
|
Li Q, Nan K, Wang W, Zheng H, He K, Wang Y. Electrostatically fabricated heterostructure of interfacial-polarization-enhanced Fe 3O 4/C/MXene for ultra-wideband electromagnetic wave absorption. J Colloid Interface Sci 2024; 662:796-806. [PMID: 38382364 DOI: 10.1016/j.jcis.2024.02.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Electromagnetic (EM) pollution can disrupt the functioning of advanced electronic devices, hence it's necessary to design EM wave absorbers with high-level absorption capabilities. The Ti3C2Tx (MXene) is classified as a potential EM absorbing material; nevertheless, the lack of magnetic loss mechanism leads to its inadequate EM absorbing performance. On this basis, a novel composite design with promising EM absorption properties is hypothesized to be the integration of few-layer MXene and heterogeneous magnetic MOF derivatives (Fe3O4/C) with complementary advantages. Herein, we synthesized two-dimensional (2D) interfacial-polarization-enhanced MXene hybrid (Fe3O4/C/MXene) by electrostatic assembly. It is notable that the interfacial polarization is realized by adding a small amount of magnetic Fe3O4/C. Furthermore, the Fe3O4/C/ MXene demonstrates an astonishing effective absorption bandwidth (EAB) of 10.7 GHz and an excellent EM wave absorption performance (RLmin) of -66.9 dB. Moreover, the radar cross section (RCS) of Fe3O4/C/MXene is lower than -15.1 dB m2 from -90° to 90° with a minimum RCS value of -52.6 dB m2 at 32°. In addition, the significant attenuation of the EM wave is due to the synergistic effect of improved impedance matching, dielectric loss, and magnetic loss. Thus, the magnetized Fe3O4/C/MXene hybrid is expected to emerge as a strong contender for high-performance EM wave absorbers.
Collapse
Affiliation(s)
- Qingwei Li
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Wei Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Hao Zheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Kaikai He
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China.
| |
Collapse
|
31
|
Peng S, Liu C, Tan J, Zhang P, Zou J, Wang Y, Ma Y, Zhang X, Nan CW, Li BW. Direct Ink Writing of Low-Concentration MXene/Aramid Nanofiber Inks for Tunable Electromagnetic Shielding and Infrared Anticounterfeiting Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693723 DOI: 10.1021/acsami.4c02755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
MXene inks offer a promising avenue for the scalable production and customization of printing electronics. However, simultaneously achieving a low solid content and printability of MXene inks, as well as mechanical flexibility and environmental stability of printed objects, remains a challenge. In this study, we overcame these challenges by employing high-viscosity aramid nanofibers (ANFs) to optimize the rheology of low-concentration MXene inks. The abundant entangled networks and hydrogen bonds formed between MXene and ANF significantly increase the viscosity and yield stress up to 103 Pa·s and 200 Pa, respectively. This optimization allows the use of MXene/ANF (MA) inks at low concentrations in direct ink writing and other high-viscosity processing techniques. The printable MXene/ANF inks with a high conductivity of 883.5 S/cm were used to print shields with customized structures, achieving a tunable electromagnetic interference shielding effectiveness (EMI SE) in the 0.2-48.2 dB range. Furthermore, the MA inks exhibited adjustable infrared (IR) emissivity by changing the ANF ratio combined with printing design, demonstrating the application for infrared anticounterfeiting. Notably, the printed MXene/ANF objects possess outstanding mechanical flexibility and environmental stability, which are attributed to the reinforcement and protection of ANF. Therefore, these findings have significant practical implications as versatile MXene/ANF inks can be used for customizable, scalable, and cost-effective production of flexible printed electronics.
Collapse
Affiliation(s)
- Shaohui Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junhui Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Pengxiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Junjie Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yunfan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ce-Wen Nan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
32
|
Ko TY, Ye H, Murali G, Lee SY, Park YH, Lee J, Lee J, Yun DJ, Gogotsi Y, Kim SJ, Kim SH, Jeong YJ, Park SJ, In I. Functionalized MXene ink enables environmentally stable printed electronics. Nat Commun 2024; 15:3459. [PMID: 38658566 PMCID: PMC11043420 DOI: 10.1038/s41467-024-47700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).
Collapse
Affiliation(s)
- Tae Yun Ko
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
- Nanoplexus Solutions Ltd, Graphene Engineering Innovation Centre, Masdar Building, Sackville Street, Manchester, M1 3BB, UK
| | - Heqing Ye
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou, 450046, China
- School of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - G Murali
- Department of Polymer Science and Engineering, Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
- Department of IT-Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Inharo 100, Incheon, 22212, South Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
- Department of IT-Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea
| | - Jihoon Lee
- Department of Polymer Science and Engineering, Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
- Department of IT-Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea
| | - Juyun Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Dong-Jin Yun
- Analytical Science Laboratory of Samsung Advanced Institute of Technology (SAIT), Suwon, 16678, South Korea
| | - Yury Gogotsi
- Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania, 19104, US
| | - Seon Joon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-mobility, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.
- Division of Nanoscience and Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, South Korea.
| | - Se Hyun Kim
- School of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea.
| | - Yong Jin Jeong
- Department of IT-Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of Materials Science and Engineering, Korea National University of Transportation, Chungju, 27469, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Inharo 100, Incheon, 22212, South Korea.
| | - Insik In
- Department of Polymer Science and Engineering, Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea.
- Department of IT-Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, South Korea.
| |
Collapse
|
33
|
Thomas A, Saha P, Sahad E M, Krishnan K N, Das BC. Versatile Titanium Carbide MXene Thin-Film Memristors with Adaptive Learning Behavior. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38594622 DOI: 10.1021/acsami.3c19177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
With the advent of the modern era, there is a huge demand for memristor-based neuromorphic computing hardware to overcome the von Neumann bottleneck in traditional computers. Here, we have prepared two-dimensional titanium carbide (Ti3C2Tx) MXene following the conventional HF etching technique in solution. After confirmation of Ti3C2Tx properties by Raman scattering and crystallinity measurements, high-quality thin-film deposition is realized using an immiscible liquid-liquid interfacial growth technique. Following this, the memristor is fabricated by sandwiching a Ti3C2Tx layer with a thickness of 70 nm between two electrodes. Subsequently, current-voltage (I-V) characteristics are measured, revealing a nonvolatile resistive switching property characterized by a swift switching speed of 30 ns and an impressive current On/Off ratio of approximately 103. Furthermore, it exhibits endurance through 500 cycles and retains the states for at least 1 × 104 s without observable degradation. Additionally, it maintains a current On/Off ratio of about 102 while consuming only femtojoules (fJ) of electrical energy per reading. Systematic I-V results and conductive AFM-based current mapping image analysis are converged to support the electroforming mediated filamentary conduction mechanism. Furthermore, our Ti3C2Tx memristor was found to be truly versatile as an all-in-one device for demonstrating edge computation, logic gate operation, and classical conditioning of learning by the brain in Psychology.
Collapse
Affiliation(s)
- Athulya Thomas
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Puranjay Saha
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Muhammed Sahad E
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Navaneeth Krishnan K
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| | - Bikas C Das
- eNDR Laboratory, School of Physics, IISER Thiruvananthapuram, Trivandrum, Kerala 695551, India
| |
Collapse
|
34
|
Hu Z, Xie F, Yan Y, Lu H, Cheng J, Liu X, Li J. Research progress of flexible pressure sensor based on MXene materials. RSC Adv 2024; 14:9547-9558. [PMID: 38516165 PMCID: PMC10955273 DOI: 10.1039/d3ra07772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024] Open
Abstract
Flexible pressure sensors overcome the limitations of traditional rigid sensors on the surface of the measured object, demonstrating broad application prospects in fields such as sports health and vital sign monitoring due to their excellent flexibility and comfort in contact with the body. MXene, as a two-dimensional material, possesses excellent conductivity and abundant surface functional groups. Simultaneously, MXene's unique layered structure and large specific surface area offer a wealth of possibilities for preparing sensing elements in combination with other materials. This article reviews the preparation methods of MXene materials and their performance indicators as sensing elements, discusses the controllable preparation methods of MXene materials and the impact of their physical and chemical properties on their functions, elaborates on the pressure sensing mechanism and evaluation mechanism of MXene materials. Starting from the four specific application directions: aerogel/hydrogel, ink printing, thin film/electronic skin, and fiber fabric, we introduce the research progress of MXene flexible pressure sensors from an overall perspective. Finally, a summary and outlook for developing MXene flexible pressure sensors are provided.
Collapse
Affiliation(s)
- Zhigang Hu
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
| | - Feihu Xie
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
| | - Yangyang Yan
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
- Luoyang Ship Material Research Institute, China Shipbuilding Industry 725 Research Institute Luoyang 471000 China
| | - Hanjing Lu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Ji Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Xiaoran Liu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| | - Jinghua Li
- College of Medical Technology and Engineering, The 1st Affiliated Hospital, Henan University of Science and Technology Luoyang 471000 China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The 1st Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University Haikou 570100 China
| |
Collapse
|
35
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
36
|
Lotfi R, Zandi N, Pourjavadi A, Christiansen JDC, Gurevich L, Mehrali M, Dolatshahi-Pirouz A, Pennisi CP, Tamjid E, Simchi A. Engineering Photo-Cross-Linkable MXene-Based Hydrogels: Durable Conductive Biomaterials for Electroactive Tissues and Interfaces. ACS Biomater Sci Eng 2024; 10:800-813. [PMID: 38159039 DOI: 10.1021/acsbiomaterials.3c01394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.
Collapse
Affiliation(s)
- Roya Lotfi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Nooshin Zandi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran 14588-89694, Iran
| | | | - Leonid Gurevich
- Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Aalborg 9260, Denmark
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran 14588-89694, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-11155, Tehran 14588-89694, Iran
| |
Collapse
|
37
|
Huang H, Yang W. MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System. ACS NANO 2024. [PMID: 38307615 DOI: 10.1021/acsnano.3c10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
MXenes have shown great potential for micro-supercapacitors (MSCs) due to the high metallic conductivity, tunable interlayer spacing and intercalation pseudocapacitance. In particular, the negative surface charge and high hydrophilicity of MXenes make them suitable for various solution processing strategies. Nevertheless, a comprehensive review of solution processing of MXene MSCs has not been conducted. In this review, we present a comprehensive summary of the state-of-the-art of MXene MSCs in terms of ink rheology, microelectrode design and integrated system. The ink formulation and rheological behavior of MXenes for different solution processing strategies, which are essential for high quality printed/coated films, are presented. The effects of MXene and its compounds, 3D electrode structure, and asymmetric design on the electrochemical properties of MXene MSCs are discussed in detail. Equally important, we summarize the integrated system and intelligent applications of MXene MSCs and present the current challenges and prospects for the development of high-performance MXene MSCs.
Collapse
Affiliation(s)
- Haichao Huang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
38
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
39
|
Li N, Wang Y, Li Y, Zhang C, Fang G. Recent Advances in Photothermal Therapy at Near-Infrared-II Based on 2D MXenes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305645. [PMID: 37775938 DOI: 10.1002/smll.202305645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Indexed: 10/01/2023]
Abstract
The use of photothermal therapy (PTT) with the near-infrared II region (NIR-II: 1000-1700 nm) is expected to be a powerful cancer treatment strategy. It retains the noninvasive nature and excellent temporal and spatial controllability of the traditional PTT, and offers significant advantages in terms of tissue penetration depth, background noise, and the maximum permissible exposure standards for skin. MXenes, transition-metal carbides, nitrides, and carbonitrides are emerging inorganic nanomaterials with natural biocompatibility, wide spectral absorption, and a high photothermal conversion efficiency. The PTT of MXenes in the NIR-II region not only provides a valuable reference for exploring photothermal agents that respond to NIR-II in 2D inorganic nanomaterials, but also be considered as a promising biomedical therapy. First, the synthesis methods of 2D MXenes are briefly summarized, and the laser light source, mechanism of photothermal conversion, and evaluation criteria of photothermal performance are introduced. Second, the latest progress of PTT based on 2D MXenes in NIR-II are reviewed, including titanium carbide (Ti3 C2 ), niobium carbide (Nb2 C), and molybdenum carbide (Mo2 C). Finally, the main problems in the PTT application of 2D MXenes to NIR-II and future research directions are discussed.
Collapse
Affiliation(s)
- Nan Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| | - Yang Li
- Cell Department, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Chenchu Zhang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, China
| | - Guangyou Fang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, and Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
40
|
Amani AM, Tayebi L, Abbasi M, Vaez A, Kamyab H, Chelliapan S, Vafa E. The Need for Smart Materials in an Expanding Smart World: MXene-Based Wearable Electronics and Their Advantageous Applications. ACS OMEGA 2024; 9:3123-3142. [PMID: 38284011 PMCID: PMC10809375 DOI: 10.1021/acsomega.3c06590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
As a result of the transformation of inflexible electronic structures into flexible and stretchy devices, wearable electronics now provide great advantages in a variety of fields, including mobile healthcare sensing and monitoring, human-machine interfaces, portable energy storage and harvesting, and more. Because of their enriched surface functionalities, large surface area, and high electrical conductivity, transition metal nitrides and carbides (also known as MXenes) have recently come to be extensively considered as a group of functioning two-dimensional nanomaterials as well as exceptional fundamental elements for forming flexible electronics devices. This Review discusses the most recent advancements that have been made in the field of MXene-enabled flexible electronics for wearable electronics. The emphasis is placed on extensively established nonstructural features in order to highlight some MXene-enabled electrical devices that were constructed on a nanometric scale. These attributes include devices configured in three dimensions: printed materials, bioinspired structures, and textile and planar substrates. In addition, sample applications in electromagnetic interference (EMI) shielding, energy, healthcare, and humanoid control of machinery illustrate the exceptional development of these nanodevices. The increasing potential of MXene nanoparticles as a new area in next-generation wearable electronic technologies is projected in this Review. The design challenges associated with these electronic devices are also discussed, and possible solutions are presented.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Milad Abbasi
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| | - Ahmad Vaez
- Department
of Tissue Engineering and Applied Cell Sciences, School of Advanced
Medical Sciences and Technologies, Shiraz
University of Medical Sciences, Shiraz 71348, Iran
| | - Hesam Kamyab
- Malaysia-Japan
International Institute of Technology, Universiti
Teknologi Malaysia, Jalan
Sultan Yahya Petra,54100 Kuala Lumpur, Malaysia
- Facultad
de Arquitectura y Urbanismo, Universidad
UTE, Calle Rumipamba
S/N y Bourgeois, Quito 170147, Ecuador
- Department
of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Shreeshivadasan Chelliapan
- Engineering
Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Ehsan Vafa
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz 71348, Iran
| |
Collapse
|
41
|
Yu W, Yang Y, Wang Y, Hu L, Hao J, Xu L, Liu W. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation. NANO-MICRO LETTERS 2024; 16:94. [PMID: 38252190 PMCID: PMC10803715 DOI: 10.1007/s40820-023-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL-1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g-1 at 5 and 100 mV s-1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.
Collapse
Affiliation(s)
- Weiyan Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yunjing Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Lulin Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Jingcheng Hao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lu Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| |
Collapse
|
42
|
Xie Q, Lu C, Yi C, Shui T, Moloto N, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Interfacial integration of ultra-thin flexible electrochemical capacitors via vacuum filtration based on gelatinized fibrous membranes. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:28056-28065. [DOI: 10.1039/d4ta05110f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
We developed a hydroxyl-rich fibrous membrane that can undergo controllable in situ gelation to create a porous integrated interface between hydrogel electrolytes and electrode, resulting in ultra-thin all-in-one electrochemical capacitors.
Collapse
Affiliation(s)
- Qian Xie
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chengjie Yi
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Shui
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
43
|
Huang K, Cai X, Shang R, Yang W, Shi X, Wang J, Chen H, Xu Y. Printed High-Adhesion Flexible Electrodes Based on an Interlocking Structure for Self-Powered Intelligent Movement Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58583-58592. [PMID: 38079512 DOI: 10.1021/acsami.3c13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Two-dimensional transition metal carbide nitrides (MXenes) have been extensively explored in diverse areas, such as electrochemical energy storage and flexible electronics. Although the solution-processed MXene-based device has made significant achievements, it is still a challenge to develop large-scale and high-resolution printing methods for flexible printed electronics. In this work, we reported a novel strategy of a porous interlocking structure to obtain flexible MXene/laser-induced graphene (LMX) composite electrodes with enhanced adhesion and high printing resolution. In comparison to traditional printed MXene electrodes, the LMX electrode with an interlocking interface possesses enhanced mechanical properties (adhesive strength of 2.17 MPa) and comparable electrical properties (0.68 S/mm). Furthermore, owing to the outstanding stability and flexibility, the LMX-based triboelectric nanogenerator (TENG) can be used as a self-powered sensor to monitor finger-bending movement. A support vector machine (SVM)-assisted self-powered motion sensor can distinguish the bending angle with high recognition accuracy and can effectively identify different angles. The successful experience of directly printing flexible electrodes with excellent mechanical and electrical properties can be promoted to other solution-processed two-dimensional materials. Our strategy opens up a promising perspective to develop flexible and printed electronics.
Collapse
Affiliation(s)
- Kai Huang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, People's Republic of China
| | - Xu Cai
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ruzhi Shang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Wei Yang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xin Shi
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Huamin Chen
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| | - Yun Xu
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
- Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083, People's Republic of China
| |
Collapse
|
44
|
Xu H, Dong H, Liu X, Qiao H, Chen G, Du F, Dall'Agnese Y, Gao Y. High-Temperature Oxidized Mo 2CT x MXene for a High-Performance Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53549-53557. [PMID: 37956398 DOI: 10.1021/acsami.3c13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Molybdenum carbide (Mo2CTx MXene) did not possess suitable properties for supercapacitors. Herein, a short oxidation method of Mo2CTx in air at moderately high temperatures is proposed for fabricating a Mo2C/MoO3 heterostructure. The stability of Mo2CTx in air up to 700 °C and the phase transition at higher temperatures are confirmed. Such a heterostructure is beneficial in reducing the diffusion energy barrier of H+. In the aqueous system, the Mo2C/MoO3 electrode delivers a capacitance of up to 811 F g-1. A fully assembled symmetric solid-state supercapacitor delivers 224 F g-1 with an excellent retention rate of 91.05% after 7500 cycles. Besides, the supercapacitor can work at the low temperature of -60°, showing good low-temperature properties. The approach presented in this work opens a promising way to turn a neglected MXene, assumed to be unsuitable for supercapacitors, into one of the top-performing supercapacitor electrodes.
Collapse
Affiliation(s)
- Huajun Xu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Honglei Dong
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Xintong Liu
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - He Qiao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Gang Chen
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, PR China
| | - Fei Du
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| | - Yohan Dall'Agnese
- Institute for Materials Discovery, University College London, London WC1E 7JE, U.K
| | - Yu Gao
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, PR China
| |
Collapse
|
45
|
Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct Ink Writing 3D Printing for High-Performance Electrochemical Energy Storage Devices: A Minireview. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303716. [PMID: 37740446 PMCID: PMC10646286 DOI: 10.1002/advs.202303716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Indexed: 09/24/2023]
Abstract
Despite tremendous efforts that have been dedicated to high-performance electrochemical energy storage devices (EESDs), traditional electrode fabrication processes still face the daunting challenge of limited energy/power density or compromised mechanical compliance. 3D thick electrodes can maximize the utilization of z-axis space to enhance the energy density of EESDs but still suffer from limitations in terms of poor mechanical stability and sluggish electron/ion transport. Direct ink writing (DIW), an eminent branch of 3D printing technology, has gained popularity in the manufacture of 3D electrodes with intricately designed architectures and rationally regulated porosity, promoting a triple boost in areal mass loading, ion diffusion kinetics, and mechanical flexibility. This focus review highlights the fundamentals of printable inks and typical configurations of 3D-printed devices. In particular, preparation strategies for high-performance and multifunctional 3D-printed EESDs are systemically discussed and classified according to performance evaluation metrics such as high areal energy density, high power density, high volumetric energy density, and mechanical flexibility. Challenges and prospects for the fabrication of high-performance 3D-printed EESDs are outlined, aiming to provide valuable insights into this thriving field.
Collapse
Affiliation(s)
- Li Zeng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Shangwen Ling
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Dayue Du
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Hanna He
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Xiaolong Li
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
46
|
Deng Z, Jiang P, Wang Z, Xu L, Yu ZZ, Zhang HB. Scalable Production of Catecholamine-Densified MXene Coatings for Electromagnetic Shielding and Infrared Stealth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304278. [PMID: 37431209 DOI: 10.1002/smll.202304278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Processing transition metal carbides/nitrides (MXenes) inks into large-area functional coatings expects promising potential for electromagnetic interference (EMI) shielding and infrared stealth. However, the coating performances, especially for scalable fabrication techniques, are greatly constrained by the flake size and stacking manner of MXene. Herein, the large-area production of highly densified and oriented MXene coatings is demonstrated by engineering interfacial interactions of small MXene flakes with catecholamine molecules. The catecholamine molecules can micro-crosslink MXene nanosheets, significantly improving the ink's rheological properties. It favors the shear-induced sheet arrangement and inhibition of structural defects in the blade coating process, making it possible to achieve high orientation and densification of MXene assembly by either large-area coating or patterned printing. Interestingly, the MXene/catecholamine coating exhibits high conductivity of up to 12 247 S cm-1 and ultrahigh specific EMI shielding effectiveness of 2.0 ×10 5 dB cm2 g-1 , obviously superior to most of the reported MXene materials. Furthermore, the regularly assembled structure also endows the MXene coatings with low infrared emissivities for infrared stealth applications. Therefore, MXene/catecholamine coatings with ultraefficient EMI shielding and low infrared emissivity prove the feasibility of applications in aerospace, military, and wearable devices.
Collapse
Affiliation(s)
- Zhiming Deng
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peizhu Jiang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenguo Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
47
|
Niyitanga T, Chaudhary A, Ahmad K, Kim H. Titanium Carbide (Ti 3C 2T x) MXene as Efficient Electron/Hole Transport Material for Perovskite Solar Cells and Electrode Material for Electrochemical Biosensors/Non-Biosensors Applications. MICROMACHINES 2023; 14:1907. [PMID: 37893344 PMCID: PMC10609296 DOI: 10.3390/mi14101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Recently, two-dimensional (2D) MXenes materials have received enormous attention because of their excellent physiochemical properties such as high carrier mobility, metallic electrical conductivity, mechanical properties, transparency, and tunable work function. MXenes play a significant role as additives, charge transfer layers, and conductive electrodes for optoelectronic applications. Particularly, titanium carbide (Ti3C2Tx) MXene demonstrates excellent optoelectronic features, tunable work function, good electron affinity, and high conductivity. The Ti3C2Tx has been widely used as electron transport (ETL) or hole transport layers (HTL) in the development of perovskite solar cells (PSCs). Additionally, Ti3C2Tx has excellent electrochemical properties and has been widely explored as sensing material for the development of electrochemical biosensors. In this review article, we have summarized the recent advances in the development of the PSCs using Ti3C2Tx MXene as ETL and HTL. We have also compiled the recent progress in the fabrication of biosensors using Ti3C2Tx-based electrode materials. We believed that the present mini review article would be useful to provide a deep understanding, and comprehensive insight into the research status.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Archana Chaudhary
- Department of Chemistry, Medi-Caps University, Indore 453331, Madhya Pradesh, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Haekyoung Kim
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
48
|
Bayhan Z, El-Demellawi JK, Yin J, Khan Y, Lei Y, Alhajji E, Wang Q, Hedhili MN, Alshareef HN. A Laser-Induced Mo 2 CT x MXene Hybrid Anode for High-Performance Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208253. [PMID: 37183297 DOI: 10.1002/smll.202208253] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/26/2023] [Indexed: 05/16/2023]
Abstract
MXenes, a fast-growing family of two-dimensional (2D) transition metal carbides/nitrides, are promising for electronics and energy storage applications. Mo2 CTx MXene, in particular, has demonstrated a higher capacity than other MXenes as an anode for Li-ion batteries. Yet, such enhanced capacity is accompanied by slow kinetics and poor cycling stability. Herein, it is revealed that the unstable cycling performance of Mo2 CTx is attributed to the partial oxidation into MoOx with structural degradation. A laser-induced Mo2 CTx /Mo2 C (LS-Mo2 CTx ) hybrid anode has been developed, of which the Mo2 C nanodots boost redox kinetics, and the laser-reduced oxygen content prevents the structural degradation caused by oxidation. Meanwhile, the strong connections between the laser-induced Mo2 C nanodots and Mo2 CTx nanosheets enhance conductivity and stabilize the structure during charge-discharge cycling. The as-prepared LS-Mo2 CTx anode exhibits an enhanced capacity of 340 mAh g-1 vs 83 mAh g-1 (for pristine) and an improved cycling stability (capacity retention of 106.2% vs 80.6% for pristine) over 1000 cycles. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energy storage applications.
Collapse
Affiliation(s)
- Zahra Bayhan
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Saudi Arabia
| | - Jehad K El-Demellawi
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- KAUST Upstream Research Center (KURC), EXPEC Advanced Research Center (ARC), Saudi Aramco, Thuwal, 23955-6900, Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yusuf Khan
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eman Alhajji
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingxiao Wang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed N Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
49
|
Wu Z, Liu S, Hao Z, Liu X. MXene Contact Engineering for Printed Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207174. [PMID: 37096843 PMCID: PMC10323642 DOI: 10.1002/advs.202207174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Indexed: 05/03/2023]
Abstract
MXenes emerging as an amazing class of 2D layered materials, have drawn great attention in the past decade. Recent progress suggest that MXene-based materials have been widely explored as conductive electrodes for printed electronics, including electronic and optoelectronic devices, sensors, and energy storage systems. Here, the critical factors impacting device performance are comprehensively interpreted from the viewpoint of contact engineering, thereby giving a deep understanding of surface microstructures, contact defects, and energy level matching as well as their interaction principles. This review also summarizes the existing challenges of MXene inks and the related printing techniques, aiming at inspiring researchers to develop novel large-area and high-resolution printing integration methods. Moreover, to effectually tune the states of contact interface and meet the urgent demands of printed electronics, the significance of MXene contact engineering in reducing defects, matching energy levels, and regulating performance is highlighted. Finally, the printed electronics constructed by the collaborative combination of the printing process and contact engineering are discussed.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuiren Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zijuan Hao
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
- Henan Innovation Center for Functional Polymer Membrane MaterialsXinxiang453000P. R. China
| | - Xuying Liu
- School of Materials Science and EngineeringZhengzhou Key Laboratory of Flexible Electronic Materials and Thin‐Film TechnologiesZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
50
|
Shelash Al-Hawary SI, Sapaev IB, Althomali RH, Musad Saleh EA, Qadir K, Romero-Parra RM, Ismael Ouda G, Hussien BM, Ramadan MF. Recent Progress in Screening of Mycotoxins in Foods and Other Commodities Using MXenes-Based Nanomaterials. Crit Rev Anal Chem 2023; 54:3066-3082. [PMID: 37307199 DOI: 10.1080/10408347.2023.2222412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mycotoxin pollution in agricultural food products endangers animal and human health during the supply chains, therefore the development of accurate and rapid techniques for the determination of mycotoxins is of great importance for food safety guarantee. MXenes-based nanoprobes have attracted enormous attention as a complementary analysis and promising alternative strategies to conventional diagnostic methods, because of their fascinating features, like high electrical conductivity, various surface functional groups, high surface area, superb thermal resistance, good hydrophilicity, and environmentally-friendlier characteristics. In this study, we outline the state-of-the-art research on MXenes-based probes in detecting various mycotoxins like aflatoxin, ochratoxin, deoxynivalenol, zearalenone, and other toxins as a most commonly founded mycotoxin in the agri-food supply chain. First, we present the diverse synthesis approaches and exceptional characteristics of MXenes. Afterward, based on the detecting mechanism, we divide the biosensing utilizations of MXenes into two subcategories: electrochemical, and optical biosensors. Then their performance in effective sensing of mycotoxins is comprehensively deliberated. Finally, present challenges and prospective opportunities for MXenes are debated.
Collapse
Affiliation(s)
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Saudi Arabia
| | - Kamran Qadir
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin, China
| | | | | | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|