1
|
Dragoman M, Dragoman D, Modreanu M, Vulpe S, Romanitan C, Aldrigo M, Dinescu A. Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:589. [PMID: 40278455 PMCID: PMC12029378 DOI: 10.3390/nano15080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
We present here a comprehensive review of various classes of electric-field-induced reversible Mott metal-insulator materials, which have many applications in ultrafast switches, reconfigurable high-frequency devices up to THz, and photonics. Various types of Mott transistors are analyzed, and their applications are discussed. This paper introduces new materials that demonstrate the Mott transition at very low DC voltage levels, induced by an external electric field. The final section of the paper examines ferroelectric Mott transistors and these innovative ferroelectric Mott materials.
Collapse
Affiliation(s)
- Mircea Dragoman
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Daniela Dragoman
- Physics Faculty, University of Bucharest, PO Box MG-11, 077125 Bucharest, Romania;
- Academy of Romanian Scientists, Str. Ilfov 3, 050044 Bucharest, Romania
| | - Mircea Modreanu
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland;
| | - Silviu Vulpe
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Martino Aldrigo
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| |
Collapse
|
2
|
Debnath S, Dey S, Giri PK. Exploring Moiré Superlattices and Memristive Switching in Non-van der Waals Twisted Bilayer Bi 2O 2Se. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8219-8230. [PMID: 39844426 DOI: 10.1021/acsami.4c23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (Bi2O2Se) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities. The presence of these superlattices was confirmed using transmission electron microscopy (TEM) images. The observation of moiré patterns in 2D Bi2O2Se nanosheets highlights the potential of tuning the band structures of the non-van der Waals material and thus unlocking new material properties through precise control of intralayer/interlayer interactions. Furthermore, the stacked 2D Bi2O2Se nanosheets show interesting memristive switching characteristics, presenting a promising candidate for artificial synapses and neuromorphic computing. Traditional memristors typically utilize a vertical metal-insulator-metal (MIM) structure, which relies on the formation of conductive filaments for resistive switching (RS). This configuration, however, often results in abrupt switching during various cycles and significant variation from device to device. Herein, defective BOSe moiré material exhibits a nonfilamentary RS switching characteristic in a two-terminal lateral device configuration. This design reveals an RS mechanism driven by the modulation of the Schottky barrier height (SBH) due to the movement of Se vacancies (VSe) under an external electric field. The fabricated device exhibits excellent RS behavior, achieving an RS ratio of ∼20 with a high degree of control and consistency across multiple cycles and from device to device. Interestingly, the device shows a stable negative differential resistance effect in the high-voltage region due to the carrier trapping process. Finally, we studied the stability of the MSL in BOSe through TEM imaging and electrical characterization on different device configurations to evaluate the repeatability of the switching characteristics.
Collapse
Affiliation(s)
- Subhankar Debnath
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sourav Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
He Y, Ting Y, Hu H, Diemant T, Dai Y, Lin J, Schweidler S, Marques GC, Hahn H, Ma Y, Brezesinski T, Kowalski PM, Breitung B, Aghassi‐Hagmann J. Printed High-Entropy Prussian Blue Analogs for Advanced Non-Volatile Memristive Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410060. [PMID: 39564745 PMCID: PMC11854872 DOI: 10.1002/adma.202410060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/13/2024] [Indexed: 11/21/2024]
Abstract
Non-volatile memristors dynamically switch between high (HRS) and low resistance states (LRS) in response to electrical stimuli, essential for electronic memories, neuromorphic computing, and artificial intelligence. High-entropy Prussian blue analogs (HE-PBAs) are promising insertion-type battery materials due to their diverse composition, high structural integrity, and favorable ionic conductivity. This work proposes a non-volatile, bipolar memristor based on HE-PBA. The device, featuring an active layer of HE-PBA sandwiched between Ag and ITO electrodes, is fabricated by inkjet printing and microplotting. The conduction mechanism of the Ag/HE-PBA/ITO device is systematically investigated. The results indicate that the transition between HRS and LRS is driven by an insulating-metallic transition, triggered by extraction/insertion of highly mobile Na+ ions upon application of an electric field. The memristor operates through a low-energy process akin to Na+ shuttling in Na-ion batteries rather than depending on formation/rupture of Ag filaments. Notably, it showcases promising characteristics, including non-volatility, self-compliance, and forming-free behavior, and further exhibits low operation voltage (VSET = -0.26 V, VRESET = 0.36 V), low power consumption (PSET = 26 µW, PRESET = 8.0 µW), and a high ROFF/RON ratio of 104. This underscores the potential of high-entropy insertion materials for developing printed memristors with distinct operation mechanisms.
Collapse
Affiliation(s)
- Yueyue He
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Yin‐Ying Ting
- Institute of Energy Technologies (IET‐3)Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Str.52428JülichGermany
- Chair of Theory and Computation of Energy MaterialsFaculty of Georesources and Materials EngineeringRWTH Aachen University52062AachenGermany
- Jülich Aachen Research AllianceJARA Energy & Center for Simulation and Data Science (CSD)52428JülichGermany
| | - Hongrong Hu
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Thomas Diemant
- Helmholtz Institute Ulm (HIU) for Electrochemical Energy StorageHelmholtzstr. 1189081UlmGermany
| | - Yuting Dai
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
- Department of Materials and Earth SciencesTechnical University Darmstadt64287DarmstadtGermany
| | - Jing Lin
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Simon Schweidler
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Gabriel Cadilha Marques
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Horst Hahn
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
- School of ChemicalBiological and Materials EngineeringThe University of OklahomaNormanOK73019USA
| | - Yanjiao Ma
- School of Energy and Mechanical EngineeringJiangsu Key Laboratory of New Power BatteriesNanjing Normal UniversityNanjing210023China
| | - Torsten Brezesinski
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Piotr M. Kowalski
- Institute of Energy Technologies (IET‐3)Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Str.52428JülichGermany
- Jülich Aachen Research AllianceJARA Energy & Center for Simulation and Data Science (CSD)52428JülichGermany
| | - Ben Breitung
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| | - Jasmin Aghassi‐Hagmann
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)Kaiserstr. 1276131KarlsruheGermany
| |
Collapse
|
4
|
Ai R, Luo W, Liu X, Zhang T, Sang J, Zhang Y. A NiAl-layered double hydroxides memristor with artificial synapse function and its Boolean logic applications. J Chem Phys 2025; 162:044701. [PMID: 39840681 DOI: 10.1063/5.0248908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025] Open
Abstract
In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation. In addition, the device's conductance can be continuously adjusted by varying pulse width, interval, and amplitude. The successful replication of synaptic features has been achieved. In order to implement the functions of "NOT," "AND," and "OR," a logic gate is constructed using two synaptic devices. The confirmation of the potential use of synaptic devices in brain-like computing was demonstrated. In addition, it demonstrates the potential of these devices in supporting computing models beyond von Neumann architecture.
Collapse
Affiliation(s)
- Ruibo Ai
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Wang Luo
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Xiaojun Liu
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Tao Zhang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Jiqun Sang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| | - Yaolin Zhang
- Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
5
|
Sanjay S, Arackal S, Paruthi A, Bhat N. Sub-1 V Threshold Switching in Microwave-Assisted Solvothermal Nickel Ferrite Films and Its Application for Steep Switching MoS 2-Phase FETs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67995-68005. [PMID: 39621410 DOI: 10.1021/acsami.4c16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Resistive switching elements have introduced a paradigm shift in emerging computation, offering energy- and space-efficient logic operations. A single-resistive threshold switch can enable applications that require tens of standard CMOS transistors. They can also be used to design hybrid-phase-FETs with a steep subthreshold slope. We report a back-end-of-line (BEOL)-compatible integration of nickel ferrite (NF) films by a microwave-assisted solvothermal (MAS) process offering a very low energy barrier (W0 = 194 m eV) to electrochemical metallization of Ag without any doping. The Ag-contacted NF films display volatile threshold switching with sub-1 V electroforming and threshold voltages of 0.8 and 0.16 V, respectively. Electroforming is achieved at electric fields as low as 107 kV/cm, among the lowest reported for spinel ferrites. The NF film is also integrated into the top-gate stack of a MoS2 FET to achieve a steep switching phase FET with a minimum subthreshold slope of 8.5 mV/dec, surpassing the Boltzmann limit. Electrical measurements and cross-sectional high-resolution transmission electron microscopy (HR-TEM) are used to investigate the filament formation in these films, providing crucial insights to enhance the device performance further. The results place the MAS process as a potential option for BEOL dielectric integration and offer pathways to sustainable, inexpensive, and low-power electronic devices for CMOS logic applications.
Collapse
Affiliation(s)
- Sooraj Sanjay
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sarath Arackal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Archini Paruthi
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Navakanta Bhat
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
6
|
Kaith P, Garg P, Nagar V, Bera A. Solution-Processed TiO 2/ZnFe 2O 4 Heterostructure for Stable Multilevel Memristor with Room-Temperature Reactive Gas Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63769-63777. [PMID: 39499849 DOI: 10.1021/acsami.4c14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Solution-processed oxide-based heterojunctions that work in diverse directions will be ideal alternatives for cost-effective, stable, and multifunctional devices. Here, we have reported a stable multilevel resistive switching (RS) at the solution-processed TiO2/ZnFe2O4 heterointerface with endurance stability over 104 cycles and retention over 105 s. It can maintain the switching after dripping water onto the device, followed by drying at 100 °C and at an operating temperature of up to 200 °C. As the switching mechanism is governed by filamentary and interface-dominated charge conduction, our device shows additional tunability in the low resistance state (LRS) by changing environmental conditions. The inability to form filaments results in almost negligible switching under a vacuum or inert environment with an LRS loss. Meanwhile, the presence of reducing gas leads to a depletion layer lowering at the TiO2/ZnFe2O4 heterointerface by removing the surface-adsorbed oxygen molecules that help filament conduction through the interface and, hence, a change in LRS. Furthermore, different reaction capacities of different reactive gas environments with the surface-adsorbed oxygen molecule lead to discrete ON-OFF ratios, presenting a pathway to identify several reactive vapors like ammonia, formaldehyde, and acetone at room temperature and presenting a new approach for integrating RS and room temperature gas sensing in the multifunctional device technology.
Collapse
Affiliation(s)
- Priya Kaith
- Department of Physics, Indian Institute of Technology Jammu, Jammu 181221, J&K, India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu, Jammu 181221, J&K, India
| | - Vishal Nagar
- Department of Physics, Indian Institute of Technology Jammu, Jammu 181221, J&K, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu, Jammu 181221, J&K, India
| |
Collapse
|
7
|
Li P, Song H, Sa Z, Liu F, Wang M, Wang G, Wan J, Zang Z, Jiang J, Yang ZX. Tunable synaptic behaviors of solution-processed InGaO films for artificial visual systems. MATERIALS HORIZONS 2024; 11:4979-4986. [PMID: 39072692 DOI: 10.1039/d4mh00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Due to their persistent photoconductivity, amorphous metal oxide thin films are promising for construction of artificial visual systems. In this work, large-scale, uniformly distributed amorphous InGaO thin films with an adjustable In/Ga ratio and thickness are prepared successfully by a low-cost environmentally friendly and easy-to-handle solution process for constructing artificial visual systems. With the increase of the In/Ga ratio and film thickness, the number of oxygen vacancies increases, along with the increase of post-synaptic current triggered by illumination, benefiting the transition of short-term plasticity to long-term plasticity. With an optimal In/Ga ratio and film thickness, the conductance response difference at a decay of 0 s between the 1st and the 10th views of a 5 × 5 array InGaO thin film transistor is up to 2.88 μA, along with an increase in the Idecay 30s/Idecay 0s ratio from 45.24% to 53.24%, resulting in a high image clarity and non-volatile artificial visual memory. Furthermore, a three-layer artificial vision network is constructed to evaluate the image recognition capability, exhibiting an accuracy of up to 91.32%. All results promise low-cost and easy-to-handle amorphous InGaO thin films for future visual information processing and image recognition.
Collapse
Affiliation(s)
- Pengsheng Li
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Honglin Song
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410082, China.
| | - Zixu Sa
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Fengjing Liu
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Mingxu Wang
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Guangcan Wang
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Junchen Wan
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Zeqi Zang
- School of Physics, Shandong University, Jinan 2510100, China.
| | - Jie Jiang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha 410082, China.
| | - Zai-Xing Yang
- School of Physics, Shandong University, Jinan 2510100, China.
| |
Collapse
|
8
|
Yao C, Li J, Zhang H, Tian T. Understanding the Reversible Transition of Unipolar and Bipolar Resistive Switching Characteristics in Solution-Derived Nanocrystalline Au-Co 3O 4 Thin-Film Memristors. ACS OMEGA 2024; 9:33941-33948. [PMID: 39130581 PMCID: PMC11308477 DOI: 10.1021/acsomega.4c04429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Nanocrystalline Au-Co3O4 thin films were fabricated through a facile solution-processing method, and voltage-polarity-dependent resistive switching (RS) characteristics including variability of Set/Reset voltages, stability of cycling endurance, and carriers transport mechanism were studied in the Pt/Au-Co3O4/Pt memory devices. The switching voltages of the Set and Reset processes in the bipolar RS memristors exhibited lower variability as compared to the unipolar resistance switching devices. Moreover, the switching performance of cycle-to-cycle endurance in bipolar mode had a smaller fluctuation than those of unipolar switching behavior. Based on the current-voltage curve fitting analysis, it was found that Ohmic-conduction behaviors dominated the carriers transport of low-resistance state regardless of unipolar or bipolar switching behaviors. The carrier transport of high resistance state was governed following Poole-Frenkel emission and Schottky emission mechanisms in the unipolar and bipolar switching modes, respectively. The physical switching mechanism of Pt/Au-Co3O4/Pt memory devices was proposed using the model by means of growth and disruption of conducting filaments, involved in memory effects of thermochemical mechanism and valence change mechanism in the unipolar and bipolar RS, respectively. The proposed model following the finite element method revealed the roles of electrical field distribution and temperature gradient to further clarify the RS mechanism. Our results open a door for understanding and optimizing oxide-based thin-film resistance switching memory devices.
Collapse
Affiliation(s)
- Chuangye Yao
- Microelectronics
and Optoelectronics Technology Key Laboratory of Hunan Higher Education,
School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
| | - Jiacheng Li
- Guangxi
Academy of Sciences, Nanning 530007, China
| | - Hongqiao Zhang
- Microelectronics
and Optoelectronics Technology Key Laboratory of Hunan Higher Education,
School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou 423000, China
| | - Tao Tian
- Hunan
Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds
Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| |
Collapse
|
9
|
Yang X, Huang J, Li J, Zhao Y, Li H, Yu Z, Gao S, Cao R. Optically Mediated Nonvolatile Resistive Memory Device Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313608. [PMID: 38970535 DOI: 10.1002/adma.202313608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Metal-organic frameworks (MOFs), characterized by tunable porosity, high surface area, and diverse chemical compositions, offer unique prospects for applications in optoelectronic devices. However, the prevailing research on thin-film devices utilizing MOFs has predominantly focused on aspects such as information storage and photosensitivity, often neglecting the integration of the advantages inherent in both photonics and electronics to enhance optical memory. This work demonstrates a light-mediated resistive memory device based on a highly oriented porphyrin-based MOFs film, in which the resistance state of the memristor is modulated by light, realizing the integration of the perception and storage of optical information. The memristor shows excellent performance with a wide light range of 405-785 nm and a persistent photoconductivity phenomenon up to 8.3 × 103 s. Further mechanistic studies have revealed that the resistive switching effect in the memristor is primarily associated with the reversible formation and annihilation of Ag conductive filaments.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jian Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Yanqi Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Hongfang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Shuiying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
10
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
11
|
Rokade KA, Kumbhar DD, Patil SL, Sutar SS, More KV, Dandge PB, Kamat RK, Dongale TD. CogniFiber: Harnessing Biocompatible and Biodegradable 1D Collagen Nanofibers for Sustainable Nonvolatile Memory and Synaptic Learning Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312484. [PMID: 38501916 DOI: 10.1002/adma.202312484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.
Collapse
Affiliation(s)
- Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Dhananjay D Kumbhar
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Santosh S Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, 416004, India
| | - Krantiveer V More
- Department of Chemistry, Shivaji University, Kolhapur, 416004, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur, 416004, India
- The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, 400032, India
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| |
Collapse
|
12
|
R RK, Kalaboukhov A, Weng YC, Rathod KN, Johansson T, Lindblad A, Kamalakar MV, Sarkar T. Vacancy-Engineered Nickel Ferrite Forming-Free Low-Voltage Resistive Switches for Neuromorphic Circuits. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19225-19234. [PMID: 38579143 DOI: 10.1021/acsami.4c01501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Innovations in resistive switching devices constitute a core objective for the development of ultralow-power computing devices. Forming-free resistive switching is a type of resistive switching that eliminates the need for an initial high voltage for the formation of conductive filaments and offers promising opportunities to overcome the limitations of traditional resistive switching devices. Here, we demonstrate mixed charge state oxygen vacancy-engineered electroforming-free resistive switching in NiFe2O4 (NFO) thin films, fabricated as asymmetric Ti/NFO/Pt heterostructures, for the first time. Using pulsed laser deposition in a controlled oxygen atmosphere, we tune the oxygen vacancies together with the cationic valence state in the nickel ferrite phase, with the latter directly affecting the charge state of the oxygen vacancies. The structural integrity and chemical composition of the films are confirmed by X-ray diffraction and hard X-ray photoelectron spectroscopy, respectively. Electrical transport studies reveal that resistive switching characteristics in the films can be significantly altered by tuning the amount and charge state of the oxygen vacancy concentration during the deposition of the films. The resistive switching mechanism is seen to depend upon the migration of both singly and doubly charged oxygen vacancies formed as a result of changes in the nickel valence state and the consequent formation/rupture of conducting filaments in the switching layer. This is supported by the existence of an optimum oxygen vacancy concentration for efficient low-voltage resistive switching, below or above which the switching process is inhibited. Along with the filamentary switching mechanism, the Ti top electrode also enhances the resistive switching performance due to interfacial effects. Time-resolved measurements on the devices display both long- and short-term potentiation in the optimized vacancy-engineered NFO resistive switches, ideal for solid-state synapses achieved in a single system. Our work on correlated oxide forming-free resistive switches holds significant potential for CMOS-compatible low-power, nonvolatile resistive memory and neuromorphic circuits.
Collapse
Affiliation(s)
- Rajesh Kumar R
- Division of Solid State Physics, Department of Materials Science and Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| | - Alexei Kalaboukhov
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Yi-Chen Weng
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - K N Rathod
- Division of Solid State Physics, Department of Materials Science and Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| | - Ted Johansson
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala SE-751 21, Sweden
| | - Andreas Lindblad
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - M Venkata Kamalakar
- Division of X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Tapati Sarkar
- Division of Solid State Physics, Department of Materials Science and Engineering, Uppsala University, Uppsala SE-751 03, Sweden
| |
Collapse
|
13
|
Li JC, Ma YX, Wu SH, Liu ZC, Ding PF, Dai D, Ding YT, Zhang YY, Huang Y, Lai PT, Wang YL. 1-Selector 1-Memristor Configuration with Multifunctional a-IGZO Memristive Devices Fabricated at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17766-17777. [PMID: 38534058 DOI: 10.1021/acsami.3c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Serving as neuromorphic hardware accelerators, memristors play a crucial role in large-scale neuromorphic computing. Herein, two-terminal memristors utilizing amorphous indium-gallium-zinc oxide (a-IGZO) are fabricated through room-temperature sputtering. The electrical characteristics of these memristors are effectively modulated by varying the oxygen flow during the deposition process. The optimized a-IGZO memristor, fabricated under 3 sccm oxygen flow, presents a 5 × 103 ratio between its high- and low-resistance states, which can be maintained over 1 × 104 s with minimal degradation. Meanwhile, desirable properties such as electroforming-free and self-compliance, crucial for low-energy consumption, are also obtained in the a-IGZO memristor. Moreover, analog conductance switching is observed, demonstrating an interface-type behavior, as evidenced by its device-size-dependent performance. The coexistence of negative differential resistance with analog switching is attributed to the migration of oxygen vacancies and the trapping/detrapping of charges. Furthermore, the device demonstrates optical storage capabilities by exploiting the optical properties of a-IGZO, which can stably operate for up to 50 sweep cycles. Various synaptic functions have been demonstrated, including paired-pulse facilitation and spike-timing-dependent plasticity. These functionalities contribute to a simulated recognition accuracy of 90% for handwritten digits. Importantly, a one-selector one-memristor (1S1M) architecture is successfully constructed at room temperature by integrating a-IGZO memristor on a TaOx-based selector. This architecture exhibits a 107 on/off ratio, demonstrating its potential to suppress sneak currents among adjacent units in a memristor crossbar.
Collapse
Affiliation(s)
- Jia Cheng Li
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Xiao Ma
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Song Hao Wu
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
- R&D Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zi Chun Liu
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Fei Ding
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - De Dai
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Ying Tao Ding
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Yun Zhang
- R&D Center for Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yuan Huang
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| | - Peter To Lai
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, Hong Kong
| | - Ye Liang Wang
- The School of Integrated Circuits and Electronics, and Yangtze Delta Region Academy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Franco M, Kiazadeh A, Deuermeier J, Lanceros-Méndez S, Martins R, Carlos E. Inkjet printed IGZO memristors with volatile and non-volatile switching. Sci Rep 2024; 14:7469. [PMID: 38553556 PMCID: PMC10980760 DOI: 10.1038/s41598-024-58228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Solution-based memristors deposited by inkjet printing technique have a strong technological potential based on their scalability, low cost, environmentally friendlier processing by being an efficient technique with minimal material waste. Indium-gallium-zinc oxide (IGZO), an oxide semiconductor material, shows promising resistive switching properties. In this work, a printed Ag/IGZO/ITO memristor has been fabricated. The IGZO thickness influences both memory window and switching voltage of the devices. The devices show both volatile counter8wise (c8w) and non-volatile 8wise (8w) switching at low operating voltage. The 8w switching has a SET and RESET voltage lower than 2 V and - 5 V, respectively, a retention up to 105 s and a memory window up to 100, whereas the c8w switching shows volatile characteristics with a low threshold voltage (Vth < - 0.65 V) and a characteristic time (τ) of 0.75 ± 0.12 ms when a single pulse of - 0.65 V with width of 0.1 ms is applied. The characteristic time alters depending on the number of pulses. These volatile characteristics allowed them to be tested on different 4-bit pulse sequences, as an initial proof of concept for temporal signal processing applications.
Collapse
Affiliation(s)
- Miguel Franco
- Center of Physics, University of Minho and Laboratory of Physics for Materials and Emergent Technologies, LapMET, Campus de Gualtar, 4710-057, Braga, Portugal
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal
| | - Asal Kiazadeh
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal
| | - S Lanceros-Méndez
- Center of Physics, University of Minho and Laboratory of Physics for Materials and Emergent Technologies, LapMET, Campus de Gualtar, 4710-057, Braga, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal
| | - Emanuel Carlos
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, Caparica, Portugal.
| |
Collapse
|
16
|
Teja Nibhanupudi SS, Roy A, Veksler D, Coupin M, Matthews KC, Disiena M, Ansh, Singh JV, Gearba-Dolocan IR, Warner J, Kulkarni JP, Bersuker G, Banerjee SK. Ultra-fast switching memristors based on two-dimensional materials. Nat Commun 2024; 15:2334. [PMID: 38485722 PMCID: PMC10940724 DOI: 10.1038/s41467-024-46372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
The ability to scale two-dimensional (2D) material thickness down to a single monolayer presents a promising opportunity to realize high-speed energy-efficient memristors. Here, we report an ultra-fast memristor fabricated using atomically thin sheets of 2D hexagonal Boron Nitride, exhibiting the shortest observed switching speed (120 ps) among 2D memristors and low switching energy (2pJ). Furthermore, we study the switching dynamics of these memristors using ultra-short (120ps-3ns) voltage pulses, a frequency range that is highly relevant in the context of modern complementary metal oxide semiconductor (CMOS) circuits. We employ statistical analysis of transient characteristics to gain insights into the memristor switching mechanism. Cycling endurance data confirms the ultra-fast switching capability of these memristors, making them attractive for next generation computing, storage, and Radio-Frequency (RF) circuit applications.
Collapse
Affiliation(s)
- S S Teja Nibhanupudi
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA.
| | - Anupam Roy
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA.
- Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| | | | - Matthew Coupin
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kevin C Matthews
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Disiena
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Ansh
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Jatin V Singh
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | | | - Jamie Warner
- Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jaydeep P Kulkarni
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | | | - Sanjay K Banerjee
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA.
| |
Collapse
|
17
|
Guo TT, Chen JB, Yang CY, Zhang P, Jia SJ, Li Y, Chen JT, Zhao Y, Wang J, Zhang XQ. Artificial Neural Synapses Based on Microfluidic Memristors Prepared by Capillary Tubes and Ionic Liquid. J Phys Chem Lett 2024; 15:2542-2549. [PMID: 38413398 DOI: 10.1021/acs.jpclett.3c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Neuromorphic simulation, i.e., the use of electronic devices to simulate the neural networks of the human brain, has attracted a lot of interest in the fields of data processing and memory. This work provides a new method for preparing a 1,3-dimethylimidazolium nitrate ([MMIm][NO3]:H2O) microfluidic memristor that is ultralow cost and technically uncomplicated. Such a fluidic device uses capillaries as memory tubes, which are structurally similar to interconnected neurons by simple solution treatment. When voltage is applied, the transmission of anions and cations in the tube corresponds to the release of neurotransmitters from the presynaptic membrane to the postsynaptic membrane. The change of synaptic weights (plasticity) also can be simulated by the gradual change of conductance of the fluid memristor. The learning process of microfluidic memristors is very obvious, and the habituation and recovery behaviors they exhibit are extremely similar to biological activities, representing its good use for simulating neural synapses.
Collapse
Affiliation(s)
- Tong-Tong Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jian-Biao Chen
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chun-Yan Yang
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pu Zhang
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuang-Ju Jia
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Li
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jiang-Tao Chen
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun Zhao
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jian Wang
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xu-Qiang Zhang
- Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
18
|
Martins RA, Carlos E, Kiazadeh A, Martins R, Deuermeier J. Low-Temperature Solution-Based Molybdenum Oxide Memristors. ACS APPLIED ENGINEERING MATERIALS 2024; 2:298-304. [PMID: 38419978 PMCID: PMC10897879 DOI: 10.1021/acsaenm.3c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Solution-based memristors have gained significant attention in recent years due to their potential for the low-cost, scalable, and environmentally friendly fabrication of resistive switching devices. This study is focused on the fabrication and characterization of solution-based molybdenum trioxide (MoO3) memristors under different annealing temperatures (200 to 400 °C). A MoO3 ink recipe is developed using water as the main solvent, enabling a simplified and cost-effective fabrication process. Material analysis reveals the presence of a Mo6+ oxidation state and an amorphous structure in the films annealed up to 250 °C. Electrical tests confirm a bipolar resistive switching behavior in the memristors according to the valence change mechanism (VCM). Endurance tests demonstrate stable memristors, indicating their robust nature after multiple cycles. Memristors annealed at 250 °C exhibit a nonvolatile behavior with a retention time up to 105 s under ambient air conditions. The high reproducibility observed in these memristors highlights their potential for practical applications and scalability.
Collapse
Affiliation(s)
- Raquel Azevedo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Emanuel Carlos
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Asal Kiazadeh
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Sunny MM, Thamankar R. Spike rate dependent synaptic characteristics in lamellar, multilayered alpha-MoO 3 based two-terminal devices - efficient way to control the synaptic amplification. RSC Adv 2024; 14:2518-2528. [PMID: 38226148 PMCID: PMC10788777 DOI: 10.1039/d3ra07757h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/17/2024] Open
Abstract
Brain-inspired computing systems require a rich variety of neuromorphic devices using multi-functional materials operating at room temperature. Artificial synapses which can be operated using optical and electrical stimuli are in high demand. In this regard, layered materials have attracted a lot of attention due to their tunable energy gap and exotic properties. In the current study, we report the growth of layered MoO3 using the chemical vapor deposition (CVD) technique. MoO3 has an energy gap of 3.22 eV and grows with a large aspect ratio, as seen through optical and scanning electron microscopy. We used transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy for complete characterisation. The two-terminal devices using platinum (Pt/MoO3/Pt) exhibit superior memory with the high-resistance state (HRS) and low-resistance state (LRS) differing by a large resistance (∼MΩ). The devices also show excellent synaptic characteristics. Both optical and electrical pulses can be utilised to stimulate the synapse. Consistent learning (potentiation) and forgetting (depression) curves are measured. Transition from long term depression to long term potentiation can be achieved using the spike frequency dependent pulsing scheme. We have found that the amplification of postsynaptic current can be tuned using such frequency dependent spikes. This will help us to design neuromorphic devices with the required synaptic amplification.
Collapse
Affiliation(s)
- Meenu Maria Sunny
- Department of Physics, Vellore Institute of Technology Vellore TN India
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| | - R Thamankar
- Centre for Functional Materials, Vellore Institute of Technology Vellore TN India
| |
Collapse
|
20
|
Li S, Du J, Lu B, Yang R, Hu D, Liu P, Li H, Bai J, Ye Z, Lu J. Gradual conductance modulation by defect reorganization in amorphous oxide memristors. MATERIALS HORIZONS 2023; 10:5643-5655. [PMID: 37753658 DOI: 10.1039/d3mh01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Amorphous oxides show great prospects in revolutionizing memristors benefiting from their abundant non-stoichiometric composition. However, an in-depth investigation of the memristive characteristics in amorphous oxides is inadequate and the resistive switching mechanism is still controversial. In this study, aiming to clearly understand the gradual conductance modulation that is deeply bound to the evolution of defects-mainly oxygen vacancies, forming-free memristors based on amorphous ZnAlSnO are fabricated, which exhibit high reproducibility with an initial low-resistance state. Pulse depression reveals the logarithmic-exponential mixed relaxation during RESET owing to the diffusion of oxygen vacancies in orthogonal directions. The remnants of conductive filaments formed through aggregation of oxygen vacancies induced by high-electric-field are identified using ex situ TEM. Especially, the conductance of the filament, including the remnant filament, is larger than that of the hopping conductive channel derived from the diffusion of oxygen vacancies. The Fermi level in the conduction band rationalizes the decay of the high resistance state. Rare oxidation-migration of Au occurs upon device failure, resulting in numerous gold nanoclusters in the functional layer. These comprehensive revelations on the reorganization of oxygen vacancies could provide original ideas for the design of memristors.
Collapse
Affiliation(s)
- Siqin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Jigang Du
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bojing Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Ruqi Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Dunan Hu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pingwei Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Haiqing Li
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsheng Bai
- Sinoma Institute of Materials Research (Guang Zhou) Co., Ltd (SIMR), Guangzhou 510530, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Jianguo Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Tsai JY, Chen JY, Huang CW, Lo HY, Ke WE, Chu YH, Wu WW. A High-Entropy-Oxides-Based Memristor: Outstanding Resistive Switching Performance and Mechanisms in Atomic Structural Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302979. [PMID: 37378645 DOI: 10.1002/adma.202302979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Indexed: 06/29/2023]
Abstract
The application of high-entropy oxide (HEO) has attracted significant attention in recent years owing to their unique structural characteristics, such as excellent electrochemical properties and long-term cycling stability. However, the application of resistive random-access memory (RRAM) has not been extensively studied, and the switching mechanism of HEO-based RRAM has yet to be thoroughly investigated. In this study, HEO (Cr, Mn, Fe, Co, Ni)3 O4 with a spinel structure is epitaxially grown on a Nb:STO conductive substrate, and Pt metal is deposited as the top electrode. After the resistive-switching operation, some regions of the spinel structure are transformed into a rock-salt structure and analyzed using advanced transmission electron microscopy and scanning transmission electron microscopy. From the results of X-ray photoelectron spectroscopy and electron energy loss spectroscopy, only specific elements would change their valence state, which results in excellent resistive-switching properties with a high on/off ratio on the order of 105 , outstanding endurance (>4550 cycles), long retention time (>104 s), and high stability, which suggests that HEO is a promising RRAM material.
Collapse
Affiliation(s)
- Jing-Yuan Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jui-Yuan Chen
- Department of Materials Science and Engineering, National United University, Miaoli, 360, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, Feng Chia University, Taichung, 407, Taiwan
| | - Hung-Yang Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wei-En Ke
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu, 30078, Taiwan
| |
Collapse
|
22
|
Qin Y, Gao Y, Lv F, Huang F, Liu F, Zhong T, Cui Y, Tian X. Multilevel resistive switching memory in lead-free double perovskite La
2
NiFeO
6
films. DISCOVER NANO 2023; 18:107. [PMID: 37644377 PMCID: PMC10465475 DOI: 10.1186/s11671-023-03885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023]
Abstract
Dense and flat La2 NiFeO6 (LNFO) films were fabricated on the indium tin oxide-coated glass (ITO/glass) substrate by sol-gel method. The bipolar resistive switching behavior (BRS) could be maintained in 100 cycles and remained after 30 days, indicating that the LNFO-based RS device owned good memory stability. Surprisingly, the multilevel RS characteristics were firstly observed in the Au/LNFO/ITO/glass device. The high resistance states (HRSs) and low resistance state (LRS) with the maximum ratio of∼ 500 could be remained stably in 900 s and 130 cycles, demonstrating the fine retention and endurance ability of this LNFO-based RS device. The BRS behavior of Au/LNFO/ITO/glass devices primarily obeyed the SCLC mechanism controlled by oxygen vacancies (OVs) dispersed in the LNFO layer. Under the external electric field, injected electrons were captured or discharged by OVs during trapping or detrapping process in the LNFO layer. Thus, the resistive state switched between HRS and LRS reversibly. Moreover, the modulation of Schottky-like barrier formed at the Au/LNFO interface was contributed to the resistive states switchover. It was related to the change in OVs located at the dissipative region near the Au/LNFO interface. The multilevel RS ability of LNFO-based devices in this work provides an opportunity for researching deeply on the high density RS memory in lead-free double perovskite oxides-based devices.
Collapse
Affiliation(s)
- Yongfu Qin
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Yuan Gao
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Fengzhen Lv
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Fangfang Huang
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Fuchi Liu
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Tingting Zhong
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Yuhang Cui
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| | - Xuedong Tian
- College of Physical Science and Technology and Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Yucai Road, Guilin, 541000 China
| |
Collapse
|
23
|
Zhang DL, Wang J, Wu Q, Du Y. Modulating the resistive switching stability of HfO 2-based RRAM through Gd doping engineering: DFT+ U. Phys Chem Chem Phys 2023; 25:22388-22400. [PMID: 37581208 DOI: 10.1039/d3cp02050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Oxide-based resistive random access memory (RRAM) is standing out in both non-volatile memory and the emerging field of neuromorphic computing, with the consequence of increasing performance demands. Rare-earth doping is often used as an effective means for performance modulation. In this work, the modulation mechanism of the resistive switching (RS) behaviors in trivalent rare-earth Gd-doped HfO2-based RRAM has been carefully investigated using first-principles calculations. The results of electronic structure analysis show that Gd doping would lead to a change in the local geometry of the m-HfO2 defect system and would enhance the Coulomb interaction between the atoms around Gd and oxygen vacancy (VO), which may be one of the reasons for the enhanced conductivity of the HfO2-based RRAM after Gd doping. Thermodynamic and kinetic study results indicate that there is a strong interaction between Gd and its surrounding VO defects, and this strong interaction would not only attract more oxygen vacancies (VOs) to be generated near the dopant Gd, but also increase the migration energy barrier of the +2 charged VOs around the Gd doping site, thus suppressing the random generation of VO filaments, which leads to a better uniformity of the switching parameters during the RS process and improves the performance stability of the devices. The results of this work will provide new insights into modulating the RS behaviors and improving the device performance of HfO2-based RRAM through doping engineering.
Collapse
Affiliation(s)
- Dong-Lan Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Jiong Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| | - Qing Wu
- Information and Network Center, Central South University, Changsha, Hunan, 410083, China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
24
|
Chen H, Wang J, Peng S, Liu D, Yan W, Shang X, Zhang B, Yao Y, Hui Y, Zhou N. A Generalized Polymer Precursor Ink Design for 3D Printing of Functional Metal Oxides. NANO-MICRO LETTERS 2023; 15:180. [PMID: 37439950 PMCID: PMC10344857 DOI: 10.1007/s40820-023-01147-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023]
Abstract
Three-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides. Here, a universal, facile synthetic strategy is developed for direct ink writable polymer precursor inks based on metal-polymer coordination effect. Specifically, polyethyleneimine functionalized by ethylenediaminetetraacetic acid is employed as the polymer matrix for adsorbing targeted metal ions. Next, glucose is introduced as a crosslinker for endowing the polymer precursor inks with a thermosetting property required for 3D printing via the Maillard reaction. For demonstrations, binary (i.e., ZnO, CuO, In2O3, Ga2O3, TiO2, and Y2O3) and ternary metal oxides (i.e., BaTiO3 and SrTiO3) are printed into 3D architectures with sub-micrometer resolution by extruding the inks through ultrafine nozzles. Upon thermal crosslinking and pyrolysis, the 3D microarchitectures with woodpile geometries exhibit strong light-matter coupling in the mid-infrared region. The design strategy for printable inks opens a new pathway toward 3D-printed optoelectronic devices based on functional oxides.
Collapse
Affiliation(s)
- Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jizhe Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Siying Peng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Dongna Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Xinggang Shang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Boyu Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yuan Yao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China
| | - Yue Hui
- School of Chemical Engineering and Advanced Materials, the University of Adelaide, Adelaide, 5005, Australia
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, People's Republic of China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, People's Republic of China.
| |
Collapse
|
25
|
Zhang K, Ganesh P, Cao Y. Deterministic Conductive Filament Formation and Evolution for Improved Switching Uniformity in Embedded Metal-Oxide-Based Memristors─A Phase-Field Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21219-21227. [PMID: 37083295 DOI: 10.1021/acsami.3c00371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The extreme device-to-device variation of switching performance is one of the major obstacles preventing the applications of metal-oxide-based memristors in large-scale memory storage and resistive neural networks. Recent experimental works have reported that embedding metal nano-islands (NIs) in metal oxides can effectively improve the uniformity of the memristors, but the underlying role of the NIs is not fully understood. Here, to address this specific problem, we develop a physical model to understand the origin of the variability and how the embedded NIs can improve the performance and uniformity of memristors. We find that due to the dimension confinement effect, embedding metal NIs can modulate the electric field distribution and lead to a more deterministic formation of the conductive filament (CF) from their vicinity, in contrast to the random growth of CFs without embedded NIs. This deterministic CF formation, via vacancy nucleation, further reduces the forming, reset, and set voltages and enhances the uniformity of the operation voltages and current ON/OFF ratios. We further demonstrate that modifying the shapes of the metal NIs can modulate the field strengths/distributions around the NIs and that choosing the NI metal composition and shape that chemically facilitate vacancy formations can further optimize the CF morphology, reduce the operation voltages, and improve the switching performance. Our work thus provides a fundamental understanding of how embedded metal NIs improve the resistive switching performance in oxide-based memristors and could potentially guide the selection of embedded NIs to realize a more uniform memristor that also operates at a higher efficiency than present materials.
Collapse
Affiliation(s)
- Kena Zhang
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ye Cao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
26
|
Makkaramkott A, Subramanian A. Tin Oxide Nanorod Array-Based Photonic Memristors with Multilevel Resistance States Driven by Optoelectronic Stimuli. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15676-15690. [PMID: 36930722 DOI: 10.1021/acsami.2c22362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One-dimensional (1D) metal oxide-based photonic memristors, combining information storage and optical response, have shown great potential for the design and development of high-density and high-efficient computing systems beyond the era of von-Neumann architecture and Moore's law. Here, the functional memristive devices based on SnOx slanted nanorod arrays are demonstrated; wherein both the optical and electrical stimuli have been used to modulate the switching characteristics to achieve multilevel cell operations. The switching characteristics of Al/SnOx/FTO devices include low operating voltages (0.7 V/-0.6 V), moderate ON/OFF ratio (>10), and longer endurance (>102 cycles) and retention (>103 s) with a self-compliance effect in the dark. Under illumination, ranging from ultraviolet (254 and 365 nm) to visible light (405 and 533 nm), an unusual negative photo response with an enlarged ON/OFF ratio of >107 and a faster response time of <8 ms is observed. Additionally, multiple low and high resistance states have been achieved by modulating the programming current and the optical stimulus, respectively. The optoelectronic resistive memory behavior is attributed to the electric field-induced formation and light-stimulated dissolution of oxygen vacancies. Comprehensively, the results suggest that the optical illumination reduces the oxygen ion migration barrier, leading to the dissolution of conductive filaments and thereby locally increasing the OFF state resistance. The fabricated photonic memristors demonstrate the potential applications of metal oxide-based 1D nanostructures for artificial visual memory and optoelectronic applications.
Collapse
Affiliation(s)
- Athira Makkaramkott
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| | - Angappane Subramanian
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Bangalore 562162, India
| |
Collapse
|
27
|
Zahoor F, Hussin FA, Isyaku UB, Gupta S, Khanday FA, Chattopadhyay A, Abbas H. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing. DISCOVER NANO 2023; 18:36. [PMID: 37382679 PMCID: PMC10409712 DOI: 10.1186/s11671-023-03775-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/17/2023] [Indexed: 06/30/2023]
Abstract
The modern-day computing technologies are continuously undergoing a rapid changing landscape; thus, the demands of new memory types are growing that will be fast, energy efficient and durable. The limited scaling capabilities of the conventional memory technologies are pushing the limits of data-intense applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Resistive random access memory (RRAM) is one of the most suitable emerging memory technologies candidates that have demonstrated potential to replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. RRAM has grown in prominence in the recent years due to its simple structure, long retention, high operating speed, ultra-low-power operation capabilities, ability to scale to lower dimensions without affecting the device performance and the possibility of three-dimensional integration for high-density applications. Over the past few years, research has shown RRAM as one of the most suitable candidates for designing efficient, intelligent and secure computing system in the post-CMOS era. In this manuscript, the journey and the device engineering of RRAM with a special focus on the resistive switching mechanism are detailed. This review also focuses on the RRAM based on two-dimensional (2D) materials, as 2D materials offer unique electrical, chemical, mechanical and physical properties owing to their ultrathin, flexible and multilayer structure. Finally, the applications of RRAM in the field of neuromorphic computing are presented.
Collapse
Affiliation(s)
- Furqan Zahoor
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Fawnizu Azmadi Hussin
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
| | - Usman Bature Isyaku
- Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia
| | - Shagun Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, India
| | - Farooq Ahmad Khanday
- Department of Electronics & Instrumentation Technology, University of Kashmir, Srinagar, India
| | - Anupam Chattopadhyay
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Haider Abbas
- Division of Material Science and Engineering, Hanyang University, Seoul, South Korea
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Yang L, Hu H, Scholz A, Feist F, Cadilha Marques G, Kraus S, Bojanowski NM, Blasco E, Barner-Kowollik C, Aghassi-Hagmann J, Wegener M. Laser printed microelectronics. Nat Commun 2023; 14:1103. [PMID: 36843156 PMCID: PMC9968718 DOI: 10.1038/s41467-023-36722-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 02/28/2023] Open
Abstract
Printed organic and inorganic electronics continue to be of large interest for sensors, bioelectronics, and security applications. Many printing techniques have been investigated, albeit often with typical minimum feature sizes in the tens of micrometer range and requiring post-processing procedures at elevated temperatures to enhance the performance of functional materials. Herein, we introduce laser printing with three different inks, for the semiconductor ZnO and the metals Pt and Ag, as a facile process for fabricating printed functional electronic devices with minimum feature sizes below 1 µm. The ZnO printing is based on laser-induced hydrothermal synthesis. Importantly, no sintering of any sort needs to be performed after laser printing for any of the three materials. To demonstrate the versatility of our approach, we show functional diodes, memristors, and a physically unclonable function based on a 6 × 6 memristor crossbar architecture. In addition, we realize functional transistors by combining laser printing and inkjet printing.
Collapse
Affiliation(s)
- Liang Yang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Suzhou Institute for Advanced Research, University of Science and Technology of China (USTC), 215127, Suzhou, China.
| | - Hongrong Hu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Alexander Scholz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Gabriel Cadilha Marques
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Steven Kraus
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | | | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225 and 270, 69120, Heidelberg, Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jasmin Aghassi-Hagmann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany.
| |
Collapse
|
29
|
Chen Z, Liu W, Zhang B, Wu K, Li Z, Bing P, Tan L, Zhang H, Yao J. Nanoscale and ultra-high extinction ratio optical memristive switch based on plasmonic waveguide with square cavity. APPLIED OPTICS 2023; 62:27-33. [PMID: 36606845 DOI: 10.1364/ao.476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
A resistive switch effect-based optical memristive switch with an ultra-high extinction ratio and ultra-compact size working at 1550 nm is proposed. The device is composed of a metal-insulator-metal waveguide and a square resonator with active electrodes. The formation and rupture of conductive filaments in the resonant cavity can alter the resonant wavelength, which triggers the state of the optical switch ON or OFF. The numerical results demonstrate that the structure has an ultra-compact size (less than 1 µm) and ultra-high extinction ratio (37 dB). The proposed device is expected to address the problems of high-power consumption and large-scale optical switches and can be adopted in optical switches, optical modulation, optical storage and computing, and large-scale photonic integrated devices.
Collapse
|
30
|
Jaafar AH, Meng L, Zhang T, Guo D, Newbrook D, Zhang W, Reid G, de Groot CH, Bartlett PN, Huang R. Flexible Memristor Devices Using Hybrid Polymer/Electrodeposited GeSbTe Nanoscale Thin Films. ACS APPLIED NANO MATERIALS 2022; 5:17711-17720. [PMID: 36583121 PMCID: PMC9791617 DOI: 10.1021/acsanm.2c03639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 05/25/2023]
Abstract
We report on the development of hybrid organic-inorganic material-based flexible memristor devices made by a fast and simple electrochemical fabrication method. The devices consist of a bilayer of poly(methyl methacrylate) (PMMA) and Te-rich GeSbTe chalcogenide nanoscale thin films sandwiched between Ag top and TiN bottom electrodes on both Si and flexible polyimide substrates. These hybrid memristors require no electroforming process and exhibit reliable and reproducible bipolar resistive switching at low switching voltages under both flat and bending conditions. Multistate switching behavior can also be achieved by controlling the compliance current (CC). We attribute the switching between the high resistance state (HRS) and low resistance state (LRS) in the devices to the formation and rupture of conductive Ag filaments within the hybrid PMMA/GeSbTe matrix. This work provides a promising route to fabricate flexible memory devices through an electrodeposition process for application in flexible electronics.
Collapse
Affiliation(s)
- Ayoub H. Jaafar
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
- School
of Physics and Astronomy, University of
Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Lingcong Meng
- School
of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
- School
of Chemistry, University of Lincoln, Lincoln, LN6 7TS, United Kingdom
| | - Tongjun Zhang
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Dongkai Guo
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Daniel Newbrook
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Wenjian Zhang
- School
of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Gillian Reid
- School
of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - C. H. de Groot
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Philip N. Bartlett
- School
of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Ruomeng Huang
- School
of Electronics and Computer Science, University
of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
31
|
Zaheer M, Bacha AUR, Nabi I, Lan J, Wang W, Shen M, Chen K, Zhang G, Zhou F, Lin L, Irshad M, Faridullah F, Arifeen A, Li Y. All Solution-Processed Inorganic, Multilevel Memristors Utilizing Liquid Metals Electrodes Suitable for Analog Computing. ACS OMEGA 2022; 7:40911-40919. [PMID: 36406554 PMCID: PMC9670282 DOI: 10.1021/acsomega.2c03893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report a solution-processable memristive device based on bismuth vanadate (BiVO4) and titanium dioxide (TiO2) with gallium-based eutectic gallium-indium (EGaIn) and gallium-indium-tin alloy (GaInSn) liquid metal as the top electrode. Scanning electron microscopy (SEM) shows the formation of a nonporous structure of BiVO4 and TiO2 for efficient resistive switching. Additionally, the gallium-based liquid metal (GLM)-contacted memristors exhibit stable memristor behavior over a wide temperature range from -10 to +90 °C. Gallium atoms in the liquid metal play an important role in the conductive filament formation as well as the device's operation stability as elucidated by I-V characteristics. The synaptic behavior of the GLM-memristors was characterized, with excellent long-term potentiation (LTP) and long-term depression (LTD) linearity. Using the performance of our device in a multilayer perceptron (MLP) network, a ∼90% accuracy in the handwriting recognition of modified national institute of standards and technology database (MNIST) was achieved. Our findings pave a path for solution-processed/GLM-based memristors which can be used in neuromorphic applications on flexible substrates in a harsh environment.
Collapse
Affiliation(s)
- Muhammad Zaheer
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Aziz-Ur-Rahim Bacha
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Iqra Nabi
- Department
of Environmental Science and Engineering, Fudan University, Shanghai200433, China
| | - Jun Lan
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Wenhui Wang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Mei Shen
- SUSTech
Academy for Advanced Interdisciplinary Studies, Shenzhen518055, China
| | - Kai Chen
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Guobiao Zhang
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Feichi Zhou
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Longyang Lin
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| | - Muhammad Irshad
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Faridullah Faridullah
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Awais Arifeen
- Department
of Environmental Sciences, COMSATS University
Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Yida Li
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen518055, China
| |
Collapse
|
32
|
Kim D, Kim J, Kim S. Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3334. [PMID: 36234461 PMCID: PMC9565720 DOI: 10.3390/nano12193334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Resistive random-access memory (RRAM) for neuromorphic systems has received significant attention because of its advantages, such as low power consumption, high-density structure, and high-speed switching. However, variability occurs because of the stochastic nature of conductive filaments (CFs), producing inaccurate results in neuromorphic systems. In this article, we fabricated nitrogen-doped tantalum oxide (TaOx:N)-based resistive switching (RS) memory. The TaOx:N-based device significantly enhanced the RS characteristics compared with a TaOx-based device in terms of resistance variability. It achieved lower device-to-device variability in both low-resistance state (LRS) and high-resistance state (HRS), 8.7% and 48.3% rather than undoped device of 35% and 60.7%. Furthermore, the N-doped device showed a centralized set distribution with a 9.4% variability, while the undoped device exhibited a wider distribution with a 17.2% variability. Concerning pulse endurance, nitrogen doping prevented durability from being degraded. Finally, for synaptic properties, the potentiation and depression of the TaOx:N-based device exhibited a more stable cycle-to-cycle variability of 4.9%, compared with only 13.7% for the TaOx-based device. The proposed nitrogen-doped device is more suitable for neuromorphic systems because, unlike the undoped device, uniformity of conductance can be obtained.
Collapse
|
33
|
Sun B, Ngai JHL, Zhou G, Zhou Y, Li Y. Voltage-Controlled Conversion from CDS to MDS in an Azobenzene-Based Organic Memristor for Information Storage and Logic Operations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41304-41315. [PMID: 36041038 DOI: 10.1021/acsami.2c12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For organic memristors, non-zero-crossing current-voltage (I-V) curves are often observed, which can be attributed to capacitive effects. If the conversion between the capacitance-dominated state (CDS) and the memristance-dominated state (MDS) can be realized in a controllable manner, more device functions can be obtained. In this work, a two-terminal memristor using a common organic dye, azobenzene (AZB), as the active layer was prepared. It is found that as the applied voltage gradually increases, the device can transition from CDS to MDS. In the low voltage range (<1 V), the device is in CDS, and the capacitance is significantly increased by ∼104 compared to the theoretical value. In the high voltage range (>1 V), the device is in MDS, achieving an HRS (high resistance state)/LRS (low resistance state) resistance ratio of ∼104, and the logic operations are achieved. Through the analysis of the I-V curve, energy diagram of the materials, and computer simulation results, the mechanisms of CDS, MDS, and their conversion are proposed. This work provides an in-depth understanding of the working mechanism of organic memristors and demonstrates the potential of AZB-based organic memristors for information storage and logic display applications.
Collapse
Affiliation(s)
- Bai Sun
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Jenner H L Ngai
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Guangdong Zhou
- School of Artificial Intelligence, Southwest University, Chongqing 400715, China
| | - Yongzan Zhou
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
Piezoresistive Memories Based on Two-Dimensional Nano-Scale Electromechanical Systems. CRYSTALS 2022. [DOI: 10.3390/cryst12070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present piezoresistive memory-bits based on two-dimensional nano-scale electro-mechanical systems. We demonstrate it is possible to achieve different electrical responses by fine control of micro-structural asymmetries and that information can be encoded in the geometrical configuration of the device and read as in classical ReRAM memories by measuring the current flowing across it. Based on the potential energy landscape of the device, we estimate the energy cost to operate the proposed memories. The estimated energy requirements for a single bit compete with existing technologies.
Collapse
|
35
|
Fu Y, Chan YT, Jiang YP, Chang KH, Wu HC, Lai CS, Wang JC. Polarity-Differentiated Dielectric Materials in Monolayer Graphene Charge-Regulated Field-Effect Transistors for an Artificial Reflex Arc and Pain-Modulation System of the Spinal Cord. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202059. [PMID: 35619163 DOI: 10.1002/adma.202202059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
The nervous system is a vital part of organisms to survive and it endows them with remarkable abilities, such as perception, recognition, regulation, learning, and decision-making, by intertwining myriad neurons. To realize such outstanding efficacies and functions, many artificial devices and systems have been investigated to emulate the operating principles of the nervous system. Here, an artificial reflex arc (ARA) and artificial pain modulation system (APMS) are proposed to imitate the unconscious behaviors of the spinal cord. Gdx Oy - and Alx Oy -based charge-regulated field-effect transistors (CRFETs) with a monolayer graphene channel are fabricated and adopted as inhibitory and excitatory synapses, respectively, under the same pulse signals to mimic the biological reflex arc through a connection with a poly(vinylidene fluoride-co-trifluoroethylene)-based actuator. Additionally, a memristor is integrated with a CRFET as the interneuron to regulate the Dirac point by controlling the voltage drop on the graphene channel, analogous to the descending pain-inhibition system in the spinal cord, to prevent excessive pain perception. The proposed ARA and APMS provide a significant step forward to realizing the functions of the nervous system, giving promising potential for developing future intelligent alarm systems, neuroprosthetics, and neurorobotics.
Collapse
Affiliation(s)
- Yi Fu
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Ya-Ting Chan
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Yi-Pei Jiang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
| | - Chao-Sung Lai
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| | - Jer-Chyi Wang
- Department of Electronic Engineering, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Green Technology Research Center, Chang Gung University, Guishan Dist, Taoyuan, 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Guishan Dist, Taoyuan, 33305, Taiwan
- Department of Electronic Engineering, Ming Chi University of Technology, Taishan Dist, New Taipei City, 243303, Taiwan
| |
Collapse
|
36
|
Firmino R, Carlos E, Pinto JV, Deuermeier J, Martins R, Fortunato E, Barquinha P, Branquinho R. Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors. NANOMATERIALS 2022; 12:nano12132167. [PMID: 35808002 PMCID: PMC9268072 DOI: 10.3390/nano12132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Indium oxide (In2O3)-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped In2O3 thin films and evaluating different annealing parameters on TCO’s properties using a low environmental impact solvent. Optimized TCOs were achieved for 0.5 M% Hf-doped In2O3 when produced at 400 °C, showing high transparency in the visible range of the spectrum, a bulk resistivity of 5.73 × 10−2 Ω.cm, a mobility of 6.65 cm2/V.s, and a carrier concentration of 1.72 × 1019 cm−3. Then, these results were improved by using rapid thermal annealing (RTA) for 10 min at 600 °C, reaching a bulk resistivity of 3.95 × 10 −3 Ω.cm, a mobility of 21 cm2/V.s, and a carrier concentration of 7.98 × 1019 cm−3, in air. The present work brings solution-based TCOs a step closer to low-cost optoelectronic applications.
Collapse
|
37
|
Chaurasiya R, Lin PE, Lyu CH, Chen KT, Shih LC, Chen JS. First-principles simulation of neutral and charged oxygen vacancies in m-ZrO 2: an origin of filamentary type resistive switching. NANOTECHNOLOGY 2022; 33:345203. [PMID: 35584609 DOI: 10.1088/1361-6528/ac70e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Metal oxide ZrO2has been widely explored for resistive switching application due to excellent properties like high ON/OFF ratio, superior data retention, and low operating voltage. However, the conduction mechanism at the atomistic level is still under debate. Therefore, we have performed comprehensive insights into the role of neutral and charged oxygen vacancies in conduction filament (CF) formation and rupture, which are demonstrated using the atomistic simulation based on density functional theory (DFT). Formation energy demonstrated that the fourfold coordinated oxygen vacancy is more stable. In addition, the electronic properties of the defect included supercell confirm the improvement in electrical conductivity due to the presence of additional energy states near Fermi energy. The CF formation and rupture using threefold and fourfold oxygen vacancies are demonstrated through cohesive energy, electron localization function, and band structure. Cohesive energy analysis confirms the cohesive nature of neutral oxygen vacancies while the isolated behavior for +2 charged oxygen vacancies in the CF. In addition, nudged elastic band calculation is also performed to analyze the oxygen vacancy diffusion energy under different paths. Moreover, we have computed the diffusion coefficient and drift velocity of oxygen vacancies to understand the CF. This DFT study described detailed insight into filamentary type resistive switching observed in the experimentally fabricated device. Therefore, this fundamental study provides the platform to explore the switching mechanism of other oxide materials used for memristor device application.
Collapse
Affiliation(s)
- Rajneesh Chaurasiya
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-En Lin
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Han Lyu
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuan-Ting Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Chung Shih
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jen-Sue Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
38
|
Controlling resistive switching behavior in the solution processed SiO 2-x device by the insertion of TiO 2 nanoparticles. Sci Rep 2022; 12:8405. [PMID: 35589798 PMCID: PMC9120027 DOI: 10.1038/s41598-022-12476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
The resistive switching behavior of the solution processed SiOx device was investigated by inserting TiO2 nanoparticles (NPs). Compared to the pristine SiOx device, the TiO2 NPs inserted SiOx (SiOx@TiO2 NPs) device achieves outstanding switching characteristics, namely a higher ratio of SET/RESET, lower operating voltages, improved cycle-to-cycle variability, faster switching speed, and multiple-RESET states. Density functional theory calculation (DFT) and circuit breaker simulation (CB) were used to detail the origin of the outstanding switching characteristic of the SiOx@TiO2 NPs. The improvement in resistive switching is mainly based on the difference in formation/rupture of the conductive path in the SiO2 and SiO2@TiO2 NPs devices. In particular, the reduction of resistance and lower switching voltage of TiO2 NPs control the formation and rupture of the conductive path to achieve more abrupt switching between SET/RESET with higher on/off ratio. This method of combined DFT calculation and CB offers a promising approach for high-performance non-volatile memory applications.
Collapse
|
39
|
Zhou J, Feng H, Sun Q, Xie Z, Pang X, Minari T, Liu X, Zhang L. Resistance-switchable conjugated polyrotaxane for flexible high-performance RRAMs. MATERIALS HORIZONS 2022; 9:1526-1535. [PMID: 35343990 DOI: 10.1039/d1mh01929e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A representative closely packed conjugated polyrotaxane (CPR1) is synthesized by threading polyaniline (PAN) into β-cyclodextrin (CD) macrocycles and utilized for the first time to construct an RRAM device that exhibits an outstanding resistive switching capability. The CPR1 RRAM device displays remarkable nonvolatile memory performance with an extremely high ON/OFF ratio of 108, the ultra-fast response of 29 ns, excellent reliability and reproducibility, and long-term stability (more than 1 year). The mechanism underlying this resistive switching behavior is understood according to the electric-field-induced proton doping of the PAN core by the CD sheath through hydrogen bonding interactions. More impressively, the favorable solubility and intrinsic flexibility of CPR1 allow for large-scale fabrication of flexible CPR1 RRAM device arrays by full-printing technology with endurance of 1000 bending cycles at the minimum bending radius of 3 mm, higher ON/OFF ratio of 108, and relatively lower operating voltage of 1.8 V. This work shows the potential of CPR materials in highly stable memory devices for next-generation flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiankui Zhou
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Hanfang Feng
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Qingqing Sun
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhengkun Xie
- College of Chemistry Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Takeo Minari
- Printed Electronics Group, Research Center for Functional Materials National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Xuying Liu
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Li Zhang
- School of Materials Science and Engineering The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
40
|
Atomic Structure Evaluation of Solution-Processed a-IZO Films and Electrical Behavior of a-IZO TFTs. MATERIALS 2022; 15:ma15103416. [PMID: 35629444 PMCID: PMC9143800 DOI: 10.3390/ma15103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022]
Abstract
Understanding the chemical reaction pathway of the metal–salt precursor is essential for modifying the properties of solution-processed metal-oxide thin films and further improving their electrical performance. In this study, we focused on the structural growth of solution-processed amorphous indium-zinc-oxide (a-IZO) films and the electrical behavior of a-IZO thin-film transistors (TFT). To this end, solution-processed a-IZO films were prepared with respect to the Zn molar ratio, and their structural characteristics were analyzed. For the structural characteristic analysis of the a-IZO film, the cross-section, morphology, crystallinity, and atomic composition characteristics were used as the measurement results. Furthermore, the chemical reaction pathway of the nitrate precursor-based IZO solution was evaluated for the growth process of the a-IZO film structure. These interpretations of the growth process and chemical reaction pathway of the a-IZO film were assumed to be due to the thermal decomposition of the IZO solution and the structural rearrangement after annealing. Finally, based on the structural/chemical results, the electrical performance of the fabricated a-IZO TFT depending on the Zn concentration was evaluated, and the electrical behavior was discussed in relation to the structural characteristics.
Collapse
|
41
|
Kim HJ, Kim DW, Lee WY, Kim K, Lee SH, Bae JH, Kang IM, Kim K, Jang J. Flexible Sol-Gel-Processed Y 2O 3 RRAM Devices Obtained via UV/Ozone-Assisted Photochemical Annealing Process. MATERIALS 2022; 15:ma15051899. [PMID: 35269129 PMCID: PMC8912058 DOI: 10.3390/ma15051899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
Flexible indium tin oxide (ITO)/Y2O3/Ag resistive random access memory (RRAM) devices were successfully fabricated using a thermal-energy-free ultraviolet (UV)/ozone-assisted photochemical annealing process. Using the UV/ozone-assisted photochemical process, the organic residue can be eliminated, and thinner and smother Y2O3 films than those formed using other methods can be fabricated. The flexible UV/ozone-assisted photochemical annealing process-based ITO/Y2O3/Ag RRAM devices exhibited the properties of conventional bipolar RRAM without any forming process. Furthermore, the pure and amorphous-phase Y2O3 films formed via this process showed a decreased leakage current and an increased high-resistance status (HRS) compared with the films formed using other methods. Therefore, RRAM devices can be realized on plastic substrates using a thermal-energy-free UV/ozone-assisted photochemical annealing process. The fabricated devices exhibited a resistive window (ratio of HRS/low-resistance status (LRS)) of >104, with the HRS and LRS values remaining almost the same (i.e., limited deterioration occurred) for 104 s and up to 102 programming/erasing operation cycles.
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
| | - Do-Won Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
| | - Won-Yong Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
| | - Kyoungdu Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
| | - Sin-Hyung Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jin-Hyuk Bae
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
| | - In-Man Kang
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Kwangeun Kim
- School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Korea;
| | - Jaewon Jang
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea; (H.-J.K.); (D.-W.K.); (W.-Y.L.); (K.K.); (S.-H.L.); (J.-H.B.); (I.-M.K.)
- School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
- Correspondence:
| |
Collapse
|
42
|
Kukli K, Aarik L, Vinuesa G, Dueñas S, Castán H, García H, Kasikov A, Ritslaid P, Piirsoo HM, Aarik J. Structure and Electrical Behavior of Hafnium-Praseodymium Oxide Thin Films Grown by Atomic Layer Deposition. MATERIALS (BASEL, SWITZERLAND) 2022; 15:877. [PMID: 35160824 PMCID: PMC8838690 DOI: 10.3390/ma15030877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Crystal structure and electrical properties of hafnium-praseodymium oxide thin films grown by atomic layer deposition on ruthenium substrate electrodes were characterized and compared with those of undoped HfO2 films. The HfO2 reference films crystallized in the stable monoclinic phase of HfO2. Mixing HfO2 and PrOx resulted in the growth of nanocrystalline metastable tetragonal HfO2. The highest relative permittivities reaching 37-40 were measured for the films with tetragonal structures that were grown using HfO2:PrOx cycle ratio of 5:1 and possessed Pr/(Pr + Hf) atomic ratios of 0.09-0.10. All the HfO2:PrOx films exhibited resistive switching behavior. Lower commutation voltages and current values, promising in terms of reduced power consumption, were achieved for the films grown with HfO2:PrOx cycle ratios of 3:1 and 2:1 and showing Pr/(Pr + Hf) atomic ratios of 0.16-0.23. Differently from the undoped HfO2 films, the Pr-doped films showed low variability of resistance state currents and stable endurance behavior, extending over 104 switching cycles.
Collapse
Affiliation(s)
- Kaupo Kukli
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| | - Lauri Aarik
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| | - Guillermo Vinuesa
- Department of Electronics, University of Valladolid, Paseo Belén 15, 47011 Valladolid, Spain; (G.V.); (S.D.); (H.C.); (H.G.)
| | - Salvador Dueñas
- Department of Electronics, University of Valladolid, Paseo Belén 15, 47011 Valladolid, Spain; (G.V.); (S.D.); (H.C.); (H.G.)
| | - Helena Castán
- Department of Electronics, University of Valladolid, Paseo Belén 15, 47011 Valladolid, Spain; (G.V.); (S.D.); (H.C.); (H.G.)
| | - Héctor García
- Department of Electronics, University of Valladolid, Paseo Belén 15, 47011 Valladolid, Spain; (G.V.); (S.D.); (H.C.); (H.G.)
| | - Aarne Kasikov
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| | - Peeter Ritslaid
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| | - Helle-Mai Piirsoo
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| | - Jaan Aarik
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; (L.A.); (A.K.); (P.R.); (H.-M.P.); (J.A.)
| |
Collapse
|
43
|
Liu X, Cao J, Qiu J, Zhang X, Wang M, Liu Q. Flexible and Stretchable Memristive Arrays for in-Memory Computing. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.821687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the tremendous progress of Internet of Things (IoT) and artificial intelligence (AI) technologies, the demand for flexible and stretchable electronic systems is rapidly increasing. As the vital component of a system, existing computing units are usually rigid and brittle, which are incompatible with flexible and stretchable electronics. Emerging memristive devices with flexibility and stretchability as well as direct processing-in-memory ability are promising candidates to perform data computing in flexible and stretchable electronics. To execute the in-memory computing paradigm including digital and analogue computing, the array configuration of memristive devices is usually required. Herein, the recent progress on flexible and stretchable memristive arrays for in-memory computing is reviewed. The common materials used for flexible memristive arrays, including inorganic, organic and two-dimensional (2D) materials, will be highlighted, and effective strategies used for stretchable memristive arrays, including material innovation and structural design, will be discussed in detail. The current challenges and future perspectives of the in-memory computing utilizing flexible and stretchable memristive arrays are presented. These efforts aim to accelerate the development of flexible and stretchable memristive arrays for data computing in advanced intelligent systems, such as electronic skin, soft robotics, and wearable devices.
Collapse
|
44
|
Lee KJ, Wang YH. Effect of Alkaline Earth Metal on AZrO x (A = Mg, Sr, Ba) Memory Application. Gels 2021; 8:gels8010020. [PMID: 35049555 PMCID: PMC8774934 DOI: 10.3390/gels8010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022] Open
Abstract
Zr can be stabilized by the element selected, such as Mg-stabilized Zr (MSZ), thus providing MSZ thin films with potentially wide applications and outstanding properties. This work employed the element from alkaline earth metal stabilized Zr to investigate the electrical properties of sol-gel AZrOx (A = alkaline earth metal; Mg, Sr, Ba) as dielectric layer in metal-insulator-metal resistive random-access memory devices. In addition, the Hume-Rothery rule was used to calculate the different atomic radii of elements. The results show that the hydrolyzed particles, surface roughness, and density of oxygen vacancy decreased with decreased difference in atomic radius between Zr and alkaline earth metal. The MgZrOx (MZO) thin film has fewer particles, smoother surface, and less density of oxygen vacancy than the SrZrOx (SZO) and BaZrOx (BZO) thin films, leading to the lower high resistance state (HRS) current and higher ON/OFF ratio. Thus, a suitable element selection for the sol-gel AZrOx memory devices is helpful for reducing the HRS current and improving the ON/OFF ratio. These results were obtained possibly because Mg has a similar atomic radius as Zr and the MgOx-stabilized ZrOx.
Collapse
Affiliation(s)
| | - Yeong-Her Wang
- Correspondence: ; Tel.: +886-6-275-7575-62352; Fax: +886-6-2080598
| |
Collapse
|
45
|
Dastgeer G, Afzal AM, Aziz J, Hussain S, Jaffery SHA, Kim DK, Imran M, Assiri MA. Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO 2/WTe 2) Exhibiting Stable Resistive Switching. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7535. [PMID: 34947133 PMCID: PMC8708916 DOI: 10.3390/ma14247535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Two-terminal, non-volatile memory devices are the fundamental building blocks of memory-storage devices to store the required information, but their lack of flexibility limits their potential for biological applications. After the discovery of two-dimensional (2D) materials, flexible memory devices are easy to build, because of their flexible nature. Here, we report on our flexible resistive-switching devices, composed of a bilayer tin-oxide/tungsten-ditelluride (SnO2/WTe2) heterostructure sandwiched between Ag (top) and Au (bottom) metal electrodes over a flexible PET substrate. The Ag/SnO2/WTe2/Au flexible devices exhibited highly stable resistive switching along with an excellent retention time. Triggering the device from a high-resistance state (HRS) to a low-resistance state (LRS) is attributed to Ag filament formation because of its diffusion. The conductive filament begins its development from the anode to the cathode, contrary to the formal electrochemical metallization theory. The bilayer structure of SnO2/WTe2 improved the endurance of the devices and reduced the switching voltage by up to 0.2 V compared to the single SnO2 stacked devices. These flexible and low-power-consumption features may lead to the construction of a wearable memory device for data-storage purposes.
Collapse
Affiliation(s)
- Ghulam Dastgeer
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, Seoul 05006, Korea
| | - Amir Muhammad Afzal
- Department of Physics, Riphah International University, 13-km Raiwind Road, Lahore 54000, Pakistan;
| | - Jamal Aziz
- Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; (J.A.); (D.-k.K.)
| | - Sajjad Hussain
- HMC (Hybrid Materials Center), Department of Nanotechnology & Advanced Materials Engineering and Graphene Research Institute, Sejong University, Seoul 05006, Korea; (S.H.); (S.H.A.J.)
| | - Syed Hassan Abbas Jaffery
- HMC (Hybrid Materials Center), Department of Nanotechnology & Advanced Materials Engineering and Graphene Research Institute, Sejong University, Seoul 05006, Korea; (S.H.); (S.H.A.J.)
| | - Deok-kee Kim
- Department of Electrical Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea; (J.A.); (D.-k.K.)
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | - Mohammed Ali Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| |
Collapse
|
46
|
Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices. ELECTRONICS 2021. [DOI: 10.3390/electronics10222816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.
Collapse
|
47
|
Improved Synaptic Device Properties of HfAlOx Dielectric on Highly Doped Silicon Substrate by Partial Reset Process. METALS 2021. [DOI: 10.3390/met11050772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This work demonstrates the synaptic properties of the alloy-type resistive random-access memory (RRAM). We fabricated the HfAlOx-based RRAM for a synaptic device in a neuromorphic system. The deposition of the HfAlOx film on the silicon substrate was verified by X-ray photoelectron spectroscopy (XPS) analysis. It was found that both abrupt and gradual resistive switching could be implemented, depending on the reset stop voltage. In the reset process, the current gradually decreased at weak voltage, and at strong voltage, it tended to decrease rapidly by Joule heating. The type of switching determined by the first reset process was subsequently demonstrated to be stable switching by successive set and reset processes. A gradual switching type has a much smaller on/off window than abrupt switching. In addition, retention maintained stability up to 2000 s in both switching cases. Next, the multiple current states were tested in the gradual switching case by identical pulses. Finally, we demonstrated the potentiation and depression of the Cu/HfAlOx/Si device as a synapse in an artificial neural network and confirmed that gradual resistive switching was suitable for artificial synapses, using neuromorphic system simulation.
Collapse
|