1
|
Mousavi R, Soltani M, Souri M. Microneedle patch capable of dual drug release for drug delivery to brain tumors. Drug Deliv Transl Res 2025; 15:1567-1594. [PMID: 39186235 DOI: 10.1007/s13346-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
Primary brain tumors are mostly managed using surgical resection procedures. Nevertheless, in certain cases, a thin layer of tumors may remain outside of the resection process due to the possibility of permanent injury; these residual tumors expose patients to the risk of tumor recurrence. This study has introduced the use of microneedle patches implanted after surgery with a dual-release mechanism for the administration of doxorubicin. The proposed patches possess the capability to administer drugs directly to the residual tumors and initiate chemotherapy immediately following surgical procedures. Three-dimensional simulation of drug delivery to residual tumors in the brain has been performed based on a finite element method. The impact of four important parameters on drug delivery has been investigated, involving the fraction of drug released in the burst phase, the density of microneedles on the patch, the length of microneedles, and the microvascular density of the tumor. The simulation findings indicate that lowering the fraction of drug released in the initial burst phase reduces the maximum average concentration, but the sustained release that continues for a longer period, increasing the bioavailability of free drug. However, the area under curve (AUC) for different release rates remains unchanged due to the fact that an identical dose of drug is supplied in each instance. By increasing the density of microneedles on the patch, concentration accumulation is provided over an extensive region of tumor, which in turn induces more cancer cell death. A comparative analysis of various lengths reveals that longer microneedles facilitate profound penetration into the tumor layers and present better therapeutic response due to extensive area of the tumor which is exposure to chemotherapeutic drugs. Furthermore, high microvascular density, as a characteristic of the tumor microenvironment, is shown to have a significant impact on the blood microvessels drainage of drugs and consequently lower therapeutic response outcome. Our approach offers a computational framework for creating localized drug delivery systems and addressing the challenges related to residual brain tumors.
Collapse
Affiliation(s)
- Robab Mousavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Wang T, Liu H, Li M, Ji Z, Zhang X, Wang N, Chen Y, Sun J, Liu F. Microneedle-based nanodrugs for tumor immunotherapy. J Control Release 2025; 380:539-562. [PMID: 39923854 DOI: 10.1016/j.jconrel.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Microneedles have emerged as a promising and effective method for delivering therapeutic drugs and immunobiologics to treat various diseases. It is widely recognized that immune therapy has limited efficacy in solid tumors due to physical barriers and the immunosuppressive tumor microenvironment. Microneedle-based nanodrugs (NDMNs) offer a novel approach to overcome these limitations. These tiny needles are designed to load a variety of inorganic and organic nanoparticles, antigen vaccines, gene drugs, oncolytic viruses, and more. Utilizing microneedle arrays, NDMNs can effectively penetrate the skin barrier, delivering drugs precisely to the tumor site or immunoactive regions within the skin. Additionally, by designing and optimizing the microneedle structure, shape, and functionality, NDMNs enable precise drug release and efficient penetration, thereby enhancing the efficacy of tumor immunotherapy. In this review, we comprehensively discuss the pivotal role of NDMNs in cancer immunotherapy, summarizing innovative microneedle design strategies, mechanisms of immune activation, and delivery strategies of various nanodrugs. Furthermore, we explore the current clinical realities, limitations, and future prospects of NDMNs in tumor immunotherapy.
Collapse
Affiliation(s)
- Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Department of General Surgery, The First Hospital of Dalian Medical University, Dalian 116000, China
| | - Hongyu Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Meng Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Zao Ji
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Xinyuan Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Nan Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China
| | - Ying Chen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang 110001, China; Liaoning Province Clinical Research Center for Cancer, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang 110001, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems Ministry of Education, Shenyang 110016, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang 110001, China; Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Hulimane Shivaswamy R, Binulal P, Benoy A, Lakshmiramanan K, Bhaskar N, Pandya HJ. Microneedles as a Promising Technology for Disease Monitoring and Drug Delivery: A Review. ACS MATERIALS AU 2025; 5:115-140. [PMID: 39802146 PMCID: PMC11718548 DOI: 10.1021/acsmaterialsau.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025]
Abstract
The delivery of molecules, such as DNA, RNA, peptides, and certain hydrophilic drugs, across the epidermal barrier poses a significant obstacle. Microneedle technology has emerged as a prominent area of focus in biomedical research because of its ability to deliver a wide range of biomolecules, vaccines, medicines, and other substances through the skin. Microneedles (MNs) form microchannels by disrupting the skin's structure, which compromises its barrier function, and facilitating the easy penetration of drugs into the skin. These devices enhance the administration of many therapeutic substances to the skin, enhancing their stability. Transcutaneous delivery of medications using a microneedle patch offers advantages over conventional drug administration methods. Microneedles containing active substances can be stimulated by different internal and external factors to result in the regulated release of the substances. To achieve efficient drug administration to the desired location, it is necessary to consider the design of needles with appropriate optimized characteristics. The choice of materials for developing and manufacturing these devices is vital in determining the pharmacodynamics and pharmacokinetics of drug delivery. This article provides the most recent update and overview of the numerous microneedle systems that utilize different activators to stimulate the release of active components from the microneedles. Further, it discusses the materials utilized for producing microneedles and the design strategies important in managing the release of drugs. An explanation of the commonly employed fabrication techniques in biomedical applications and electronics, particularly for integrated microneedle drug delivery systems, is discussed. To successfully implement microneedle technology in clinical settings, it is essential to comprehensively assess several factors, such as biocompatibility, drug stability, safety, and production cost. Finally, an in-depth review of these criteria and the difficulties and potential future direction of microneedles in delivering drugs and monitoring diseases is explored.
Collapse
Affiliation(s)
| | - Pranav Binulal
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Aloysious Benoy
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Kaushik Lakshmiramanan
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Nitu Bhaskar
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| | - Hardik Jeetendra Pandya
- Department of Electronic
Systems Engineering, Indian Institute of
Science, Bangalore 560012, India
| |
Collapse
|
4
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
5
|
Abdelnabi D, Lastakchi S, Watts C, Atkins H, Hingtgen S, Valdivia A, McConville C. Local administration of irinotecan using an implantable drug delivery device stops high-grade glioma tumor recurrence in a glioblastoma tumor model. Drug Deliv Transl Res 2024; 14:3070-3088. [PMID: 38319555 PMCID: PMC11445345 DOI: 10.1007/s13346-024-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
The treatment for Glioblastoma is limited due to the presence of the blood brain barrier, which restricts the entry of chemotherapeutic drugs into the brain. Local delivery into the tumor resection margin has the potential to improve efficacy of chemotherapy. We developed a safe and clinically translatable irinotecan implant for local delivery to increase its efficacy while minimizing systemic side effects. Irinotecan-loaded implants were manufactured using hot melt extrusion, gamma sterilized at 25 kGy, and characterized for their irinotecan content, release, and drug diffusion. Their therapeutic efficacy was evaluated in a patient-derived xenograft mouse resection model of glioblastoma. Their safety and translatability were evaluated using histological analysis of brain tissue and serum chemistry analysis. Implants containing 30% and 40% w/w irinotecan were manufactured without plasticizer. The 30% and 40% implants showed moderate local toxicity up to 2- and 6-day post-implantation. Histopathology of the implantation site showed signs of necrosis at days 45 and 14 for the 30% and 40% implants. Hematological analysis and clinical chemistry showed no signs of serious systemic toxicity for either implant. The 30% implants had an 80% survival at day 148, with no sign of tumor recurrence. Gamma sterilization and 12-month storage had no impact on the integrity of the 30% implants. This study demonstrates that the 30% implants are a promising novel treatment for glioblastoma that could be quickly translated into the clinic.
Collapse
Affiliation(s)
- Dina Abdelnabi
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sarah Lastakchi
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Colin Watts
- Department of Neurosurgery, University Hospitals Birmingham, NHS Foundation Trust, Birmingham, UK
| | - Hannah Atkins
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Valdivia
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christopher McConville
- School of Pharmacy, Robert Aitken Institute for Clinical Research, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
6
|
Zhang Y, Fang Z, Liu Z, Xi K, Zhang Y, Zhao D, Feng F, Geng H, Liu M, Lou J, Chen C, Zhang Y, Wu Z, Xu F, Jiang X, Ni S. Implantable Microneedle-Mediated Eradication of Postoperative Tumor Foci Mitigates Glioblastoma Relapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409857. [PMID: 39205511 DOI: 10.1002/adma.202409857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma multiforme (GBM) remains incurable despite multimodal treatments after surgical debulking. Almost all patients with GBM relapse within a narrow margin (2-3 cm) of the initial resected lesion due to the unreachable residual cancerous cells. Here, a completely biodegradable microneedle for surgical cavity delivery glioblastoma-associated macrophages (GAMs)-activating immune nano-stimulator that mitigates glioblastoma relapse is reported. The residual tumor lesion-directed biocompatible microneedle releases the nano-stimulator and toll-like receptor 9 agonist in a controlled manner until the microneedles completely degrade over 1 week, efferently induce in situ phonotypic shifting of GAMs from anti- to pro-inflammatory and the tumor recurrence is obviously inhibited. The implantable microneedles offer a significant improvement over conventional transdermal ones, as they are 100% degradable, ensuring safe application within surgical cavities. It is also revealed that the T cells are recruited to the tumor niche as the GAMs initiate anti-tumor response and eradicate residual GBM cells. Taken together, this work provides a potential strategy for immunomodulating the postoperative tumor niche to mitigate tumor relapse in GBM patients, which may have broad applications in other malignancies with surgical intervention.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zezheng Fang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zejuan Liu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yi Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Dawang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Fan Feng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Humin Geng
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Minglu Liu
- Bellastem Biotechnology Limited, High-Tech incubator, Intersection of Liquan Street and Gaoxin Er Road, Gaomi, Shandong, 261500, China
| | - Jingzhao Lou
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Chen Chen
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Yanmin Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Zimei Wu
- Faculty of Medicine and Health Sciences, School of Pharmacy, University of Auckland, Auckland, 1023, New Zealand
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xinyi Jiang
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, NMPA Key laboratory for technology Research and evaluation of drug Products and Key laboratory of chemical Biology, Ministry of education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, 250012, China
| |
Collapse
|
7
|
Cao B, Huang Y, Chen L, Jia W, Li D, Jiang Y. Soft bioelectronics for diagnostic and therapeutic applications in neurological diseases. Biosens Bioelectron 2024; 259:116378. [PMID: 38759308 DOI: 10.1016/j.bios.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States.
| |
Collapse
|
8
|
Yoo S, Kim M, Choi C, Kim DH, Cha GD. Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Adv Healthc Mater 2024; 13:e2303563. [PMID: 38117136 DOI: 10.1002/adhm.202303563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Soft bioelectronic technologies for neuroengineering have shown remarkable progress, which include novel soft material technologies and device design strategies. Such technological advances that are initiated from fundamental brain science are applied to clinical neuroscience and provided meaningful promises for significant improvement in the diagnosis efficiency and therapeutic efficacy of various brain diseases recently. System-level integration strategies in consideration of specific disease circumstances can enhance treatment effects further. Here, recent advances in soft implantable bioelectronics for neuroengineering, focusing on materials and device designs optimized for the treatment of intracranial disease environments, are reviewed. Various types of soft bioelectronics for neuroengineering are categorized and exemplified first, and then details for the sensing and stimulating device components are explained. Next, application examples of soft implantable bioelectronics to clinical neuroscience, particularly focusing on the treatment of brain tumor and epilepsy are reviewed. Finally, an ideal system of soft intracranial bioelectronics such as closed-loop-type fully-integrated systems is presented, and the remaining challenges for their clinical translation are discussed.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| |
Collapse
|
9
|
Roy S, Gu J, Xia W, Mi C, Guo B. Advancements in manganese complex-based MRI agents: Innovations, design strategies, and future directions. Drug Discov Today 2024; 29:104101. [PMID: 39019428 DOI: 10.1016/j.drudis.2024.104101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
This review focuses on the advancements in manganese (Mn) complex-based magnetic resonance imaging (MRI) agents for imaging different diseases. Here we emphasize the unique redox properties of Mn to deliver innovative MRI contrast agents, including small molecules, nanoparticles (NPs), metal-organic frameworks (MOFs), and polymer hybrids. Aspects of their rational design have been discussed, including size dependence, morphology tuning, surface property enhancement, etc., while also discussing the existing challenges and potential solutions. The present work will inspire and motivate scientists to emphasize MRI-guided applications and bring clinical success in the coming years.
Collapse
Affiliation(s)
- Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055 China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wujiong Xia
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055 China
| | - Chao Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China; Shenzhen Light Life Technology Co., Ltd., Shenzhen 518107, China; School of Advanced Engineering, Great Bay Institute for Advanced Study, Great Bay University, Dongguan, Guangdong 523000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
10
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
11
|
Oh S, Lee S, Kim SW, Kim CY, Jeong EY, Lee J, Kwon DA, Jeong JW. Softening implantable bioelectronics: Material designs, applications, and future directions. Biosens Bioelectron 2024; 258:116328. [PMID: 38692223 DOI: 10.1016/j.bios.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.
Collapse
Affiliation(s)
- Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Woo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
12
|
Tan S, Wang Y, Wei X, Xiao X, Gao L. Microneedle-mediated drug delivery for neurological diseases. Int J Pharm 2024; 661:124400. [PMID: 38950662 DOI: 10.1016/j.ijpharm.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.
Collapse
Affiliation(s)
- Shuna Tan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xuan Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
13
|
Martins CF, García-Astrain C, Conde J, Liz-Marzán LM. Nanocomposite hydrogel microneedles: a theranostic toolbox for personalized medicine. Drug Deliv Transl Res 2024; 14:2262-2275. [PMID: 38376619 PMCID: PMC11208216 DOI: 10.1007/s13346-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Due to the severity and high prevalence of cancer, as well as its complex pathological condition, new strategies for cancer treatment and diagnostics are required. As such, it is important to design a toolbox that integrates multiple functions on a single smart platform. Theranostic hydrogels offer an innovative and personalized method to tackle cancer while also considering patient comfort, thereby facilitating future implementation and translation to the clinic. In terms of theranostic systems used in cancer therapy, nanoparticles are widely used as diagnostic and therapeutic tools. Nanoparticles can achieve systemic circulation, evade host defenses, and deliver drugs and signaling agents at the targeted site, to diagnose and treat the disease at a cellular and molecular level. In this context, hydrogel microneedles have a high potential for multifunctional operation in medical devices, while avoiding the complications associated with the systemic delivery of therapeutics. Compared with oral administration and subcutaneous injection, microneedles offer advantages such as better patient compliance, faster onset of action, and improved permeability and efficacy. In addition, they comprise highly biocompatible polymers with excellent degradability and tunable properties. Nanoparticles and microneedles thus offer the possibility to expand the theranostic potential through combined synergistic use of their respective features. We review herein recent advances concerning processing methods and material requirements within the realm of hydrogel microneedles as theranostic platforms, various approaches toward cancer therapy, and the incorporation of nanoparticles for added functionality.
Collapse
Affiliation(s)
- Catarina F Martins
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMSFCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y, Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMSFCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y, Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
14
|
Zhang W, Qin X, Li G, Zhou X, Li H, Wu D, Song Y, Zhao K, Wang K, Feng X, Tan L, Wang B, Sun X, Wen Z, Yang C. Self-powered triboelectric-responsive microneedles with controllable release of optogenetically engineered extracellular vesicles for intervertebral disc degeneration repair. Nat Commun 2024; 15:5736. [PMID: 38982049 PMCID: PMC11233569 DOI: 10.1038/s41467-024-50045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.
Collapse
Affiliation(s)
- Weifeng Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Qin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Gaocai Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Di Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjin Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China.
| | - Cao Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Yang J, Wang Z, Ma C, Tang H, Hao H, Li M, Luo X, Yang M, Gao L, Li J. Advances in Hydrogels of Drug Delivery Systems for the Local Treatment of Brain Tumors. Gels 2024; 10:404. [PMID: 38920950 PMCID: PMC11202553 DOI: 10.3390/gels10060404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
The management of brain tumors presents numerous challenges, despite the employment of multimodal therapies including surgical intervention, radiotherapy, chemotherapy, and immunotherapy. Owing to the distinct location of brain tumors and the presence of the blood-brain barrier (BBB), these tumors exhibit considerable heterogeneity and invasiveness at the histological level. Recent advancements in hydrogel research for the local treatment of brain tumors have sought to overcome the primary challenge of delivering therapeutics past the BBB, thereby ensuring efficient accumulation within brain tumor tissues. This article elaborates on various hydrogel-based delivery vectors, examining their efficacy in the local treatment of brain tumors. Additionally, it reviews the fundamental principles involved in designing intelligent hydrogels that can circumvent the BBB and penetrate larger tumor areas, thereby facilitating precise, controlled drug release. Hydrogel-based drug delivery systems (DDSs) are posited to offer a groundbreaking approach to addressing the challenges and limitations inherent in traditional oncological therapies, which are significantly impeded by the unique structural and pathological characteristics of brain tumors.
Collapse
Affiliation(s)
- Jingru Yang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Zhijie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Chenyan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Hongyu Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Haoyang Hao
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mengyao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Xianwei Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Mingxin Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China;
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (Z.W.); (C.M.); (H.T.); (H.H.); (M.L.); (X.L.); (M.Y.)
| |
Collapse
|
16
|
Kim M, Lee H, Nam S, Kim DH, Cha GD. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc Chem Res 2024; 57:1633-1647. [PMID: 38752397 DOI: 10.1021/acs.accounts.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of neural networks for large areas and the regulation of neuronal activity at the single-neuron scale have garnered considerable attention in neuroscience. In addition, detecting biochemical molecules and electrically, optically, and chemically controlling neural functions are key research issues. However, conventional rigid and bulky bioelectronics face challenges for neural applications, including mechanical mismatch, unsatisfactory signal-to-noise ratio, and poor integration of multifunctional components, thereby degrading the sensing and modulation performance, long-term stability and biocompatibility, and diagnosis and therapy efficacy. Implantable bioelectronics have been developed to be mechanically compatible with the brain environment by adopting advanced geometric designs and utilizing intrinsically stretchable materials, but such advances have not been able to address all of the aforementioned challenges.Recently, the exploration of nanomaterial synthesis and nanoscale fabrication strategies has facilitated the design of unconventional soft bioelectronics with mechanical properties similar to those of neural tissues and submicrometer-scale resolution comparable to typical neuron sizes. The introduction of nanotechnology has provided bioelectronics with improved spatial resolution, selectivity, single neuron targeting, and even multifunctionality. As a result, this state-of-the-art nanotechnology has been integrated with bioelectronics in two main types, i.e., bioelectronics integrated with synthesized nanomaterials and bioelectronics with nanoscale structures. The functional nanomaterials can be synthesized and assembled to compose bioelectronics, allowing easy customization of their functionality to meet specific requirements. The unique nanoscale structures implemented with the bioelectronics could maximize the performance in terms of sensing and stimulation. Such soft nanobioelectronics have demonstrated their applicability for neuronal recording and modulation over a long period at the intracellular level and incorporation of multiple functions, such as electrical, optical, and chemical sensing and stimulation functions.In this Account, we will discuss the technical pathways in soft bioelectronics integrated with nanomaterials and implementing nanostructures for application to neuroengineering. We traced the historical development of bioelectronics from rigid and bulky structures to soft and deformable devices to conform to neuroengineering requirements. Recent approaches that introduced nanotechnology into neural devices enhanced the spatiotemporal resolution and endowed various device functions. These soft nanobioelectronic technologies are discussed in two categories: bioelectronics with synthesized nanomaterials and bioelectronics with nanoscale structures. We describe nanomaterial-integrated soft bioelectronics exhibiting various functionalities and modalities depending on the integrated nanomaterials. Meanwhile, soft bioelectronics with nanoscale structures are explained with their superior resolution and unique administration methods. We also exemplified the neural sensing and stimulation applications of soft nanobioelectronics across various modalities, showcasing their clinical applications in the treatment of neurological diseases, such as brain tumors, epilepsy, and Parkinson's disease. Finally, we discussed the challenges and direction of next-generation technologies.
Collapse
Affiliation(s)
- Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
17
|
Tian R, Wang X, Li Y, Zhang L, Wen X. Application of microneedling in photodynamic therapy: A systematic review. Photodiagnosis Photodyn Ther 2024; 46:104016. [PMID: 38367923 DOI: 10.1016/j.pdpdt.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND The application of photodynamic therapy (PDT) is pivotal in the management of diverse dermatologic conditions. Microneedling (MN) is a minimally invasive tool that is capable of inducing transient pores on the skin to facilitate transdermal drug delivery. Several studies have reported augmentation of PDT combined with MN. This systematic review analyzes the current studies on the efficacy and safety of MN-assisted PDT for skin diseases. METHODS The literature search using the PRISMA standard was completed through PubMed, Embase, Web of Science and CENTRAL from the establishment of the databases to November 2023. Two independent researchers finished the procedure. RESULTS A total of 12 articles and 413 subjects met our study criteria. This systematic review suggests that MN-assisted PDT can decrease the incubation time required for the photosensitizer and reduce skin lesions of actinic keratosis (AK) . The common side effect is pain and no serious adverse events were reported. CONCLUSIONS MN is an effective method to increase the transdermal delivery rate of photosensitizers. For different photosensitizers and disease, MN may show different clinical effects.
Collapse
Affiliation(s)
- Run Tian
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xunyi Wang
- Department of Audiology and Speech Pathology/Department of Otorhinolaryngology - Head & Neck Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Yong Li
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, 610041 Chengdu, China.
| |
Collapse
|
18
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
19
|
Wang B, Fei X, Yin HF, Xu XN, Zhu JJ, Guo ZY, Wu JW, Zhu XS, Zhang Y, Xu Y, Yang Y, Chen LS. Photothermal-Controllable Microneedles with Antitumor, Antioxidant, Angiogenic, and Chondrogenic Activities to Sequential Eliminate Tracheal Neoplasm and Reconstruct Tracheal Cartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309454. [PMID: 38098368 DOI: 10.1002/smll.202309454] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 03/16/2024]
Abstract
The optimal treatment for tracheal tumors necessitates sequential tumor elimination and tracheal cartilage reconstruction. This study introduces an innovative inorganic nanosheet, MnO2 /PDA@Cu, comprising manganese dioxide (MnO2 ) loaded with copper ions (Cu) through in situ polymerization using polydopamine (PDA) as an intermediary. Additionally, a specialized methacrylic anhydride modified decellularized cartilage matrix (MDC) hydrogel with chondrogenic effects is developed by modifying a decellularized cartilage matrix with methacrylic anhydride. The MnO2 /PDA@Cu nanosheet is encapsulated within MDC-derived microneedles, creating a photothermal-controllable MnO2 /PDA@Cu-MDC microneedle. Effectiveness evaluation involved deep insertion of the MnO2 /PDA@Cu-MDC microneedle into tracheal orthotopic tumor in a murine model. Under 808 nm near-infrared irradiation, facilitated by PDA, the microneedle exhibited rapid overheating, efficiently eliminating tumors. PDA's photothermal effects triggered controlled MnO2 and Cu release. The MnO2 nanosheet acted as a potent inorganic nanoenzyme, scavenging reactive oxygen species for an antioxidant effect, while Cu facilitated angiogenesis. This intervention enhanced blood supply at the tumor excision site, promoting stem cell enrichment and nutrient provision. The MDC hydrogel played a pivotal role in creating a chondrogenic niche, fostering stem cells to secrete cartilaginous matrix. In conclusion, the MnO2 /PDA@Cu-MDC microneedle is a versatile platform with photothermal control, sequentially combining antitumor, antioxidant, pro-angiogenic, and chondrogenic activities to orchestrate precise tracheal tumor eradication and cartilage regeneration.
Collapse
Affiliation(s)
- B Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - H F Yin
- Department of Infection Management, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X N Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J J Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Z Y Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - J W Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - X S Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Zhang
- Department of Orthopedics, Shanghai Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Y Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Y Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - L S Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
20
|
Wang X, Wang Z, Xiao M, Li Z, Zhu Z. Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomater Sci 2024; 12:530-563. [PMID: 37971423 DOI: 10.1039/d3bm01551c] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Wearable devices have become prevalent in biomedical studies due to their convenient portability and potential utility in biomarker monitoring for healthcare. Accessing interstitial fluid (ISF) across the skin barrier, microneedle (MN) is a promising minimally invasive wearable technology for transdermal sensing and drug delivery. MN has the potential to overcome the limitations of conventional transdermal drug administration, making it another prospective mode of drug delivery after oral and injectable. Subsequently, combining MN with multiple sensing approaches has led to its extensive application to detect biomarkers in ISF. In this context, employing MN platforms and control schemes to merge diagnostic and therapeutic capabilities into theranostic systems will facilitate on-demand therapy and point-of-care diagnostics, paving the way for future MN technologies. A comprehensive analysis of the growing advances of microneedles in biomedical systems is presented in this review to summarize the latest studies for academics in the field and to offer for reference the issues that need to be addressed in MN application for healthcare. Covering an array of novel studies, we discuss the following main topics: classification of microneedles in the biomedical field, considerations of MN design, current applications of microneedles in diagnosis and therapy, and the regulatory landscape and prospects of microneedles for biomedical applications. This review sheds light on the significance of microneedle-based innovations, presenting an analysis of their potential implications and contributions to the community of wearable healthcare technologies. The review provides a comprehensive understanding of the field's current state and potential, making it a valuable resource for academics and clinicians seeking to harness the full potential of MN applications.
Collapse
Affiliation(s)
- Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
21
|
Jiang X, Wu H, Xiao A, Huang Y, Yu X, Chang L. Recent Advances in Bioelectronics for Localized Drug Delivery. SMALL METHODS 2024; 8:e2301068. [PMID: 37759393 DOI: 10.1002/smtd.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Indexed: 09/29/2023]
Abstract
The last decade has witnessed remarkable advancements in bioelectronics, ushering in a new era of wearable and implantable devices for drug delivery. By utilizing miniaturized system design and/or flexible materials, bioelectronics illustrates ideal integration with target organs and tissues, making them ideal platforms for localized drug delivery. Furthermore, the development of electrically assisted drug delivery systems has enhanced the efficiency and safety of therapeutic administration, particularly for the macromolecules that encounter additional challenges in penetrating biological barriers. In this review, a concise overview of recent progress in bioelectronic devices for in vivo localized drug delivery, with highlights on the latest trends in device design, working principles, and their corresponding functionalities, is provided. The reported systems based on their targeted delivery locations as wearable systems, ingestible systems, and implantable systems are categorized. Each category is introduced in detail by highlighting the special requirements for devices and the corresponding solutions. The remaining challenges in this field and future directions are also discussed.
Collapse
Affiliation(s)
- Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
22
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
23
|
Wu Q, Hu Y, Yu B, Hu H, Xu FJ. Polysaccharide-based tumor microenvironment-responsive drug delivery systems for cancer therapy. J Control Release 2023; 362:19-43. [PMID: 37579973 DOI: 10.1016/j.jconrel.2023.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The biochemical indicators of tumor microenvironment (TME) that are different from normal tissues provide the possibility for constructing intelligent drug delivery systems (DDSs). Polysaccharides with good biocompatibility, biodegradability, and unique biological properties are ideal materials for constructing DDSs. Nanogels, micelles, organic-inorganic nanocomposites, hydrogels, and microneedles (MNs) are common polysaccharide-based DDSs. Polysaccharide-based DDSs enable precise control of drug delivery and release processes by incorporating TME-specific biochemical indicators. The classification and design strategies of polysaccharide-based TME-responsive DDSs are comprehensively reviewed. The advantages and challenges of current polysaccharide-based DDSs are summarized and the future directions of development are foreseen. The polysaccharide-based TME-responsive DDSs are expected to provide new strategies and solutions for cancer therapy and make important contributions to the realization of precision medicine.
Collapse
Affiliation(s)
- Qimeng Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hao Hu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
24
|
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, Wang Y. Soft Bioelectronics for Therapeutics. ACS NANO 2023; 17:17634-17667. [PMID: 37677154 DOI: 10.1021/acsnano.3c02513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Soft bioelectronics play an increasingly crucial role in high-precision therapeutics due to their softness, biocompatibility, clinical accuracy, long-term stability, and patient-friendliness. In this review, we provide a comprehensive overview of the latest representative therapeutic applications of advanced soft bioelectronics, ranging from wearable therapeutics for skin wounds, diabetes, ophthalmic diseases, muscle disorders, and other diseases to implantable therapeutics against complex diseases, such as cardiac arrhythmias, cancer, neurological diseases, and others. We also highlight key challenges and opportunities for future clinical translation and commercialization of soft therapeutic bioelectronics toward personalized medicine.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zhongtai Zhu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yunfan Zou
- Department of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
25
|
Meena Narayana Menon D, Pugliese D, Giardino M, Janner D. Laser-Induced Fabrication of Micro-Optics on Bioresorbable Calcium Phosphate Glass for Implantable Devices. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3899. [PMID: 37297033 PMCID: PMC10253483 DOI: 10.3390/ma16113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens' dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens' shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Davide Janner
- Department of Applied Science and Technology (DISAT) and RU INSTM, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (D.M.N.M.); (D.P.); (M.G.)
| |
Collapse
|
26
|
Padmakumar S, Amiji MM. Long-Acting Therapeutic Delivery Systems for the Treatment of Gliomas. Adv Drug Deliv Rev 2023; 197:114853. [PMID: 37149040 DOI: 10.1016/j.addr.2023.114853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Despite the emergence of cutting-edge therapeutic strategies and tremendous progress in research, a complete cure of glioma remains elusive. The heterogenous nature of tumor, immunosuppressive state and presence of blood brain barrier are few of the major obstacles in this regard. Long-acting depot formulations such as injectables and implantables are gaining attention for drug delivery to brain owing to their ease in administration and ability to elute drug locally for extended durations in a controlled manner with minimal toxicity. Hybrid matrices fabricated by incorporating nanoparticulates within such systems help to enhance pharmaceutical advantages. Utilization of long-acting depots as monotherapy or in conjunction with existing strategies rendered significant survival benefits in many preclinical studies and some clinical trials. The discovery of novel targets, immunotherapeutic strategies and alternative drug administration routes are now coupled with several long-acting systems with an ultimate aim to enhance patient survival and prevent glioma recurrences.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115.
| |
Collapse
|
27
|
Chen X, Gong Y, Chen W. Advanced Temporally-Spatially Precise Technologies for On-Demand Neurological Disorder Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207436. [PMID: 36929323 PMCID: PMC10190591 DOI: 10.1002/advs.202207436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Indexed: 05/18/2023]
Abstract
Temporal-spatial precision has attracted increasing attention for the clinical intervention of neurological disorders (NDs) to mitigate adverse effects of traditional treatments and achieve point-of-care medicine. Inspiring steps forward in this field have been witnessed in recent years, giving the credit to multi-discipline efforts from neurobiology, bioengineering, chemical materials, artificial intelligence, and so on, exhibiting valuable clinical translation potential. In this review, the latest progress in advanced temporally-spatially precise clinical intervention is highlighted, including localized parenchyma drug delivery, precise neuromodulation, as well as biological signal detection to trigger closed-loop control. Their clinical potential in both central and peripheral nervous systems is illustrated meticulously related to typical diseases. The challenges relative to biosafety and scaled production as well as their future perspectives are also discussed in detail. Notably, these intelligent temporally-spatially precision intervention systems could lead the frontier in the near future, demonstrating significant clinical value to support billions of patients plagued with NDs.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Yusheng Gong
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| | - Wei Chen
- Department of Pharmacology, School of Basic MedicineTongji Medical CollegeHuazhong University of Science and Technology430030WuhanChina
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and Technology430030WuhanChina
| |
Collapse
|
28
|
Kang T, Cha GD, Park OK, Cho HR, Kim M, Lee J, Kim D, Lee B, Chu J, Koo S, Hyeon T, Kim DH, Choi SH. Penetrative and Sustained Drug Delivery Using Injectable Hydrogel Nanocomposites for Postsurgical Brain Tumor Treatment. ACS NANO 2023; 17:5435-5447. [PMID: 36926815 DOI: 10.1021/acsnano.2c10094] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Postsurgical treatment of glioblastoma multiforme (GBM) by systemic chemotherapy and radiotherapy is often inefficient. Tumor cells infiltrating deeply into the brain parenchyma are significant obstacles to the eradication of GBM. Here, we present a potential solution to this challenge by introducing an injectable thermoresponsive hydrogel nanocomposite. As a liquid solution that contains drug-loaded micelles and water-dispersible ferrimagnetic iron oxide nanocubes (wFIONs), the hydrogel nanocomposite is injected into the resected tumor site after surgery. It promptly gelates at body temperature to serve as a soft, deep intracortical drug reservoir. The drug-loaded micelles target residual GBM cells and deliver drugs with a minimum premature release. Alternating magnetic fields accelerate diffusion through heat generation from wFIONs, enabling penetrative drug delivery. Significantly suppressed tumor growth and improved survival rates are demonstrated in an orthotopic mouse GBM model. Our system proves the potential of the hydrogel nanocomposite platform for postsurgical GBM treatment.
Collapse
Affiliation(s)
- Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hye Rim Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Bowon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyoung Chu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
29
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
30
|
Ma S, Li J, Pei L, Feng N, Zhang Y. Microneedle-based interstitial fluid extraction for drug analysis: Advances, challenges, and prospects. J Pharm Anal 2023; 13:111-126. [PMID: 36908860 PMCID: PMC9999301 DOI: 10.1016/j.jpha.2022.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Similar to blood, interstitial fluid (ISF) contains exogenous drugs and biomarkers and may therefore substitute blood in drug analysis. However, current ISF extraction techniques require bulky instruments and are both time-consuming and complicated, which has inspired the development of viable alternatives such as those relying on skin or tissue puncturing with microneedles. Currently, microneedles are widely employed for transdermal drug delivery and have been successfully used for ISF extraction by different mechanisms to facilitate subsequent analysis. The integration of microneedles with sensors enables in situ ISF analysis and specific compound monitoring, while the integration of monitoring and delivery functions in wearable devices allows real-time dose modification. Herein, we review the progress in drug analysis based on microneedle-assisted ISF extraction and discuss the related future opportunities and challenges.
Collapse
Affiliation(s)
- Shuwen Ma
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaqi Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
31
|
Kang J, Han DY, Kim S, Ryu J, Park S. Multiscale Polymeric Materials for Advanced Lithium Battery Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203194. [PMID: 35616903 DOI: 10.1002/adma.202203194] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Riding on the rapid growth in electric vehicles and the stationary energy storage market, high-energy-density lithium-ion batteries and next-generation rechargeable batteries (i.e., advanced batteries) have been long-accepted as essential building blocks for future technology reaching the specific energy density of 400 Wh kg-1 at the cell-level. Such progress, mainly driven by the emerging electrode materials or electrolytes, necessitates the development of polymeric materials with advanced functionalities in the battery to address new challenges. Therefore, it is urgently required to understand the basic chemistry and essential research directions in polymeric materials and establish a library for the polymeric materials that enables the development of advanced batteries. Herein, based on indispensable polymeric materials in advanced high-energy-density lithium-ion, lithium-sulfur, lithium-metal, and dual-ion battery chemistry, the key research directions of polymeric materials for achieving high-energy-density and safety are summarized and design strategies for further improving performance are examined. Furthermore, the challenges of polymeric materials for advanced battery technologies are discussed.
Collapse
Affiliation(s)
- Jieun Kang
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong-Yeob Han
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sungho Kim
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaegeon Ryu
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Soojin Park
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
32
|
Muresan P, McCrorie P, Smith F, Vasey C, Taresco V, Scurr DJ, Kern S, Smith S, Gershkovich P, Rahman R, Marlow M. Development of nanoparticle loaded microneedles for drug delivery to a brain tumour resection site. Eur J Pharm Biopharm 2023; 182:53-61. [PMID: 36435313 DOI: 10.1016/j.ejpb.2022.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Systemic drug delivery to the central nervous system (CNS) has been historically impeded by the presence of the blood brain barrier rendering many therapies inefficacious to any cancer cells residing within the brain. Therefore, local drug delivery systems are being developed to overcome this shortfall. Here we have manufactured polymeric microneedle (MN) patches, which can be anchored within a resection cavity site following surgical removal of a tumour such as isocitrate dehydrogenase wild type glioblastoma (GBM). These MN patches have been loaded with polymer coated nanoparticles (NPs) containing cannabidiol (CBD) or olaparib (OLA) and applied to an in vitro brain simulant and ex vivo rat brain tissue to assess drug release and distance of penetration. MN patches loaded with methylene blue dye were placed into a cavity of 0.6 % agarose to simulate brain tissue. The results showed that clear channels were generated by the MNs and the dye spread laterally throughout the agarose. When loaded with CBD-NPs, the agarose showed a CBD concentration of 12.5 µg/g at 0.5 cm from the MN insertion site. Furthermore, high performance liquid chromatography of ex vivo brain tissue following CBD-NP/MN patch insertion showed successful delivery of 59.6 µg/g into the brain tissue. Similarly, OLA-NP loaded MN patches showed delivery of 5.2 µg/g OLA into agarose gel at 0.5 cm distance from the insertion site. Orbitrap secondary ion mass spectrometry (OrbiSIMS) analysis confirmed the presence of OLA and the MN patch at up to 6 mm away from the insertion site following its application to a rat brain hemisphere. This data has provided insight into the capabilities and versatility of MN patches for use in local brain drug delivery, giving promise for future research.
Collapse
Affiliation(s)
- Paula Muresan
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Phoebe McCrorie
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Fiona Smith
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catherine Vasey
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - David J Scurr
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stefanie Kern
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, NG7 2RD, UK
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
33
|
Revolutionizing Therapeutic Delivery with Microneedle Technology for Tumor Treatment. Pharmaceutics 2022; 15:pharmaceutics15010014. [PMID: 36678643 PMCID: PMC9866211 DOI: 10.3390/pharmaceutics15010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor is an uncontrolled growth of tissue that can be localized (benign) or possesses the capability of metastasis (malignant). The conventional methods of tumor diagnosis, such as acupuncture, endoscopy, and histopathology, and treatment methods, such as injections, chemotherapy, surgery, and radiotherapy, are invasive, expensive, and pose severe safety and management issues for the patients. Microneedle technology is a recently developed approach for active transdermal drug delivery. It is minimally invasive, self-administrable, bypasses the first-pass effect, and effectively delivers chemotherapeutics and drugs at low doses, thus, overcoming the drawbacks of conventional delivery systems. This review provides an idea of the types, materials utilized in the fabrication, and techniques used for the preparation of microneedles (MNs), as well as their application in tumor diagnosis and treatment. Additionally, emphasis is given to the case studies related to MNs-assisted tumor therapy, such as photothermal therapy, gene therapy, photodynamic therapy, chemotherapy, immunotherapy, and various combination therapies. MNs also serve as a tool for diagnosis by the bio-sampling of blood and interstitial skin fluid, as well as biosensing various cancer biomarkers. The combined therapy and diagnostics provide theranostic MNs for enhanced and personalized tumor therapy. The limitations and prospects of MNs development are also discussed.
Collapse
|
34
|
Liu G, Lu Y, Zhang F, Liu Q. Electronically powered drug delivery devices: considerations and challenges. Expert Opin Drug Deliv 2022; 19:1636-1649. [PMID: 36305080 DOI: 10.1080/17425247.2022.2141709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Electronically powered drug delivery devices enable a controlled drug release route for a more convenient and painless way with reduced side effects. The current advances in microfabrication and microelectronics have facilitated miniaturization and intelligence with the integration of sensors and wireless communication modules. These devices have become an essential component of commercialized on-demand drug delivery. AREAS COVERED This review aims to provide a concise overview of current progress in electronically powered drug devices, focusing on delivery strategies, manufacturing techniques, and control circuit design with specific examples. EXPERT OPINION The application of electronically powered drug delivery systems is now considered a feasible therapeutic approach with improved drug release efficiency and increased patient comfort. It is anticipated that these technologies will gradually fulfill clinical needs and resolve commercialization challenges in the future. This review discusses the current advances in electronic drug delivery devices, especially focusing on designing strategies to achieve an effective drug release, as well as the perspectives and challenges for future applications in clinical therapy.
Collapse
Affiliation(s)
- Guang Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Fenni Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
35
|
Cha GD, Jung S, Choi SH, Kim DH. Local Drug Delivery Strategies for Glioblastoma Treatment. Brain Tumor Res Treat 2022; 10:151-157. [PMID: 35929112 PMCID: PMC9353160 DOI: 10.14791/btrt.2022.0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/18/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its malignancy. The key reason for the limited efficacy of standard treatment is the high recurrence rate of GBM, even after surgical resection. Hence, intensive postsurgical chemical therapies, such as the systemic delivery of various drugs and/or drug combinations, are typically followed after surgery. However, overcoming the blood-brain barrier by systemic administration to efficiently deliver drugs to the brain tumor remains a daunting goal. Therefore, various local drug delivery methods showing potential for improved therapeutic efficacy have been proposed. In particular, the recent application of electronic devices for the controlled delivery of chemotherapy drugs to GBM tissue has attracted attention. We herein review the recent progress of local drug delivery strategies, including electronics-assisted strategies, at the research and commercial level. We also present a brief discussion of the unsolved challenges and future research direction of localized chemotherapy methods for GBM.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonwoo Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Korea.,Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
36
|
Sustainable drug release using nanoparticle encapsulated microneedles. Chem Asian J 2022; 17:e202200333. [DOI: 10.1002/asia.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Indexed: 11/07/2022]
|
37
|
Park W, Nguyen VP, Jeon Y, Kim B, Li Y, Yi J, Kim H, Leem JW, Kim YL, Kim DR, Paulus YM, Lee CH. Biodegradable silicon nanoneedles for ocular drug delivery. SCIENCE ADVANCES 2022; 8:eabn1772. [PMID: 35353558 PMCID: PMC8967230 DOI: 10.1126/sciadv.abn1772] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bongjoong Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Wu X, Park J, Chow SYA, Kasuya MCZ, Ikeuchi Y, Kim B. Localised light delivery on melanoma cells using optical microneedles. BIOMEDICAL OPTICS EXPRESS 2022; 13:1045-1060. [PMID: 35284152 PMCID: PMC8884222 DOI: 10.1364/boe.450456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Light-based therapy is an emerging treatment for skin cancer, which has received increased attention due to its drug-free and non-invasive approach. However, the limitation of current light therapy methods is the inability for light to penetrate the skin and reach deep lesions. As such, we have developed a polylactic acid (PLA) microneedles array as a novel light transmission platform to perform in vitro evaluation regarding the effect of light therapy on skin cancer. For the first time, we designed and fabricated a microneedle array system with a height fixation device that can be installed in a cell culture dish and an LED array for blue light irradiation. The effect of the blue light combined with the microneedles on cell apoptosis was evaluated using B16F10 melanoma cells and analyzed by Hoechst staining. Our results demonstrate that blue light can be transmitted by microneedles to skin cells and effectively affect cell viability.
Collapse
Affiliation(s)
- Xiaobin Wu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Siu Yu A. Chow
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Japan
| | | | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
39
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
40
|
Bian Q, Huang L, Xu Y, Wang R, Gu Y, Yuan A, Ma X, Hu J, Rao Y, Xu D, Wang H, Gao J. A Facile Low-Dose Photosensitizer-Incorporated Dissolving Microneedles-Based Composite System for Eliciting Antitumor Immunity and the Abscopal Effect. ACS NANO 2021; 15:19468-19479. [PMID: 34859990 DOI: 10.1021/acsnano.1c06225] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanomedicine-based photodynamic therapy (PDT) for melanoma treatment has attracted great attention. However, the complex design of polymer nanoparticles and high doses of photosensitizers used in intravenous injections (for sufficient accumulation of drugs in tumor lesions) pose a huge challenge to the commercialization and further clinical application. Herein, we fabricated the carrier-free nanoassemblies of a chlorin e6 (L-Ce6 NAs)-integrated fast-dissolving microneedles patch (L-Ce6 MNs) enriching only about 3 μg of Ce6 in the needle tips via a facile fabrication method. The L-Ce6 MNs had sufficient mechanical strength to penetrate the skin and facilitated the transportation of L-Ce6 NAs to a depth of 200-500 μm under the skin, thereby achieving efficient and accurate drug delivery to tumor lesions. In a xenograft mouse melanoma model, the L-Ce6 MNs-based PDT with low dose of Ce6 (0.12 mg/kg) exerted efficient ablation of the primary lesions in situ through reactive oxygen species (ROS) generation. More importantly, a significant abscopal effect was also elicited by activating immunogenic cell death (ICD) and releasing danger-associated molecular patterns (DAMPs), which in turn promoted dendritic cells (DCs) maturation and the subsequent antigen presentation, thereby facilitating the T-cell-mediated immune response without synergetic immunotherapies. Collectively, our findings indicate the facile, controllable, and fast-dissolving microneedles patch with a low dose of photosensitizers presented great therapeutic potential for enhanced photoimmunotherapy.
Collapse
Affiliation(s)
- Qiong Bian
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingling Huang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yihua Xu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruxuan Wang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueting Gu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Anran Yuan
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Hu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuefeng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center of Zhejiang University, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Lee WH, Cha GD, Kim DH. Flexible and biodegradable electronic implants for diagnosis and treatment of brain diseases. Curr Opin Biotechnol 2021; 72:13-21. [PMID: 34425329 DOI: 10.1016/j.copbio.2021.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
In the diagnosis and treatment of brain diseases, implantable devices have immense potential for intracranial sensing of brain activity and application of controlled therapy for providing feedback to the sensing. Flexible materials are preferred for implantable devices, as they can minimise implanted device-brain tissue mechanical mismatch. Moreover, biodegradable implantable devices can reduce potential immunological side-effects. Biodegradability also helps avoid the burdensome secondary surgery for retrieving the implanted device. In this study, we reviewed recent advancements related to the use of flexible and biodegradable type of implantable devices for the diagnosis and treatment of brain diseases. Representative cases of intracranial sensing and feedback therapy are introduced, and then a brief discussion concludes the review.
Collapse
Affiliation(s)
- Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
43
|
Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res 2021; 25:24. [PMID: 34321111 PMCID: PMC8317283 DOI: 10.1186/s40824-021-00226-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/18/2021] [Indexed: 01/05/2023] Open
Abstract
Various non-invasive administrations have recently emerged as an alternative to conventional needle injections. A transdermal drug delivery system (TDDS) represents the most attractive method among these because of its low rejection rate, excellent ease of administration, and superb convenience and persistence among patients. TDDS could be applicable in not only pharmaceuticals but also in the skin care industry, including cosmetics. Because this method mainly involves local administration, it can prevent local buildup in drug concentration and nonspecific delivery to tissues not targeted by the drug. However, the physicochemical properties of the skin translate to multiple obstacles and restrictions in transdermal delivery, with numerous investigations conducted to overcome these bottlenecks. In this review, we describe the different types of available TDDS methods, along with a critical discussion of the specific advantages and disadvantages, characterization methods, and potential of each method. Progress in research on these alternative methods has established the high efficiency inherent to TDDS, which is expected to find applications in a wide range of fields.
Collapse
Affiliation(s)
- Woo Yeup Jeong
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hye Eun Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|