1
|
Boaglio ER, Muttis E, Feroci M, Fabbri C, Minardi G, Sánchez J, Micieli MV, Goenaga S. Assessing Urban Yellow Fever Transmission Risk: Aedes aegypti Vector Competence in Argentina. Viruses 2025; 17:718. [PMID: 40431729 PMCID: PMC12115684 DOI: 10.3390/v17050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 05/29/2025] Open
Abstract
Yellow fever is a viral disease with historical importance since epidemics caused thousands of deaths at the end of the 19th century in Argentina. That event was associated with the presence of Aedes aegypti. After the mosquito eradication in South America in the 1960-1970 decade, no epidemic was detected related to this species but epizootics have occurred due to sylvatic vectors belonging to Haemagogus and Sabethes genera. Due to the recolonization of Ae. aegypti and its expanded distribution, the risk of the urbanization of yellow fever has increased over time. However, the reasons why the urban cycle of the yellow fever virus (YFV) has not occurred in South America so far are unknown. We explore the vector competence of Ae. aegypti for YFV transmission. The mosquitos evaluated belonged to colonies from center and northwest cities from Argentina, taking into account the particular genetic features of this mosquito species detected in this country from 2016. We used a viral strain originally isolated in 2009 from Sabethes albiprivus in the country. Viral infection in mosquito body, legs, and saliva was evaluated to estimate the rates of infection, dissemination, and transmission. Our results indicate that both mosquito colonies are competent vectors in the transmission of the YFV but with differences between them. Regarding the infection timeline, we observed a very early infection in the La Plata colony at 3 DPI in contrast to previous studies. This research improves our understanding of the risks of urban YFV transmission in Argentina, highlighting the need for surveillance and specialized vector control strategies in urban settings to prevent yellow fever outbreaks.
Collapse
Affiliation(s)
- Estefanía R. Boaglio
- Instituto Nacional de Enfermedades Virales Humanas (INEVH-ANLIS) “Dr. Julio I. Maiztegui”, Pergamino 2700, Argentina; (E.R.B.)
- Centro de Bioinvestigaciones (CeBio) y Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Argentina
| | - Evangelina Muttis
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina; (E.M.); (M.V.M.)
| | - Mariel Feroci
- Instituto Nacional de Enfermedades Virales Humanas (INEVH-ANLIS) “Dr. Julio I. Maiztegui”, Pergamino 2700, Argentina; (E.R.B.)
| | - Cintia Fabbri
- Instituto Nacional de Enfermedades Virales Humanas (INEVH-ANLIS) “Dr. Julio I. Maiztegui”, Pergamino 2700, Argentina; (E.R.B.)
| | - Graciela Minardi
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina; (E.M.); (M.V.M.)
| | - Juliana Sánchez
- Centro de Bioinvestigaciones (CeBio) y Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino 2700, Argentina
| | - María V. Micieli
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT La Plata-CONICET), Universidad Nacional de La Plata (UNLP), La Plata 1900, Argentina; (E.M.); (M.V.M.)
| | - Silvina Goenaga
- Instituto Nacional de Enfermedades Virales Humanas (INEVH-ANLIS) “Dr. Julio I. Maiztegui”, Pergamino 2700, Argentina; (E.R.B.)
| |
Collapse
|
2
|
Nederlof RA, Virgilio T, Stemkens HJJ, da Silva LCCP, Montagna DR, Abdussamad AM, Chipangura J, Bakker J. Yellow Fever in Non-Human Primates: A Veterinary Guide from a One Health Perspective. Vet Sci 2025; 12:339. [PMID: 40284841 PMCID: PMC12031500 DOI: 10.3390/vetsci12040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Yellow fever (YF) causes severe morbidity and mortality in Africa and South America. It is an arthropod-borne viral disease endemic to tropical regions of Africa and South America. Yellow fever virus (YFV) is transmitted by mosquitoes and frequently affects both non-human primates (NHPs) and humans. Neotropical primates (NTPs) are generally more severely afflicted by YFV than African primates. Asian primates appear not to be susceptible to this disease. Susceptibility varies among NTP species: asymptomatic infections are described in some NTP species, whereas severe epizootic mortality events are described in others. The genus Alouatta (howler monkeys) is considered to be the most susceptible among the NTPs. Epizootic events resulting in the death of thousands of NTPs have been recorded in recent history. As a result, YFV poses a threat to the survival of some NTP species. In most cases, NTPs are found dead without showing prior clinical signs. In cases where clinical signs are observed, they are mostly non-specific. Due to their high susceptibility, epizootic events in NTPs are used as epidemiological predictors for human YF outbreaks. YFV infection may be diagnosed by means of virus isolation, reverse transcription polymerase chain reaction, serology, histopathology, or immunohistochemistry. Animals that survive the disease develop neutralizing antibodies to YFV. Currently, no specific treatment is available. Sustained YF control strategies must rely on surveillance and accurate diagnostics to allow for early detection of outbreaks and rapid implementation of control measures. Prophylaxis should be based on a One Health perspective that recognizes the intricate interplay between human health, primate health, and the environment. Vaccines for YF are available, with the human 17DD vaccine effectively preventing disease in primates. However, mitigation strategies continue to rely more and more on vector control, preferably using eco-friendly methods. Climate change and human activities, and their impact on local ecology, are assumed to increase the risk of YF transmission in the next decades.
Collapse
Affiliation(s)
| | - Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
| | | | | | - Daniela R. Montagna
- Institute of Biological Chemistry and Biophysics (UBA-CONICET), Buenos Aires C1428EGA, Argentina;
| | | | - John Chipangura
- Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa;
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands;
| |
Collapse
|
3
|
Larsen RS, Moresco A, Karabatsos N, Dolz G, Glander KE. Serosurvey of Arboviruses in Free-Ranging Mantled Howler Monkeys (Alouatta palliata) in Costa Rica. J Wildl Dis 2025; 61:225-228. [PMID: 39573905 DOI: 10.7589/jwd-d-24-00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/19/2024] [Indexed: 01/30/2025]
Abstract
We investigated the prevalence of arthropod-borne viral diseases in a population of free-ranging mantled howler monkeys (Alouatta palliata) in Costa Rica in 1998. Blood samples were opportunistically collected from monkeys anesthetized for another study. Serology was performed on 64 individuals to assess exposure of this population to vesicular stomatitis virus, equine encephalitis viruses, Mayaro virus, St. Louis encephalitis virus, yellow fever virus, and dengue virus. The New Jersey serotype of vesicular stomatitis (VSV-NJ) was the only pathogen for which the population tested positive (44% [28/64]). This is the first report of antibodies against VSV-NJ in nonhuman primates in Costa Rica.
Collapse
Affiliation(s)
- R Scott Larsen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, 300 W. Drake Rd., Colorado State University, Fort Collins, Colorado 80523, USA
- Current address: Wildlife Futures Program, College of Veterinary Medicine, New Bolton Center, 382 W. Street Rd., Kennett Square, Pennsylvania 19348, USA
| | - Anneke Moresco
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, 300 W. Drake Rd., Colorado State University, Fort Collins, Colorado 80523, USA
- Current Address: Colorado Mesa University-Tech, 2508 Blichmann Ave., Grand Junction, Colorado 81505, USA
| | - Nick Karabatsos
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA
| | - Gaby Dolz
- Laboratorio de Zoonosis y Entomología, Programa de Medicina Poblacional, Escuela de Medicina Veterinaria, Universidad Nacional, Apartado 86-3000 Heredia, Costa Rica
| | - Kenneth E Glander
- Department of Evolutionary Anthropology, 104 Biological Sciences, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
4
|
da Costa ALM, Silva ML, Caiaffa MG, Matos FN, Gonzaga CRR, de Fátima Sallum Leandro S, de Medeiros MA, Teixeira RHF, Teixeira CR. Facial and ocular thermal mapping in black-and-gold howler monkey (Alouatta caraya) by infrared thermography: An ex situ study. J Med Primatol 2024; 53:e12711. [PMID: 38790083 DOI: 10.1111/jmp.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND This study used infrared thermography (IRT) for mapping the facial and ocular temperatures of howler monkeys, to determine parameters for the diagnosis of febrile processes. There are no published IRT study in this species. METHODS Were evaluated images of a group of monkeys kept under human care at Sorocaba Zoo (São Paulo, Brazil). The images were recorded during 1 year, in all seasons. Face and eye temperatures were evaluated. RESULTS There are statistically significant differences in face and eye temperatures. Mean values and standard deviations for facial and ocular temperature were respectively: 33.0°C (2.1) and 36.5°C (1.9) in the summer; 31.5°C (4.5) and 35.3°C (3.6) in the autumn; 30.0°C (4.3) and 35.6°C (3.9) in the winter; 30.8°C (2.9) and 35.5°C (2.1) in the spring. CONCLUSIONS The IRT was effective to establish a parameter for facial and ocular temperatures of black-and-gold howler monkeys kept under human care.
Collapse
Affiliation(s)
- André Luiz Mota da Costa
- Zoológico de Sorocaba, Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Animais Selvagens, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | - Rodrigo Hidalgo Friciello Teixeira
- Zoológico de Sorocaba, Sorocaba, São Paulo, Brazil
- Programa de Pós-Graduação em Animais Selvagens, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
- Universidade de Sorocaba, Sorocaba, São Paulo, Brazil
| | - Carlos Roberto Teixeira
- Programa de Pós-Graduação em Animais Selvagens, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
5
|
Dos Santos EO, Klain VF, Manrique SB, Roman IJ, Dos Santos HF, Sangioni LA, Vogel FSF, Reck J, Webster A, Padilha TC, de Almeida MAB, Dos Santos E, Born LC, Botton SA. The Influence of Landscape Structure on the Occurrence of Neospora caninum, Toxoplasma gondii, and Sarcocystis spp. in Free-Living Neotropical Primates. Acta Parasitol 2022; 67:1680-1696. [PMID: 36178615 DOI: 10.1007/s11686-022-00623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Habitat fragmentation is the main threat to primate survival in the world. Additionally, changes in the environments in which they live can also contribute to exposure to pathogens. To investigate some pathogens that free-living primates may be exposed to in Rio Grande do Sul State (RS; southern Brazil) and characterize the forest remnants in which they live, we investigated anti-Neospora caninum, Toxoplasma gondii, and Sarcocystis spp. antibodies in the serum of the animals. METHODS We analyzed 105 serum samples from 63 black howler monkeys (Alouatta caraya), 39 southern brown howler monkeys (Alouatta guariba clamitans), and 03 capuchin monkeys (Sapajus nigritus cucullatus), which were captured in forest fragments of RS. Indirect fluorescence antibody test (IFAT) and indirect hemagglutination assay (IHA) were used to detect antibodies to the agents. We then characterized the landscapes in a multiscale approach in radii from 200 to 1400 m to investigate the relationship of the presence of the agents with landscape elements. RESULTS In the IFAT-IgG, 13.3% (14/105) of the samples were seropositive for N. caninum, 4.8% (5/105) for T. gondii, and 5.7% (6/105) for Sarcocystis spp. In the IHA-IgM/IgG, 24.8% (26/105) were seropositive for T. gondii. The metrics that best explained exposure to agents were edge and patch density, forest cover, urban cover, and average Euclidean distance to the nearest patch. CONCLUSIONS This study indicated that the primates were exposed to the agents studied, demonstrating that some landscape features are associated with exposures to the investigated pathogens.
Collapse
Affiliation(s)
- Elisandro O Dos Santos
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Rio Grande do Sul, Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil.
| | - Vinícius F Klain
- Laboratório de Primatologia, Escola de Ciências da Saúde E da Vida da Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Rio Grande Do Sul. Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Sebastián B Manrique
- Laboratório de Primatologia, Escola de Ciências da Saúde E da Vida da Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Rio Grande Do Sul. Av. Ipiranga, 6681 - Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Isac Junior Roman
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Rio Grande do Sul, Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil
| | - Helton F Dos Santos
- Núcleo de Estudos E Pesquisas Em Animais Silvestres, Departamento de Medicina Veterinária Preventiva, Laboratório Central de Diagnóstico de Patologias Aviárias, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil
| | - Luís Antônio Sangioni
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Rio Grande do Sul, Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda S F Vogel
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Rio Grande do Sul, Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil
| | - José Reck
- Laboratório de Parasitologia Do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado Do Sul, Rio Grande Do Sul, Estrada Do Conde, 6000 - Sans Souci, Eldorado Do Sul, RS, 92990-000, Brazil
| | - Anelise Webster
- Laboratório de Parasitologia Do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado Do Sul, Rio Grande Do Sul, Estrada Do Conde, 6000 - Sans Souci, Eldorado Do Sul, RS, 92990-000, Brazil
| | - Thamiris C Padilha
- Laboratório de Parasitologia Do Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria Estadual de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado Do Sul, Rio Grande Do Sul, Estrada Do Conde, 6000 - Sans Souci, Eldorado Do Sul, RS, 92990-000, Brazil
| | - Marco Antônio B de Almeida
- Divisão de Vigilância Ambiental Em Saúde, Centro Estadual de Vigilância Em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Rio Grande Do Sul. Av. Ipiranga, 5400 - Jardim Botânico, Porto Alegre, RS, 90450-190, Brazil
| | - Edmilson Dos Santos
- Divisão de Vigilância Ambiental Em Saúde, Centro Estadual de Vigilância Em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Rio Grande Do Sul. Av. Ipiranga, 5400 - Jardim Botânico, Porto Alegre, RS, 90450-190, Brazil
| | - Lucas C Born
- Divisão de Vigilância Ambiental Em Saúde, Centro Estadual de Vigilância Em Saúde, Secretaria de Estado da Saúde, Porto Alegre, Rio Grande Do Sul. Av. Ipiranga, 5400 - Jardim Botânico, Porto Alegre, RS, 90450-190, Brazil
| | - Sônia A Botton
- Laboratório de Doenças Parasitárias, Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais da Universidade Federal de Santa Maria (UFSM), Rio Grande do Sul, Av. Roraima 1000, Prédio 63C, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
6
|
Possamai CB, Rodrigues de Melo F, Mendes SL, Strier KB. Demographic changes in an Atlantic Forest primate community following a yellow fever outbreak. Am J Primatol 2022; 84:e23425. [PMID: 35899394 DOI: 10.1002/ajp.23425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
We investigated demographic changes in three primate species (Alouatta guariba, Sapajus nigritus, and Callithrix flaviceps) at the Reserva Particular do Patrimônio Natural-Feliciano Miguel Abdala, Caratinga, Minas Gerais, Brazil, following a yellow fever outbreak (YFO) by comparing their population sizes before (2015) and after the outbreak (2017-2018), and by monitoring the size, composition, and reproductive status of groups from 2017 to 2021. Comparisons of pre- and post-YFO census data indicate the A. guariba population declined by 86.6%, from an estimated minimum of 522 individuals to 70 individuals. However, by October 2021, the population had grown to at least 86 individuals, with an adult sex ratio (N = 53) that was female-biased (0.61). Eleven of the 13 groups being monitored systematically were reproductively active with high survivorship to 12 months of age. S. nigritus declined by 40%, from 377 to 226 individuals. The sex ratio of 33 adult S. nigritus is also female-biased (0.71), and at least 8 of 15 groups being monitored are reproductively active. C. flaviceps declined by 80%, from 85 individuals to the 15-17 individuals observed from 2017 to 2021. The female-biased adult sex ratio and presence of infants and juveniles in the A. guariba and S. nigritus groups are encouraging signs, but there is still great concern, especially for C. flaviceps. Continued monitoring of the demographics of these primates is needed as their persistence appears to still be at risk.
Collapse
Affiliation(s)
- Carla B Possamai
- Financial Sector, Muriqui Instituto de Biodiversidade-MIB-R: Euclydes Etienne Arreguy Filho, Centro Caratinga, Minas Gerais, Brazil
| | - Fabiano Rodrigues de Melo
- Departamento de Engenharia Florestal, Universidade Federal de Viçosa, MeCFauna Lab, Viçosa, Minas Gerais, Brazil
| | - Sérgio Lucena Mendes
- Departamento de Ciências Biológicas, CCHN/UFES, Vitória, Espírito Santo, Brazil.,Instituto Nacional da Mata Atlântica (INMA), Santa Teresa, Espírito Santo, Brazil
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Agostini I, Pizzio E, Varela D, Iezzi ME, Cruz P, Paviolo A, Di Bitetti MS. Camera trapping arboreal mammals in Argentina’s Atlantic Forest. MAMMALIA 2022. [DOI: 10.1515/mammalia-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Canopy camera trapping is being increasingly used to characterize assemblages of arboreal mammals. In this study we compared, for the first time, the assemblage of arboreal mammals of the Atlantic Forest, surveyed using canopy camera trapping at two protected areas of Misiones, Argentina: Piñalito (11 camera-trap stations) and Cruce Caballero (9 stations), with the assemblage recorded at ground-level with a camera-trapping survey conducted at another protected area, the nearby private reserve Valle del Alegría (18 stations). We calculated the number of independent photo-events for each species and site, and we built species rank abundance curves to compare the recorded species diversity among sites. We recorded six mammal species at Piñalito and Cruce Caballero, and 23 at Valle del Alegría. Canopy-survey sites showed lower diversity but a different and non-nested species composition when compared to the ground-level survey. One of the most frequently recorded species in the canopy, the brown-eared woolly opossum, Caluromys lanatus, categorized as Vulnerable in Argentina, has not been photographed in ground-level camera-trap surveys in Misiones before. Our results suggest that canopy camera trapping represents a robust method to sample arboreal species that are missed in ground-level camera-trap surveys, thus improving forest species inventories.
Collapse
Affiliation(s)
- Ilaria Agostini
- CONICET; Parque Nacional Nahuel Huapi (CENAC-APN) , Fagnano 244, CP 8400 , Bariloche , Río Negro , Argentina
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
| | - Esteban Pizzio
- Instituto de Investigaciones Forestales y Agropecuarias (IFAB), INTA-CONICET , Modesta Victoria 4450, CP 8400 , San Carlos de Bariloche , Río Negro , Argentina
| | - Diego Varela
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
| | - María Eugenia Iezzi
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
| | - Paula Cruz
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones , Bertoni 124, CP 3380 , Eldorado , Misiones , Argentina
| | - Agustín Paviolo
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
| | - Mario S. Di Bitetti
- Grupo de Ecología y Conservación de Mamíferos (GECOMA), Instituto de Biología Subtropical (IBS), CONICET-UNaM , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA) , Bertoni 85, CP 3370 , Puerto Iguazú , Misiones , Argentina
- Facultad de Ciencias Forestales, Universidad Nacional de Misiones , Bertoni 124, CP 3380 , Eldorado , Misiones , Argentina
| |
Collapse
|
8
|
Mathavarajah S, Melin A, Dellaire G. SARS-CoV-2 and wastewater: What does it mean for non-human primates? Am J Primatol 2022; 84:e23340. [PMID: 34662463 PMCID: PMC8646409 DOI: 10.1002/ajp.23340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
In most of our lifetimes, we have not faced a global pandemic such as the novel coronavirus disease 2019. The world has changed as a result. However, it is not only humans who are affected by a pandemic of this scale. Our closest relatives, the non-human primates (NHPs) who encounter researchers, sanctuary/zoo employees, and tourists, are also potentially at risk of contracting the virus from humans due to similar genetic susceptibility. "Anthropozoonosis"-the transmission of diseases from humans to other species-has occurred historically, resulting in infection of NHPs with human pathogens that have led to disastrous outbreaks. Recent studies have assessed the susceptibility of NHPs and predict that catarrhine primates and some lemurs are potentially highly susceptible to infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. There is accumulating evidence that a new factor to consider with the spread of the virus is fecal-oral transmission. The virus has been detected in the watersheds of countries with underdeveloped infrastructure where raw sewage enters the environment directly without processing. This may expose NHPs, and other animals, to SARS-CoV-2 through wastewater contact. Here, we address these concerns and discuss recent evidence. Overall, we suggest that the risk of transmission of SARS-CoV-2 via wastewater is low. Nonetheless, tracking of viral RNA in wastewater does provide a unique testing approach to help protect NHPs at zoos and wildlife sanctuaries. A One Health approach going forward is perhaps the best way to protect these animals from a novel virus, the same way that we would protect ourselves.
Collapse
Affiliation(s)
| | - Amanda Melin
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | - Graham Dellaire
- Department of Pathology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
- Department of Biochemistry and Molecular Biology, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
9
|
Oklander LI, Caputo M, Fernández GP, Jerusalinsky L, de Oliveira SF, Bonatto SL, Corach D. Gone With the Water: The Loss of Genetic Variability in Black and Gold Howler Monkeys (Alouatta caraya) Due to Dam Construction. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.768652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Black and gold howler monkeys (Alouatta caraya) inhabit several eco-regions in South America with the highest population densities in riverine forests. Dam construction for electricity production represents a severe human alteration of ecosystems with consequences for primate conservation. To evaluate the possible loss of genetic diversity in A. caraya, we analysed and compared the genetic structure of the species across 22 study sites in Argentina (14), Paraguay (1), and Brazil (7). Four of these study sites (referred to as flooded) were sampled before dam-linked flooding which most likely caused a drastic decline or functional extinction of these populations. The genetic variability of 256 individuals was evaluated using 10 autosomal microsatellites (STRs) and 112 individuals by sequencing a fragment of 507 bp of mtDNA. DNA was extracted from tissue, blood, and faecal samples. Significantly higher values of genetic variability were observed for the flooded populations both in mtDNA and STRs. Population genetic structure showed a K = 1, 2, or 5 depending on the method, separating Argentinian and Paraguayan sites from Brazilian sites and, in the case of K = 5, two clusters were mostly represented by flooded populations. Isolation-by-distance analyses showed that geographic distances influence gene flow. Analytical methods, such as Pairwise Fst’s and Nei’s and regression model of Harpending and Ward, were concordant in detecting significant genetic structuring between flooded and remaining sites examined. Although some sites have very low sample sizes, these samples are of great importance since these sampling sites are currently flooded. Our results show that the study sites where dams were built had the greatest genetic diversity. As A. caraya is currently severely threatened by yellow fever outbreaks, the remaining populations may be more vulnerable to disease outbreaks due to impoverished genetic variability. Accordingly, it is essential to implement management actions to conserve the remaining populations. Our results underline the importance for Environmental Impact Assessments (EIA) to include data on the genetic structure of species in the affected sites prior to their alteration or destruction. These genetic data are also remarkably important for determining where to relocate specific individuals to help avoid biodiversity loss.
Collapse
|
10
|
Ribeiro Prist P, Reverberi Tambosi L, Filipe Mucci L, Pinter A, Pereira de Souza R, Lara Muylaert R, Roger Rhodes J, Henrique Comin C, Fontoura Costa L, Lang D'Agostini T, Telles de Deus J, Pavão M, Port‐Carvalho M, Del Castillo Saad L, Mureb Sallum MA, Fernandes Spinola RM, Metzger JP. Roads and forest edges facilitate yellow fever virus dispersion. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paula Ribeiro Prist
- Department of Ecology Institute of Bioscience University of São Paulo São Paulo Brazil
| | - Leandro Reverberi Tambosi
- Department of Ecology Institute of Bioscience University of São Paulo São Paulo Brazil
- Center for Engineering, Modelling and Applied Social Sciences Federal University of ABC Santo André Brazil
| | | | | | | | - Renata Lara Muylaert
- Molecular Epidemiology and Public Health Laboratory Hopkirk Research InstituteMassey University Palmerston North New Zealand
| | - Jonathan Roger Rhodes
- School of Earth and Environmental Sciences The University of Queensland Brisbane QLD Australia
| | - César Henrique Comin
- Department of Computer Science Federal University of São Carlos São Carlos Brazil
| | | | - Tatiana Lang D'Agostini
- Center for Epidemiology Surveillance ‘Dr Alexandre Vranjac’ Coordination for Disease ControlPublic Health Branch São Paulo Brazil
| | | | - Mônica Pavão
- Geoprocessing and Spatial Analysis Core Environment Research Institute. Infrastructure and Environment Secretariat of São Paulo São Paulo Brazil
| | - Márcio Port‐Carvalho
- Conservation Biodiversity Nucleus, Environmental Research Institute, Infrastructure and Environment Secretariat of São Paulo São Paulo SP Brazil
- Post Graduated Program in Biodiversity of Conservations UnitsNational School of Tropical Botanical—Rio de Janeiro Botanical Garden Rio de Janeiro Brazil
| | - Leila Del Castillo Saad
- Center for Epidemiology Surveillance ‘Dr Alexandre Vranjac’ Coordination for Disease ControlPublic Health Branch São Paulo Brazil
| | | | - Roberta Maria Fernandes Spinola
- Center for Epidemiology Surveillance ‘Dr Alexandre Vranjac’ Coordination for Disease ControlPublic Health Branch São Paulo Brazil
| | - Jean Paul Metzger
- Department of Ecology Institute of Bioscience University of São Paulo São Paulo Brazil
| |
Collapse
|
11
|
Berthet M, Mesbahi G, Duvot G, Zuberbühler K, Cäsar C, Bicca-Marques JC. Dramatic decline in a titi monkey population after the 2016-2018 sylvatic yellow fever outbreak in Brazil. Am J Primatol 2021; 83:e23335. [PMID: 34609763 DOI: 10.1002/ajp.23335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
Platyrrhini are highly vulnerable to the yellow fever (YF) virus. From 2016 to 2018, the Atlantic Forest of southeast Brazil faced its worst sylvatic YF outbreak in about a century, thought to have killed thousands of primates. It is essential to assess the impact of this epidemic on threatened primate assemblages to design effective conservation strategies. In this study, we assessed the impact of the 2016-2018 YF outbreak on a geographically isolated population of Near Threatened black-fronted titi monkeys (Callicebus nigrifrons) in two Atlantic Forest patches of the Santuário do Caraça, MG, Brazil. Extensive preoutbreak monitoring, conducted between 2008 and 2016, revealed that the home range and group sizes of the population remained stable. In 2016, the population size was estimated at 53-57 individuals in 11-12 groups. We conducted monitoring and playback surveys in 2019 and found that the population had decreased by 68% in one forest patch and completely vanished in the other, resulting in a combined decline of 80%. We discuss this severe loss of a previously stable population and conclude that it was highly likely caused by the YF outbreak. The remaining population is at risk of disappearing completely because of its small size and geographic isolation. A systematic population surveys of C. nigrifrons, along other sensible Platyrrhini species, is needed to re-evaluate their current conservation status.
Collapse
Affiliation(s)
- Mélissa Berthet
- Département d'études cognitives, Institut Jean Nicod, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Geoffrey Mesbahi
- Université de Lorraine, INRAE, LAE, Nancy, France.,Parc Naturel Régional des Vosges du Nord, La Petite Pierre, France
| | - Guilhem Duvot
- Département d'études cognitives, Institut Jean Nicod, ENS, EHESS, CNRS, PSL Research University, Paris, France
| | - Klaus Zuberbühler
- School of Psychology & Neurosciences, University of St Andrews, Scotland, UK.,Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Júlio Cèsar Bicca-Marques
- Escola de Ciências da Saúde e da Vida, Laboratório de Primatologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Carrillo-Bilbao G, Martin-Solano S, Saegerman C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021; 10:1009. [PMID: 34451473 PMCID: PMC8400055 DOI: 10.3390/pathogens10081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Understanding which non-human primates (NHPs) act as a wild reservoir for blood-borne pathogens will allow us to better understand the ecology of diseases and the role of NHPs in the emergence of human diseases in Ecuador, a small country in South America that lacks information on most of these pathogens. Methods and principal findings: A systematic review was carried out using PRISMA guidelines from 1927 until 2019 about blood-borne pathogens present in NHPs of the Neotropical region (i.e., South America and Middle America). Results: A total of 127 publications were found in several databases. We found in 25 genera (132 species) of NHPs a total of 56 blood-borne pathogens in 197 records where Protozoa has the highest number of records in neotropical NHPs (n = 128) compared to bacteria (n = 12) and viruses (n = 57). Plasmodium brasilianum and Trypanosoma cruzi are the most recorded protozoa in NHP. The neotropical primate genus with the highest number of blood-borne pathogens recorded is Alouatta sp. (n = 32). The use of non-invasive samples for neotropical NHPs remains poor in a group where several species are endangered or threatened. A combination of serological and molecular techniques is common when detecting blood-borne pathogens. Socioecological and ecological risk factors facilitate the transmission of these parasites. Finally, a large number of countries remain unsurveyed, such as Ecuador, which can be of public health importance. Conclusions and significance: NHPs are potential reservoirs of a large number of blood-borne pathogens. In Ecuador, research activities should be focused on bacteria and viruses, where there is a gap of information for neotropical NHPs, in order to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs.
Collapse
Affiliation(s)
- Gabriel Carrillo-Bilbao
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
- Facultad de Filosofía y Letras y Ciencias de la Educación, Universidad Central del Ecuador, 170521 Quito, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, 171103 Sangolquí, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
13
|
Landau LJB, Fam BSDO, Yépez Y, Caldas-Garcia GB, Pissinatti A, Falótico T, Reales G, Schüler-Faccini L, Sortica VA, Bortolini MC. Evolutionary analysis of the anti-viral STAT2 gene of primates and rodents: Signature of different stages of an arms race. INFECTION GENETICS AND EVOLUTION 2021; 95:105030. [PMID: 34384937 DOI: 10.1016/j.meegid.2021.105030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
STAT2 plays a strategic role in defending viral infection through the signaling cascade involving the immune system initiated after type I interferon release. Many flaviviruses target the inactivation or degradation of STAT2 as a strategy to impair this host's line of defense. Primates are natural reservoirs for a range of disease-causing flaviviruses (e.g., Zika, Dengue, and Yellow Fever virus), while rodents appear less susceptible. We analyzed the STAT2 coding sequence of 28 Rodentia species and 49 Primates species. Original data from 19 Platyrrhini species were sequenced for the SH2 domain of STAT2 and included in the analysis. STAT2 has many sites whose variation can be explained by positive selection, measurement by two methods (PALM indicated 12, MEME 61). Both evolutionary tests significantly marked sites 127, 731, 739, 766, and 780. SH2 is under evolutionary constraint but presents episodic positive selection events within Rodentia: in one of them, a moderately radical change (serine > arginine) at position 638 is found in Peromyscus species, and can be implicated in the difference in susceptibility to flaviviruses within Rodentia. Some other positively selected sites are functional such as 5, 95, 203, 251, 782, and 829. Sites 251 and 287 regulate the signaling mediated by the JAK-STAT2 pathway, while 782 and 829 create a stable tertiary structure of STAT2, facilitating its connection with transcriptional co-activators. Only three positively selected sites, 5, 95, and 203, are recognized members who act on the interface between STAT2 and flaviviruses NS5 protein. We suggested that due to the higher evolutionary rate, rodents are, at this moment, taking some advantage in the battle against infections for some well-known Flaviviridae, in particular when compared to primates. Our results point to dynamics that fit with a molecular evolutionary scenario shaped by a thought-provoking virus-host arms race.
Collapse
Affiliation(s)
- Luane Jandira Bueno Landau
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana Sampaio de Oliveira Fam
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Yuri Yépez
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Barreto Caldas-Garcia
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alcides Pissinatti
- Rio de Janeiro's Primatology Center (RJPC - INEA), Rio de Janeiro, RJ, Brazil
| | - Tiago Falótico
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Guillermo Reales
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Instituto Nacional de Genética Médica Populacional, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vinicius Albuquerque Sortica
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Laboratório de Evolução Humana e Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Kuthyar S, Kowalewski MM, Seabolt M, Roellig DM, Gillespie TR. Molecular characterization of Giardia duodenalis and evidence for cross-species transmission in Northern Argentina. Transbound Emerg Dis 2021; 69:2209-2218. [PMID: 34224652 DOI: 10.1111/tbed.14220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic activities, such as human population expansion and land-use change, create ecological overlap between humans, domesticated animals, and wildlife and can exacerbate the zoonotic transmission of parasites. To improve our understanding of this dynamic, we employed multi-locus genotyping to conduct a cross-sectional study of the potential for zoonotic transmission of the protozoan parasite Giardia duodenalis among humans, household associated livestock and dogs, and black and gold howler monkeys (Alouatta caraya) in the Corrientes Province of Argentina. We found Giardia prevalence to be highest in howler monkeys (90.3% (47/52)), followed by humans (61.1% (22/36)), dogs (44.4% (16/36)), and cattle (41.9% (18/43)). We further established that howler monkeys exclusively harbored strains of assemblage B (100%) while humans were infected with either assemblage A (13.3%) or B (80%) or A and B (6.7%), and cattle and dogs were infected with either assemblage A (cattle, 94.1%; dogs, 80%)), A and C (10%), or their host-adapted assemblage (cattle, 5.9%; dogs, 10%). Our finding of G. duodenalis in both humans and domesticated animals (assemblage A) and humans and wild primates (assemblage B) suggests that cross-species transmission of multiple assemblages of G. duodenalis may occur in rural complexes such as northern Argentina where people, domesticated animals, and wildlife overlap. We further highlight the need to investigate the implications of these results for human health, the economics of livestock production, and wildlife conservation in this and similar systems.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | - Martin M Kowalewski
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA.,Estación Biológica Corrientes, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Corrientes, Argentina
| | - Matthew Seabolt
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA.,CFD Research Corporation, Huntsville, Alabama, USA
| | - Dawn M Roellig
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Thomas R Gillespie
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA.,Program in Population Biology, Ecology, and Evolutionary Biology and Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
|
16
|
Using Data Mining and Network Analysis to Infer Arboviral Dynamics: The Case of Mosquito-Borne Flaviviruses Reported in Mexico. INSECTS 2021; 12:insects12050398. [PMID: 33946977 PMCID: PMC8146811 DOI: 10.3390/insects12050398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Given the significant impact of mosquito-borne flaviviruses (MBFVs) on both human and animal health, predicting their dynamics and understanding their transmission cycle is of the utmost importance. Usually, predictions about the distribution of priority pathogens, such as Dengue, Yellow fever, West Nile Virus and St. Louis encephalitis, relate abiotic elements to simple biotic components, such as a single causal agent. Furthermore, focusing on single pathogens neglects the possibility of interactions and the existence of common elements in the transmission cycles of multiple pathogens. A necessary, but not sufficient, condition that a mosquito be a vector of a MBFV is that it co-occurs with hosts of the pathogen. We therefore use a recently developed modeling framework, based on co-occurrence data, to infer potential biotic interactions between those mosquito and mammal species which have previously been identified as vectors or confirmed positives of at least one of the considered MBFVs. We thus create models for predicting the relative importance of mosquito species as potential vectors for each pathogen, and also for all pathogens together, using the known vectors to validate the models. We infer that various mosquito species are likely to be significant vectors, even though they have not currently been identified as such, and are likely to harbor multiple pathogens, again validating the predictions with known results. Besides the above "niche-based" viewpoint we also consider an assemblage-based analysis, wherein we use a community-identification algorithm to identify those mosquito and/or mammal species that form assemblages by dint of their significant degree of co-occurrence. The most cohesive assemblage includes important primary vectors, such as A. aegypti, A. albopictus, C. quinquefasciatus, C. pipiens and mammals with abundant populations that are well-adapted to human environments, such as the white-tailed deer (Odocoileus virginianus), peccary (Tayassu pecari), opossum (Didelphis marsupialis) and bats (Artibeus lituratus and Sturnira lilium). Our results suggest that this assemblage has an important role in the transmission dynamics of this viral group viewed as a complex multi-pathogen-vector-host system. By including biotic risk factors our approach also modifies the geographical risk profiles of the spatial distribution of MBFVs in Mexico relative to a consideration of only abiotic niche variables.
Collapse
|
17
|
Use of genetic tools to assess predation on reintroduced howler monkeys (Alouatta caraya) in Northeastern Argentina. Primates 2021; 62:521-528. [PMID: 33609193 DOI: 10.1007/s10329-021-00896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Despite strong support from the media, the reintroduction of animals into natural environments does not always achieve its goal. Alouatta caraya is the primate species facing the greatest hunting pressure due to the illegal pet trade in Argentina. Confiscations of this species are common, as is the voluntary surrender of animals by owners no longer able or willing to care for them. These animals ultimately arrive at rehabilitation centers and, in many cases, are released into natural environments that may differ from the original sites where they were captured. Until recently, the lack of genetic analysis of the individuals involved led to biased relocation decisions. We followed the reintroduction of 12 A. caraya individuals in a protected area (Isla Palacio, Misiones, Argentina). The presence of potential predators such as pumas (Puma concolor) and jaguars (Panthera onca) in this area was confirmed by camera traps, footprints and feces. After the disappearance of four A. caraya at the reintroduction site, we investigated the applicability of genetic assignment tests based on genotypic data to accurately identify predated individuals. Genetic analyses allowed us to determine the predator species (P. onca) and to identify the predated individuals as two of the reintroduced animals. This procedure is promising for identifying the remains of predated individuals, and can contribute to the design of reintroduction policies based on scientific evidence.
Collapse
|
18
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
19
|
Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation and primate COVID-19 risk. Commun Biol 2020; 3:641. [PMID: 33110195 PMCID: PMC7591510 DOI: 10.1038/s42003-020-01370-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. The viral infection may also represent a threat to our closest living relatives, nonhuman primates. The contact surface of the host cell receptor, ACE2, displays amino acid residues that are critical for virus recognition, and variations at these critical residues modulate infection susceptibility. Infection studies have shown that some primate species develop COVID-19-like symptoms; however, the susceptibility of most primates is unknown. Here, we show that all apes and African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at critical contact residues, and protein modeling predicts that these differences should greatly reduce SARS-CoV-2 binding affinity. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, and some lemurs, are likely to be highly susceptible to SARS-CoV-2. Urgent actions have been undertaken to limit the exposure of great apes to humans, and similar efforts may be necessary for many other primate species. Amanda Melin et al. compare variation in 29 primate species at 12 amino acid residue sites coded by the ACE2 gene and show that apes and African and Asian monkeys exhibit the same set of twelve key amino acid residues as human ACE2. These results suggest that these primates are likely to be susceptible to SARS-CoV-2, whereas ACE2 gene sequences and protein-protein interaction models suggest reduced susceptibility for platyrrhines, tarsiers, lorisoids, and some lemurs.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada. .,Department of Medical Genetics, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr, NW, Calgary, AB, T2N 4N1, Canada.
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr, NW, Calgary, AB, T2N 4N1, Canada
| | - Frank Marrone
- Department of Chemistry, New York University, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - James P Higham
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA. .,New York Consortium in Evolutionary Primatology, New York, NY, USA.
| |
Collapse
|
20
|
Lappan S, Malaivijitnond S, Radhakrishna S, Riley EP, Ruppert N. The human-primate interface in the New Normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am J Primatol 2020; 82:e23176. [PMID: 32686188 PMCID: PMC7404331 DOI: 10.1002/ajp.23176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
The emergence of SARS-CoV-2 in late 2019 and human responses to the resulting COVID-19 pandemic in early 2020 have rapidly changed many aspects of human behavior, including our interactions with wildlife. In this commentary, we identify challenges and opportunities at human-primate interfaces in light of COVID-19, focusing on examples from Asia, and make recommendations for researchers working with wild primates to reduce zoonosis risk and leverage research opportunities. First, we briefly review the evidence for zoonotic origins of SARS-CoV-2 and discuss risks of zoonosis at the human-primate interface. We then identify challenges that the pandemic has caused for primates, including reduced nutrition, increased intraspecific competition, and increased poaching risk, as well as challenges facing primatologists, including lost research opportunities. Subsequently, we highlight opportunities arising from pandemic-related lockdowns and public health messaging, including opportunities to reduce the intensity of problematic human-primate interfaces, opportunities to reduce the risk of zoonosis between humans and primates, opportunities to reduce legal and illegal trade in primates, new opportunities for research on human-primate interfaces, and opportunities for community education. Finally, we recommend specific actions that primatologists should take to reduce contact and aggression between humans and primates, to reduce demand for primates as pets, to reduce risks of zoonosis in the context of field research, and to improve understanding of human-primate interfaces. Reducing the risk of zoonosis and promoting the well-being of humans and primates at our interfaces will require substantial changes from "business as usual." We encourage primatologists to help lead the way.
Collapse
Affiliation(s)
- Susan Lappan
- Department of AnthropologyAppalachian State UniversityBooneNorth Carolina
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| | - Suchinda Malaivijitnond
- National Primate Research Center of ThailandChulalongkorn UniversityKaeng KhoiSaraburiThailand
- Department of Biology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Sindhu Radhakrishna
- National Institute of Advanced StudiesIndian Institute of ScienceBengaluruIndia
| | - Erin P. Riley
- Department of AnthropologySan Diego State UniversitySan DiegoCalifornia
| | - Nadine Ruppert
- School of Biological SciencesUniversiti Sains MalaysiaPenangMalaysia
| |
Collapse
|
21
|
Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation and primate COVID-19 risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.09.034967. [PMID: 32511330 PMCID: PMC7239060 DOI: 10.1101/2020.04.09.034967] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The emergence of the novel coronavirus SARS-CoV-2, which in humans is highly infectious and leads to the potentially fatal disease COVID-19, has caused hundreds of thousands of deaths and huge global disruption. The viral infection may also represent an existential threat to our closest living relatives, the nonhuman primates, many of which are endangered and often reduced to small populations. The virus engages the host cell receptor, angiotensin-converting enzyme-2 (ACE2), through the receptor binding domain (RBD) on the spike protein. The contact surface of ACE2 displays amino acid residues that are critical for virus recognition, and variations at these critical residues are likely to modulate infection susceptibility across species. While infection studies are emerging and have shown that some primates, such as rhesus macaques and vervet monkeys, develop COVID-19-like symptoms when exposed to the virus, the susceptibility of many other nonhuman primates is unknown. Here, we show that all apes, including chimpanzees, bonobos, gorillas, and orangutans, and all African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at significant contact residues, and protein modeling predicts that these differences should greatly reduce the binding affinity of the ACE2 for the virus, hence moderating their susceptibility for infection. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, as well as some lemurs are all likely to be highly susceptible to SARS-CoV-2, representing a critical threat to their survival. Urgent actions have been undertaken to limit the exposure of Great Apes to humans, and similar efforts may be necessary for many other primate species.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, CA
- Department of Medical Genetics, University of Calgary, CA
- Alberta Children's Hospital Research Institute, University of Calgary, CA
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, CA
- Alberta Children's Hospital Research Institute, University of Calgary, CA
| | | | | | - James P Higham
- Department of Anthropology, New York University, US
- New York Consortium in Evolutionary Primatology, New York, US
| |
Collapse
|
22
|
Torosin NS, Webster TH, Argibay H, Sanchez Fernandez C, Ferreyra H, Uhart M, Agostini I, Knapp LA. Positively selected variants in functionally important regions of TLR7 in Alouatta guariba clamitans with yellow fever virus exposure in Northern Argentina. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:50-60. [PMID: 32583896 DOI: 10.1002/ajpa.24086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND In 2007-2009, a major yellow fever virus (YFV) outbreak in Northern Argentina decimated the local howler monkey (Alouatta) population. AIMS To evaluate whether the surviving howler monkeys possess advantageous genetic variants inherited from monkeys alive prior to the YFV outbreak, we explored the relationship between Toll-like receptor (TLR) 7 and TLR8 gene variation and YFV susceptibility. METHODS We used samples from Alouatta individuals in Misiones, Argentina alive before the YFV outbreak, individuals that died during the outbreak, and individuals that survived the outbreak and are alive today. We measured genetic divergence between Alouatta YFV exposure groups and evaluated Alouatta-specific substitutions for functional consequences. RESULTS We did not find different allele frequencies in the post-YFV exposure Alouatta group compared to the pre-exposure group. We identified three nonsynonymous variants in TLR7 in Alouatta guariba clamitans. Two of these substitutions are under positive selection in functionally important regions of the gene. DISCUSSION AND CONCLUSIONS Our results did not indicate that surviving howler monkey spossess advantageous genetic variants at greater frequency than those alive before the YFV outbreak. However, the positively selected unique coding differences in A. guariba clamitans are in the region important in pathogen detection which may affect YFV resistance. Morework is necessary to fully explore this hypothesis.
Collapse
Affiliation(s)
- Nicole S Torosin
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Hernán Argibay
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET), Intendente Güiraldes 2160 - Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Candelaria Sanchez Fernandez
- Laboratorio de Biología Molecular Aplicada, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
| | - Hebe Ferreyra
- Global Health Program, Wildlife Conservation Society, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Ilaria Agostini
- Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), Consejo Nacional de Investigaciones Científcas y Técnicas (CONICET), Puerto Iguazú, Argentina
| | - Leslie A Knapp
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
23
|
Silva NIO, Sacchetto L, de Rezende IM, Trindade GDS, LaBeaud AD, de Thoisy B, Drumond BP. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease. Virol J 2020; 17:9. [PMID: 31973727 PMCID: PMC6979359 DOI: 10.1186/s12985-019-1277-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Yellow fever (YF) is an acute viral disease, affecting humans and non-human primates (NHP), caused by the yellow fever virus (YFV). Despite the existence of a safe vaccine, YF continues to cause morbidity and mortality in thousands of people in Africa and South America. Since 2016, massive YF outbreaks have taken place in Brazil, reaching YF-free zones, causing thousands of deaths of humans and NHP. Here we reviewed the main epidemiological aspects, new clinical findings in humans, and issues regarding YFV infection in vectors and NHP in Brazil. The 2016-2019 YF epidemics have been considered the most significant outbreaks of the last 70 years in the country, and the number of human cases was 2.8 times higher than total cases in the previous 36 years. A new YFV lineage was associated with the recent outbreaks, with persistent circulation in Southeast Brazil until 2019. Due to the high number of infected patients, it was possible to evaluate severity and death predictors and new clinical features of YF. Haemagogus janthinomys and Haemagogus leucocelaenus were considered the primary vectors during the outbreaks, and no human case suggested the occurrence of the urban transmission cycle. YFV was detected in a variety of NHP specimens presenting viscerotropic disease, similar to that described experimentally. Further studies regarding NHP sensitivity to YFV, YF pathogenesis, and the duration of the immune response in NHP could contribute to YF surveillance, control, and future strategies for NHP conservation.
Collapse
Affiliation(s)
- Natalia Ingrid Oliveira Silva
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia Sacchetto
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Maurício de Rezende
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giliane de Souza Trindade
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Angelle Desiree LaBeaud
- Division of Infectious Disease, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Bicca-Marques JC, Chaves ÓM, Hass GP. Howler monkey tolerance to habitat shrinking: Lifetime warranty or death sentence? Am J Primatol 2020; 82:e23089. [PMID: 31912561 DOI: 10.1002/ajp.23089] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023]
Abstract
Habitat loss and fragmentation are major threats to the conservation of nonhuman primates. Given that species differ in their responses to fragmented landscapes, identifying the factors that enable them to cope with altered environments or that cause their extirpation is critical to design conservation management strategies. Howler monkeys (Alouatta spp.) are good models for studying the strategies of tolerant arboreal taxa and how they cope with spatial restriction, because they live in habitats ranging from vast pristine forests to small disturbed fragments and orchards. While some aspects of their ecology and behavior are conserved, others vary in predictable ways in response to habitat shrinking and decreasing resource availability. We argue that the ability of individual howler monkeys to inhabit low-quality environments does not guarantee the long-term persistence of the small populations that live under these conditions. Their local extirpation explains why few forest fragments below a given area threshold are frequently inhabited in landscapes where recolonization and gene flow are compromised by long isolation distances or less permeable matrices. In sum, howlers' ability to cope with habitat restriction at the individual level in the short-term may mask the inevitable fate of isolated populations, thereby compromising the persistence of the species at a regional scale in the long-term if howlers' need for protection in large forests is undervalued.
Collapse
Affiliation(s)
- Júlio César Bicca-Marques
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Óscar M Chaves
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Gabriela Pacheco Hass
- Laboratório de Primatologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Sotomayor-Bonilla J, Tolsá-García MJ, García-Peña GE, Santiago-Alarcon D, Mendoza H, Alvarez-Mendizabal P, Rico-Chávez O, Sarmiento-Silva RE, Suzán G. Insights into the Host Specificity of Mosquito-Borne Flaviviruses Infecting Wild Mammals. ECOHEALTH 2019; 16:726-733. [PMID: 31664588 DOI: 10.1007/s10393-019-01442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Mosquito-borne flaviviruses (MBFVs) are of public and animal health concern because they cause millions of human deaths annually and impact domestic animals and wildlife globally. MBFVs are phylogenetically divided into two clades, one is transmitted by Aedes mosquitoes (Ae-MBFVs) associated with mammals and the other by Culex mosquitoes (Cx-MBFVs) associated with birds. However, this assumption has not been evaluated. Here, we synthesized 79 published reports of MBFVs from wild mammals, estimating their host. Then, we tested whether the host specificity was biased to sampling and investigation efforts or to phylogenetic relationships using a viral phylogenetic tree drawn from analyzing whole flavivirus genomes obtained in GenBank. We found in total 18 flaviviruses, nine related to Aedes spp. and nine to Culex spp. infecting 129 mammal species. Thus, this supports that vectors are transmitting MBFV across available host clades and that ornithophilic mosquitoes are readily infecting mammals. Although most of the mosquito species are generalists in their host-feeding preferences, we also found a certain degree of MBFV's specificity, as most of them infect closely related mammal species. The present study integrates knowledge regarding MBFVs, and it may help to understand their transmission dynamics between viruses, vectors, and mammal hosts.
Collapse
Affiliation(s)
- Jesús Sotomayor-Bonilla
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - María José Tolsá-García
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico.
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico.
| | - Gabriel E García-Peña
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Carretera Antigua a Coatepec 351, Xalapa, Veracruz, Mexico
| | - Hugo Mendoza
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Paulina Alvarez-Mendizabal
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, Mexico
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, 04520, Ciudad de México, Mexico
- Asociación Mexicana de Medicina de la Conservación Kalaan Kab AC, Ciclistas 63 Col. Country Club, Coyoacán, Ciudad de Mexico, Mexico
| |
Collapse
|
26
|
Dietz JM, Hankerson SJ, Alexandre BR, Henry MD, Martins AF, Ferraz LP, Ruiz-Miranda CR. Yellow fever in Brazil threatens successful recovery of endangered golden lion tamarins. Sci Rep 2019; 9:12926. [PMID: 31506447 PMCID: PMC6736970 DOI: 10.1038/s41598-019-49199-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/21/2019] [Indexed: 12/03/2022] Open
Abstract
The golden lion tamarin is an endangered primate endemic to Brazil's Atlantic Forest. Centuries of deforestation reduced numbers to a few hundred individuals in isolated forest fragments 80 km from Rio de Janeiro city. Intensive conservation action including reintroduction of zoo-born tamarins into forest fragments 1984-2000, increased numbers to about 3,700 in 2014. Beginning in November 2016, southeastern Brazil experienced the most severe yellow fever epidemic/epizootic in the country in 80 years. In May 2018, we documented the first death of a golden lion tamarin due to yellow fever. We re-evaluated population sizes and compared them to results of a census completed in 2014. Tamarin numbers declined 32%, with ca. 2,516 individuals remaining in situ. Tamarin losses were significantly greater in forest fragments that were larger, had less forest edge and had better forest connectivity, factors that may favor the mosquito vectors of yellow fever. The future of golden lion tamarins depends on the extent of additional mortality, whether some tamarins survive the disease and acquire immunity, and the potential development of a vaccine to protect the species against yellow fever.
Collapse
Affiliation(s)
- James M Dietz
- Save the Golden Lion Tamarin, Silver Spring, Maryland, 22842, USA.
- Associação Mico-Leão-Dourado, Casimiro de Abreu, CP 109968, CEP 28860-970, Rio de Janeiro, Brazil.
| | - Sarah J Hankerson
- Department of Psychology, University of St. Thomas, St. Paul, Minnesota, 55403, USA
| | - Brenda Rocha Alexandre
- Instituto de Geociências, Universidade Federal Fluminense, Campus Praia Vermelha, Niterói, Rio de Janeiro, CEP 24210-240, Brazil
| | - Malinda D Henry
- Associação Mico-Leão-Dourado, Casimiro de Abreu, CP 109968, CEP 28860-970, Rio de Janeiro, Brazil
- Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Avenida São José do Barreto 764, São José do Barreto, Macaé, CEP 27965-045, Rio de Janeiro, Brazil
| | - Andréia F Martins
- Associação Mico-Leão-Dourado, Casimiro de Abreu, CP 109968, CEP 28860-970, Rio de Janeiro, Brazil
| | - Luís Paulo Ferraz
- Associação Mico-Leão-Dourado, Casimiro de Abreu, CP 109968, CEP 28860-970, Rio de Janeiro, Brazil
| | - Carlos R Ruiz-Miranda
- Associação Mico-Leão-Dourado, Casimiro de Abreu, CP 109968, CEP 28860-970, Rio de Janeiro, Brazil
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, CEP 28013-602, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Milton K, Armitage DW, Sousa WP. Successional loss of two key food tree species best explains decline in group size of Panamanian howler monkeys (
Alouatta palliata
). Biotropica 2019. [DOI: 10.1111/btp.12679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Katharine Milton
- Department of Environmental Science, Policy, and Management University of California Berkeley California
| | - David W. Armitage
- Department of Biological Sciences University of Notre Dame Notre Dame Indiana
| | - Wayne P. Sousa
- Department of Integrative Biology University of California Berkeley California
| |
Collapse
|
28
|
Jardim MM, Queirolo D, Peters FB, Mazim FD, Favarini MO, Tirelli FP, Trindade RA, Bonatto SL, Bicca-Marques JC, Mourthe I. Southern extension of the geographic range of black-and-gold howler monkeys (Alouatta caraya). MAMMALIA 2019. [DOI: 10.1515/mammalia-2018-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The black-and-gold howler monkey (Alouatta caraya) is widely distributed in Brazil, Bolivia, Paraguay, and northeastern Argentina. Despite this wide distribution, it is locally threatened in some parts of its southern range by forest loss and fragmentation, and yellow fever outbreaks. We present 14 new localities of A. caraya occurrence in the Pampa biome of southern Brazil, extending its range southwards by approximately 100 km.
Collapse
Affiliation(s)
- Márcia M.A. Jardim
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Setor de Mastozoologia , Porto Alegre , Brazil
| | - Diego Queirolo
- Centro Universitario de Rivera , Universidad de la República , Rivera , Uruguay
| | | | | | | | - Flávia P. Tirelli
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | - Rhaysa A. Trindade
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | - Sandro L. Bonatto
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Escola de Ciências, Laboratório de Biologia Genômica e Molecular , Porto Alegre , Brazil
| | | | - Italo Mourthe
- PUCRS, Escola de Ciências, Laboratório de Primatologia , Porto Alegre , Brazil
| |
Collapse
|
29
|
Siconelli MJL, Espósito DLA, Moraes NC, Ribeiro JM, Perles L, Dias MA, Carvalho AAB, Werther K, Fernandes NCCDA, Iglezias SD, Bürger KP, da Fonseca BAL. The Importance of Coordinated Actions in Preventing the Spread of Yellow Fever to Human Populations: The Experience from the 2016-2017 Yellow Fever Outbreak in the Northeastern Region of São Paulo State. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2019; 2019:9464768. [PMID: 31236149 PMCID: PMC6545802 DOI: 10.1155/2019/9464768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022]
Abstract
Yellow fever (YF) is a zoonotic arthropod-borne disease that is caused by the yellow fever virus (YFV) and characterized by a sylvatic and urban cycle. Its most severe presentation is manifested as a hemorrhagic disease, and it has been responsible for thousands of deaths in the last decades. This study describes the public health approaches taken to control the 2016-2017 YF outbreak in nonhuman primates (NHPs) that took place in the northeastern region of São Paulo state, Brazil. NHPs recovered from the field were necropsied, and YF diagnoses were made at the Laboratory of Molecular Virology, Ribeirão Preto Medical School and the Center of Pathology, Adolfo Lutz Institute of São Paulo. NHP samples were inoculated into Vero cells for YFV isolation. RNA extraction was performed directly from NHP tissues and tested by RT-qPCR. YFV-positive samples were confirmed by sequencing. Based on the rapid RT-qPCR results, surveillance actions were implemented in the entire region. Confirmatory histopathology and immunohistochemistry for YFV were also performed. Among nine NHPs, gross hepatic involvement was observed in six animals, five of which were YFV-RT-qPCR-positive. One YFV was isolated from the serum of an infant NHP. YFV RNA sequences diverged from the virus responsible for the last epizootic that occurred in São Paulo state, but it was similar to the current Brazilian epizootic. Public health actions included dissemination of information on YF transmission, investigation of the probable location of NHP infection, characterization of the environment, and subsequent creation of the blueprint from which prevention and control measures were implemented. The YFV sylvatic cycle occurred in the periurban areas of the northeastern region of São Paulo state, but no human cases were reported during this period, showing that integrated actions between human, animal, and environmental health professionals were critical to restrain the virus to the sylvatic cycle.
Collapse
Affiliation(s)
- Márcio Junio Lima Siconelli
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo FMRP/USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, 14049-900 São Paulo, Brazil
| | - Danillo Lucas Alves Espósito
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo FMRP/USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, 14049-900 São Paulo, Brazil
| | - Nathália Cristina Moraes
- Veterinary Preventive Medicine and Animal Reproduction Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Julia Maria Ribeiro
- Animal Pathology Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Lívia Perles
- Animal Pathology Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Maria Angélica Dias
- Municipal Health Secretary, Av. General Glicério, 569, Center, Jaboticabal, 14870-520 São Paulo, Brazil
| | - Adolorata Aparecida Bianco Carvalho
- Veterinary Preventive Medicine and Animal Reproduction Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Karin Werther
- Animal Pathology Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Natália Coelho Couto de Azevedo Fernandes
- Nucleus of Pathological Anatomy, Pathology Center, Adolfo Lutz Institute of São Paulo, State Secretary of Health, Av. Dr. Arnaldo, 351, 7° Floor, 01246-902 São Paulo, Brazil
| | - Silvia D'Andretta Iglezias
- Nucleus of Pathological Anatomy, Pathology Center, Adolfo Lutz Institute of São Paulo, State Secretary of Health, Av. Dr. Arnaldo, 351, 7° Floor, 01246-902 São Paulo, Brazil
| | - Karina Paes Bürger
- Veterinary Preventive Medicine and Animal Reproduction Department, Faculty of Agricultural and Veterinary Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/Unesp), Access Way Prof. Paulo Donato Castellane s/n, Jaboticabal, 14884-900 São Paulo, Brazil
| | - Benedito Antonio Lopes da Fonseca
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo FMRP/USP, Av. Bandeirantes, 3900, Vila Monte Alegre, Ribeirão Preto, 14049-900 São Paulo, Brazil
| |
Collapse
|
30
|
Kupfer TR, Fessler DMT. Ectoparasite defence in humans: relationships to pathogen avoidance and clinical implications. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0207. [PMID: 29866920 DOI: 10.1098/rstb.2017.0207] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 11/12/2022] Open
Abstract
Currently, disgust is regarded as the main adaptation for defence against pathogens and parasites in humans. Disgust's motivational and behavioural features, including withdrawal, nausea, appetite suppression and the urge to vomit, defend effectively against ingesting or touching sources of pathogens. However, ectoparasites do not attack their hosts via ingestion, but rather actively attach themselves to the body surface. Accordingly, by itself, disgust offers limited defence against ectoparasites. We propose that, like non-human animals, humans have a distinct ectoparasite defence system that includes cutaneous sensory mechanisms, itch-generation mechanisms and grooming behaviours. The existence of adaptations for ectoparasite defence is supported by abundant evidence from non-human animals, as well as more recent evidence concerning human responses to ectoparasite cues. Several clinical disorders may be dysfunctions of the ectoparasite defence system, including some that are pathologies of grooming, such as skin picking and trichotillomania, and others, such as delusory parasitosis and trypophobia, which are pathologies of ectoparasite detection. We conclude that future research should explore both distinctions between, and overlap across, ectoparasite defence systems and pathogen avoidance systems, as doing so will not only illuminate proximate motivational systems, including disgust, but may also reveal important clinical and social consequences.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'.
Collapse
Affiliation(s)
- Tom R Kupfer
- School of Psychology, Keynes College, University of Kent, Canterbury, Kent CT2 7NP, UK
| | - Daniel M T Fessler
- Department of Anthropology and Center for Behavior, Evolution and Culture, University of California, Los Angeles, Los Angeles, CA 90095-1553, USA
| |
Collapse
|
31
|
de Almeida MAB, Dos Santos E, Cardoso JDC, da Silva LG, Rabelo RM, Bicca-Marques JC. Predicting Yellow Fever Through Species Distribution Modeling of Virus, Vector, and Monkeys. ECOHEALTH 2019; 16:95-108. [PMID: 30560394 DOI: 10.1007/s10393-018-1388-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Mapping yellow fever (YF) risk is often based on place of infection of human cases, whereas the circulation between nonhuman primates (NHP) and vectors is neglected. In 2008/2009, YF devastated NHP at the southern limit of the disease in the Americas. In view of the recent expansion of YF in Brazil, we modeled the environmental suitability for YF with data from 2008/2009 epizootic, the distribution of NHP (Alouatta spp.), and the mosquito (Haemagogus leucocelaenus) using the maximum entropy algorithm (Maxent) to define risk areas for YF and their main environmental predictors. We evaluated points of occurrence of YF based on dates of confirmed deaths of NHP in three periods, from October 2008 to: December 2008, March 2009, and June 2009. Variables with greatest influence on suitability for YF were seasonality in water vapor pressure (36%), distribution of NHP (32%), maximum wind speed (11%), annual mean rainfall (7%), and maximum temperature in the warmest month (5%). Models of early periods of the epizootic identified suitability for YF in localities that recorded NHP deaths only months later, demonstrating usefulness of the approach for predicting the disease spread. Our data supported influence of rainfall, air humidity, and ambient temperature on the distribution of epizootics. Wind was highlighted as a predicting variable, probably due to its influence on the dispersal of vectors infected with YF in fragmented landscapes. Further studies on the role of wind are necessary to improve our understanding of the occurrence of YF and other arboviruses and their dispersal in the landscape.
Collapse
Affiliation(s)
- Marco A B de Almeida
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil.
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Edmilson Dos Santos
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil
| | - Jáder da C Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria da Saúde do Estado do Rio Grande do Sul, Avenida Ipiranga 5400/Sala 95, Bairro Jardim Botânico, Porto Alegre, Rio Grande do Sul, CEP 90610-030, Brazil
| | - Lucas G da Silva
- Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Rafael M Rabelo
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Júlio César Bicca-Marques
- Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat Commun 2018; 9:5425. [PMID: 30575757 PMCID: PMC6303316 DOI: 10.1038/s41467-018-07896-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Flaviviruses continue to cause globally relevant epidemics and have emerged or re-emerged in regions that were previously unaffected. Factors determining emergence of flaviviruses and continuing circulation in sylvatic cycles are incompletely understood. Here we identify potential sylvatic reservoirs of flaviviruses and characterize the macro-ecological traits common to known wildlife hosts to predict the risk of sylvatic flavivirus transmission among wildlife and identify regions that could be vulnerable to outbreaks. We evaluate variability in wildlife hosts for zoonotic flaviviruses and find that flaviviruses group together in distinct clusters with similar hosts. Models incorporating ecological and climatic variables as well as life history traits shared by flaviviruses predict new host species with similar host characteristics. The combination of vector distribution data with models for flavivirus hosts allows for prediction of global vulnerability to flaviviruses and provides potential targets for disease surveillance in animals and humans.
Collapse
|
33
|
Milich KM, Koestler BJ, Simmons JH, Nehete PN, Di Fiore A, Williams LE, Dudley JP, Vanchiere J, Payne SM. Methods for detecting Zika virus in feces: A case study in captive squirrel monkeys (Saimiri boliviensis boliviensis). PLoS One 2018; 13:e0209391. [PMID: 30571742 PMCID: PMC6301608 DOI: 10.1371/journal.pone.0209391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
A strain of Zika virus (ZIKV) of Asian origin associated with birth defects and neurological disorders has emerged and spread through the Americas. ZIKV was first isolated in the blood of nonhuman primates in Africa and has been detected in the blood, saliva, and urine of a few catarrhine species in both Africa and Asia, suggesting that nonhuman primates may serve as both a source and a reservoir of the virus. The recent introduction of ZIKV to human populations in the Americas presents the potential for the virus to spread into nonhuman primate reservoirs. Thus, it is critical to develop efficient and noninvasive detection methods to monitor the spread of the virus in wild nonhuman primate populations. Here, we describe a method for ZIKV detection in noninvasively collected fecal samples of a Neotropical primate. Fecal samples were collected from two captive squirrel monkeys (Saimiri boliviensis boliviensis) that were experimentally infected with ZIKV (Strain Mexico_1_44) and an additional two uninfected squirrel monkeys. Nucleic acids were extracted from these samples, and RT-qPCR was used to assay for the presence of ZIKV using primers flanking a 101 bp region of the NS5 gene. In both ZIKV-inoculated animals, ZIKV was detected 5-11 days post-infection, but was not detected in the uninfected animals. We compare the fecal results to ZIKV detection in serum, saliva, and urine samples from the same individuals. Our results indicate that fecal detection is a cost-effective, noninvasive method for monitoring wild populations of Neotropical primates as possible ZIKV reservoirs.
Collapse
Affiliation(s)
- Krista M Milich
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Anthropology, University of Texas at Austin, Austin, Texas, United States of America
| | - Benjamin J Koestler
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| | - Joe H Simmons
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Pramod N Nehete
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Anthony Di Fiore
- Department of Anthropology, University of Texas at Austin, Austin, Texas, United States of America
| | - Lawrence E Williams
- University of Texas MD Anderson Cancer Research Center, Bastrop, Texas, United States of America
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| | - John Vanchiere
- Department of Pediatrics, Louisiana State University Health Science Center at Shreveport, Shreveport, Louisiana, United States of America
| | - Shelley M Payne
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology and LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
34
|
Braz AG, Lorini ML, Vale MM. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (
Callithrix
spp.). DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Alan Gerhardt Braz
- Department of Ecology Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Maria Lucia Lorini
- Department of Natural Sciences Federal University of the State of Rio de Janeiro Rio de Janeiro Brazil
| | - Mariana Moncassim Vale
- Department of Ecology Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Brazilian Research Network on Global Climate Change (Rede Clima) São José dos Campos Brazil
- Laboratorio Internacional de Cambio Global (LINC‐Global) Consejo Superior de Investigaciones Científicas (CSIC) Madrid Spain
| |
Collapse
|
35
|
Status of the northern muriqui (Brachyteles hypoxanthus) in the time of yellow fever. Primates 2018; 60:21-28. [DOI: 10.1007/s10329-018-0701-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/11/2018] [Indexed: 01/27/2023]
|
36
|
Klitting R, Gould EA, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (I). Genes (Basel) 2018; 9:E291. [PMID: 29890711 PMCID: PMC6027470 DOI: 10.3390/genes9060291] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023] Open
Abstract
The recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America has sparked renewed interest in this infamous arboviral disease. Yellow fever virus had been a human plague for centuries prior to the identification of its urban transmission vector, the Aedes (Stegomyia) aegypti (Linnaeus) mosquito species, and the development of an efficient live-attenuated vaccine, the YF-17D strain. The combination of vector-control measures and vaccination campaigns drastically reduced YFV incidence in humans on many occasions, but the virus never ceased to circulate in the forest, through its sylvatic invertebrate vector(s) and vertebrate host(s). Outbreaks recently reported in Central Africa (2015⁻2016) and Brazil (since late 2016), reached considerable proportions in terms of spatial distribution and total numbers of cases, with multiple exports, including to China. In turn, questions about the likeliness of occurrence of large urban YFV outbreaks in the Americas or of a successful import of YFV to Asia are currently resurfacing. This two-part review describes the current state of knowledge and gaps regarding the molecular biology and transmission dynamics of YFV, along with an overview of the tools that can be used to manage the disease at individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13385 Marseille Cedex 05, France.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13385 Marseille Cedex 05, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Université Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Université, IRD 190, Inserm 1207, IHU Méditerranée Infection), 13385 Marseille Cedex 05, France.
| |
Collapse
|
37
|
Ramírez AL, van den Hurk AF, Meyer DB, Ritchie SA. Searching for the proverbial needle in a haystack: advances in mosquito-borne arbovirus surveillance. Parasit Vectors 2018; 11:320. [PMID: 29843778 PMCID: PMC5975710 DOI: 10.1186/s13071-018-2901-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/15/2018] [Indexed: 02/08/2023] Open
Abstract
Surveillance is critical for the prevention and control of mosquito-borne arboviruses. Detection of elevated or emergent virus activity serves as a warning system to implement appropriate actions to reduce outbreaks. Traditionally, surveillance of arboviruses has relied on the detection of specific antibodies in sentinel animals and/or detection of viruses in pools of mosquitoes collected using a variety of sampling methods. These methods, although immensely useful, have limitations, including the need for a cold chain for sample transport, cross-reactivity between related viruses in serological assays, the requirement for specialized equipment or infrastructure, and overall expense. Advances have recently been made on developing new strategies for arbovirus surveillance. These strategies include sugar-based surveillance, whereby mosquitoes are collected in purpose-built traps and allowed to expectorate on nucleic acid preservation cards which are submitted for virus detection. New diagnostic approaches, such as next-generation sequencing, have the potential to expand the genetic information obtained from samples and aid in virus discovery. Here, we review the advancement of arbovirus surveillance systems over the past decade. Some of the novel approaches presented here have already been validated and are currently being integrated into surveillance programs. Other strategies are still at the experimental stage, and their feasibility in the field is yet to be evaluated.
Collapse
Affiliation(s)
- Ana L Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, 4108, Australia
| | - Dagmar B Meyer
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia.,Astralian Institute of Tropical Health and Medicine, James Cook University, PO Box 6811, Cairns, QLD, 4870, Australia
| |
Collapse
|
38
|
Oklander LI, Miño CI, Fernández G, Caputo M, Corach D. Genetic structure in the southernmost populations of black-and-gold howler monkeys (Alouatta caraya) and its conservation implications. PLoS One 2017; 12:e0185867. [PMID: 28968440 PMCID: PMC5624639 DOI: 10.1371/journal.pone.0185867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
Black-and-gold howler monkeys Alouatta caraya, are arboreal primates, inhabitants of Neotropical forests, highly susceptible to the yellow fever virus, considered early 'sentinels' of outbreaks, and thus, of major epidemiological importance. Currently, anthropogenic habitat loss and modifications threatens their survival. Habitat modification can prevent, reduce or change dispersal behavior, which, in turn, may influence patterns of gene flow. We explored past and contemporary levels of genetic diversity, elucidated genetic structure and identified its possible drivers, in ten populations (n = 138) located in the southernmost distribution range of the species in South America, in Argentina and Paraguay. Overall, genetic variability was moderate (ten microsatellites: 3.16 ± 0.18 alleles per locus, allelic richness of 2.93 ± 0.81, 0.443±0.025 unbiased expected heterozygosity; 22 haplotypes of 491-bp mitochondrial Control Region, haplotypic diversity of 0.930 ± 0.11, and nucleotide diversity of0.01± 0.007). Significant evidence of inbreeding was found in a population that was, later, decimated by yellow fever. Population-based gene flow measures (FST = 0.13; θST = 018), hierarchical analysis of molecular variance and Bayesian clustering methods revealed significant genetic structure, grouping individuals into four clusters. Shared haplotypes and lack of mitochondrial differentiation (non-significant θST) among some populations seem to support the hypothesis of historical dispersal via riparian forests. Current resistance analyses revealed a significant role of landscape features in modeling contemporary gene flow: continuous forest and riparian forests could promote genetic exchange, whereas disturbed forests or crop/grassland fields may restrict it. Estimates of effective population size allow anticipating that the studied populations will lose 75% of heterozygosity in less than 50 generations. Our findings suggest that anthropogenic modifications on native forests, increasingly ongoing in Northeastern Argentina, Southern Paraguay and Southeastern Brazil, might prevent the dispersal of howlers, leading to population isolation. To ensure long-term viability and maintain genetic connectivity of A. caraya remnant populations, we recommend preserving and restoring habitat continuity. To conserve the species genetic pool, as well, the four genetic clusters identified here should be considered separate Management Units and given high conservation priority. In light of our findings and considering complementary non-genetic information, we suggest upgrading the international conservation status of A. caraya to "Vulnerable".
Collapse
Affiliation(s)
- Luciana Inés Oklander
- Instituto de Biología Subtropical (IBS), Nodo Iguazú, Universidad Nacional de Misiones (UNaM) – CONICET and Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Puerto Iguazú, Misiones, Argentina
- Centro de Bioinvestigaciones – CeBio, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA) – CONICET, Pergamino, Buenos Aires, Argentina
| | - Carolina Isabel Miño
- Instituto de Biología Subtropical (IBS), Nodo Iguazú, Universidad Nacional de Misiones (UNaM) – CONICET and Asociación Civil Centro de Investigaciones del Bosque Atlántico (CeIBA), Puerto Iguazú, Misiones, Argentina
- Centro de Bioinvestigaciones – CeBio, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA) – CONICET, Pergamino, Buenos Aires, Argentina
| | - Gabriela Fernández
- Centro de Bioinvestigaciones – CeBio, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA) – CONICET, Pergamino, Buenos Aires, Argentina
| | - Mariela Caputo
- Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Corach
- Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) – CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
39
|
Hamrick PN, Aldighieri S, Machado G, Leonel DG, Vilca LM, Uriona S, Schneider MC. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl Trop Dis 2017; 11:e0005897. [PMID: 28886023 PMCID: PMC5607216 DOI: 10.1371/journal.pntd.0005897] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/20/2017] [Accepted: 08/22/2017] [Indexed: 11/24/2022] Open
Abstract
Background In the Americas, yellow fever virus transmission is a latent threat due to the proximity between urban and wild environments. Although yellow fever has nearly vanished from North and Central America, there are still 13 countries in the Americas considered endemic by the World Health Organization. Human cases usually occur as a result of the exposure to sylvatic yellow fever in tropical forested environments; but urban outbreaks reported during the last decade demonstrate that the risk in this environment still exists. The objective of this study was to identify spatial patterns and the relationship between key geographic and environmental factors with the distribution of yellow fever human cases in the Americas. Methodology/Principal findings An ecological study was carried out to analyze yellow fever human cases reported to the Pan American Health Organization from 2000 to 2014, aggregated by second administrative level subdivisions (counties). Presence of yellow fever by county was used as the outcome variable and eight geo-environmental factors were used as independent variables. Spatial analysis was performed to identify and examine natural settings per county. Subsequently, a multivariable logistic regression model was built. During the study period, 1,164 cases were reported in eight out of the 13 endemic countries. Nearly 83.8% of these cases were concentrated in three countries: Peru (37.4%), Brazil (28.1%) and Colombia (18.4%); and distributed in 57 states/provinces, specifically in 286 counties (3.4% of total counties). Yellow fever presence was significantly associated with altitude, rain, diversity of non-human primate hosts and temperature. A positive spatial autocorrelation revealed a clustered geographic pattern in 138/286 yellow fever positive counties (48.3%). Conclusions/Significance A clustered geographic pattern of yellow fever was identified mostly along the Andes eastern foothills. This risk map could support health policies in endemic countries. Geo-environmental factors associated with presence of yellow fever could help predict and adjust the limits of other risk areas of epidemiological concern. Yellow fever (YF) is a zoonotic disease caused by yellow fever virus (YFV), which is transmitted to humans through the bite of an infected mosquito. Sylvatic and urban cycles have been present in different periods, but currently most cases result from human exposure to jungle or forested environments. The World Health Organization considers 13 countries endemic for YFV in the Americas. The objective of this study was to identify spatial patterns and the relationship between key geographic and environmental factors with the distribution of YF human cases in the Americas. Cases of YF from 2000 to 2014 aggregated by county and eight geo-environmental factors were studied via spatial and statistical analysis. A total of 1,164 cases were reported in this time period, with the majority of them located in Peru, Brazil and Colombia. Yellow fever presence was associated with rain, altitude, diversity of non-human primate hosts and temperature. A large clustered geographic pattern of YF cases was identified along the Andes eastern foothills. Although YF cases can be seen as rare events, the results of this study demonstrate that YF human cases in the Americas are geographically concentrated and are not happening at random, even within areas known to be at risk. Determining the geo-environmental factors related to YFV is essential to delineate risk areas and to consequently improve resource allocation and prevent human cases.
Collapse
Affiliation(s)
- Patricia Najera Hamrick
- PAHO Health Emergencies Department, Pan American Health Organization, Washington D.C., United States of America
- * E-mail:
| | - Sylvain Aldighieri
- PAHO Health Emergencies Department, Pan American Health Organization, Washington D.C., United States of America
| | - Gustavo Machado
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Deise Galan Leonel
- PAHO Health Emergencies Department, Pan American Health Organization, Washington D.C., United States of America
| | - Luz Maria Vilca
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Sonia Uriona
- Preventive Medicine and Epidemiology Department, Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria Cristina Schneider
- PAHO Health Emergencies Department, Pan American Health Organization, Washington D.C., United States of America
| |
Collapse
|
40
|
Morales MA, Fabbri CM, Zunino GE, Kowalewski MM, Luppo VC, Enría DA, Levis SC, Calderón GE. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina. PLoS Negl Trop Dis 2017; 11:e0005351. [PMID: 28187130 PMCID: PMC5330535 DOI: 10.1371/journal.pntd.0005351] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/28/2017] [Accepted: 01/23/2017] [Indexed: 11/18/2022] Open
Abstract
Several medically important mosquito-borne flaviviruses have been detected in Argentina in recent years: Dengue (DENV), St. Louis encephalitis (SLEV), West Nile (WNV) and Yellow Fever (YFV) viruses. Evidence of Bussuquara virus (BSQV) and Ilheus virus (ILHV) activity were found, but they have not been associated with human disease. Non-human primates can act as important hosts in the natural cycle of flaviviruses and serological studies can lead to improved understanding of virus circulation dynamics and host susceptibility. From July-August 2010, we conducted serological and molecular surveys in free-ranging black howlers (Alouatta caraya) captured in northeastern Argentina. We used 90% plaque-reduction neutralization tests (PRNT90) to analyze 108 serum samples for antibodies to WNV, SLEV, YFV, DENV (serotypes 1and 3), ILHV, and BSQV. Virus genome detection was performed using generic reverse transcription (RT)-nested PCR to identify flaviviruses in 51 antibody-negative animals. Seventy animals had antibodies for one or more flaviviruses for a total antibody prevalence of 64.8% (70/108). Monotypic (13/70, 19%) and heterotypic (27/70, 39%) patterns were differentiated. Specific neutralizing antibodies against WNV, SLEV, DENV-1, DENV-3, ILHV, and BSQV were found. Unexpectedly, the highest flavivirus antibody prevalence detected was to WNV with 9 (8.33%) monotypic responses. All samples tested by (RT)-nested PCR were negative for viral genome. This is the first detection of WNV-specific antibodies in black howlers from Argentina and the first report in free-ranging non-human primates from Latin-American countries. Given that no animals had specific neutralizing antibodies to YFV, our results suggest that the study population remains susceptible to YFV. Monitoring of these agents should be strengthened to detect the establishment of sylvatic cycles of flaviviruses in America and evaluate risks to wildlife and human health.
Collapse
Affiliation(s)
- María A. Morales
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| | - Cintia M. Fabbri
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| | - Gabriel E. Zunino
- Instituto del Conurbano, Área Ecología Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
| | - Martín M. Kowalewski
- Estación Biológica de Usos Múltiples de Corrientes -CONICET (EBCo), Museo Argentino de Ciencias Naturales, Argentina
| | - Victoria C. Luppo
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| | - Delia A. Enría
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| | - Silvana C. Levis
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| | - Gladys E. Calderón
- Departamento Investigación, Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I. Maiztegui”, ANLIS, Pergamino, Argentina
| |
Collapse
|
41
|
Moreno ES, Agostini I, Holzmann I, Di Bitetti MS, Oklander LI, Kowalewski MM, Beldomenico PM, Goenaga S, Martínez M, Lestani E, Desbiez ALJ, Miller P. Yellow fever impact on brown howler monkeys (Alouatta guariba clamitans) in Argentina: a metamodelling approach based on population viability analysis and epidemiological dynamics. Mem Inst Oswaldo Cruz 2015; 110:865-76. [PMID: 26517499 PMCID: PMC4660615 DOI: 10.1590/0074-02760150075] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
In South America, yellow fever (YF) is an established infectious disease that has been identified outside of its traditional endemic areas, affecting human and nonhuman primate (NHP) populations. In the epidemics that occurred in Argentina between 2007-2009, several outbreaks affecting humans and howler monkeys (Alouatta spp) were reported, highlighting the importance of this disease in the context of conservation medicine and public health policies. Considering the lack of information about YF dynamics in New World NHP, our main goal was to apply modelling tools to better understand YF transmission dynamics among endangered brown howler monkey (Alouatta guariba clamitans) populations in northeastern Argentina. Two complementary modelling tools were used to evaluate brown howler population dynamics in the presence of the disease: Vortex, a stochastic demographic simulation model, and Outbreak, a stochastic disease epidemiology simulation. The baseline model of YF disease epidemiology predicted a very high probability of population decline over the next 100 years. We believe the modelling approach discussed here is a reasonable description of the disease and its effects on the howler monkey population and can be useful to support evidence-based decision-making to guide actions at a regional level.
Collapse
Affiliation(s)
| | - Ilaria Agostini
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Ingrid Holzmann
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Mario S Di Bitetti
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Luciana I Oklander
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Martín M Kowalewski
- Estación Biológica de Corrientes, Consejo Nacional de Investigaciones Científicas y Técnicas, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, San Cayetano, Corrientes, Argentina
| | - Pablo M Beldomenico
- Instituto de Ciencias Veterinarias del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Silvina Goenaga
- Instituto Nacional de Enfermedades Virales Humanas Dr Julio I Maiztegui, Buenos Aires, Argentina
| | - Mariela Martínez
- Instituto de Biología Subtropical, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
| | - Eduardo Lestani
- Instituto Nacional de Medicina Tropical, Puerto Iguazú, Misiones, Argentina
| | | | - Philip Miller
- International Union for Conservation of Nature, Apple Valley, MN, USA
| |
Collapse
|
42
|
Almeida MAB, Cardoso JDC, dos Santos E, da Fonseca DF, Cruz LL, Faraco FJC, Bercini MA, Vettorello KC, Porto MA, Mohrdieck R, Ranieri TMS, Schermann MT, Sperb AF, Paz FZ, Nunes ZMA, Romano APM, Costa ZG, Gomes SL, Flannery B. Surveillance for yellow Fever virus in non-human primates in southern Brazil, 2001-2011: a tool for prioritizing human populations for vaccination. PLoS Negl Trop Dis 2014; 8:e2741. [PMID: 24625681 PMCID: PMC3953010 DOI: 10.1371/journal.pntd.0002741] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
In Brazil, epizootics among New World monkey species may indicate circulation of yellow fever (YF) virus and provide early warning of risk to humans. Between 1999 and 2001, the southern Brazilian state of Rio Grande do Sul initiated surveillance for epizootics of YF in non-human primates to inform vaccination of human populations. Following a YF outbreak, we analyzed epizootic surveillance data and assessed YF vaccine coverage, timeliness of implementation of vaccination in unvaccinated human populations. From October 2008 through June 2009, circulation of YF virus was confirmed in 67 municipalities in Rio Grande do Sul State; vaccination was recommended in 23 (34%) prior to the outbreak and in 16 (24%) within two weeks of first epizootic report. In 28 (42%) municipalities, vaccination began more than two weeks after first epizootic report. Eleven (52%) of 21 laboratory-confirmed human YF cases occurred in two municipalities with delayed vaccination. By 2010, municipalities with confirmed YF epizootics reported higher vaccine coverage than other municipalities that began vaccination. In unvaccinated human populations timely response to epizootic events is critical to prevent human yellow fever cases.
Collapse
Affiliation(s)
- Marco A. B. Almeida
- Division of Environmental Health Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jader da C. Cardoso
- Division of Environmental Health Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
- La Salle University, Canoas, Rio Grande do Sul, Brazil
| | - Edmilson dos Santos
- Division of Environmental Health Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daltro F. da Fonseca
- Division of Environmental Health Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura L. Cruz
- Division of Environmental Health Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando J. C. Faraco
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilina A. Bercini
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Kátia C. Vettorello
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana A. Porto
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Renate Mohrdieck
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tani M. S. Ranieri
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria T. Schermann
- Division of Epidemiologic Surveillance, Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alethéa F. Sperb
- Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Francisco Z. Paz
- Health Surveillance Coordination, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | - Zenaida M. A. Nunes
- Central State Public Health Laboratory, Rio Grande do Sul State Health Department, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Zouraide G. Costa
- Secretariat for Health Surveillance, Brazilian Ministry of Health, Brasília, Brazil
| | - Silvana L. Gomes
- Secretariat for Health Surveillance, Brazilian Ministry of Health, Brasília, Brazil
| | - Brendan Flannery
- Pan American Health Organization, Brasília, Brazil
- Global Immunization Division, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
43
|
Julander JG. Experimental therapies for yellow fever. Antiviral Res 2013; 97:169-79. [PMID: 23237991 PMCID: PMC3563926 DOI: 10.1016/j.antiviral.2012.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022]
Abstract
A number of viruses in the family Flaviviridae are the focus of efforts to develop effective antiviral therapies. Success has been achieved with inhibitors for the treatment of hepatitis C, and there is interest in clinical trials of drugs against dengue fever. Antiviral therapies have also been evaluated in patients with Japanese encephalitis and West Nile encephalitis. However, no treatment has been developed against the prototype flavivirus, yellow fever virus (YFV). Despite the availability of the live, attenuated 17D vaccine, thousands of cases of YF continue to occur each year in Africa and South America, with a significant mortality rate. In addition, a small number of vaccinees develop severe systemic infections with the 17D virus. This paper reviews current efforts to develop antiviral therapies, either directly targeting the virus or blocking detrimental host responses to infection.
Collapse
Affiliation(s)
- Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, 84322-5600, United States.
| |
Collapse
|
44
|
Pearce F, Carbone C, Cowlishaw G, Isaac NJB. Space-use scaling and home range overlap in primates. Proc Biol Sci 2013; 280:20122122. [PMID: 23193124 PMCID: PMC3574404 DOI: 10.1098/rspb.2012.2122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/05/2012] [Indexed: 11/12/2022] Open
Abstract
Space use is an important aspect of animal ecology, yet our understanding is limited by a lack of synthesis between interspecific and intraspecific studies. We present analyses of a dataset of 286 estimates of home range overlap from 100 primate species, with comparable samples for other space-use traits. To the best of our knowledge, this represents the first multispecies study using overlap data estimated directly from field observations. We find that space-use traits in primates are only weakly related to body mass, reflecting their largely arboreal habits. Our results confirm a theory that home range overlap explains the differences in allometric scaling between population density and home range size. We then test a suite of hypotheses to explain home range overlap, both among and within species. We find that overlap is highest for larger-bodied species living in large home ranges at high population densities, where annual rainfall is low, and is higher for arboreal than terrestrial species. Most of these results are consistent with the economics of resource defence, although the predictions of one specific theory of home range overlap are not supported. We conclude that home range overlap is somewhat predictable, but the theoretical basis of animal space use remains patchy.
Collapse
Affiliation(s)
- Fiona Pearce
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Chris Carbone
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Guy Cowlishaw
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Nick J. B. Isaac
- NERC Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Oxfordshire, Wallingford OX10 8BB, UK
| |
Collapse
|
45
|
Genton C, Cristescu R, Gatti S, Levréro F, Bigot E, Caillaud D, Pierre JS, Ménard N. Recovery potential of a western lowland gorilla population following a major Ebola outbreak: results from a ten year study. PLoS One 2012; 7:e37106. [PMID: 22649511 PMCID: PMC3359368 DOI: 10.1371/journal.pone.0037106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022] Open
Abstract
Investigating the recovery capacity of wildlife populations following demographic crashes is of great interest to ecologists and conservationists. Opportunities to study these aspects are rare due to the difficulty of monitoring populations both before and after a demographic crash. Ebola outbreaks in central Africa have killed up to 95% of the individuals in affected western lowland gorilla (Gorilla gorilla gorilla) populations. Assessing whether and how fast affected populations recover is essential for the conservation of this critically endangered taxon. The gorilla population visiting Lokoué forest clearing, Odzala-Kokoua National Park, Republic of the Congo, has been monitored before, two years after and six years after Ebola affected it in 2004. This allowed us to describe Ebola's short-term and long-term impacts on the structure of the population. The size of the population, which included around 380 gorillas before the Ebola outbreak, dropped to less than 40 individuals after the outbreak. It then remained stable for six years after the outbreak. However, the demographic structure of this small population has significantly changed. Although several solitary males have disappeared, the immigration of adult females, the formation of new breeding groups, and several birth events suggest that the population is showing potential to recover. During the outbreak, surviving adult and subadult females joined old solitary silverbacks. Those females were subsequently observed joining young silverbacks, forming new breeding groups where they later gave birth. Interestingly, some females were observed joining silverbacks that were unlikely to have sired their infant, but no infanticide was observed. The consequences of the Ebola outbreak on the population structure were different two years and six years after the outbreak. Therefore, our results could be used as demographic indicators to detect and date outbreaks that have happened in other, non-monitored gorilla populations.
Collapse
Affiliation(s)
- Céline Genton
- UMR 6553, ECOBIO: Ecosystems, Biodiversity, Evolution, CNRS/University of Rennes 1, Biological Station of Paimpont, Paimpont, France.
| | | | | | | | | | | | | | | |
Collapse
|