1
|
Tsai CL, Lu HC, Tseng CC, Xue YJ, Hung KE, Wu CS, Chang CC, Hsu CS, Gugujonovic K, Scharber MC, Cao FY, Cheng YJ. Perfluorophenyl-Incorporated Ferrocene: A Non-Volatile Solid Additive for Boosting Efficiency and Stability in Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40392575 DOI: 10.1021/acsami.5c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
In this study, we designed and synthesized a new non-volatile solid additive FcF10 by integrating two pentafluorophenyl (C6F5) groups into the cyclopentadienyl (CP) rings of ferrocene (Fc) through ester linkages. The FcF10 with a three-dimensional (3D) framework facilitated morphological optimization in the PM6:Y6 system through a combination of π···π, F···π, and F···F interactions between the CP and C6F5 rings in FcF10 and the C6F2 rings in Y6. The FcF10-incorporated (3.75 wt %) PM6:Y6-based solar cell device achieved a higher power conversion efficiency (PCE) of 17.00%, with a Voc of 0.85 V, a Jsc of 27.35 mA cm-2, and an FF of 73.29%, compared to the pristine PM6:Y6 device. These improvements are attributed to the formation of a favorable active layer morphology, which enhances exciton dissociation and charge transport while reducing bimolecular and trap-assisted recombination. The FcF10 additive facilitates non-covalent interactions with Y6, such as F···F, F···π, and π···π interactions between the Cp and C6F5 rings in FcF10 and the FIC end groups in Y6. These supramolecular interactions improve molecular stacking and crystallinity within the Y6 domain, as evidenced by red-shifted Y6 absorption, reduced π-π stacking d-spacing, and increased coherence lengths of Y6. Furthermore, the PM6:Y6:FcF10 device demonstrates superior thermal stability, retaining 88% of its initial PCE after prolonged thermal annealing at 85 °C. Overall, the incorporation of FcF10 achieves an optimized and stable donor-acceptor morphology, offering a promising approach for high-performance and thermally stable organic photovoltaics.
Collapse
Affiliation(s)
- Chia-Lin Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Han-Cheng Lu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chi-Chun Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yung-Jing Xue
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Kai-En Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chia-Shing Wu
- Taiwan Space Agency, 8F, 9 Prosperity 1st Road, Hsinchu Science Park, Hsinchu 300091, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Katarina Gugujonovic
- Institute of Physical Chemistry and Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Markus Clark Scharber
- Institute of Physical Chemistry and Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Fong-Yi Cao
- Department of Chemistry, National Changhua University of Education, Changhua City 50007, Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
2
|
Xia S, Xu J, Wang Z, Lee S, Wang L, Hu Y, Zhao X, Yang C, Zhou E, Yuan Z. Volatile Imide Additives with Large Dipole and Special Film Formation Kinetics Enable High-Performance Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202501816. [PMID: 40000396 DOI: 10.1002/anie.202501816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Large dipole moment additives have strong interactions with the host materials, which can optimize morphology and improve the photovoltaic performance of organic solar cells (OSCs). However, these additives are difficult to remove due to their strong intermolecular interactions, which may impair stability. Developing volatile additives with large dipole moments is challenging. Herein, we first report volatile imide additives that could effectively improve the performance of OSCs through morphology modification. Three additives N-(o-chlorophenyl)phthalimide (oClPA), N-(m-chlorophenyl)phthalimide (mClPA), and N-(p-chlorophenyl)phthalimide (pClPA) were screened to investigate the effort of positional isomerization on molecular configuration and interaction. These additives (ClPAs) have larger dipole moments (2.0664 Debye for oClPA, 4.2361 Debye for mClPA, and 4.7896 Debye for pClPA) compared to reported solid additives. In contrast to traditional simultaneous nucleation and crystal growth, ClPAs could induce the acceptor to nucleate first and then grow, which contributes to forming high-quality acceptor domains with better crystallinity. To our knowledge, this unique film formation kinetics was reported first. The power conversion efficiency (PCE) of OSCs based on PM6:BTP-eC9 treated with pClPA was improved from 16.13 % to 18.58 %. Additive pClPA also performed well in PM6:L8-BO, PM6:Y6, and D18:L8-BO systems, and a high PCE of 19.04 % was achieved. Our results indicate using imide unit to construct solid additives is a simple and effective strategy, and the positional isomerization of halogen atom also has a large effect on the photovoltaic performance.
Collapse
Affiliation(s)
- Shuangshuang Xia
- School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, China
| | - Jie Xu
- School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, China
| | - Zongtao Wang
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Seunglok Lee
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea
| | - Lei Wang
- Jiangxi Academy of Emergency Management Science (JXAEMS), Nanchang, 330001, China
| | - Yu Hu
- School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, China
| | - Xiaohong Zhao
- School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology(UNIST), Ulsan, 44919, South Korea
| | - Erjun Zhou
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhongyi Yuan
- School of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, China
| |
Collapse
|
3
|
Gao S, Xu S, Sun C, Yu L, Li J, Li R, Liu X, Zhou X, Chen H, Lin Y, Bao X, Zhu W, Song X. Rational Regulation of Layer-by-Layer Processed Active Layer via Trimer-Induced Pre-Swelling Strategy for Efficient and Robust Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420631. [PMID: 40342172 DOI: 10.1002/adma.202420631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Indexed: 05/11/2025]
Abstract
Thick-film (>300 nm) organic solar cells (OSCs) have garnered intensifying attention due to their compatibility with commercial roll-to-roll printing technology for the large-scale continuous fabrication process. However, due to the uncontrollable donor/acceptor (D/A) arrangement in thick-film condition, the restricted exciton splitting and severe carrier traps significantly impede the photovoltaic performance and operability. Herein, combined with layer-by-layer deposition technology, a twisted 3D star-shaped trimer (BTT-Out) is synthesized to develop a trimer-induced pre-swelling (TIP) strategy, where the BTT-Out is incorporated into the buried D18 donor layer to enable the fabrication of thick-film OSCs. The integrated approach characterizations reveal that the exceptional configuration and spontaneous self-organization behavior of BTT-Out trimer could pre-swell the D18 network to facilitate the acceptor's infiltration and accelerate the formation of D/A interfaces. This enhancement triggers the elevated polarons formation with amplified hole-transfer kinetics, which is essential for the augmented exciton splitting efficiency. Furthermore, the regulated swelling process can initiate the favorable self-assembly of L8-BO acceptors, which would ameliorate carrier transport channels and mitigate carrier traps. As a result, the TIP-modified thin-film OSC devices achieve the champion performance of 20.3% (thin-film) and 18.8% (thick-film) with upgraded stability, among one of the highest performances reported of thick-film OSCs.
Collapse
Affiliation(s)
- Shenzheng Gao
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Shanlei Xu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Cheng Sun
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Liyang Yu
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source (NSLS II), Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Huilong Chen
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Yijin Lin
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xichang Bao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
| | - Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P.R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Du L, Yang X, Sun M, Wu F, Zhu Q, Liu X, Shen X, Jeong SY, Woo HY, Chen L, Chen Y. Residue-Free Liquid-Crystal Molecular Additive Enables the Significant Improvement of Power Factor for Simple Quinoid Thermoelectric Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501632. [PMID: 40190145 DOI: 10.1002/smll.202501632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/26/2025] [Indexed: 05/27/2025]
Abstract
Quinoid polymers featured with high-spin ground states hold great potential for applications in organic thermoelectrics (OTE) since the radicals are liable to regulate the molecular electronic structure and carrier transfer ability. Whereas, only a few fused quinoid polymers are explored with low power factor (PF) currently. Herein, a liquid-crystal molecule-assisted strategy is proposed to promote a PF breakthrough of quinoid polymers. By introducing liquid-crystal molecule 5CB into the simple non-fused quinoidal polymer PAQM-3T which exhibits stable high-spin characters, a tighter molecular assembly can be readily induced without any residue upon thermal annealing, leading to nearly doubled carrier mobility and conductivity. Moreover, 5CB-treatment causes few impacts on the high-spin character and the Seebeck coefficient (S) can keep a high value under heavy p-type doping conditions. Ultimately, the optimal PF of PAQM-3T reaches 198.4 µW•m-1•K-2, higher than those of the traditional simple non-fused aromatic polymers. Notably, 10% wt 5CB-treated film boosts the PF up to 309.55 µW•m-1•K-2 with enhanced conductivity of 145.27 S•cm-1 and well-balanced S of 146.6 µV•K-1, which is the highest value among quinoid materials and even approaching to those of the state-of-the-art aromatic polymers. The breakthrough efficiency highlights the promising prospect of liquid-crystal molecular-assisted simple quinoid polymers for high-performance OTE.
Collapse
Affiliation(s)
- Li Du
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xufang Yang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Menglin Sun
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Qi Zhu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xuncheng Liu
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Sang Young Jeong
- Department of Chemistry College of Science Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry College of Science Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Lie Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
5
|
Liu L, Li H, Xie J, Yang Z, Bai Y, Li M, Huang Z, Zhang K, Huang F. Organic Solar Cell with Efficiency of 20.49% Enabled by Solid Additive and Non-Halogenated Solvent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500352. [PMID: 40285593 DOI: 10.1002/adma.202500352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Recently, benzene-based solid additives (BSAs) have emerged as pivotal components in modulating the morphology of the blend film in organic solar cells (OSCs). However, since almost all substituents on BSAs are weak electron-withdrawing groups and contain halogen atoms, the study of BSAs with non-halogenated strong electron-withdrawing groups has received little attention. Herein, an additive strategy is proposed, involving the incorporation of non-halogenated strong electron-withdrawing groups on the benzene ring. An effective BSA, 4-nitro-benzonitrile (NBN), is selected to boost the efficiency of devices. The results demonstrate that the NBN-treated device exhibits enhanced light absorption, superior charge transport performance, mitigated charge recombination, and more optimal morphology compared to the additive-free OSC. Consequently, the D18:BTP-eC9+NBN-based binary device and D18:L8-BO:BTP-eC9+NBN-based ternary OSC processed by non-halogenated solvent achieved outstanding efficiencies of 20.22% and 20.49%, respectively. Furthermore, the universality of NBN is also confirmed in different active layer systems. In conclusion, this work demonstrates that the introduction of non-halogenated strong electron-absorbing moieties on the benzene ring is a promising approach to design BSAs, which can tune the film morphology and achieve highly efficient devices, and has certain guiding significance for the development of BSAs.
Collapse
Affiliation(s)
- Longfei Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Hui Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Juxuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Zhiyuan Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Mingke Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zixin Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou, 510640, P. R. China
| |
Collapse
|
6
|
Xiong W, Cui Y, Zhang Z, Zhu S, Wang Z, Chai Z, Hu H, Chen Y. Manipulating σ-Hole Interactions in Halogenated Additives for High-Performance Organic Solar Cells with 19.8 % Efficiency. Angew Chem Int Ed Engl 2025; 64:e202500085. [PMID: 39953962 DOI: 10.1002/anie.202500085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
The incorporation of volatile solid additives has emerged as an effective strategy for enhancing the performance of organic solar cells (OSCs). However, the influence of the electronic structure of these additives on morphological evolution remains insufficiently understood. Herein, 1,4-Dibromobenzene (DBB) and 1,4-Difluoro-2,5-dibromobenzene (DFBB) are introduced as volatile additives into OSCs. Theoretical calculations indicate that DFBB has a higher electrostatic potential extremum and stronger σ-holes interaction compared to DBB, enabling more robust intermolecular interactions with acceptors. The synergistic halogen interactions between DFBB and the active layer matrix balances the differences in crystallinity between the donor and acceptor during the film formation process, promotes the formation of dense molecular packing and ordered orientation, optimizes the vertical composition distribution, and promotes the formation of domain sizes close to the exciton diffusion distance. Consequently, the PM6 : L8-BO-based device treated with DFBB achieves an efficiency of 19.2 % with a fill factor (FF) of 80.8 %, which is superior to the control and DBB. Further validation across various systems, including PM6 : Y6, PM6 : BTP-eC9, and D18 : L8-BO, highlights similar efficiency enhancements, with the D18 : L8-BO system achieving an outstanding PCE of 19.8 %. This work demonstrates that the modulation of σ-hole interactions in volatile additives can effectively optimize multi-scale morphology for high-performance OSCs.
Collapse
Affiliation(s)
- Wenzhao Xiong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Ziyue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shenbo Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaohan Chai
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
7
|
Song X, Zhang B, Liu X, Mei L, Li H, Yin S, Zhou X, Chen H, Lin Y, Zhu W, Chen XK. Low-Volatility Fused-Ring Solid Additive Engineering for Synergistically Elongating Exciton Lifetime and Mitigating Trap Density Toward Organic Solar Cells of 20.5% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418393. [PMID: 39937159 DOI: 10.1002/adma.202418393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Volatile solid additives (VSAs) with single or fused-ring structures have attracted much attention for enhancing power conversion efficiencies (PCEs) of organic solar cells (OSCs). While the working mechanisms of high-volatility single-ring additives have been well studied, the influence of low-volatility fused-ring VSAs on molecular aggregations and exciton/carrier dynamics remains still unclear. Herein, 3,6-dibromothieno[3,2-b]thiophene (3,6TTBr) is selected as a representative low-volatility fused-ring VSA to elucidate its working mechanism. Via the theoretical and experimental joint investigation, it is found that rigid and planar 3,6TTBr molecules adsorb onto the terminal units of L8-BO (acceptor), inducing loose space for adjacent molecules. The low-volatility 3,6TTBr thus favors the L8-BO center-terminal packing with a larger interfragment distance, which relieves the L8-BO over-aggregation and induces the ordered packing. Consequently, the 3,6TTBr treatment reduces aggregation-caused quenching, enhancing the photoluminescence quantum yield and exciton lifetime of L8-BO film. The combination of the above properties with the reduced trap density and improved carrier transport in the 3,6TTBr-treated devices contributed to PCE of 20.1%. To validate the broad applicability of the findings, 1,5-dibromonaphthalene (1,5-BN), another low-volatility fused-ring solid, is explored. The devices with 1,5-BN achieved an impressive PCE of 20.5%, verifying the validity of the low-volatility fused-ring VSA strategy for boosting OSC performances.
Collapse
Affiliation(s)
- Xin Song
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Busheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingting Liu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou, Suzhou, Jiangsu, 215123, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shanshan Yin
- School of Mathematics and Physics Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Xinjie Zhou
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Huilong Chen
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yijin Lin
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University Suzhou, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
8
|
Zou W, Sun Y, Sun L, Wang X, Gao C, Jiang D, Yu J, Zhang G, Yin H, Yang R, Zhu H, Chen H, Gao K. Extending Exciton Diffusion Length via an Organic-Metal Platinum Complex Additive for High-Performance Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413125. [PMID: 39763128 DOI: 10.1002/adma.202413125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/04/2024] [Indexed: 02/26/2025]
Abstract
The long exciton diffusion length (LD) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited LD hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system. The addition of TTz-Pt enhanced the crystallinity of blends, reduced energy disorder, and trap density, and decreased non-radiative recombination and exciton binding energy, which is conducive to prolonging the LD in the TTz-Pt-treated film, thereby facilitating the exciton dissociation and charge transport process along with inhibiting the charge recombination. Consequently, the TTz-Pt-treated D18:L8-BO:IDIC device (100 nm) exhibits a champion power conversion efficiency (PCE) of 20.12% (certified as 19.54%), one of the highest PCEs reported for OSCs to date. Remarkably, a record-breaking PCE of 18.84% is yielded for the active layer thickness of 300 nm. Furthermore, the TTz-Pt exhibits superior universality in improving the performance of OSCs. This work provides a simple and universal approach to extending LD by introducing an organic-metal platinum complex as a solid additive to achieve highly efficient thick-film OSCs.
Collapse
Affiliation(s)
- Wentao Zou
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yanna Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Lingya Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Dongcheng Jiang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
9
|
Wu H, Wu J, Tang F, Peng X. Enhancing D/A Interactions via Porphyrin Isomerization to Improve Photovoltaic Performance. CHEMSUSCHEM 2025; 18:e202401207. [PMID: 39101598 DOI: 10.1002/cssc.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The interactions between the electron donors and electron acceptors (D/A) play important roles for the performance of organic solar cells (OSCs). While the isomerization strategy is known to optimize molecular geometries and properties, the impacts of isomerization on the donors or acceptors in D/A interactions have not been extensively investigated. Here in, we innovatively investigated the impacts of donor isomerism on the D/A interactions by synthesizing two small molecule donors m-ph-ZnP2 and p-ph-ZnP2 by linking two functionalized porphyrins at the meta and para positions of phenyl groups, respectively. Compared with p-ph-ZnP2, m-ph-ZnP2 displays reduced self-aggregation but enhanced interactions with PC61BM. Consequently, a much higher power conversion efficiency (PCE) of 5.43 % is achieved for the m-ph-ZnP2 binary OSCs than the p-ph-ZnP2 devices with a PCE of 2.03 %. The enhanced performance of m-ph-ZnP2-based device can be primarily attributed to the stronger intramolecular charge transfer (ICT), the enhanced D/A interactions, the improved charge transfer, and the suppressed charge recombination. Furthermore, the ternary devices based on m-ph-ZnP2:Y6:PC61BM achieve a PCE of 8.34 %. In short, this work elucidates the relationship among the chemical structure, D/A interactions and device performance, providing valuable guidelines for designing efficient OSCs materials.
Collapse
Affiliation(s)
- Hanping Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| |
Collapse
|
10
|
Memon WA, Zhu Y, Xiong S, Chen H, Lai H, Wang Y, Li H, Li M, He F. Dual Additive Strategy with Quasi-Planar Heterojunction Architecture Assisted in Morphology Optimization for High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69467-69478. [PMID: 39636704 DOI: 10.1021/acsami.4c17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Achieving high-performance and stable organic solar cells (OSCs) remains a critical challenge, primarily due to the precise optimization required for active layer morphology. Herein, this work reports a dual additive strategy using 3,5-dichlorobromobenzene (DCBB) and 1,8-diiodooctane (DIO) to optimize the morphology of both bulk-heterojunction (BHJ) and quasi-planar heterojunction (Q-PHJ) based on donor D18 and acceptor BTP-eC9. The systematic results reveal that the dual additive strategy significantly promotes phase separation while inhibiting excessive aggregation, which, in turn, improves molecular order and crystallization. As a result, BHJ and Q-PHJ OSCs processed with dual additive DIO + DCBB achieve impressive power conversion efficiencies of 17.77% and 18.60%, respectively, the highest reported values for dual additive-processed OSCs. The superior performance is attributed to improved charge transport and reduced recombination losses, as evidenced by higher short-circuit current densities (JSC) and fill factors (FF). Importantly, Q-PHJ OSCs processed with either DCBB or DIO + DCBB, in comparison to BHJ OSCs, exhibit exceptional shelf-stability, maintaining 80% of their initial power conversion efficiency after 2660 and 2193 h, respectively. These findings underscore the potential of dual additive strategies to advance the development of stable, high-efficiency OSCs suitable for large-area fabrication, marking a significant step forward in renewable energy technology.
Collapse
Affiliation(s)
- Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Chen
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingpeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Hu D, Tang H, Chen C, Lee DJ, Lu S, Li G, Hsu HY, Laquai F. Solid Additive Engineering for Next-generation Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406949. [PMID: 39439131 DOI: 10.1002/adma.202406949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Solution-processed bulk heterojunction (BHJ) organic solar cells (OSCs) have emerged as a promising next-generation photovoltaic technology. In this emerging field, there is a growing trend of employing solid additives (SAs) to fine-tune the BHJ morphology and unlock the full potential of OSCs. SA engineering offers several significant benefits for commercialization, including the ability to i) control film-forming kinetics to expedite high-throughput fabrication, ii) leverage weak noncovalent interactions between SA and BHJ materials to enhance the efficiency and stability of OSCs, and iii) simplify procedures to facilitate cost-effective production and scaling-up. These features make SA engineering a key catalyst for accelerating the development of OSCs. Recent breakthroughs have shown that SA engineering can achieve an efficiency of 19.67% in single-junction OSCs, demonstrating its effectiveness in promoting the commercialization of organic photovoltaic devices. This review provides a comprehensive overview of significant breakthroughs and pivotal contributions of emerging SAs, focusing on their roles in governing film-forming dynamics, stabilizing phase separation, and addressing other crucial aspects. The rationale and design rules for SAs in highly efficient and stable OSCs are also discussed. Finally, the remaining challenges are summarized, and perspectives on future advances in SA engineering are offered.
Collapse
Affiliation(s)
- Dingqin Hu
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Hua Tang
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chen Chen
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
| | - Shirong Lu
- Department of Material Science and Technology, Taizhou University, Taizhou, 318000, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hum, Kowloon, 999077, Hong Kong
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center, Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Wu L, Yun M, Qin J, Huang S, Ou Z, Li Q, Wang X, Yuan W, Dong L, Cheng X, Yang Y, Zheng Y, Sun K, Zhang Z, Hu Z, Liu Z, Leng Y, Du J. Morphology Optimization by Non-Halogenated and Twisted Volatile Solid Additive for High-Efficiency Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408610. [PMID: 39428832 DOI: 10.1002/smll.202408610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Recently, volatile solid additives have attracted tremendous interest in the field of organic solar cells (OSCs), which can effectively improve device efficiency without sacrificing the reproducibility and stability of the device. However, the structure of reported solid additives is onefold and its working mechanism needs to be further investigated. Herein, a novel non-halogenated and twisted solid additive 1,4-diphenoxybenzene (DPB) is employed to optimize the morphology of the active layer in OSCs. The properties of additive DPB, morphology of active layer, and carrier dynamics behaviors have been systematically investigated through theoretical calculations, in situ and ex situ spectroscopy, grazing-incidence wide-angle X-ray scattering (GIWAXS), and grazing-incidence small-angle X-ray scattering (GISAXS) measurement, as well as ultrafast spectroscopy technology. The results reveal that the twisted additive DPB selectively interacts with acceptor Y6, and thus forms optimized morphology of active layer with increased molecular crystallinity, tight molecular packing, and favorable phase separation. As a result, the optimized devices deliver a remarkable power conversion efficiency (PCE) of 19.04%, which is the highest value for the D18-Cl:N3 system to date. These results demonstrate that non-halogenated and twisted solid additive DPB has broad prospects in the preparation of highly efficient OSCs, providing theoretical and experimental guidance for the development of high-performance solid additives.
Collapse
Affiliation(s)
- Linze Wu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Maojin Yun
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Jianqiang Qin
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China
| | - Sihao Huang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China
| | - Zeping Ou
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qian Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xiaowu Wang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Wenqian Yuan
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Li Dong
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao, 266071, China
| | - Xi Cheng
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yujie Zheng
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Kuan Sun
- MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Zeyu Zhang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhiping Hu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China
| | - Yuxin Leng
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai, 201800, China
| | - Juan Du
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
13
|
Chen J, Wang Y, Wang L, Lin FR, Han C, Ma X, Zheng J, Li Z, Zapien JA, Gao H, Jen AKY. Highly Efficient and Stable Organic Solar Cells Enabled by a Commercialized Simple Thieno[3,2-b]thiophene Additive. SMALL METHODS 2024; 8:e2400172. [PMID: 38807542 DOI: 10.1002/smtd.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Indexed: 05/30/2024]
Abstract
Delicately manipulating nanomorphology is recognized as a vital and effective approach to enhancing the performance and stability of organic solar cells (OSCs). However, the complete removal of solvent additives with high boiling points is typically necessary to maintain the operational stability of the device. In this study, two commercially available organic intermediates, namely thieno[3,2-b]thiophene (TT) and 3,6-dibromothieno[3,2-b]thiophene (TTB) are introduced, as solid additives in OSCs. The theoretical simulations and experimental results indicate that TT and TTB may exhibit stronger intermolecular interactions with the acceptor Y6 and donor PM6, respectively. This suggests that the solid additives (SAs) can selectively intercalate between Y6 and PM6 molecules, thereby improving the packing order and crystallinity. As a result, the TT-treated PM6:Y6 system exhibits a favorable morphology, improved charge carrier mobility, and minimal charge recombination loss. These characteristics contribute to an impressive efficiency of 17.75%. Furthermore, the system demonstrates exceptional thermal stability (T80 > 2800 h at 65 °C) and outstanding photostability. The universal applicability of TT treatment is confirmed in OSCs employing D18:L8-BO, achieving a significantly higher PCE of 18.3%. These findings underscore the importance of using appropriate solid additives to optimize the blend morphology of OSCs, thereby improving photovoltaic performance and thermal stability.
Collapse
Affiliation(s)
- Jinwei Chen
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Yiwen Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Institute of New Energy Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lei Wang
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Xiao Ma
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Jialu Zheng
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Zhao Li
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
| | - Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, Shaanxi, 710065, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 99907, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
14
|
Xu J, Xiao C, Zhang Z, Zhang J, Wang B, McNeill CR, Li W. Utilization of Polycyclic Aromatic Solid Additives for Morphology and Thermal Stability Enhancement in Photoactive Layers of Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405573. [PMID: 39104295 DOI: 10.1002/smll.202405573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Volatile solid additives have emerged as a promising strategy for enhancing film morphology and promoting the power conversion efficiency (PCE) of organic solar cells (OSCs). Herein, a series of novel polycyclic aromatic additives with analogous chemical structures, including fluorene (FL), dibenzothiophene (DBT), and dibenzofuran (DBF) derived from crude oils, are presented and incorporated into OSCs. All these additives exhibit strong interactions with the electron-deficient terminal groups of L8-BO within the bulk-heterojunction OSCs. Moreover, they demonstrate significant sublimation during thermal annealing, leading to increase free volumes for the rearrangement and recrystallization of L8-BO. This phenomenon leads to an improved film morphology and an elevated glass-transition temperature of the photoactive layers. Consequently, the PCE of the PM6:L8-BO blend has been boosted from 16.60% to 18.60% with 40 wt% DBF additives, with a champion PCE of 19.11% achieved for ternary PM6:L8-BO:BTP-eC9 OSCs. Furthermore, the prolonged shelf and thermal stability have been observed in OSCs with these additives. This study emphasizes the synergic effect of volatile solid additives on the performance and thermal stability of OSCs, highlighting their potential for advancing the field of photovoltaics.
Collapse
Affiliation(s)
- Jianing Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Junjie Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
15
|
Qin J, Wu L, Huang S, Ou Z, Wang X, Yang Y, Zheng Y, Sun K, Zhang Z, Hu Z, Liu Z, Leng Y, Du J. Gradual Optimization of Molecular Aggregation and Stacking Enables Over 19% Efficiency in Binary Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409867. [PMID: 39356036 PMCID: PMC11600276 DOI: 10.1002/advs.202409867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Indexed: 10/03/2024]
Abstract
Volatile solid additive is an effective and simple strategy for morphology control in organic solar cells (OSCs). The development of environmentally friendly new additives which can also be easily removed without high-temperature thermal annealing treatment is currently a trend, and the working mechanism needs to be further studied. Herein, a highly volatile and non-halogenated solid additive 1-benzothiophene (BBT) is reported to regulate molecular aggregation and stacking of active layer components. According to the film-forming kinetics process, a momentary intermediate phase is formed during spin-coating, which slows down the film-forming process and leads to more ordered molecular stacking in the solid film after introducing solid additive BBT. Subsequently, after solvent vapor annealing (SVA) further treatment, the resultant blend films exhibit a tighter and more ordered molecular stacking. Consequently, the synergistic effect of solid additive BBT and SVA treatment can effectively control morphology of active layer and improve carrier transport characteristics, thereby enhancing the performance of OSCs. Finally, in D18-Cl:N3 system, an impressive power conversion efficiency of 19.53% is achieved. The work demonstrates that the combination of highly volatile solid additives and SVA treatment is an effective morphology control strategy, guiding the development of efficient OSCs.
Collapse
Affiliation(s)
- Jianqiang Qin
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Linze Wu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser ScienceShanghai Institute of Optics and Fine Mechanics (SIOM)Chinese Academy of Sciences (CAS)Shanghai201800China
| | - Sihao Huang
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser ScienceShanghai Institute of Optics and Fine Mechanics (SIOM)Chinese Academy of Sciences (CAS)Shanghai201800China
| | - Zeping Ou
- MOE Key Laboratory of Low‐grade Energy Utilization Technologies and Systems, School of Energy & Power EngineeringChongqing UniversityChongqing400044China
| | - Xiaowu Wang
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Yingguo Yang
- School of MicroelectronicsFudan UniversityShanghai200433China
| | - Yujie Zheng
- MOE Key Laboratory of Low‐grade Energy Utilization Technologies and Systems, School of Energy & Power EngineeringChongqing UniversityChongqing400044China
| | - Kuan Sun
- MOE Key Laboratory of Low‐grade Energy Utilization Technologies and Systems, School of Energy & Power EngineeringChongqing UniversityChongqing400044China
| | - Zeyu Zhang
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Zhiping Hu
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Zhengzheng Liu
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser ScienceShanghai Institute of Optics and Fine Mechanics (SIOM)Chinese Academy of Sciences (CAS)Shanghai201800China
| | - Yuxin Leng
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra‐intense Laser ScienceShanghai Institute of Optics and Fine Mechanics (SIOM)Chinese Academy of Sciences (CAS)Shanghai201800China
| | - Juan Du
- School of Physics and Optoelectronic EngineeringHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
16
|
Wang Y, Sun K, Li C, Zhao C, Gao C, Zhu L, Bai Q, Xie C, You P, Lv J, Sun X, Hu H, Wang Z, Hu H, Tang Z, He B, Qiu M, Li S, Zhang G. A Novel Upside-Down Thermal Annealing Method Toward High-Quality Active Layers Enables Organic Solar Cells with Efficiency Approaching 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411957. [PMID: 39380380 DOI: 10.1002/adma.202411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The emerging non-fullerene acceptors with low voltage losses have pushed the power conversion efficiency of organic solar cells (OSCs) to ≈20% with auxiliary morphology optimization. Thermal annealing (TA), as the most widely adopted post-treatment method, has been playing an essential role in realizing the potential of various material systems. However, the procedure of TA, i.e., the way that TA is performed, is almost identical among thousands of OSC papers since ≈30 years ago other than changes in temperature and annealing time. Herein, a reverse thermal annealing (RTA) technique is developed, which can enhance the dielectric constant of active layer film, thereby producing a smaller Coulomb capture radius (14.93 nm), meanwhile, forming a moderate nano-scale phase aggregation and a more favorable face-on molecular stacking orientation. Thus, this method can reduce the decline in open circuit voltage of the conventional TA method by achieving decreased radiative (0.334 eV) and non-radiative (0.215 eV) recombination loss. The power conversion efficiency of the RTA PM6:L8-BO-X device increases to 19.91% (certified 19.42%) compared to the TA device (18.98%). It is shown that this method exhibits a superb universality in 4 other material systems, revealing its dramatic potential to be employed in a wide range of OSCs.
Collapse
Affiliation(s)
- Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kangbo Sun
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qing Bai
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Peng You
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jie Lv
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zeguo Tang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
17
|
Kilbride RC, Spooner ELK, Cassella EJ, O’Kane ME, Doudin K, Lidzey DG, Jones R, Parnell AJ. Exploring the Impact of 1,8-Diioodoctane on the Photostability of Organic Photovoltaics. ACS APPLIED ENERGY MATERIALS 2024; 7:8401-8411. [PMID: 39421274 PMCID: PMC11480932 DOI: 10.1021/acsaem.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Improving the photostability of the light-harvesting blend film in organic photovoltaics is crucial to achieving long-term operational lifetimes that are required for commercialization. However, understanding the degradation factors which drive instabilities is complex, with many variables such as film morphology, residual solvents, and acceptor or donor design all influencing how light and oxygen interact with the blend film. In this work, we show how blend films comprising a donor polymer (PBDB-T) and small molecule acceptor (PC71BM or ITIC) processed with solvent additive (DIO) yield very different film morphologies, device performance, and photostability. We show that DIO is retained approximately 10 times more effectively in ITIC based films compared to PC71BM. Unexpectedly, we see that while high volumes of DIO reduce photostability for encapsulated ITIC devices, when oxygen is introduced DIO can improve the lifetime of PBDB-T:ITIC based cells. Here, the addition of 3% DIO doubles the T 80 compared to ITIC based devices without DIO, suggesting that DIO-induced morphological changes interfere with or reduce photo-oxidative reactions.
Collapse
Affiliation(s)
- Rachel C. Kilbride
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Emma L. K. Spooner
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
- The
Photon Science Institute, The University of Manchester, Manchester M13 9PY, U.K.
| | - Elena J. Cassella
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Mary E. O’Kane
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Khalid Doudin
- Department
of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - David G. Lidzey
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Richard Jones
- Department
of Materials, The University of Manchester, Sackville Street Building, Manchester M1 3BB, U.K.
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, The University
of Sheffield, Hicks Building,
Hounsfield Road, Sheffield S3 7RH, U.K.
| |
Collapse
|
18
|
Wu J, Sun F, Wang X, Chen Q, Franco LR, Zheng X, Araujo CM, Yang R, Yu D, Wang E. Unveiling the Influence of Linkers on Conformations of Oligomeric Acceptors for High-Performance Polymer Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406772. [PMID: 39206722 PMCID: PMC11515919 DOI: 10.1002/advs.202406772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Conformational isomerism of organic photovoltaic materials has a profound impact on their molecular packing and therefore performance of polymer solar cells (PSCs). However, the conformations of oligomeric acceptors (OAs) are mostly predicted by simulations rather than experimental determinations. Herein, the stereochemical S-shaped structure of two dimeric-type acceptor molecules, V-DYIC and V-DYIC-4F, is first confirmed with different end groups (IC for V-DYIC and IC-2F for V-DYIC-4F), incorporating vinylene linkage for connecting the distinct state-of-the-art small molecule acceptor Y-segments. Through the synthetic control of fluorination sites adjacent to the vinyl-linker, S-shaped the conformation by NMR experiments is validated. Compared to the O-shaped dimer, S-shaped conformation results in enhanced lamellar order and reduced nonradiative recombination losses. The optimal acceptor, V-DYIC-4F, achieved a champion efficiency of 18.10% with the lowest energy loss of 0.556 eV in its devices paired with PM6 due to their efficient carrier transport, and suppressed recombination compared to other devices, being attributed to the synergistic effect of conformation and end group fluorination. The insights gained in this work contribute valuable knowledge of both synthetic control and structural determination of OAs, providing strategic design guidelines for the future development of dimeric acceptors toward high-efficiency PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
| | - Fengbo Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Qiaonan Chen
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
| | - Leandro R. Franco
- Department of Engineering and PhysicsKarlstad UniversityKarlstad65188Sweden
| | - Xufan Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - C. Moyses Araujo
- Department of Engineering and PhysicsKarlstad UniversityKarlstad65188Sweden
- Materials Theory DivisionDepartment of Physics and AstronomyUppsala UniversityUppsala75120Sweden
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education)School of Optoelectronic Materials & TechnologyJianghan UniversityWuhan430056China
| | - Donghong Yu
- Department of Chemistry and BioscienceAalborg UniversityAalborgDK‐9220Denmark
- Sino‐Danish Center for Education and ResearchAarhusDK‐8000Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSE‐412 96Sweden
| |
Collapse
|
19
|
Miao Y, Sun Y, Zou W, Zhang X, Kan Y, Zhang W, Jiang X, Wang X, Yang R, Hao X, Geng L, Xu H, Gao K. Isomerization Engineering of Solid Additives Enables Highly Efficient Organic Solar Cells via Manipulating Molecular Stacking and Aggregation of Active Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406623. [PMID: 38899799 DOI: 10.1002/adma.202406623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Morphology control is crucial in achieving high-performance organic solar cells (OSCs) and remains a major challenge in the field of OSC. Solid additive is an effective strategy to fine-tune morphology, however, the mechanism underlying isomeric solid additives on blend morphology and OSC performance is still vague and urgently requires further investigation. Herein, two solid additives based on pyridazine or pyrimidine as core units, M1 and M2, are designed and synthesized to explore working mechanism of the isomeric solid additives in OSCs. The smaller steric hindrance and larger dipole moment facilitate better π-π stacking and aggregation in M1-based active layer. The M1-treated all-small-molecule OSCs (ASM OSCs) obtain an impressive efficiency of 17.57%, ranking among the highest values for binary ASM OSCs, with 16.70% for M2-treated counterparts. Moreover, it is imperative to investigate whether the isomerization engineering of solid additives works in state-of-the-art polymer OSCs. M1-treated D18-Cl:PM6:L8-BO-based devices achieve an exceptional efficiency of 19.70% (certified as 19.34%), among the highest values for OSCs. The work provides deep insights into the design of solid additives and clarifies the potential working mechanism for optimizing the morphology and device performance through isomerization engineering of solid additives.
Collapse
Affiliation(s)
- Yawei Miao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yanna Sun
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Wentao Zou
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xu Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yuanyuan Kan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Xinyue Jiang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Longlong Geng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, P. R. China
| | - Huajun Xu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ke Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
20
|
Zhang C, Wang H, Sun X, Zhong X, Wei Y, Xu R, Wang K, Hu H, Xiao M. An Indacenodithienothiophene-Based Wide Bandgap Small Molecule Guest for Efficient and Stable Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400826. [PMID: 38634190 DOI: 10.1002/smll.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Indexed: 04/19/2024]
Abstract
The strategic and logical development of the third component (guest materials) plays a pivotal and intricate role in improving the efficiency and stability of ternary organic solar cells (OSCs). In this study, a novel guest material with a wide bandgap, named IDTR, is designed, synthesized, and incorporated as the third component. IDTR exhibits complementary absorption characteristics and cascade band alignment with the PM6:Y6 binary system. Morphological analysis reveals that the introduction of IDTR results in strong crystallinity, good miscibility, and proper vertical phase distribution, thereby realizing heightened and balanced charge transport behavior. Remarkably, the novel ternary OSCs have exhibited a significant enhancement in photovoltaic performance. Consequently, open-circuit voltage (VOC), short-circuit current (JSC), and fill factor (FF) have all witnessed substantial improvements with a remarkable power conversion efficiency (PCE) of 18.94% when L8-BO replaced Y6. Beyond the pronounced improvement in photovoltaic performance, superior device stability with a T80 approaching 400 h is successfully achieved. This achievement is attributed to the synergistic interplay of IDTR, providing robust support for the overall enhancement of performance. These findings offer crucial guidance and reference for the design and development of efficient and stable OSCs.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Han Wang
- School of Management, Xián Polytechnic University, Xián, 710048, P. R. China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Yulin Wei
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Ruida Xu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Mingjia Xiao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, P. R. China
| |
Collapse
|
21
|
Xie Q, Deng X, Zhao C, Fang J, Xia D, Zhang Y, Ding F, Wang J, Li M, Zhang Z, Xiao C, Liao X, Jiang L, Huang B, Dai R, Li W. Ethylenedioxythiophene-Based Small Molecular Donor with Multiple Conformation Locks for Organic Solar Cells with Efficiency of 19.3 . Angew Chem Int Ed Engl 2024; 63:e202403015. [PMID: 38623043 DOI: 10.1002/anie.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Feng Ding
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiali Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Runying Dai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Zhang H, Liu Y, Ran G, Li H, Zhang W, Cheng P, Bo Z. Sequentially Processed Bulk-Heterojunction-Buried Structure for Efficient Organic Solar Cells with 500 nm Thickness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400521. [PMID: 38477468 DOI: 10.1002/adma.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Large-area printing fabrication is a distinctive feature of organic solar cells (OSCs). However, the advance of upscalable fabrication is challenged by the thickness of organic active layers considering the importance of both exciton dissociation and charge collection. In this work, a bulk-heterojunction-buried (buried-BHJ) structure is introduced by sequential deposition to realize efficient exciton dissociation and charge collection, thereby contributing to efficient OSCs with 500 nm thick active layers. The buried-BHJ distributes donor and acceptor phases in the vertical direction as charge transport channels, while numerous BHJ interfaces are buried in each phase to facilitate exciton dissociation simultaneously. It is found that buried-BHJ configurations possess efficient exciton dissociation and rapid charge transport, resulting in reduced recombination losses. In comparison with traditional structures, the buried-BHJ structure displays a decent tolerance to film thickness. In particular, a power conversion efficiency of 16.0% is achieved with active layers at a thickness of 500 nm. To the best of the authors' knowledge, this represents the champion efficiency of thick film OSCs.
Collapse
Affiliation(s)
- Huarui Zhang
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuqiang Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Hongxiang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Pei Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhishan Bo
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
23
|
Zhou T, Jin W, Li Y, Xu X, Duan Y, Li R, Yu L, Peng Q. Crossbreeding Effect of Chalcogenation and Iodination on Benzene Additives Enables Optimized Morphology and 19.68% Efficiency of Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401405. [PMID: 38528662 PMCID: PMC11186042 DOI: 10.1002/advs.202401405] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Volatile solid additives have attracted increasing attention in optimizing the morphology and improving the performance of currently dominated non-fullerene acceptor-based organic solar cells (OSCs). However, the underlying principles governing the rational design of volatile solid additives remain elusive. Herein, a series of efficient volatile solid additives are successfully developed by the crossbreeding effect of chalcogenation and iodination for optimizing the morphology and improving the photovoltaic performances of OSCs. Five benzene derivatives of 1,4-dimethoxybenzene (DOB), 1-iodo-4-methoxybenzene (OIB), 1-iodo-4-methylthiobenzene (SIB), 1,4-dimethylthiobenzene (DSB) and 1,4-diiodobenzene (DIB) are systematically studied, where the widely used DIB is used as the reference. The effect of chalcogenation and iodination on the overall property is comprehensively investigated, which indicates that the versatile functional groups provided various types of noncovalent interactions with the host materials for modulating the morphology. Among them, SIB with the combination of sulphuration and iodination enabled more appropriate interactions with the host blend, giving rise to a highly ordered molecular packing and more favorable morphology. As a result, the binary OSCs based on PM6:L8-BO and PBTz-F:L8-BO as well as the ternary OSCs based on PBTz-F:PM6:L8-BO achieved impressive high PCEs of 18.87%, 18.81% and 19.68%, respectively, which are among the highest values for OSCs.
Collapse
Affiliation(s)
- Tao Zhou
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Wenwen Jin
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National LabSuffolkUptonNY11973USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengdu610059P. R. China
| |
Collapse
|
24
|
Sun N, Han Y, Huang W, Xu M, Wang J, An X, Lin J, Huang W. A Holistic Review of C = C Crosslinkable Conjugated Molecules in Solution-Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309779. [PMID: 38237201 DOI: 10.1002/adma.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.
Collapse
Affiliation(s)
- Ning Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
25
|
Liu C, Lüer L, Corre VML, Forberich K, Weitz P, Heumüller T, Du X, Wortmann J, Zhang J, Wagner J, Ying L, Hauch J, Li N, Brabec CJ. Understanding Causalities in Organic Photovoltaics Device Degradation in a Machine-Learning-Driven High-Throughput Platform. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300259. [PMID: 36961263 DOI: 10.1002/adma.202300259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Organic solar cells (OSCs) now approach power conversion efficiencies of 20%. However, in order to enter mass markets, problems in upscaling and operational lifetime have to be solved, both concerning the connection between processing conditions and active layer morphology. Morphological studies supporting the development of structure-process-property relations are time-consuming, complex, and expensive to undergo and for which statistics, needed to assess significance, are difficult to be collected. This work demonstrates that causal relationships between processing conditions, morphology, and stability can be obtained in a high-throughput method by combining low-cost automated experiments with data-driven analysis methods. An automatic spectral modeling feeds parametrized absorption data into a feature selection technique that is combined with Gaussian process regression to quantify deterministic relationships linking morphological features and processing conditions with device functionality. The effect of the active layer thickness and the morphological order is further modeled by drift-diffusion simulations and returns valuable insight into the underlying mechanisms for improving device stability by tuning the microstructure morphology with versatile approaches. Predicting microstructural features as a function of processing parameters is decisive know-how for the large-scale production of OSCs.
Collapse
Affiliation(s)
- Chao Liu
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Larry Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Vincent M Le Corre
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Karen Forberich
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Paul Weitz
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Xiaoyan Du
- School of Physics, Shandong University, 27 Shanda Nanlu, Jinan, 250100, China
| | - Jonas Wortmann
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Jiyun Zhang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Jerrit Wagner
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Device, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jens Hauch
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
- Institute of Polymer Optoelectronic Materials and Device, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstrasse 7, 91058, Erlangen, Germany
- Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany
| |
Collapse
|
26
|
Fu Z, Qiao JW, Cui FZ, Zhang WQ, Wang LH, Lu P, Yin H, Du XY, Qin W, Hao XT. π-π Stacking Modulation via Polymer Adsorption for Elongated Exciton Diffusion in High-Efficiency Thick-Film Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313532. [PMID: 38386402 DOI: 10.1002/adma.202313532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.
Collapse
Affiliation(s)
- Zhen Fu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jia-Wei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Feng-Zhe Cui
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wen-Qing Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Ling-Hua Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Peng Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, 250100, China
| | - Hang Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
27
|
Wang J, Wang C, Wang Y, Qiao J, Ren J, Li J, Wang W, Chen Z, Yu Y, Hao X, Zhang S, Hou J. Pyrrole-Based Fully Non-fused Acceptor for Efficient and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202400565. [PMID: 38291011 DOI: 10.1002/anie.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Organic solar cells (OSCs) are still suffering from the low light utilization and unstable under ultraviolet irradiation. To tackle these challenges, we design and synthesize a non-fused acceptor based on 1-(2-butyloctyl)-1H-pyrrole as π-bridge unit, denoted as GS70, which serves as active layer in the front-cell for constructing tandem OSCs with a parallel configuration. Benefiting from the well-complementary absorption spectra with the rear-cell, GS70-based parallel tandem OSCs exhibit an improved photoelectron response over the range between 600-700 nm, yielding a high short-circuit current density of 28.4 mA cm-2. The improvement in light utilization translates to a power conversion efficiency of 19.4 %, the highest value among all parallel tandem OSCs. Notably, owing to the intrinsic stability of GS70, the manufactured parallel tandem OSCs retain 84.9 % of their initial PCE after continuous illumination for 1000 hours. Overall, this work offers novel insight into the molecular design of low-cost and stability non-fused acceptors, emphasizing the importance of adopting a parallel tandem configuration for achieving efficient light harvesting and improved photostability in OSCs.
Collapse
Affiliation(s)
- Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Chaoyi Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yafei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, Shandong, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, Shandong, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
28
|
Zhang G, Chen Q, Zhang Z, Gao Z, Xiao C, Wei Y, Li W. NiO x Nanoparticles Hole-Transporting Layer Regulated by Ionic Radius-Controlled Doping and Reductive Agent for Organic Solar Cells with Efficiency of 19.18. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310630. [PMID: 38029790 DOI: 10.1002/adma.202310630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Nickel oxide (NiOx ) has garnered considerable attention as a prospective hole-transporting layer (HTL) in organic solar cells (OSCs), offering a potential solution to the stability challenges posed by traditional HTL, PEDOT:PSS, arising from acidity and hygroscopicity. Nevertheless, the lower work function (WF) of NiOx relative to donor polymers reduces charge injection efficiency in OSCs. Herein, NiOx nanoparticles are tailored through rare earth doping to optimize WF and the impact of ionic radius on their electronic properties is explored. Lanthanum (La3+ ) and yttrium (Y3+ ) ions, with larger ionic radii, are effectively doped at 1 and 3%, respectively, while scandium (Sc3+ ), with a smaller ion radius, allows enhanced 5% doping. Higher doping ratios significantly enhance WF of NiOx . A 5% Sc3+ doping raises WF to 4.99 eV from 4.77 eV for neat NiOx while maintaining high conductivity. Consequently, using 5% Sc-doped NiOx as HTL improves the power conversion efficiency (PCE) of OSCs to 17.13%, surpassing the 15.64% with the neat NiOx . Further enhancement to 18.42% is achieved by introducing the reductant catechol, outperforming the PEDOT:PSS-based devices. Additionally, when employed in a ternary blend system (D18:N3:F-BTA3), an impressive PCE of 19.18 % is realized, top-performing among reported OSCs utilizing solution-processed inorganic nanoparticles.
Collapse
Affiliation(s)
- Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zihao Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
29
|
Yang C, Jiang M, Wang S, Zhang B, Mao P, Woo HY, Zhang F, Wang JL, An Q. Hot-Casting Strategy Empowers High-Boiling Solvent-Processed Organic Solar Cells with Over 18.5% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305356. [PMID: 37555531 DOI: 10.1002/adma.202305356] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 08/10/2023]
Abstract
Most top-rank organic solar cells (OSCs) are manufactured by the halogenated solvent chloroform, which possesses a narrow processing window due to its low-boiling point. Herein, based on two high-boiling solvents, halogenated solvent chlorobenzene (CB) and non-halogenated green solvent ortho-xylene (OX), preparing active layers with the hot solution is put forward to enhance the performance of the OSCs. In situ test and morphological characterization clarify that the hot-casting strategy assists in the fast and synchronous molecular assembly of both donor and acceptor in the active layer, contributing to preferable donor/acceptor ratio, vertical phase separation, and molecular stacking, which is beneficial to charge generation and extraction. Based on the PM6:BO-4Cl, the hot-casting OSCs with a wide processing window achieve efficiencies of 18.03% in CB and 18.12% in OX, which are much higher than the devices processed with room temperature solution. Moreover, the hot-casting devices with PM6:BTP-eC9 deliver a remarkable fill factor of 80.31% and efficiency of 18.52% in OX, representing the record value among binary devices with green solvent. This work demonstrates a facile strategy to manipulate the molecular distribution and arrangement for boosting the efficiency of OSCs with high-boiling solvents.
Collapse
Affiliation(s)
- Chucheng Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 10081, China
| | - Bao Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Peng Mao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Fujun Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
30
|
Yang C, An Q, Jiang M, Ma X, Mahmood A, Zhang H, Zhao X, Zhi HF, Jee MH, Woo HY, Liao X, Deng D, Wei Z, Wang JL. Optimized Crystal Framework by Asymmetric Core Isomerization in Selenium-Substituted Acceptor for Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313016. [PMID: 37823882 DOI: 10.1002/anie.202313016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Ma
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Xilin Liao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Deng
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Luo S, Li C, Zhang J, Zou X, Zhao H, Ding K, Huang H, Song J, Yi J, Yu H, Wong KS, Zhang G, Ade H, Ma W, Hu H, Sun Y, Yan H. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat Commun 2023; 14:6964. [PMID: 37907534 PMCID: PMC10618449 DOI: 10.1038/s41467-023-41978-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.
Collapse
Affiliation(s)
- Siwei Luo
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianquan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Xinhui Zou
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jicheng Yi
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, Guangdong Province, China.
| |
Collapse
|
32
|
Gan Z, Wang L, Cai J, Guo C, Chen C, Li D, Fu Y, Zhou B, Sun Y, Liu C, Zhou J, Liu D, Li W, Wang T. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat Commun 2023; 14:6297. [PMID: 37813902 PMCID: PMC10562425 DOI: 10.1038/s41467-023-42071-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Conjugated polymers are generally featured with low structural order due to their aromatic and irregular structural units, which limits their light absorption and charge mobility in organic solar cells. In this work, we report a conjugated molecule INMB-F that can act as a molecular bridge via electrostatic force to enhance the intermolecular stacking of BDT-based polymer donors toward efficient and stable organic solar cells. Molecular dynamics simulations and synchrotron X-ray measurements reveal that the electronegative INMB-F adsorb on the electropositive main chain of polymer donors to increase the donor-donor interactions, leading to enhanced structural order with shortened π-π stacking distance and consequently enhanced charge transport ability. Casting the non-fullerene acceptor layer on top of the INMB-F modified donor layer to fabricate solar cells via layer-by-layer deposition evidences significant power conversion efficiency boosts in a range of photovoltaic systems. A power conversion efficiency of 19.4% (certified 18.96%) is realized in PM6/L8-BO binary devices, which is one of the highest reported efficiencies of this material system. The enhanced structural order of polymer donors by INMB-F also leads to a six-fold enhancement of the operational stability of PM6/L8-BO organic solar cells.
Collapse
Affiliation(s)
- Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinlong Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Bojun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
33
|
Yu R, Shi R, He Z, Zhang T, Li S, Lv Q, Sha S, Yang C, Hou J, Tan Z. Thermodynamic Phase Transition of Three-Dimensional Solid Additives Guiding Molecular Assembly for Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202308367. [PMID: 37581342 DOI: 10.1002/anie.202308367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives.
Collapse
Affiliation(s)
- Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhangwei He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuang Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shihao Sha
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chunhe Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
34
|
Guo C, Fu Y, Li D, Wang L, Zhou B, Chen C, Zhou J, Sun Y, Gan Z, Liu D, Li W, Wang T. A Polycrystalline Polymer Donor as Pre-Aggregate toward Ordered Molecular Aggregation for 19.3% Efficiency Binary Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304921. [PMID: 37468168 DOI: 10.1002/adma.202304921] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Organic semiconductors are generally featured with low structure order in solid-state films, which leads to low charge-transport mobility and strong charge recombination in their photovoltaic devices. In this work, a "polycrystal-induced aggregation" strategy orders the polymer donor (PM6) and non-fullerene acceptor (L8-BO) molecules during solution casting with the assistance of PM6 polycrystals that are incubated through a vapor diffusion method, toward improved solar cell efficiency with either thin or thick photoactive layers. These PM6 polycrystals are redissolved in chloroform to prepare PM6 pre-aggregates (PM6-PA), and further incorporated into the conventional PM6:L8-BO blend solutions, which is found to prolong the molecular organization process and enhance the aggregation of both the PM6 and the L8-BO components. As the results, with the assistance of 10% PM6-PA, PM6:L8-BO solar cell devices obtain power conversion efficiencies (PCEs) from 18.0% and 16.2% to 19.3% and 17.2% with a 100 nm-thick and 300 nm-thick photoactive layer, respectively.
Collapse
Affiliation(s)
- Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yiwei Fu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Donghui Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Bojun Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
35
|
Huang X, Sun Y, Zhao Z, Chung S, Cho K, Kan Z. Triggering the Donor-Acceptor Phase Segregation with Solid Additives Enables 16.5% Efficiency in All-Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44012-44021. [PMID: 37676970 DOI: 10.1021/acsami.3c07350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
All-polymer solar cells have attracted considerable research interest due to their superior morphological stabilities, stretchability, and mechanical durability. However, the morphology optimization of the all-polymer bulk heterojunctions remains challenging due to the two long conjugated polymer chains, limiting its power conversion efficiency. Herein, we focus on the donor-acceptor phase segregation of an all-polymer active layer composed of PM6/PY-IT, a state-of-the-art all-polymer combination, by the introduction of volatile solid additives. Especially with 1,3-dibromo-5-chlorobenzene (DBCl) as the processing additive, we could effectively tune the miscibility between PM6 and PY-IT and thus optimize the phase segregation of the polymer donor and acceptor. Due to the synergetic effects on the favorable phase segregation and desired donor-acceptor distribution, the DBCl-treated devices feature the evident improvement of charge transport and collection, accompanied by the suppressed trap-assisted charge recombination. We consequently achieved a champion device efficiency of 16.5% (16.4% averaged), which is a 13% improvement compared with the control device without DBCl (14.6%). Our results highlight the importance of altering the miscibility of the polymer donor-acceptor pairs for practical applications of high-performance all-polymer solar cells.
Collapse
Affiliation(s)
- Xiaodong Huang
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University, Nanning 530004, China
| | - Yuqing Sun
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University, Nanning 530004, China
| | - Zhenmin Zhao
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University, Nanning 530004, China
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Zhipeng Kan
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University, Nanning 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| |
Collapse
|
36
|
Zhu C, Chung S, Zhao J, Sun Y, Zhao B, Zhao Z, Kim S, Cho K, Kan Z. Vertical Phase Regulation with 1,3,5-Tribromobenzene Leads to 18.5% Efficiency Binary Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303150. [PMID: 37424039 PMCID: PMC10502666 DOI: 10.1002/advs.202303150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The sequential deposition method assists the vertical phase distribution in the photoactive layer of organic solar cells, enhancing power conversion efficiencies. With this film coating approach, the morphology of both layers can be fine-tuned with high boiling solvent additives, as frequently applied in one-step casting films. However, introducing liquid additives can compromise the morphological stability of the devices due to the solvent residuals. Herein, 1,3,5-tribromobenzene (TBB) with high volatility and low cost, is used as a solid additive in the acceptor solution and combined thermal annealing to regulate the vertical phase in organic solar cells composed of D18-Cl/L8-BO. Compared to the control cells, the devices treated with TBB and those that underwent additional thermal processing exhibit increased exciton generation rate, charge carrier mobility, charge carrier lifetime, and reduced bimolecular charge recombination. As a result, the TBB-treated organic solar cells achieve a champion power conversion efficiency of 18.5% (18.1% averaged), one of the highest efficiencies in binary organic solar cells with open circuit voltage exceeding 900 mV. This study ascribes the advanced device performance to the gradient-distributed donor-acceptor concentrations in the vertical direction. The findings provide guidelines for optimizing the morphology of the sequentially deposited top layer to achieve high-performance organic solar cells.
Collapse
Affiliation(s)
- Chaofeng Zhu
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Sein Chung
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Jingjing Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Yuqing Sun
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Bin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Zhenmin Zhao
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
| | - Seunghyun Kim
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Kilwon Cho
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐ro, Nam‐guPohang‐si37673South Korea
| | - Zhipeng Kan
- Center on Nanoenergy ResearchGuangxi Colleges and Universities Key Laboratory of Blue Energy and Systems IntegrationCarbon Peak and Neutrality Science and Technology Development InstituteSchool of Physical Science & TechnologyGuangxi UniversityNanning530004China
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresNanning530004China
| |
Collapse
|
37
|
Spooner ELK, Cassella EJ, Smith JA, Catley TE, Burholt S, Lidzey DG. Air-Knife-Assisted Spray Coating of Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39625-39635. [PMID: 37428479 PMCID: PMC10450690 DOI: 10.1021/acsami.3c05306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
The power conversion efficiencies (PCEs) of organic solar cells (OSCs) have risen dramatically since the introduction of the "Y-series" of non-fullerene acceptors. However, the demonstration of rapid scalable deposition techniques to deposit such systems is rare. Here, for the first time, we demonstrate the deposition of a Y-series-based system using ultrasonic spray coating─a technique with the potential for significantly faster deposition speeds than most traditional meniscus-based methods. Through the use of an air-knife to rapidly remove the casting solvent, we can overcome film reticulation, allowing the drying dynamics to be controlled without the use of solvent additives, heating the substrate, or heating the casting solution. The air-knife also facilitates the use of a non-halogenated, low-toxicity solvent, resulting in industrially relevant, spray-coated PM6:DTY6 devices with PCEs of up to 14.1%. We also highlight the obstacles for scalable coating of Y-series-based solar cells, in particular the influence of slower drying times on blend morphology and crystallinity. This work demonstrates the compatibility of ultrasonic spray coating, and use of an air-knife, with high-speed, roll-to-roll OSC manufacturing techniques.
Collapse
Affiliation(s)
- Emma L. K. Spooner
- Department
of Electrical and Electronic Engineering, Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PY, United Kingdom
| | - Elena J. Cassella
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United
Kingdom
| | - Joel A. Smith
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Thomas E. Catley
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United
Kingdom
| | - Sam Burholt
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - David G. Lidzey
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United
Kingdom
| |
Collapse
|
38
|
Fan B, Zhong W, Gao W, Fu H, Lin FR, Wong RWY, Liu M, Zhu C, Wang C, Yip HL, Liu F, Jen AKY. Understanding the Role of Removable Solid Additives: Selective Interaction Contributes to Vertical Component Distributions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302861. [PMID: 37164341 DOI: 10.1002/adma.202302861] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Sequentially deposited organic solar cells (SD-OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase-separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD-OSCs is still quite challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD-OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π-π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p-dibromobenzene shows a stronger interaction with the donor while 2-chloronaphthalene (2-CN) interacts more preferably with acceptor. Combining the depth-dependent morphological study aided by multiple X-ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger-interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2-CN-treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Gao
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Huiting Fu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Reese W-Y Wong
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Ming Liu
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hin-Lap Yip
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-Situ Center for Physical Science and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Institute of Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Material Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
39
|
Rasool S, Kim JY. Prospects of glove-box versus air-processed organic solar cells. Phys Chem Chem Phys 2023; 25:19337-19357. [PMID: 37462029 DOI: 10.1039/d3cp02591h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In the search for alternate green energy sources to offset dependence on fossil fuels, solar energy can certainly meet two needs with one deed: fulfil growing global energy demands due to its non-depletable nature and lower greenhouse gas emissions. As such, third generation thin film photovoltaic technology based organic solar cells (OSCs) can certainly play their role in providing electricity at a competing or lower cost than 1st and 2nd generation solar technologies. As OSCs are still at an early stage of research and development, much focus has been placed on improving power conversion efficiencies (PCEs) inside a controlled environment i.e. a glove-box (GB) filled with an inert gas such as N2. This was necessary until now, to control and study the local nanomorphology of the spin-coated blend films. For OSCs to compete with other solar energy technologies, OSCs should produce similar or even better morphologies in an open environment i.e. air, such that air-processed OSCs can result in similar PCEs in comparison to their GB-processed counterparts. In this review, we have compared GB- vs. air-processed OSCs from morphological and device physics aspects and underline the key features of efficient OSCs, processed in either GB or air.
Collapse
Affiliation(s)
- Shafket Rasool
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Jin Young Kim
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
40
|
Yang X, Li B, Zhang X, Li S, Zhang Q, Yuan L, Ko DH, Ma W, Yuan J. Intrinsic Role of Volatile Solid Additive in High-Efficiency PM6:Y6 Series Nonfullerene Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301604. [PMID: 36929606 DOI: 10.1002/adma.202301604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/09/2023] [Indexed: 06/16/2023]
Abstract
Organic nonfullerene solar cells (ONSCs) have made unprecedented progress; however, morphology optimization of ONSCs is proven to be particularly challenging relative to classical fullerene-based devices. Here, a novel volatile solid additive (VSA), 2-hydroxy-4-methoxybenzophenone (2-HM), is reported for achieving high-efficiency ONSCs. 2-HM functions as a universal morphology-directing agent for several well-known PM6:Y6 series nonfullerene blends, viz. PM6:Y6, PM6:BTP-eC9, PM6:L8-BO, leading to a best efficiency of 18.85% at the forefront of reported binary ONSCs. VSAs have recently emerged, while the intrinsic kinetics is still unclear. Herein, a set of in situ and ex situ characterizations is employed to first illustrate the molecule-aggregate-domain transition dynamic process assisted by the VSA. More specifically, the role of 2-HM in individual donor PM6 and acceptor Y6 systems is unlocked, and the function of 2-HM in altering the PM6:Y6 bulk heterojunction blends is further revealed for enhanced photovoltaic performance. It is believed that the achievement brings not only a deep insight into emerging volatile solid additive, but also a new hope to further improve the molecular ordering, film microstructure, and relevant performance of ONSCs.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Siying Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qilin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lin Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Doo-Hyun Ko
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
41
|
Chen L, Yi J, Ma R, Ding L, Dela Peña TA, Liu H, Chen J, Zhang C, Zhao C, Lu W, Wei Q, Zhao B, Hu H, Wu J, Ma Z, Lu X, Li M, Zhang G, Li G, Yan H. An Isomeric Solid Additive Enables High-Efficiency Polymer Solar Cells Developed Using a Benzo-Difuran-Based Donor Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301231. [PMID: 37044383 DOI: 10.1002/adma.202301231] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Indexed: 05/23/2023]
Abstract
Currently, nearly all high-efficiency organic photovoltaic devices use donor polymers based on the benzo-dithiophene (BDT) unit. To diversify the choices of building blocks for high-performance donor polymers, the use of benzo-difuran (BDF) units is explored, which can achieve reduced steric hindrance, stronger molecular packing, and tunable energy levels. In previous research, the performance of BDF-based devices lagged behind those of BDT-based devices. In this study, a high efficiency (18.4%) is achieved using a BDF-based polymer donor, which is the highest efficiency reported for BDF donor materials to date. The high efficiency is enabled by a donor polymer (D18-Fu) and the aid of a solid additive (2-chloronaphthalene), which is the isomer of the commonly used additive 1-chloronaphthalene. These results revealed the significant effect of 2-chloronaphthalene in optimizing the morphology and enhancing the device parameters. This work not only provides a new building block that can achieve an efficiency comparable to dominant BDT units but also proposes a new solid additive that can replace the widely used 1-chloronaphthalene additive.
Collapse
Affiliation(s)
- Lu Chen
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Jicheng Yi
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Ruijie Ma
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lu Ding
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Top Archie Dela Peña
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Jian Chen
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
| | - Cuifen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Wen Lu
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Bin Zhao
- Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaying Wu
- The Hong Kong University of Science and Technology, Function Hub, Advanced Materials Thrust, Nansha, Guangzhou, 511400, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
- Hong Kong University of Science and Technology Fok Ying Tung Research Institute, S&T Building, Nansha IT Park, Guangzhou City, 511458, P. R. China
- eFlexPV Limited (Foshan), Guicheng Street, Nanhai District, Foshan, 528200, P. R. China
| |
Collapse
|
42
|
Busireddy MR, Huang SC, Su YJ, Lee ZY, Wang CH, Scharber MC, Chen JT, Hsu CS. Eco-Friendly Solvent-Processed Dithienosilicon-Bridged Carbazole-Based Small-Molecule Acceptors Achieved over 25.7% PCE in Ternary Devices under Indoor Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24658-24669. [PMID: 37186869 DOI: 10.1021/acsami.3c02966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A-DD'D-A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π-π interactions, which improves the short-circuit current density (Jsc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (Voc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.
Collapse
Affiliation(s)
- Manohar Reddy Busireddy
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Yi-Jia Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Ze-Ye Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Chuan-Hsin Wang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Markus C Scharber
- Linz Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Rood, Hsinchu 30010, Taiwan
| |
Collapse
|
43
|
An K, Zhong W, Peng F, Deng W, Shang Y, Quan H, Qiu H, Wang C, Liu F, Wu H, Li N, Huang F, Ying L. Mastering morphology of non-fullerene acceptors towards long-term stable organic solar cells. Nat Commun 2023; 14:2688. [PMID: 37164953 PMCID: PMC10172308 DOI: 10.1038/s41467-023-38306-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Despite the rapid progress of organic solar cells based on non-fullerene acceptors, simultaneously achieving high power conversion efficiency and long-term stability for commercialization requires sustainable research effort. Here, we demonstrate stable devices by integrating a wide bandgap electron-donating polymer (namely PTzBI-dF) and two acceptors (namely L8BO and Y6) that feature similar structures yet different thermal and morphological properties. The organic solar cell based on PTzBI-dF:L8BO:Y6 could achieve a promising efficiency of 18.26% in the conventional device structure. In the inverted structure, excellent long-term thermal stability over 1400 h under 85 °C continuous heating is obtained. The improved performance can be ascribed to suppressed charge recombination along with appropriate charge transport. We find that the morphological features in terms of crystalline coherence length of fresh and aged films can be gradually regulated by the weight ratio of L8BO:Y6. Additionally, the occurrence of melting point decrease and reduced enthalpy in PTzBI-dF:L8BO:Y6 films could prohibit the amorphous phase to cluster, and consequently overcome the energetic traps accumulation aroused by thermal stress, which is a critical issue in high efficiency non-fullerene acceptors-based devices. This work provides insight into understanding non-fullerene acceptors-based organic solar cells for improved efficiency and stability.
Collapse
Affiliation(s)
- Kang An
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Wenkai Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Peng
- South China Institute of Collaborative Innovation, Dongguan, 523808, China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ying Shang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- Pazhou Lab, Guangzhou, 510320, China
| | - Huilei Quan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Hong Qiu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Cheng Wang
- Advanced Light Source Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Ning Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
- Pazhou Lab, Guangzhou, 510320, China.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
- Pazhou Lab, Guangzhou, 510320, China.
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
44
|
Liu H, Li H, Tao J, Liu J, Yang J, Li J, Song J, Ren J, Wang M, Yang S, Song X, Wang Y. Single Crystalline Transparent Conducting F, Al, and Ga Co-Doped ZnO Thin Films with High Photoelectrical Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22195-22203. [PMID: 37129068 DOI: 10.1021/acsami.2c22784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transparent conductive film (TCF) is a material that integrates electrical conductivity and optical transparency. It is widely used as an electrode material in thin-film solar cells. However, considerable progress is needed to facilitate its high performance and low-cost preparation. In this study, a preparation scheme for AlF3 and GaF3 co-doped ZnO (FAGZO) thin films was designed and implemented by magnetron sputtering (MS). The mutual restraint between the electrical properties and the wide-spectrum transmission performance of ZnO films was resolved. First-principles calculations showed that the doped ZnO system had n-type conductivity and that the most stable structure was the FO-AlZn-GaZn system. The experimental results verified the theoretical predictions. Single crystalline ZnO transparent conducting films (ZnO-TCFs) of high quality were achieved by MS. After rapid thermal annealing (RTA) treatment, the mobility reached 49.6 cm2/V s, and the resistivity decreased to 3.82 × 10-4 Ω cm. The AT was 90% between 380 and 1200 nm. Furthermore, the application of the prepared FAGZO film in perovskite solar cells (PSCs) has been verified. Compared to the reference indium tin oxide film, the PSCs using the FAGZO film showed higher JSC and power conversion efficiency. These results demonstrate that MS combined with anion and cation co-doping provides an effective means of exploring high-quality and high-performance ZnO-TCFs.
Collapse
Affiliation(s)
- Haixu Liu
- College of Science, Hebei North University, Zhangjiakou 075000, China
| | - Hui Li
- School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Junlei Tao
- Province-Ministry Co-Construction Collaborative Innovation Center of Photovoltaic Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Jia Liu
- School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jinzheng Yang
- College of Science, Hebei North University, Zhangjiakou 075000, China
| | - Junjie Li
- College of Science, Hebei North University, Zhangjiakou 075000, China
- Province-Ministry Co-Construction Collaborative Innovation Center of Photovoltaic Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Jianmin Song
- College of Sciences, Hebei Agriculture University, Baoding 071001, China
| | - Jie Ren
- School of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Min Wang
- School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shaopeng Yang
- Province-Ministry Co-Construction Collaborative Innovation Center of Photovoltaic Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Xin Song
- School of Materials Science and Engineering Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications Changzhou University, Changzhou 213164, China
| | - Yanfeng Wang
- College of Science, Hebei North University, Zhangjiakou 075000, China
- Province-Ministry Co-Construction Collaborative Innovation Center of Photovoltaic Technology of Hebei Province, Hebei University, Baoding 071002, China
| |
Collapse
|
45
|
Tui R, Sui H, Mao J, Sun X, Chen H, Duan Y, Yang P, Tang Q, He B. Round-comb Fe 2O 3@SnO 2 heterostructures enable efficient light harvesting and charge extraction for high-performance all-inorganic perovskite solar cells. J Colloid Interface Sci 2023; 640:918-927. [PMID: 36907152 DOI: 10.1016/j.jcis.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/16/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
The precise design of an electron transport layer (ETL) to improve the light-harvesting and quality of perovskite (PVK) film plays a crucial role in the photovoltaic performance of n-i-p perovskite solar cells (PSCs). In this work, a novel three-dimensional (3D) round-comb Fe2O3@SnO2 heterostructure composites with high conductivity and electron mobility induced by its Type-II band alignment and matched lattice spacing is prepared and employed as an efficient mesoporous ETL for all-inorganic CsPbBr3 PSCs. Arising from the multiple light scattering sites provided by the 3D round-comb structure, the diffuse reflectance of Fe2O3@SnO2 composites is increased to improve the light absorption of the deposited PVK film. Besides, the mesoporous Fe2O3@SnO2 ETL affords not only more active surface for sufficient exposure to the CsPbBr3 precursor solution but also a wettable surface to reduce the barrier for heterogeneous nucleation, which realizes the regulated growth of a high-quality PVK film with less undesired defect. Hence, both the light-harvesting capability, the photoelectrons transport and extraction are improved, and the charge recombination is restrained, delivering an optimized power conversion efficiency (PCE) of 10.23 % with a high short-circuit current density of 7.88 mA cm-2 for the c-TiO2/Fe2O3@SnO2 ETL based all-inorganic CsPbBr3 PSCs. Moreover, under lasting erosion at 25 °C and 85 % RH for 30 days and light-soaking (AM 1.5G) for 480 h in air atmosphere, the unencapsulated-device shows superiorly persistent durability.
Collapse
Affiliation(s)
- Rui Tui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Haojie Sui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Jingwei Mao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xuemiao Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Haiyan Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yanyan Duan
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Material (SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Peizhi Yang
- Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Benlin He
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
46
|
Zhang G, Chen Q, Zhang Z, Fang J, Zhao C, Wei Y, Li W. Co-La-Based Hole-Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Angew Chem Int Ed Engl 2023; 62:e202216304. [PMID: 36448962 DOI: 10.1002/anie.202216304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.
Collapse
Affiliation(s)
- Guangcong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
47
|
Song KC, Sung W, Lee DC, Chung S, Lee H, Lee J, Cho S, Cho K. Symmetry-Induced Ordered Assembly of a Naphthobisthiadiazole-Based Nonfused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52233-52243. [PMID: 36355863 DOI: 10.1021/acsami.2c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nonfused-ring electron acceptors (NFREAs) have received increasing attention for use in organic solar cells (OSCs) because of their synthetic simplicity and tunable optical spectra. However, their fundamental molecular interactions and the mechanism by which they govern the property-function relations of OSCs remain elusive. Here, to investigate the effects of the structural symmetry of NFREAs, two acceptor-donor-acceptor'-donor-acceptor (A-D-A'-D-A)-type NFREAs, 2,2'-(((naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-5,10-diylbis(4,4-bis(2-butyloctyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (NTz-4F) and 2,2'-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (BT-4F), are designed and synthesized. They have different A' cores: NTz-4F has a modified centrosymmetric NTz core, whereas BT-4F has a modified axisymmetric BT core. In pristine films, the NTz-4F, which has a centrosymmetric core, shows substantially enhanced intermolecular interaction and microstructural crystalline ordering compared with BT-4F, which has an axisymmetric core. Even in blends with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8,-dione))] (PBDB-T), NTz-4F retains its highly crystalline structure, whereas BT-4F loses crystalline packing. These changes in NTz-4F result in increased electron transport and suppressed nonradiative voltage loss, resulting in a power conversion efficiency of 9.14% for PBDB-T:NTz-4F vs 7.18% for PBDB-T:BT-4F. This work demonstrates that centrosymmetric-structured cores are promising building blocks for high-performance NFREA-based OSCs.
Collapse
Affiliation(s)
- Kyu Chan Song
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Woong Sung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Dong Chan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan44610, Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hansol Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam13120, Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon34134, Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| |
Collapse
|
48
|
Chutia T, Kalita DJ. Theoretical investigation of fused N-methyl-dithieno-pyrrole derivatives in the context of acceptor-donor-acceptor approach. RSC Adv 2022; 12:14422-14434. [PMID: 35702239 PMCID: PMC9096627 DOI: 10.1039/d2ra01820a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this work we have theoretically investigated the optoelectronic properties of a series of acceptor-donor-acceptor type molecules by employing density functional theory formalism. We have used 1,1-dicyano-methylene-3-indanone as the acceptor unit and a fused N-methyl-dithieno-pyrrole as the donor unit. We have calculated the values of dihedral angle, inter-ring bond length, bond length alteration parameters, HOMO-LUMO gap, ionization potential, electron affinity, partial density of states, reorganization energies for holes and electrons, charge transfer rate for holes and electrons of the seven types of compounds designed via molecular engineering. Calculated IP and EA values manifest that PBDB-C2 shows excellent charge transportation compared to others. Absorption spectra of the designed compounds have been studied using the time-dependent density functional theory method. From the calculation of reorganization energy it is confirmed that our designed molecules behave more likely as donor materials. Our calculated results also reveal that compounds with electron donating substituents at the acceptor units show higher value of λ max. Absorption spectra of donor/acceptor blends show similar trends with the isolated compounds. Observed lower exciton binding energy values for all the compounds indicate facile charge carrier separation at the donor/acceptor interface. Moreover, the negative values of Gibb's free energy change also indicate the ease of exciton dissociation of all the designed compounds. The photovoltaic characteristics of the studied compounds infer that all the designed compounds have the potential to become suitable candidate for the fabrication of organic semiconductors. However, PBDB-C2 and PBDB-C4 with the highest PCE of 18.25% can become the best candidate for application in photovoltaics.
Collapse
Affiliation(s)
- Tridip Chutia
- Department of Chemistry, Gauhati University Guwahati-781014 India
| | | |
Collapse
|
49
|
Yang NG, Jeon SJ, Kim YH, Lee HS, Hong DH, Moon DK. Interchain hydrogen-bonded conjugated polymer for enhancing the stability of organic solar cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|