1
|
Kang Y, Yu L, Chen Y, Zhao J, Liu Z, Chen G, Hu X, Mou X, Cai Y, Tong X. Tumor Pro-Senescence Strategy to Enhance Mild Photothermal Therapy of Diffuse Large B-Cell Lymphoma. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40401540 DOI: 10.1021/acsami.4c22979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) presents a substantial clinical challenge due to its aggressive nature and resistance to conventional therapies, thereby developing novel treatment strategies is critical. In this work, we take advantage of the insensitivity of heat shock protein (HSP) expression in senescent tumor cells to combine mild photothermal therapy (MPTT) for efficient DLBCL treatment. Insensitivity to HSPs implies that cells are less capable of activating their usual stress protection mechanisms during MPTT, which reduces their tolerance to heat damage. Consequently, the treatment can more effectively destroy target cells at lower temperatures while minimizing the risk of thermal injury to surrounding healthy tissues. Abemaciclib can inhibit CDK4/6 activity, thereby inhibiting Rb phosphorylation to suppress the activity of the E2F transcription factor and prevent the transition from G1 to S phase, leading to cell cycle arrest and ultimately cellular senescence. The experimental results indicated that abemaciclib effectively promoted the senescence of DLBCL cells, accompanied by a significant reduction in HSP70 expression. Subsequently, a novel near-infrared (NIR) absorbing organic polymer photothermal agent (PYIT-OD) with excellent optical properties and photostability was used for MPTT. The integration of pro-senescence strategies with MPTT, as evidenced by both in vitro and in vivo experimental outcomes, markedly enhanced treatment efficacy, effectively reducing damage to normal tissues at mild temperatures and enhancing antitumor effects. This work not only reveals potential biological mechanisms but also provides theoretical foundations and practical guidance for developing more precise and less toxic DLBCL treatment regimens in clinical practice.
Collapse
Affiliation(s)
- Yehui Kang
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liya Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yang Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jiamei Zhao
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ziyang Liu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Gongning Chen
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaojuan Hu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiangmin Tong
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Xihu University, 261 Huansha Road, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
2
|
Ren XX, Li XL, Zhao RY, Li Y, Song R, Han MC, Yan YF, Zeng LZ, Cai ZY, Gao F. Dinuclear Ru(II) Complexes for Synergetic Photodynamic, Photothermal, and Sonodynamic Therapy against Cisplatin-Resistant Cancer. Inorg Chem 2025; 64:9596-9607. [PMID: 40325354 DOI: 10.1021/acs.inorgchem.5c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A new series of dinuclear Ru(II) complexes with a novel bridging ligand were developed for the treatment of cisplatin-resistant non-small-cell lung cancer via a synergistic photodynamic, photothermal, and sonodynamic therapy mechanism. Comprehensive experimental and theoretical studies investigated their photophysical and photochemical properties along with the influence of ancillary ligands. The complexes exhibit significant two-photon absorption at the IR region, facilitating ROS generation through both type I and II mechanisms under IR laser and ultrasound exposure. They effectively target mitochondria and nuclei, regulating DNA-related mechanisms, including the inhibition of DNA topoisomerase and RNA polymerase while promoting photoactivated apoptosis and ferroptosis. The high synergy effect between IR and ultrasound was attributed to the rise in oxygen availability via ultrasound-induced cavitation and a thermal-induced increase in vascular permeability and oxygen partial pressure. In vivo experiments confirmed that the combination of IR and ultrasound yielded superior therapeutic outcomes compared with single-modality treatments. The tested complex exhibited excellent safety with rapid in vivo clearance and low toxicity to normal cells. These findings suggest that IR-activated metal complexes can significantly advance integrated diagnostic and therapeutic approaches, overcoming challenges such as drug resistance and hypoxic environments in deep tumors.
Collapse
Affiliation(s)
- Xiao-Xia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ran Song
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Meng-Chi Han
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Zhong-Yan Cai
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
3
|
Hou X, Wei Z, Qi X, Liu D, Sun Y, Jiang Y, Liu C, Zhou W, Yang L, Liu K. Biomimetic modification of macrophage membrane-coated prussian blue nanoparticles loaded with SN-38 to treat colorectal cancer by photothermal-chemotherapy. Drug Deliv Transl Res 2025; 15:1525-1539. [PMID: 39251553 DOI: 10.1007/s13346-024-01689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/11/2024]
Abstract
SN-38 is the active metabolite of irinotecan and acts as an effective topoisomerase I inhibitor with therapeutic effects on many malignant tumors, including some drug-resistant cancers. However, the poor solubility, low bioavailability, and severe dose-dependent toxicity limits the clinical application of SN-38. Currently, emerging macrophage membrane-coated nanoparticles provide an efficient biomimetic approach to develop novel SN-38 formulations for the reduction of its side effects. Photothermal therapy (PTT) is a promising methods in tumor treatment to thermally ablate tumors using various materials such Prussian blue nanoparticles (NPs) and can combined with chemotherapy to synergistically work. There is no report that combined SN38 and photothermal therapy for the treatment of colorectal cancer (CRC). SN38-PB@CM NPs were constructed by loading SN-38 into macrophage cell membrane-coated hollow mesoporous Prussian blue (PB) NPs. The morphology, size and zeta potential were evaluated by transmission microscopy and dynamic light scatter (DLS). Coomassie bright blue staining was performed to assess total protein profile. The photothermal properties of it were also investigated via near-infrared imaging. CCK8 and calcein-AM/PI staining were used to evaluate cell viability. Flow cytometry was performed to assess cell apoptosis. The fluorescent microscopy was used to observe cellular uptake of SN38-PB@CM NPs to assess its internalization in vitro. The biodistribution, tumor-targeting efficacy, antitumor efficacy and safety of SN38-PB@CM NPs in vivo were assessed in CT26 tumor-bearing mice via In Vivo Imaging System. SN38-PB@CM NPs were successfully constructed and exhibited a uniform size distribution (140.5 ± 4.3 nm) and an excellent drug-loading capacity (5.61 ± 0.64%). SN38-PB@CM NPs showed stable release properties within 72 h. It can also enhance the selective intracellular delivery of SN38 in vitro and showed good near-infrared (NIR) photothermal properties. And the NPs showed excellent tumor targeting, effective photothermal therapy, improved biosafety and antitumor efficacy on CT26-bearing mice. Multifunctional SN38-PB@CM NPs could achieve improved biosafety, great tumor-targeting, high-efficiency PTT and excellent antitumor efficacy, which provided a promising and attractive combination therapy for the treatment of CRC.
Collapse
Affiliation(s)
- Xuyang Hou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Dekun Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yin Sun
- Department of of Pharmaceutical Pharmacology, University of South China, Hengyang, Hunan, China
| | - Yuhong Jiang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chao Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Weihan Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Zhang K, Kong W, Lin D, Wang X, Wang P. Ultrasound-Driven Nitric Oxide Generation for Enhanced Sonodynamic-Photothermal Therapy. Mol Pharm 2025; 22:2182-2192. [PMID: 40032688 DOI: 10.1021/acs.molpharmaceut.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Recently, green gas therapy based on nitric oxide (NO) has gained considerable attention in cancer treatment. The supplementation of exogenous NO and its controlled release represent promising strategies for adjuvant tumor therapy. In this study, we developed a novel ultrasound (US)-triggered NO generation and release nanoplatform that integrates NO therapy, sonodynamic therapy, and photothermal therapy (PTT) into a collaborative therapeutic modality. An environmentally friendly biomacromolecule, polydopamine, was employed to coload chlorin e6 (Ce6) and NO donor (BNN6), resulting in the nanocomposite PDA-Ce6/BNN6 (PCB). A single US stimulus simultaneously activated Ce6 to produce reactive oxygen species (ROS) and promoted BNN6 to release NO. The dual effects of ultrasonic mechanical action and physiological modulation by NO substantially improved local vascular function and enhanced tumor cell permeability, thereby increasing the targeted accumulation of PCB within tumors. Reactive nitrogen species (RNS) derived from NO and ROS further exacerbated oxidative damage and enhanced the sensitivity of tumor cells to hyperthermia. Both in vitro and in vivo experiments demonstrated that ultrasonic stimulation of NO/ROS/RNS combined with PTT effectively inhibited tumor cell growth and proliferation. The findings suggest that NO gas therapy based on extracorporeal US can significantly amplify the efficacy of PTT and offer new insights for developing other combined strategies aimed at physically regulating deep tumors.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Weirong Kong
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Dewu Lin
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Mohanty A, Mohapatra A, Sundaram A, Sathiyamoorthy P, Park W, Rajendrakumar SK, Park IK. Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming. J Control Release 2025; 379:147-163. [PMID: 39788373 DOI: 10.1016/j.jconrel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge. In this study, we developed a metallomicellar nanophotosensitizer named TAGNO, which offers a synergistic tri-modal cancer treatment strategy by combining photothermal therapy (PTT), gas therapy (GT), and immunotherapy. The TAGNO nanophotosensitizer consists of a gold nanorod core, responsible for inducing the photothermal effect, coated with an amphiphilic polymer functionalized with tumor cell penetrating peptide to accommodate lipophilic small molecule BNN6, a nitric oxide (NO) donor for GT. We demonstrated that TAGNO exhibited high tumor accumulation, excellent stability, and biocompatibility, ensuring the safe delivery of NO to the tumor site. Upon near-infrared (NIR) laser irradiation, TAGNO effectively raised the temperature within tumor tissues while sparing the surrounding healthy tissues and enabled controlled NO release. Once released, the NO interacts with hydrogen peroxide in the hypoxic tumor microenvironment, forming peroxynitrite (ONOO-), which induces mitochondrial dysfunction and triggers pyroptotic cell death. Pyroptosis induced immunogenic cell death and the subsequent release of tumor antigens, activating cytotoxic T cells and promoting M1 macrophage polarization, effectively controlling both primary and secondary tumor growth. Furthermore, laser-induced NO release facilitated the relaxation of stiff tumor tissues, enhancing blood vessel dilation and oxygenation. This improvement promoted immune cell infiltration while suppressing immunosuppressive cells. Overall, this innovative combination of PTT, GT, and immunotherapy presents a potent and synergistic strategy for the treatment of malignant colon tumors, achieving complete tumor eradication.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea
| | - Aravindkumar Sundaram
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea
| | - Padmanaban Sathiyamoorthy
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Woongkyu Park
- Photonic Energy Components Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | | | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea.
| |
Collapse
|
6
|
Jia M, Lu R, Li P, Liao X, Tan Y, Zhang S. Inflammation-reducing thermosensitive hydrogel with photothermal conversion for skin cancer therapy. J Control Release 2025; 378:377-389. [PMID: 39701451 DOI: 10.1016/j.jconrel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Photothermal therapy (PTT) has widely been utilized for postoperative treatment of skin cancer, while high temperature, usually >50 °C, would induce damage to healthy tissue and increased wound inflammation. Herein, we developed an "all in one" hydrogel to enhance mild PTT for postoperative skin cancer treatment while circumventing photothermo-induced inflammation by loading quercetin (Que)-coated tannin‑iron (TA-Fe) nanoparticles with poly (N-acrylylglycine) amine (PNAGA) hydrogel (Que@TA-Fe@PNAGA). Exposure to near-infrared light, Que.@TA-Fe@PNAGA occurred a mild temperature increase (∼47 °C), which induces local mild PTT and disrupts the hydrogen bonds within the hydrogel, triggering a gel-to-sol phase transition and the release of Que.@TA-Fe nanoparticles. These released nanoparticles inhibit the expression of heat shock proteins in tumor cells by producing reactive oxygen species and enter inflammatory cells to release TA and Que. via acid hydrolysis, reducing tumor necrosis factor-α expression by 66.6 % and promoting M1-to-M2 macrophage conversion. Based on this integrated functionality, Que.@TA-Fe@PNAGA hydrogel achieves over 99.4 % tumor inhibition rate, effectively avoids photothermo-induced damage in normal tissue and inflammation, and thus represents a new approach for postoperative photothermal therapy in skin cancer treatment.
Collapse
Affiliation(s)
- Mengqi Jia
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; School of Basic Medical Science, Henan University, Zhengzhou 450046, China
| | - Ruilin Lu
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yanfei Tan
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Shen Z, Jiang W, Zheng S, Luo S, Guo Z, Wang Q, Wang Y, Hu J. Intracellular Co-Delivery of Carbon Monoxide and Nitric Oxide Induces Mitochondrial Apoptosis for Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202419939. [PMID: 39781751 DOI: 10.1002/anie.202419939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths. This approach rationally couples aerobic photooxidative and anaerobic photocatalytic reactions within a polymeric micelle platform, using palladium(II) tetraphenyltetrabenzoporphyrin (PdTPTBP) as both photosensitizer and photocatalyst. Notably, the photooxidation-mediated release of CO generates a local hypoxic microenvironment, which facilitates the photoredox catalyzed release of NO. This self-adaptive micelle platform enables efficient uptake by tumor cells and intracellular co-delivery of CO and NO under 630 nm light irradiation, demonstrating potent anti-tumor activity in a 4T1 tumor-bearing mouse model via the synergistic induction of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Siyuan Luo
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zixuan Guo
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
8
|
Li C, Peng J, Wang B, Gao D, Liu X, Cheng G, Li B, Zhang R, Shuai X, Feng F, Xing C. Bionanoparticles with In Situ Nitric Oxide Release for Precise Modulation of ER-TRPV1 Ion Channels in Multimodal Killing of Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408649. [PMID: 39587016 DOI: 10.1002/smll.202408649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Glioblastoma (GBM) with highly immunosuppressive tumor microenvironment is a significant factor contributing to its treatment resistance and low survival rate. The activation of the transient receptor potential vanilloid 1 (TRPV1) ion channel, which is overexpressed on the endoplasmic reticulum (ER) of GBM cells, governs the control of multi-organelle stress pathway branches to inhibit GBM expansion. Precise modulation of ER-TRPV1 is considered an effective strategy for inhibition of GBM. As an effective intracellular and extracellular second messenger, nitric oxide (•NO) activates the TRPV1 ion channel through nitrosylation of cysteine residues. However, the short lifespan and limited effective range of •NO makes it challenging to achieve precise regulation of ER-TRPV1. Herein, a biomimetic upconversion nanoassembly (M-UCN-T) is constructed, which encapsulates an organic •NO donor and is coated with homologous tumor-targeting cell membrane and ER-targeting peptide. In response to near-infrared light and glutathione, M-UCN-T releases •NO in situ to activate the ER-TRPV1 ion channels. This study developed a •NO-targeted release nanoplatform with stepwise targeting functions, which allow for the precise modulation of ER-TPRV1 in GBM through in situ release of •NO. This approach induces multi-organelle stress signaling pathways, ultimately resulting in multi-modal killing of tumor cells.
Collapse
Affiliation(s)
- Chaoqun Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, 315201, P. R. China
| | - Jinlei Peng
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bing Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Cixi Institute of Biomedical Engineering, Ningbo, 315201, P. R. China
| | - Dong Gao
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China
| | - Xiaoning Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Guodong Cheng
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Boying Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China
| | - Ran Zhang
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China
| | - Fude Feng
- MOE Key Laboratory of High-Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chengfen Xing
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Xiping Road, Tianjin, 300130, P. R. China
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
9
|
Wu GL, Tan S, Tan X, Chen G, Yang Q. Recent advances in ferrocene-based nanomedicines for enhanced chemodynamic therapy. Theranostics 2025; 15:384-407. [PMID: 39744691 PMCID: PMC11671379 DOI: 10.7150/thno.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025] Open
Abstract
Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention. Among them, Ferrocene (Fc)-based nanomedicines for enhanced Chemodynamic Therapy (ECDT) is a new therapeutic strategy based on the Fenton reaction. Based on ferrocene's good biocompatibility, potentiation in medicinal chemistry, and good stability of divalent iron ions, scientists are increasingly using it as a Fenton's iron donor for tumor therapy. Such ferrocene-based ECDT nanoplatforms have shown remarkable promise for clinical applications and have significantly increased the efficacy of CDT treatment. Ferrocene-based nanomedicines exhibit exceptional consistency owing to their low toxicity, high stability, enhanced bioavailability, and a multitude of advantages over conventional approaches to cancer treatment. As a consequence, a number of tactics have been investigated in recent years to raise the effectiveness of ferrocene-based ECDT. In this review, we detail the different forms and strategies used to enhance Ferrocene-based ECDT efficiency.
Collapse
Affiliation(s)
- Gui-long Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Senyou Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of general Surgery, Turpan City People's Hospital, Tulufan 838000, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
10
|
Wang T, Teng R, Wu M, Ge Z, Liu Y, Yang B, Li C, Fan Z, Du J. A Polypeptosome Spray To Heal Antibiotic-Resistant Bacteria-Infected Wound by Photocatalysis-Induced Metabolism-Interference. ACS NANO 2024; 18:35620-35631. [PMID: 39688563 DOI: 10.1021/acsnano.4c13965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
With the booming antimicrobial drug resistance worldwide, traditional antibacterial agents (e.g., antibiotics) are usually powerless against superbug. Targeting antibacterial pathways different from traditional antibiotics could be an effective approach to treating wounds with a resistant bacterial infection. In this work, an antibacterial polymersome was developed to physically induce bacterial membrane damage and interfere with bacterial metabolism. First, we synthesized an antibacterial poly(ε-caprolactone)-block-poly(glutamic acid)-block-poly(Lys-stat-Phe) copolymer, which was then self-assembled into polypeptosome with the amplification of surface positive charges to disrupt bacterial membranes. In addition, the polypeptosome was further decorated with photocatalytic bismuth sulfide (Bi2S3) nanoparticles as a photocatalyst to interfere with reduced nicotinamide adenine dinucleotide (NADH) conversion. Specifically, near-infrared light generated free electrons from Bi2S3 nanoparticles could effectively interfere with NADH homeostasis to induce antibiotic-resistant bacteria death, as verified by transcriptome sequence analysis. Moreover, effective healing of antibiotic-resistant bacteria-infected wounds of mice was achieved with a spray of polypeptosome dispersion. Overall, we provided a fresh strategy to integrate bacterial membrane damage and metabolism interference functions within antibacterial polymersomes for healing antibiotic-resistant bacteria-infected wound.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Runxin Teng
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mengjie Wu
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yaping Liu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Biao Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Institute for Advanced Study, Tongji University, Shanghai 200092, China
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Wang Y, Ma K, Kang M, Yan D, Niu N, Yan S, Sun P, Zhang L, Sun L, Wang D, Tan H, Tang BZ. A new era of cancer phototherapy: mechanisms and applications. Chem Soc Rev 2024; 53:12014-12042. [PMID: 39494674 DOI: 10.1039/d4cs00708e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The past decades have witnessed great strides in phototherapy as an experimental option or regulation-approved treatment in numerous cancer indications. Of particular interest is nanoscale photosensitizer-based phototherapy, which has been established as a prominent candidate for advanced tumor treatment by virtue of its high efficacy and safety. Despite considerable research progress on materials, methods and devices in nanoscale photosensitizing agent-based phototherapy, their mechanisms of action are not always clear, which impedes their practical application in cancer treatment. Hence, from a new perspective, this review elaborates the working mechanisms, involving impairment and moderation effects, of diverse phototherapies on cells, organelles, organs, and tissues. Furthermore, the most current available phototherapy modalities are categorized as photodynamic, photothermal, photo-immune, photo-gas, and radio therapies in this review. A comprehensive understanding of the inferiority and superiority of various phototherapies will facilitate the advent of a new era of cancer phototherapy.
Collapse
Affiliation(s)
- Yuanwei Wang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ke Ma
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Miaomiao Kang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Niu Niu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Saisai Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Panpan Sun
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Luzhi Zhang
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Lijie Sun
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering Shenzhen University, Shenzhen 518060, P. R. China.
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH) Shenzhen Children's Hospital, Shenzhen 518026, P. R. China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
12
|
Zhang Y, Wang S, Rha H, Xu C, Pei Y, Ji X, Zhang J, Lu R, Zhang S, Xie Z, Kim JS. Bifunctional black phosphorus quantum dots platform: Delivery and remarkable immunotherapy enhancement of STING agonist. Biomaterials 2024; 311:122696. [PMID: 38971121 DOI: 10.1016/j.biomaterials.2024.122696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-β. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.
Collapse
Affiliation(s)
- Yujun Zhang
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China; International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Chang Xu
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Yue Pei
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, PR China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518109, PR China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, PR China.
| | - Zhongjian Xie
- Shenzhen Children's Hospital, Clinical Medical College of Shenzhen University, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
14
|
Kavousi N, Nazari M, Toossi MTB, Azimian H, Alibolandi M. Smart bismuth-based platform: A focus on radiotherapy and multimodal systems. J Drug Deliv Sci Technol 2024; 101:106136. [DOI: 10.1016/j.jddst.2024.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Gan G, Shen Z, Zheng S, Zhang G, Yin D, Liu S, Hu J. Biomimetic Activation of N-Nitrosamides with Red Light-Triggered Nitric Oxide Release via Mediated Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202409981. [PMID: 39037730 DOI: 10.1002/anie.202409981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Mediated electron transfer (MET) is fundamental to many biological functions, including cellular respiration, photosynthesis, and enzymatic catalysis. However, leveraging the MET process to enable the release of therapeutic gases has been largely unexplored. Herein, we report the bio-inspired activation of a series of UV-absorbing N-nitrosamide derivatives (NOA) under red light exposure, enabling the quantitative release of nitric oxide (NO) gasotransmitter via an MET process. The cornerstone of our design is the covalent linkage of a 2,4-dinitroaniline moiety, which acts as an electron mediator to the N-nitrosamide groups. This facilitates efficient electron transfer from the excited palladium(II) meso-tetraphenyltetrabenzoporphyrin (PdTPTBP) photocatalyst and the selective activation of NOA. Our approach has been validated with distinct photocatalysts and various N-nitrosamides, including those derived from carbamates, amides, and ureas. Notably, the modulation of the linker length between the electron mediator and N-nitrosamide groups serves as a regulatory mechanism for controlling NO release kinetics. Moreover, this biomimetic NO release platform demonstrates effective operation under both normoxic and hypoxic conditions, and it enables localized delivery of NO under physiological conditions, exhibiting significant anticancer efficacy within the phototherapeutic window and enhanced selectivity towards tumor cells.
Collapse
Affiliation(s)
- Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Zhiqiang Shen
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery and Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| |
Collapse
|
16
|
Li X, Liu L, Yang K, Wang Z, Yuan T, Sha Q, Chen W, Yi T, Hua J. A Diketopyrrolopyrrole-Based All-in-One Nanoplatform for Self-Reinforcing Mild Photothermal Therapy Cascade Immunotherapy for Tumors. Adv Healthc Mater 2024; 13:e2400766. [PMID: 39007249 DOI: 10.1002/adhm.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Mild photothermal therapy (PTT) has attracted attention for effectively avoiding the severe side effects associated with high-temperature tumor ablation. However, its progress is hindered by the limited availability of high-performance photothermal agents (PTAs) and the thermoresistance of cancer cells induced by heat shock reactions. Herein, this work proposes a new strategy to expand the library of high-performance organic small-molecule PTAs and utilize it to construct a multifunctional nano-theranostic platform. By incorporating additional acceptors and appropriate π-bridges, a diketopyrrolopyrrole-based dye BDB is developed, which exhibits strong absorption and bright fluorescence emission in the near-infrared (NIR) region. Subsequently, BDB is co-coated with the heat shock protein (HSP) inhibitor tanespimycin (17-AAG) using the functional amphiphilic polymers DSPE-Hyd-PEG2000-cRGD to form an all-in-one nanoplatform BAG NPs. As a result, BAG NPs can precisely target tumor tissue, guide the treatment process in real-time through NIR-II fluorescence/photoacoustic/photothermal imaging, and release 17-AAG on demand to enhance mild PTT. Additionally, the mild PTT has been demonstrated to induce immunogenic cell death (ICD) and activate a systemic anti-tumor immune response, thereby suppressing both primary and distant tumors. Overall, this study presents a multifunctional nanoplatform designed for precise mild PTT combined with immunotherapy for effective tumor treatment.
Collapse
Affiliation(s)
- Xinsheng Li
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyan Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kaini Yang
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yuan
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingyang Sha
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tao Yi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Xu H, Huang G, Cheng H, Li F, Zhang Z, Huang X, Huang H, Zheng C. Thermoelectric-Feedback Nanocomposite Hydrogel for Temperature-Synchronized Monitoring and Regulation in Accurate Photothermal Therapy. Adv Healthc Mater 2024; 13:e2401609. [PMID: 38888934 DOI: 10.1002/adhm.202401609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for tumor ablation and cancer treatment. However, controlling the therapeutic temperature during treatment remains challenging, and imprecise thermal regulation can harm adjacent healthy tissues, reduce therapeutic accuracy, and promote the thermotolerance of cellular phenotypes, potentially leading to tumor invasion and recurrence. Although existing methods provide basic temperature control by adjusting irradiation power and photothermal agent dosing, they lack real-time temperature monitoring and feedback control capabilities, underscoring the urgent need for more integrated and precise PTT systems. In this context, an innovative photothermoelectric (PTE) cobalt-infused chitosan (CS) nanocomposite hydrogel (PTE-Co@CS) is developed for precise temperature-regulated PTT, exhibiting desirable mechanical properties and exceptional biocompatibility. Enhanced by embedded nanoparticles, PTE-Co@CS demonstrates superior photothermal conversion efficiency compared with existing methods, while also featuring thermoelectric responsiveness and increased sensitivity to photostimuli. Its advantageous PTE response characteristics ensure a linear correlation between temperature shifts and resistance changes (e.g., R2 = 0.99919 at 0.5 W cm⁻2), enabling synchronized qualitative and quantitative control of PTT temperature through electrical signal monitoring. This allows for real-time monitoring and regulation during PTT, effectively addressing the issue of uncontrollable temperatures and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Gang Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Han Cheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Fangjie Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hailong Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Shanghai Research Institute of Stomatology & Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| |
Collapse
|
18
|
Zhang A, Wei Q, Zheng Y, Ma M, Cao T, Zhan Q, Cao P. Hydrogen Sulfide Delivery System Based on Salting-Out Effect for Enhancing Synergistic Photothermal and Photodynamic Cancer Therapies. Adv Healthc Mater 2024; 13:e2400803. [PMID: 39036862 DOI: 10.1002/adhm.202400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/30/2024] [Indexed: 07/23/2024]
Abstract
The simultaneous application of photothermal therapy (PTT) and photodynamic therapy (PDT) offers substantial advantages in cancer treatment. However, their synergistic anticancer efficacy is often limited by tumor hypoxia, and thermotolerance induced by high expression of heat shock proteins (HSP). Fortunately, hydrogen sulfide (H2S), known for its direct cytotoxic effect on tumor cells, has been recognized for its ability to enhance PTT and PDT. The effectiveness of H2S in these therapies is challenged by its low loading efficiency, poor stability, and short diffusion distance. To address these issues, a nanoscale emulsion drop template created through the salting-out effect is employed to construct a robust H2S delivery system. Polydopamine (PDA), chosen for its interfacial polymerization tendency and excellent photothermal conversion rate, is utilized as a carrier for the H2S donor (ADT) and Zinc phthalocyanine (ZnPc) to fabricate a novel nanomedicine termed APZ NPs. The temperature-responsive APZ NPs are designed to release H2S during the PTT process. Elevated H2S levels promoted vasodilation, thereby enhancing the enhanced permeability and retention effect (EPR) of APZ NPs within solid tumors. This strategy effectively alleviated tumor hypoxia by disrupting the mitochondrial respiratory chain and mitigated tumor cell heat tolerance by inhibiting HSP expression.
Collapse
Affiliation(s)
- Aimei Zhang
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qingyun Wei
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
| | - Yuhan Zheng
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengyuan Ma
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Cao
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qichen Zhan
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
| | - Peng Cao
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212002, P. R. China
| |
Collapse
|
19
|
Jiang Q, Li J, Du Z, Li M, Chen L, Zhang X, Tang X, Shen Y, Ma D, Li W, Li L, Alifu N, Hu Q, Liu J. High-Performance NIR-II Fluorescent Type I/II Photosensitizer Enabling Augmented Mild Photothermal Therapy of Tumors by Disrupting Heat Shock Proteins. Adv Healthc Mater 2024; 13:e2400962. [PMID: 38870484 DOI: 10.1002/adhm.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Indexed: 06/15/2024]
Abstract
NIR-II fluorescent photosensitizers as phototheranostic agents hold considerable promise in the application of mild photothermal therapy (MPTT) for tumors, as the reactive oxygen species generated during photodynamic therapy can effectively disrupt heat shock proteins. Nevertheless, the exclusive utilization of these photosensitizers to significantly augment the MPTT efficacy has rarely been substantiated, primarily due to their insufficient photodynamic performance. Herein, the utilization of high-performance NIR-II fluorescent type I/II photosensitizer (AS21:4) is presented as a simple but effective nanoplatform derived from molecule AS2 to enhance the MPTT efficacy of tumors without any additional therapeutic components. By taking advantage of heavy atom effect, AS21:4 as a type I/II photosensitizer demonstrates superior efficacy in producing 1O2 (1O2 quantum yield = 12.4%) and O2 •- among currently available NIR-II fluorescent photosensitizers with absorption exceeding 800 nm. In vitro and in vivo findings demonstrate that the 1O2 and O2 •- generated from AS21:4 induce a substantial reduction in the expression of HSP90, thereby improving the MPTT efficacy. The remarkable phototheranostic performance, substantial tumor accumulation, and prolonged tumor retention of AS21:4, establish it as a simple but superior phototheranostic agent for NIR-II fluorescence imaging-guided MPTT of tumors.
Collapse
Affiliation(s)
- Quanheng Jiang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhong Du
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, China
| | - Mengyuan Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Liying Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xunwen Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Xialian Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Yaowei Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Dalong Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Wen Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830054, China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
20
|
Wang Y, Chen X, Chen Z, Wang X, Wang H, Zhai H, Ding J, Yu L. Autophagy inhibition mediated via an injectable and NO-releasing hydrogel for amplifying the antitumor efficacy of mild magnetic hyperthermia. Bioact Mater 2024; 39:336-353. [PMID: 38827171 PMCID: PMC11140189 DOI: 10.1016/j.bioactmat.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
While mild hyperthermia holds great potential in the treatment of solid tumors, the thermal stress-triggered self-repairing autophagy significantly compromises its efficacy. To circumvent this obstacle, an injectable hydrogel (NO-Gel) composed of thermosensitive poly(ethylene glycol)-polypeptide copolymers modified with abundant NO donors on their side chains is developed. Meanwhile, ferrimagnetic Zn0.5Fe2.5O4 magnetic nanoparticles (MNPs) with high magnetic-heat conversion efficiency are synthesized and loaded into NO-Gel to obtain MNPs@NO-Gel. The MNPs@NO-Gel system exhibits a sol-gel transition upon heating, and has the ability to perform multiple magnetic hyperthermia therapy (MHT) after only one administration due to the even distribution and strong immobilization of MNPs in NO-Gel. NO can be continuously liberated from NO-Gel and this process is markedly accelerated by MHT. Additionally, MNPs@NO-Gel maintains its integrity in vivo for over one month and the released MNPs are metabolized by the spleen. After a single administration of MNPs@NO-Gel at the tumor site, three mild MHT treatments with similar effects are fulfilled, and the sufficient supply of NO effectively inhibits MHT-induced autophagic flux via blocking the formation of autophagosomes and synchronously destroying lysosomes, thereby substantially boosting the efficacy of mild MHT. As a consequence, CT-26 colon tumors are completely eliminated without causing severe side-effects.
Collapse
Affiliation(s)
- Yaoben Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Zhiyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Hancheng Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Huajuan Zhai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Farivar N, Khazamipour N, Roberts ME, Nelepcu I, Marzban M, Moeen A, Oo HZ, Nakouzi NA, Dolleris C, Black PC, Daugaard M. Pulsed Photothermal Therapy of Solid Tumors as a Precondition for Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309495. [PMID: 38511548 DOI: 10.1002/smll.202309495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Photothermal therapy (PTT) refers to the use of plasmonic nanoparticles to convert electromagnetic radiation in the near infrared region to heat and kill tumor cells. Continuous wave lasers have been used clinically to induce PTT, but the treatment is associated with heat-induced tissue damage that limits usability. Here, the engineering and validation of a novel long-pulsed laser device able to induce selective and localized mild hyperthermia in tumors while reducing the heat affected zone and unwanted damage to surrounding tissue are reported. Long-pulsed PTT induces acute necrotic cell death in heat affected areas and the release of tumor associated antigens. This antigen release triggers maturation and stimulation of CD80/CD86 in dendritic cells in vivo that primes a cytotoxic T cell response. Accordingly, long-pulsed PTT enhances the therapeutic effects of immune checkpoint inhibition and increases survival of mice with bladder cancer. Combined, the data promote long-pulsed PTT as a safe and effective strategy for enhancing therapeutic responses to immune checkpoint inhibitors while minimizing unwanted tissue damage.
Collapse
Affiliation(s)
- Negin Farivar
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nastaran Khazamipour
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Morgan E Roberts
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Irina Nelepcu
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mona Marzban
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Alireza Moeen
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Nader Al Nakouzi
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Casper Dolleris
- Dolleris Scientific Corp., 2327 Collingwood Street, Vancouver, BC, V6R 3L2, Canada
| | - Peter C Black
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Mads Daugaard
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
22
|
Pagliaro P, Weber NC, Femminò S, Alloatti G, Penna C. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol 2024; 119:509-544. [PMID: 38878210 PMCID: PMC11319428 DOI: 10.1007/s00395-024-01061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Despite recent progress, ischemic heart disease poses a persistent global challenge, driving significant morbidity and mortality. The pursuit of therapeutic solutions has led to the emergence of strategies such as ischemic preconditioning, postconditioning, and remote conditioning to shield the heart from myocardial ischemia/reperfusion injury (MIRI). These ischemic conditioning approaches, applied before, after, or at a distance from the affected organ, inspire future therapeutic strategies, including pharmacological conditioning. Gasotransmitters, comprising nitric oxide, hydrogen sulfide, sulfur dioxide, and carbon monoxide, play pivotal roles in physiological and pathological processes, exhibiting shared features such as smooth muscle relaxation, antiapoptotic effects, and anti-inflammatory properties. Despite potential risks at high concentrations, physiological levels of gasotransmitters induce vasorelaxation and promote cardioprotective effects. Noble gases, notably argon, helium, and xenon, exhibit organ-protective properties by reducing cell death, minimizing infarct size, and enhancing functional recovery in post-ischemic organs. The protective role of noble gases appears to hinge on their modulation of molecular pathways governing cell survival, leading to both pro- and antiapoptotic effects. Among noble gases, helium and xenon emerge as particularly promising in the field of cardioprotection. This overview synthesizes our current understanding of the roles played by gasotransmitters and noble gases in the context of MIRI and cardioprotection. In addition, we underscore potential future developments involving the utilization of noble gases and gasotransmitter donor molecules in advancing cardioprotective strategies.
Collapse
Affiliation(s)
- Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy.
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy.
| | - Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science (ACS), Amsterdam, The Netherlands
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
| | | | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, TO), Italy
- National Institute for Cardiovascular Research (INRC), 40126, Bologna, Italy
| |
Collapse
|
23
|
Shang J, Xia Q, Sun Y, Wang H, Chen J, Li Y, Gao F, Yin P, Yuan Z. Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC. Int J Nanomedicine 2024; 19:7831-7850. [PMID: 39105099 PMCID: PMC11299722 DOI: 10.2147/ijn.s470005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Compared with traditional photothermal therapy (PTT, >50°C), mild PTT (≤45°C) is a promising strategy for tumor therapy with fewer adverse effects. Unfortunately, its anti-tumor efficacy is hampered by thermoresistance induced by overexpression of heat shock proteins (HSPs). In our previous study, we found bufalin (BU) is a glycolysis inhibitor that depletes HSPs, which is expected to overcome thermotolerance of tumor cells. In this study, BU-loaded multifunctional nanoparticles (NPs) were developed for enhancing the mild PTT of colorectal cancer (CRC). Methods Fe3O4 NPs coated with the polydopamine (PDA) shell modified with polyethylene glycol (PEG) and cyclic arginine-glycyl-aspartic peptide (cRGD) for loading BU (Fe3O4@PDA-PEG-cRGD/BU NPs) were developed. The thermal variations in Fe3O4@PDA-PEG-cRGD/BU NPs solution under different conditions were measured. Glycolysis inhibition was evaluated by measuring the glucose uptake, extracellular lactate, and intracellular adenosine triphosphate (ATP) levels. The cellular cytotoxicity of Fe3O4@PDA-PEG-cRGD/BU NPs was analyzed using a cell counting kit-8 assay, Calcein-AM/PI double staining, and flow cytometry in HCT116 cells. The magnetic resonance imaging (MRI) performance and anti-tumor therapeutic efficacy of Fe3O4@PDA-PEG-cRGD/BU NPs were evaluated in HCT116-tumor bearing mice. Results Fe3O4@PDA-PEG-cRGD/BU NPs had an average diameter of 260.4±3.5 nm, the zeta potential of -23.8±1.6 mV, the drug loading rate of 1.1%, which had good thermal stability, photothermal conversion efficiencies and MRI performance. In addition, the released BU not only killed tumor cells but also interfered with glycolysis by targeting the steroid receptor coactivator 3 (SRC-3)/HIF-1α pathway, preventing intracellular ATP synthesis, and combating HSP-dependent tumor thermoresistance, ultimately strengthening the thermal sensitivity toward mild PTT both in vitro and in vivo. Conclusion This study provides a highly effective strategy for enhancing the therapeutic effects of mild PTT toward tumors.
Collapse
Affiliation(s)
- Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yuji Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Hongtao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People’s Republic of China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People’s Republic of China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, People’s Republic of China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
24
|
Li C, Fang X, Zeng Q, Zeng L, Zhang B, Nie G. Ultra small gold nanoclusters supported on two-dimensional bismuth selenium nanosheets for synergistic photothermal and photodynamic tumor therapy. RSC Adv 2024; 14:24335-24344. [PMID: 39104558 PMCID: PMC11298975 DOI: 10.1039/d4ra03142c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Two-dimensional (2D) bismuth selenium (Bi2Se3) nanosheets have exceptional surface area and superior surface modification capabilities, facilitating the effective loading of nanoprobes, metal particles, and other substances. Additionally, thiolated ultrasmall gold nanoclusters (Au NCs), distinguished by their high photoluminescent activity and modulatable surface charges, enable efficient loading onto the 2D Bi2Se3 surfaces. In this study, we successfully prepared Bi2Se3 nanosheets by sonication-assisted liquid phase exfoliation and loaded Au clusters on their surface through an amide bond reaction. The loading of Au NCs significantly augments the photothermal and photocatalytic capabilities of Bi2Se3 nanosheets and exhibits obvious anti-cancer therapeutic effects through in vitro and in vivo experiments. In summary, the as-prepared AuNC@Bi2Se3 nanocomposites showed combined near-infrared light-initiated photothermal/photodynamic therapy (PTT/PDT) against tumors, demonstrating their potential as novel theranostic agents for biomedical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China Hengyang Hunan 421001 China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Qingdong Zeng
- Graduate Collaborative Training Base of Shenzhen Second People's Hospital, Heng Yang Medical School, University of South China Hengyang Hunan 421001 China
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Li Zeng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Institute of Translational Medicine Department of Otolaryngology Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center Shenzhen 518035 China
| |
Collapse
|
25
|
Laneri F, Parisi C, Seggio M, Fraix A, Longobardi G, Catanzano O, Quaglia F, Sortino S. Supramolecular red-light-photosensitized nitric oxide release with fluorescence self-reporting within biocompatible nanocarriers. J Mater Chem B 2024; 12:6500-6508. [PMID: 38873736 DOI: 10.1039/d4tb00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The strict dependence of the biological effects of nitric oxide (NO) on its concentration and generation site requires this inorganic free radical to be delivered with precise spatiotemporal control. Light-activation by suitable NO photoprecursors represents an ideal approach. Developing strategies to activate NO release using long-wavelength excitation light in the therapeutic window (650-1300 nm) is challenging. In this contribution, we demonstrate that NO release by a blue-light activatable NO photodonor (NOPD) with self-fluorescence reporting can be triggered catalytically by the much more biocompatible red light exploiting a supramolecular photosensitization process. Different red-light absorbing photosensitizers (PSs) are co-entrapped with the NOPD within different biocompatible nanocarriers such as Pluronic® micelles, microemulsions and branched cyclodextrin polymers. The intra-carrier photosensitized NO release, involving the lowest, long-lived triplet state of the PS as the key intermediate and its quenching by the NOPD, is competitive with that by molecular oxygen. This allows NO to be released with good efficacy, even under aerobic conditions. Therefore, the adopted general strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and using sophisticated and expensive irradiation sources.
Collapse
Affiliation(s)
- Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Giuseppe Longobardi
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Ovidio Catanzano
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078, Pozzuoli (NA), Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy.
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
26
|
Li B, Fu G, Liu C, Lu Y, Mi Y, Yan D, Wu J, Dai X, Cao D, Liu W, Liu X. Ti 2C 3 MXene-based nanocomposite as an intelligent nanoplatform for efficient mild hyperthermia treatment. J Colloid Interface Sci 2024; 665:389-398. [PMID: 38537587 DOI: 10.1016/j.jcis.2024.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Photothermal therapy (PTT) has attracted much attention due to its less invasive, controllable and highly effective nature. However, PTT also suffers from intrinsic cancer resistance mediated by cell survival pathways. These survival pathways are regulated by a variety of proteins, among which heat shock protein (HSP) triggers thermotolerance and protects tumor cells from hyperthermia-induced apoptosis. Confronted by this challenge, we propose and validate here a novel MXene-based HSP-inhibited mild photothermal platform, which significantly enhances the sensitivity of tumor cells to heat-induced stress and thus improves the PPT efficacy. The Ti3C2@Qu nanocomposites are constructed by utilizing the high photothermal conversion ability of Ti3C2 nanosheets in combination with quercetin (Qu) as an inhibitor of HSP70. Qu molecules are loaded onto the nanoplatform in a pH-sensitive controlled release manner. The acidic environment of the tumor causes the burst-release of Qu molecules, which deplete the level of heat shock protein 70 (HSP70) in tumor cells and leave the tumor cells out from the protection of the heat-resistant survival pathway in advance, thus sensitizing the hyperthermia efficacy. The nanostructure, photothermal properties, pH-responsive controlled release, synergistic photothermal ablation of tumor cells in vitro and in vivo, and hyperthermia effect on subcellular structures of the Ti3C2@Qu nanocomposites were systematically investigated.
Collapse
Affiliation(s)
- Bai Li
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Gege Fu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Chao Liu
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yingqian Mi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jiahang Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xinhua Dai
- Department of Colorectal & Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Dianbo Cao
- Department of Radiology, The First Hospital of Jilin University. Chang Chun 130021, China.
| | - Wanchao Liu
- Anesthesia Department, Jilin Provincial Armed Police Corps Hospital, Changchun 130052, China.
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Chen Z, Li Y, Xiang Q, Wu Y, Ran H, Cao Y. Metallic Copper-Based Dual-Enzyme Biomimetic Nanoplatform for Mild Photothermal Enhancement of Anticancer Catalytic Activity. Biomater Res 2024; 28:0034. [PMID: 38840654 PMCID: PMC11151172 DOI: 10.34133/bmr.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Background: Chemodynamic therapy (CDT) is recognized as a promising cancer treatment. Recently, copper sulfide nanostructures have been extensively employed as Fenton-like reagents that catalyze the formation of acutely toxic hydroxyl radicals (·OH) from hydrogen peroxide (H2O2). However, CDT therapeutic potency is restricted by the tumor microenvironment (TME), such as insufficient amounts of hydrogen peroxide, excessive glutathione levels, etc. To address these disadvantages, glucose oxidase (GOx) or catalase (CAT) can be utilized to enhance CDT, while low therapeutic efficacy still inhibits their future applications. Our previous study revealed that mild photothermal effect could boost the CDT catalytic effectiveness as well as GOx enzyme activity over a range. Results: We engineered and constructed a hollow CuS nanoplatform loaded with GOx and CAT, coating with macrophage membranes (M@GOx-CAT@CuS NPs). The nanoplatforms allowed enhancement of the reactive oxygen species creation rate and GOx catalytic activeness of CDT through mild phototherapy directed by photoacoustic imaging. After actively targeting vascular cell adhesion molecule-1 (VCAM-1) in cancer cells mediated by macrophage membrane coating, M@GOx-CAT@CuS NPs released GOx and CAT under near-infrared irradiation. GOx catalyzed the formation of H2O2 and gluconic acid with glucose, creating a better catalytic environment for CDT. Meanwhile, CAT-catalyzed H2O2 decomposition to generate sufficient oxygen, appropriately alleviating the oxygen shortage in the TME. In addition, starvation effects decreased adenosine triphosphate levels and further underregulated heat shock protein expression to reduce the heat resistance of tumor cells, resulting in a better mild phototherapy outcome. Both in vitro and in vivo experiments demonstrated that the newly developed M@GOx-CAT@CuS nanoplatform has remarkable synergistic anticancer therapeutic effects. Conclusion: The cascade reaction-enhanced biomimetic nanoplatform opens up a new avenue for precision tumor diagnostic and therapeutic research.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Institute of Ultrasound Imaging,
State Key Laboratory of Ultrasound in Medicine and Engineering of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
28
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
29
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
30
|
Choi K, Kim H, Nam SY, Heo CY. Enhancement of skin rejuvenation and hair growth through novel near-infrared light emitting diode (nNIR) lighting: in vitro and in vivo study. Lasers Med Sci 2024; 39:104. [PMID: 38630175 PMCID: PMC11024053 DOI: 10.1007/s10103-024-04044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.
Collapse
Affiliation(s)
- Keonwoo Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Hongbin Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea.
- H&BIO Corporation/R&D Center, Seongnam, Republic of Korea.
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
32
|
Chen Y, Zhai J, Wei S, Tang A, Yang H. A Fe(III) intercalated clay nanoplatform for combined chemo/chemodynamic therapy. Chem Commun (Camb) 2024; 60:3535-3538. [PMID: 38450703 DOI: 10.1039/d3cc06205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A Fe(III) intercalated montmorillonite nanoplatform (Fe-MMT) was engineered for doxorubicin (DOX) loading. The constructed Fe-MMT/DOX nanoplatform could not only improve the production of H2O2 to enhance chemodynamic therapy but interfere with DNA damage repair to amplify the efficacy of DOX, proving an ideal combination of chemotherapy and chemodynamic therapy.
Collapse
Affiliation(s)
- Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Jing Zhai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Shiqi Wei
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
33
|
Huang L, Du M, Sun D, He M, Liu Z, Wu R, Jiang Y, Qi L, Wang J, Zhu C, Li Y, Liu L, Feng G, Zhang L. Propelling Multi-Modal Therapeutics of PEEK Implants through the Power of NO evolving Covalent Organic Frameworks (COFs). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306508. [PMID: 37919860 DOI: 10.1002/smll.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Indexed: 11/04/2023]
Abstract
The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.
Collapse
Affiliation(s)
- Leizhen Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Meixuan Du
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Miaomiao He
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
34
|
Qu Y, Zhuang L, Bao W, Li C, Chen H, He S, Yao H, Si Q. Atomically dispersed nanozyme-based synergistic mild photothermal/nanocatalytic therapy for eradicating multidrug-resistant bacteria and accelerating infected wound healing. RSC Adv 2024; 14:7157-7171. [PMID: 38419673 PMCID: PMC10900182 DOI: 10.1039/d3ra08431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Constructing a synergistic multiple-modal antibacterial platform for multi-drug-resistant (MDR) bacterial eradication and effective treatment of infected wounds remains an important and challenging goal. Herein, we developed a multifunctional Cu/Mn dual single-atom nanozyme (Cu/Mn-DSAzymes)-based synergistic mild photothermal/nanocatalytic-therapy for a MDR bacterium-infected wound. Cu/Mn-DSAzymes with collaborative effects exhibit remarkable dual CAT-like and OXD-like enzyme activities and could efficiently catalyze cascade enzymatic reactions with a low level of H2O2 as an initial reactant to produce reparative O2 and lethal ˙O2-. Moreover, a black N-doped carbon nanosheet supports of Cu/Mn-DSAzymes show superior NIR-II-triggered photothermal performance, endowing them with photothermal-enhanced dual enzyme catalysis. In addition, such enhanced dual enzyme catalysis likely improves the susceptibility and lethality of photothermal effects on MDR bacteria. In vitro and in vivo studies demonstrate that Cu/Mn-DSAzyme-mediated synergistic nanocatalytic and photothermal effects possess dramatic antibacterial outcomes against MDR bacteria and evidently reduced inflammation at wound sites. Moreover, the combined photothermal effect and O2 release mediated by Cu/Mn-DSAzymes promotes macrophage polarization to reparative M2 phenotype, collagen deposition, and angiogenesis, considerably accelerating wound healing. Therefore, Cu/Mn-DSAzyme-based synergetic dual-modal antibacterial therapy is a promising strategy for MDR bacterium-infected wound treatment, owing to their excellent antibacterial ability and significant tissue remodeling effects.
Collapse
Affiliation(s)
- Ying Qu
- College of Nursing, Inner Mongolia Minzu University Tongliao Inner Mongolia 028000 China
| | - Liang Zhuang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University 11 Fucheng Road, Haidian District Beijing 100048 P. R. China
| | - Wuren Bao
- College of Nursing, Inner Mongolia Minzu University Tongliao Inner Mongolia 028000 China
| | - Chunlin Li
- The Third Healthcare Department of the 2nd Medical Center, Chinese PLA General Hospital Beiing 100853 China
| | - Hongyu Chen
- Pain Department, Eye Hospital China Academy of Chinese Medical Sciences Beijing 100040 China
| | - Shan He
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University 11 Fucheng Road, Haidian District Beijing 100048 P. R. China
| | - Hui Yao
- Pain Department, Eye Hospital China Academy of Chinese Medical Sciences Beijing 100040 China
| | - Quanjin Si
- The Third Healthcare Department of the 2nd Medical Center, Chinese PLA General Hospital Beiing 100853 China
| |
Collapse
|
35
|
Jiang M, Cheng Z, Luo T, Chu C, Zhang Z, Hui Y, Chu PK, Yu XF, Wang J, Zhou W, Geng S. BiTiS 3 bio-transducer with explosive on-demand generation of NO gas for synergetic cancer therapy. Biosens Bioelectron 2024; 246:115895. [PMID: 38048720 DOI: 10.1016/j.bios.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Combined photothermal therapy and nitric oxide (NO)-mediated gas therapy has shown great potential as a cancer treatment. However, the on-demand release of NO at a high concentration presents a challenge owing to the lack of an ideal bio-transducer with a high loading capacity of NO donors and sufficient energy to induce NO release. Here, we present a new 2D BiTiS3 nanosheet that is synthesized, loaded with the NO donor (BNN6), and conjugated with PEG-iRGD to produce a multifunctional bio-transducer (BNN6-BiTiS3-iRGD) for the on-demand production of NO. The BiTiS3 nanosheets not only have a high loading capacity of NO donors (750%), but also exhibit a high photothermal conversion efficiency (59.5%) after irradiation by a 1064-nm laser at 0.5 W/cm2. As a result of the above advantages, the temporal-controllable generation of NO within a large dynamic range (from 0 to 344 μM) is achieved by adjusting power densities, which is among the highest efficiency values reported for NO generators so far. Moreover, the targeted accumulation of BNN6-BiTiS3-iRGD at tumor sites leads to spatial-controllable NO release. In vitro and in vivo assessments demonstrate synergistic NO gas therapy with mild photothermal therapy based on BNN6-BiTiS3-iRGD. Our work provides insights into the design and application of other 2D nanomaterial-based therapeutic platforms.
Collapse
Affiliation(s)
- Mingyang Jiang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziqiang Cheng
- Department of Applied Physics, School of Science, East China Jiaotong University, Nanchang, 330013, China
| | - Tingting Luo
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chenchen Chu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenyu Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Hui
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiahong Wang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Wenhua Zhou
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
36
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
37
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
38
|
Chai Y, Shangguan L, Yu H, Sun Y, Huang X, Zhu Y, Wang H, Liu Y. Near Infrared Light-Activatable Platelet-Mimicking NIR-II NO Nano-Prodrug for Precise Atherosclerosis Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304994. [PMID: 38037484 PMCID: PMC10797437 DOI: 10.1002/advs.202304994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that affects arteries and is the main cause of cardiovascular disease. Atherosclerotic plaque formation is usually asymptomatic and does not manifest until the occurrence of clinical events. Therefore, early diagnosis and treatment of atherosclerotic plaques is particularly important. Here, a series of NIR-II fluorescent dyes (RBT-NH) are developed for three photoresponsive NO prodrugs (RBT-NO), which can be controllably triggered by 808 nm laser to release NO and turn on the NIR-II emission in the clinical medicine "therapeutic window". Notably, RBT3-NO is selected for its exhibited high NO releasing efficiency and superior fluorescence signal enhancement. Subsequently, a platelet-mimicking nano-prodrug system (RBT3-NO-PEG@PM) is constructed by DSPE-mPEG5k and platelet membrane (PM) for effectively targeted diagnosis and therapy of atherosclerosis in mice. The results indicate that this platelet-mimicking NO nano-prodrug system can reduce the accumulation of lipids at the sites of atherosclerotic plaques, improve the inflammatory response at the lesion sites, and promote endothelial cell migration, thereby slowing the progression of plaques.
Collapse
Affiliation(s)
- Yun Chai
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Lina Shangguan
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hui Yu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Ye Sun
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Xiaoyan Huang
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Yanyan Zhu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| | - Hai‐Yan Wang
- School of Mechanical EngineeringSoutheast UniversityNanjing211189China
| | - Yi Liu
- State Key Laboratory of Natural Medicines, School of EngineeringChina Pharmaceutical UniversityNanjing211198China
| |
Collapse
|
39
|
Wang C, Xu YH, Xu HZ, Li K, Zhang Q, Shi L, Zhao L, Chen X. PD-L1 blockade TAM-dependently potentiates mild photothermal therapy against triple-negative breast cancer. J Nanobiotechnology 2023; 21:476. [PMID: 38082443 PMCID: PMC10712197 DOI: 10.1186/s12951-023-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
The present work was an endeavor to shed light on how mild photothermia possibly synergizes with immune checkpoint inhibition for tumor therapy. We established mild photothermal heating protocols to generate temperatures of 43 °C and 45 °C in both in vitro and in vivo mouse 4T1 triple-negative breast cancer (TNBC) models using polyglycerol-coated carbon nanohorns (CNH-PG) and 808 nm laser irradiation. Next, we found that 1) CNH-PG-mediated mild photothermia (CNH-PG-mPT) significantly increased expression of the immune checkpoint PD-L1 and type-1 macrophage (M1) markers in the TNBC tumors; 2) CNH-PG-mPT had a lower level of anti-tumor efficacy which was markedly potentiated by BMS-1, a PD-L1 blocker. These observations prompted us to explore the synergetic mechanisms of CNH-PG-mPT and BMS-1 in the context of tumor cell-macrophage interactions mediated by PD-L1 since tumor-associated macrophages (TAMs) are a major source of PD-L1 expression in tumors. In vitro, the study then identified two dimensions where BMS-1 potentiated CNH-PG-mPT. First, CNH-PG-mPT induced PD-L1 upregulation in the tumor cells and showed a low level of cytotoxicity which was potentiated by BMS-1. Second, CNH-PG-mPT skewed TAMs towards an M1-like anti-tumor phenotype with upregulated PD-L1, and BMS-1 bolstered the M1-like phenotype. The synergistic effects of BMS-1 and CNH-PG-mPT both on the tumor cells and TAMs were more pronounced when the two cell populations were in co-culture. Further in vivo study confirmed PD-L1 upregulation both in tumor cells and TAMs in the TNBC tumors following treatment of CNH-PG-mPT. Significantly, TAMs depletion largely abolished the anti-TNBC efficacy of CNH-PG-mPT alone and in synergy with BMS-1. Collectively, our findings reveal PD-L1 upregulation to be a key response of TNBC to mild photothermal stress, which plays a pro-survival role in the tumor cells while also acting as a brake on the M1-like activation of the TAMs. Blockade of mPT‑induced PD‑L1 achieves synergistic anti-TNBC efficacy by taking the intrinsic survival edge off the tumor cells on one hand and taking the brakes off the M1-like TAMs on the other. Our findings reveal a novel way (i.e. mild thermia plus PD-L1 blockade) to modulate the TAMs-tumor cell interaction to instigate a mutiny of the TAMs against their host tumor cells.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Yong-Hong Xu
- Department of Ophthalmology, Institute of Ophthalmological Research, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua-Zhen Xu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Ke Li
- Center for Lab Teaching, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Quan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Li Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Donghu Avenue No. 185, Wuhan, 430072, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430072, China.
| |
Collapse
|
40
|
Zhu M, Man X, Tongfu Y, Li W, Li S, Xu G, Zhang Z, Liang H, Yang F. Developing a Hetero-Trinuclear Erbium(III)-Copper(II) Complex Based on Apoferritin: Targeted Photoacoustic Imaging and Multimodality Therapy of Tumor. J Med Chem 2023; 66:15424-15436. [PMID: 37956097 DOI: 10.1021/acs.jmedchem.3c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For the integration of targeted diagnosis and treatment of tumor, we innovatively designed and synthesized a single-molecule hetero-multinuclear Er(III)-Cu(II) complex (ErCu2) and then constructed an ErCu2@apoferritin (AFt) nanoparticle (NP) delivery system. ErCu2 and ErCu2@AFt NPs not only provided an evident photoacoustic imaging (PAI) signal of the tumor but also effectively inhibited tumor growth by integrating photothermal therapy, chemotherapy, and immunotherapy. ErCu2@AFt NPs improved the targeting ability and decreased the systemic toxicity of ErCu2 in vivo. Furthermore, we confirmed that ErCu2 and ErCu2@AFt NPs inhibited tumor growth by inducing apoptosis and autophagy of tumor cells and activating the immune system. The study not only provides a novel strategy to develop therapeutic metal agents but also reveals their potential for targeted accurate diagnosis and multimodality therapy of cancer.
Collapse
Affiliation(s)
- Minghui Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Yang Tongfu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
41
|
Yang Z, Yang X, Guo Y, Kawasaki H. A Review on Gold Nanoclusters for Cancer Phototherapy. ACS APPLIED BIO MATERIALS 2023; 6:4504-4517. [PMID: 37828759 DOI: 10.1021/acsabm.3c00518] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cancer phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has been extensively studied in recent years because of its noninvasive properties, high efficiency, improved selectivity, and reduced side effects. Gold nanoclusters (AuNCs) have the advantages of high biocompatibility, high biosafety, excellent photoresponse, and high tumor penetration ability. This review analyzes the use of AuNCs in tumor phototherapy in recent years from three aspects, namely, AuNCs in PDT, AuNCs in PTT, and AuNCs in combination therapy, and presents the high potential of AuNCs in cancer phototherapy. This review aims to provide readers with the unique advantages, diversified application approaches, and bright application prospects of AuNCs in phototherapy and to provide insights into strategies for applying AuNCs to tumor phototherapy.
Collapse
Affiliation(s)
- Zhuoren Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| | - Hideya Kawasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
| |
Collapse
|
42
|
Song S, Wang Q, Xie J, Dai J, Ouyang D, Huang G, Guo Y, Chen C, Wu M, Huang T, Ruan J, Cheng X, Lin X, He Y, Rozhkova EA, Chen Z, Yang H. Dual-Responsive Turn-On T 1 Imaging-Guided Mild Photothermia for Precise Apoptotic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301437. [PMID: 37379009 DOI: 10.1002/adhm.202301437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.
Collapse
Affiliation(s)
- Sijie Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Qi Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiangao Xie
- Fujian Medical University Union Hospital, Fuzhou, 350108, P. R. China
| | - Junduan Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Dilan Ouyang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuheng Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chen Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Mengnan Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingwen Ruan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xiaofeng Cheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yu He
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Elena A Rozhkova
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
43
|
Pranav, Laskar P, Jaggi M, Chauhan SC, Yallapu MM. Biomolecule-functionalized nanoformulations for prostate cancer theranostics. J Adv Res 2023; 51:197-217. [PMID: 36368516 PMCID: PMC10491979 DOI: 10.1016/j.jare.2022.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Even with the advancement in the areas of cancer nanotechnology, prostate cancer still poses a major threat to men's health. Nanomaterials and nanomaterial-derived theranostic systems have been explored for diagnosis, imaging, and therapy for different types of cancer still, for prostate cancer they have not delivered at full potential because of the limitations like in vivo biocompatibility, immune responses, precise targetability, and therapeutic outcome associated with the nanostructured system. AIM OF REVIEW Functionalizing nanomaterials with different biomolecules and bioactive agents provides advantages like specificity towards cancerous tumors, improved circulation time, and modulation of the immune response leading to early diagnosis and targeted delivery of cargo at the site of action. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we have emphasized the classification and comparison of various nanomaterials based on biofunctionalization strategy and source of biomolecules such that it can be used for possible translation in clinical settings and future developments. This review highlighted the opportunities for embedding highly specific biological targeting moieties (antibody, aptamer, oligonucleotides, biopolymer, peptides, etc.) on nanoparticles which can improve the detection of prostate cancer-associated biomarkers at a very low limit of detection, direct visualization of prostate tumors and lastly for its therapy. Lastly, special emphasis was given to biomimetic nanomaterials which include functionalization with extracellular vesicles, exosomes and viral particles and their application for prostate cancer early detection and drug delivery. The present review paves a new pathway for next-generation biofunctionalized nanomaterials for prostate cancer theranostic application and their possibility in clinical translation.
Collapse
Affiliation(s)
- Pranav
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
44
|
Peng Y, Jiang H, Li B, Liu Y, Guo B, Gan W. A NIR-Activated and Mild-Temperature-Sensitive Nanoplatform with an HSP90 Inhibitor for Combinatory Chemotherapy and Mild Photothermal Therapy in Cancel Cells. Pharmaceutics 2023; 15:2252. [PMID: 37765221 PMCID: PMC10537501 DOI: 10.3390/pharmaceutics15092252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mild photothermal therapy (PTT) shows great potential to treat cancers while avoiding unwanted damage to surrounding normal cells. However, the efficacy of mild PTT is normally moderate because of the low hyperthermia temperature and limited light penetration depth. Chemotherapy has unlimited penetration but often suffers from unsatisfactory efficacy in view of the occurrence of drug resistance, suboptimal drug delivery and release profile. As a result, the combinatory of chemotherapy and mild PTT would integrate their advantages and overcome the shortcomings. Herein, we synthesized an NIR-activatable and mild-temperature-sensitive nanoplatform (BDPII-gel@TSL) composed of temperature-sensitive liposomes (TSL), heat shock protein 90 (HSP90) inhibitor (geldanamycin) and photothermal agent (BDPII), for dual chemotherapy and mild PTT in cancer cells. BDPII, constructed with donor-acceptor moieties, acts as an excellent near-infrared (NIR) photothermal agent (PTA) with a high photothermal conversion efficiency (80.75%). BDPII-containing TSLs efficiently produce a mild hyperthermia effect (42 °C) under laser irradiation (808 nm, 0.5 W cm-2). Importantly, the phase transformation of TSL leads to burst release of geldanamycin from BDPII-gel@TSL, and this contributes to down-regulation of the overexpression of HSP90, ensuring efficient inhibition of cancer cell growth. This research provides a dual-sensitive synergistic therapeutic strategy for cancer cell treatment.
Collapse
Affiliation(s)
- Yingying Peng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hanlin Jiang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China; (Y.P.); (H.J.); (B.L.); (Y.L.)
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
45
|
Yi H, Ma C, Wang W, Liang H, Cui R, Cao W, Yang H, Ma Y, Huang W, Zheng Z, Zou Y, Deng Z, Yao J, Yang G. Quantum tailoring for polarization-discriminating Bi 2S 3 nanowire photodetectors and their multiplexing optical communication and imaging applications. MATERIALS HORIZONS 2023; 10:3369-3381. [PMID: 37404203 DOI: 10.1039/d3mh00733b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
In this study, cost-efficient atmospheric pressure chemical vapor deposition has been successfully developed to produce well-aligned high-quality monocrystalline Bi2S3 nanowires. By virtue of surface strain-induced energy band reconstruction, the Bi2S3 photodetectors demonstrate a broadband photoresponse across 370.6 to 1310 nm. Upon a gate voltage of 30 V, the responsivity, external quantum efficiency, and detectivity reach 23 760 A W-1, 5.55 × 106%, and 3.68 × 1013 Jones, respectively. The outstanding photosensitivity is ascribed to the high-efficiency spacial separation of photocarriers, enabled by synergy of the axial built-in electric field and type-II band alignment, as well as the pronounced photogating effect. Moreover, a polarization-discriminating photoresponse has been unveiled. For the first time, the correlation between quantum confinement and dichroic ratio is systematically explored. The optoelectronic dichroism is established to be negatively correlated with the cross dimension (i.e., width and height) of the channel. Specifically, upon 405 nm illumination, the optimized dichroic ratio reaches 2.4, the highest value among the reported Bi2S3 photodetectors. In the end, proof-of-concept multiplexing optical communications and broadband lensless polarimetric imaging have been implemented by exploiting the Bi2S3 nanowire photodetectors as light-sensing functional units. This study develops a quantum tailoring strategy for tailoring the polarization properties of (quasi-)1D material photodetectors whilst depicting new horizons for the next-generation opto-electronics industry.
Collapse
Affiliation(s)
- Huaxin Yi
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, Guangdong, P. R. China
| | - Wan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Huanrong Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Rui Cui
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Hailin Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Yuhang Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Wenjing Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | - Yichao Zou
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | - Zexiang Deng
- School of Science, Guilin University of Aerospace Technology, Guilin 541004, Guangxi, P. R. China.
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China
| |
Collapse
|
46
|
Wang X, Zhang Y, Li T, Liu Y. Bioorthogonal Glycoengineering-Mediated Multifunctional Liquid Metal Nanoprobes for Highly Efficient Photoacoustic Imaging-Guided Photothermal/Chemotherapy of Tumor. ACS APPLIED BIO MATERIALS 2023; 6:3232-3240. [PMID: 37432729 DOI: 10.1021/acsabm.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The development of a multifunctional cancer diagnosis and treatment platform offers excellent prospects for the effective eradication of malignant solid tumors. Herein, a doxorubicin hydrochloride (DOX)-loaded tannic acid (TA)-coated liquid metal (LM) multifunctional nanoprobe was synthesized and applied as a highly efficient platform for the photoacoustic (PA) imaging-guided photothermal/chemotherapy of tumor. The multifunctional nanoprobes exhibited strong near-infrared absorption, a remarkable photothermal conversion efficiency (PCE) of 55%, and high DOX loading capacity. Combined with the large intrinsic thermal expansion coefficient of LM, highly efficient PA imaging and effective drug release were realized. The LM-based multifunctional nanoprobes were specifically adsorbed into the cancer cells and tumor tissues via glycoengineering biorthogonal chemistry. The in vitro and in vivo photothermal/chemo-anticancer activity confirmed their promising potential in cancer treatment. The subcutaneous breast tumor-bearing mice completely recovered in 5 days under light illumination with clear PA imaging presentation, which showed better antitumor outcomes than single-mode chemotherapy or photothermal therapy (PTT), while keeping side effects at a minimum. Such an LM-based PA imaging-guided photothermal/chemotherapy strategy provided a valuable platform for resistant cancer precise treatment and intelligent biomedicine.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yimeng Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ting Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Fraix A, Parisi C, Longobardi G, Conte C, Pastore A, Stornaiuolo M, Graziano ACE, Alberto ME, Francés-Monerris A, Quaglia F, Sortino S. Red-Light-Photosensitized NO Release and Its Monitoring in Cancer Cells with Biodegradable Polymeric Nanoparticles. Biomacromolecules 2023; 24:3887-3897. [PMID: 37467426 DOI: 10.1021/acs.biomac.3c00527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Giuseppe Longobardi
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Arianna Pastore
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Adriana C E Graziano
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Marta E Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende I-87036, Italy
| | | | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli Federico II, I-80131 Napoli, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
48
|
Zhou J, Cao C, Zhang X, Zhang X, Li J, Deng H, Wang S. Gas-assisted phototherapy for cancer treatment. J Control Release 2023; 360:564-577. [PMID: 37442200 DOI: 10.1016/j.jconrel.2023.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Phototherapies, mainly including photodynamic and photothermal therapy, have made considerable strides in the field of cancer treatment. With the aid of phototherapeutic agents, reactive oxygen species (ROS) or heat are generated under light irradiation to selectively damage cancer cells. However, sole-modality phototherapy faces certain drawbacks, such as limited penetration of phototherapeutic agents into tumor tissues, inefficient ROS generation due to hypoxia, treatment-induced inflammation and resistance of tumor to treatment (e.g., high levels of antioxidants, expression of heat shock protein). Gas therapy, an emerging therapy approach that damages cancer cells by improving the level of certain gas at the tumor site, shows potential to overcome the challenges associated with phototherapies. In addition, with the rapid development of nanotechnology, gas-assisted phototherapy based on nanomedicines has emerged as a promising strategy to enhance the treatment efficacy. This review summarizes recent advances in gas-assisted phototherapy and discusses the prospects and challenges of this strategy in cancer phototherapy.
Collapse
Affiliation(s)
- Jun Zhou
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jiansen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Hongzhang Deng
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
49
|
Shi H, Xiong CF, Zhang LJ, Cao HC, Wang R, Pan P, Guo HY, Liu T. Light-Triggered Nitric Oxide Nanogenerator with High l-Arginine Loading for Synergistic Photodynamic/Gas/Photothermal Therapy. Adv Healthc Mater 2023; 12:e2300012. [PMID: 36929147 DOI: 10.1002/adhm.202300012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 03/18/2023]
Abstract
The development of nanomedicines that combine photothermal therapy (PTT) with photodynamic therapy (PDT) is considered promising for cancer treatment, but still faces the challenge of enhancing tumoricidal efficiency. Fortunately, apart from the well-acknowledged effect on direct tumor cell-killing, nitric oxide (NO) is also considered to be effective for the enhancement of both PTT and PDT. However, both the low loading efficiency of NO precursor and the short half-life time and diffusion distance of NO hamper the synergistic therapeutic efficacy of NO. Taking the aforementioned factors into account, a mitochondria-targeted nitric oxide nanogenerator, EArgFe@Ce6, is constructed to achieve high loading of the NO donor l-Arginine (l-Arg) for synergistic photodynamic/gas/photothermal therapy upon single 660 nm light irradiation. The coordination of epigallocatechin gallate (EGCG) and ferric ions (Fe3+ ) provides EArgFe@Ce6 supreme photothermal capability to perform low-temperature PTT (mPTT). EGCG endows EArgFe@Ce6 with mitochondria-targeting capability and meanwhile favors hypoxia alleviation for enhanced PDT. The PDT-produced massive reactive oxygen species (ROS) further catalyzes l-Arg to generate a considerable amount of NO to perform gas therapy and sensitize both mPTT and PDT. In vitro and in vivo studies demonstrate that the synergistic photodynamic/gas/photothermal therapy triggered by single 660 nm light irradiation is highly effective for tumor treatments.
Collapse
Affiliation(s)
- Hui Shi
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Cheng-Feng Xiong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Lin-Jun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hu-Chen Cao
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Ru Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Hai-Yan Guo
- School of Public Health, Anhui Medical University, Hefei, 230032, P. R. China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
50
|
Ji C, Zheng X, Li S, Liu C, Yin M. Perylenediimides with Enhanced Autophagy Inhibition for a Dual-Light Activatable Photothermal Gas Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450943 DOI: 10.1021/acsami.3c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Photothermal therapy (PTT) has emerged as a promising strategy for the treatment of tumors. However, the intrinsic self-repair mechanism of cells and the nonspecific photothermal effect of photothermal agents can result in poor treatment outcomes and normal tissue injury. To address this issue, we developed a dual light activatable perylenediimide derivative (P-NO) for nitric oxide-enhanced PTT. P-NO can self-assemble into nanoparticles in aqueous solutions. The P-NO nanoparticles are capable of releasing both NO and a photothermal molecule (P-NH) upon green light irradiation. The simultaneous release of NO and P-NH activates the photothermal effect and inhibits cell protection autophagy, thereby improving the therapeutic efficacy of PTT under near-infrared (NIR) light. Moreover, the switch on of NIR fluorescence allows real-time monitoring of the release of P-NH. Remarkably, in a mouse subcutaneous tumor model, significant tumor ablation can be achieved following dual light activated photothermal gas therapy. This work offers a promising and straightforward approach to constructing activatable perylenediimide-based photothermal agents for enhancing the effectiveness of photothermal gas therapy.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|