1
|
Liu X, Xiu C, He L, Zhao Y, Li B. Strong immune response and protection against Brucella abortus by Omp25 and BP26 mRNA vaccine candidates. Int Immunopharmacol 2025; 158:114765. [PMID: 40349401 DOI: 10.1016/j.intimp.2025.114765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Brucellosis, a globally prevalent zoonotic disease caused by Brucella species, remains without safe and effective human vaccines. This study focuses on the outer membrane proteins Omp25 and BP26 of Brucella as targets, employing a multidimensional strategy to develop novel mRNA vaccines and systematically evaluate their immunoprotective efficacy. First, bioinformatics tools were used to predict the antigenicity, immunogenicity, and physicochemical properties of Omp25 and BP26, while the C-ImmSim server simulated their potential to induce innate and adaptive immune responses. Building on these predictions, we designed and synthesized lipid nanoparticle-encapsulated nucleoside-modified mRNA vaccines (Omp25-Fc and BP26-Fc mRNA-LNPs) and compared their immunogenicity with traditional alum-adjuvanted protein vaccines (alum-BP26 and alum-Omp25). Animal experiments demonstrated that three immunizations with Omp25-Fc and BP26-Fc mRNA-LNPs induced significantly stronger humoral and cellular immune responses in mice compared to conventional vaccines. Evaluation of protective efficacy through challenge experiments revealed a marked reduction in splenic bacterial load in both mRNA vaccine groups relative to the controls. Mechanistic analysis further showed that Omp25-Fc and BP26-Fc mRNA vaccines activated mixed Th1/Th2 immune responses, effectively reducing bacterial burden and inflammatory damage in systemic infection models. Notably, the mRNA vaccines exhibited more durable immune memory and broader protective coverage than the alum-adjuvanted protein vaccines. Our findings demonstrate that Omp25- and BP26-based mRNA-LNP vaccines exhibit high immunogenicity and clinical translational potential, providing innovative strategies and experimental evidence for the development of brucellosis vaccines.
Collapse
Affiliation(s)
- Xuyan Liu
- Hebei GEO University, Shijiazhuang 050031, China.
| | - Chenlin Xiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050051, China
| | - Lei He
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yunwang Zhao
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Baolin Li
- Qinhuangdao First Hospital affiliated to Hebei Medical University, Qinhuangdao 066000, China
| |
Collapse
|
2
|
Hu Y, Zhang M, Yang G, Guo H, Jiang C, Zhou P, Chen Y, Zhang M, Ghonaim AH, Li W, He Q. Potential of recombinant CAV1-Fc in the treatment of ApxI toxin-induced damage by Actinobacillus pleuropneumoniae. Vet Microbiol 2025; 305:110504. [PMID: 40215801 DOI: 10.1016/j.vetmic.2025.110504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/10/2025] [Accepted: 04/04/2025] [Indexed: 05/17/2025]
Abstract
Currently, porcine contagious pleuropneumonia (PCP) caused by Actinobacillus pleuropneumoniae (APP), poses a significant threat to the pig breeding industry. There is an urgent need for effective therapeutic and prophylactic treatments, especially those that can overcome the limitations associated with vaccines and antibiotics. This includes the development of novel antitoxin agents, immunomodulatory therapies, and alternative strategies like phage therapy and herbal extracts. Our previous study has demonstrated membrane protein caveolin-1 (CAV1) is a key protein that acts as a functional receptor of APP ApxI toxin by binding to its acylated region. Here, we developed recombinant human N-CAV1-Fc fusion protein and C-CAV1-Fc fusion protein. Both fusion proteins could tightly bind to ApxI toxin. N-CAV1-Fc and C-CAV1-Fc fusion proteins efficiently blocked the interaction between ApxI toxin and immortalized porcine alveolar macrophages (iPAMs), thereby inhibiting cell apoptosis caused by APP ApxI toxin. Furthermore, prophylactic and therapeutic CAV1-Fc treatments effectively protected mice from ApxI toxin-induced damage, as determined by reduced weight loss, apoptosis factor transcription, and pathological changes in the lungs. The protective effects of N-CAV1-Fc and C-CAV1-Fc showed clear dose-dependent efficacy in vivo. Protein kinetics data indicated that N-CAV1-Fc has a relatively longer half-life in vivo compared to C-CAV1-Fc, making it an excellent candidate for prevention and treatment of APP infections.
Collapse
Affiliation(s)
- Yaofang Hu
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mengdi Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Gan Yang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haoran Guo
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Changsheng Jiang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Pei Zhou
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanhong Chen
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengjia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ahmed H Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Desert Research Center, Cairo, Egypt
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Qigai He
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
3
|
Charnsatabut C, Suwanchaikasem P, Rattanapisit K, Iksen I, Pongrakhananon V, Bulaon CJI, Phoolcharoen W. Optimized expression of human interleukin-15 in Nicotiana benthamiana and in vitro assessment of its activity on human keratinocytes. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00889. [PMID: 40235517 PMCID: PMC11997404 DOI: 10.1016/j.btre.2025.e00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Human interleukin-15 (hIL-15) is a cytokine essential for immune modulation with therapeutic applications in cancer and chronic wound healing. Although hIL-15 is commercially available, large-scale production studies remain limited. With promising clinical trial results, demand for hIL-15 is expected to rise. Plant expression systems offer a sustainable, low-cost alternative for rapid biopharmaceutical production. In this study, we optimized hIL-15 expression in Nicotiana benthamiana and assessed its physicochemical properties and biological activity. We fused hIL-15 to the Fc domain of human IgG1 for efficient purification. Through optimization of the pre- and post-infiltration conditions, we achieved transient expression and recovery at 4 dpi, yielding 33.8 µg/g fresh weight. Peptide mapping confirmed 97 % overall sequence coverage of the primary structure. Treatment with plant-produced hIL-15-Fc effectively promoted human keratinocyte HaCaT cell proliferation and migration in vitro. These findings demonstrated the potential of plant-based platforms for producing therapeutic recombinant hIL-15 that support wound healing.
Collapse
Affiliation(s)
- Chalatorn Charnsatabut
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Iksen Iksen
- Department of Research and development, Provenedge Co. Ltd., Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Wu Q, Liu S, Li Z, Jin Y, Li X, Han J, Shi C, Shen X, Xia S, Wang J, Ren G. FGF-21 fusion proteins ameliorate atopic dermatitis by inhibiting the TLR/TSLP signaling pathway: Anti-inflammatory and skin barrier repair effects. Int Immunopharmacol 2025; 159:114920. [PMID: 40424659 DOI: 10.1016/j.intimp.2025.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/27/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with limited treatment options, often accompanied by adverse effects. Consequently, the development of novel therapeutics with enhanced efficacy and minimal side effects is of critical importance. This study explores the therapeutic potential and underlying mechanisms of three fibroblast growth factor 21 (FGF-21) fusion proteins (FGF-21-TAT, FGF-21-R11, and FGF-21-Fc-using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. After successful expression and purification of the fusion proteins, their therapeutic effects on AD mice were evaluated after validation of their in vitro and in vivo bioactivities, focusing on the improvement of skin lesions, modulation of inflammatory responses, and immune indices. The results demonstrated that the FGF-21 fusion proteins significantly mitigated skin damage, reduced dermatitis scores, alleviated ear swelling, and had minimal impact on body weight. Histopathological analyses revealed that these proteins attenuated epidermal thickening, inflammatory cell infiltration, and cellular edema, in addition to decreasing mast cell counts and downregulating the expression of Toll-like receptors (TLR-2 and TLR-4) and thymic stromal lymphopoietin (TSLP). Furthermore, the fusion proteins modulated cytokine profiles by IL-10, while concurrently reducing serum levels of interleukin-4 (IL-4), IL-13, IL-17 A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and total IgE. They also enhanced the transcriptional expression of filaggrin (FLG). These findings suggest that FGF-21 fusion proteins effectively alleviate AD symptoms by inhibiting the TLR/NF-κB signaling pathway, restoring T helper cell (Th)1/Th2/Th17 immune balance, and promoting skin barrier repair. Among the proteins, FGF-21-Fc demonstrated the most promising therapeutic potential, attributed to its prolonged activity and high efficacy.
Collapse
Affiliation(s)
- Qing Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shijie Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhitong Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Jin
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachi Han
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunxu Shi
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyuan Shen
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shujing Xia
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingming Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin 150030, China; Research Center of Genetic Engineering of Pharmaceuticals of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Han J, Xu K, Yang L, Ding Y, Wang X, Yin D, Wang J, Zhang H, Hong Z. Cleavable PEGylation Enhances the Antitumor Efficacy of Small-Sized Antibody-Drug Conjugates. Mol Pharm 2025. [PMID: 40394811 DOI: 10.1021/acs.molpharmaceut.5c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a promising class of cancer therapeutics. However, traditional ADCs are often limited by poor tumor penetration due to their large molecular size. While the use of small-sized antibody fragments or analogues can improve tumor permeability, this approach typically results in an extremely shortened blood circulation half-life, which diminishes the therapeutic benefits and brings other metabolic challenges. In addition, the expression of target antigens on normal tissues often leads to unnecessary on-target/off-tumor toxicity. To address these issues, we developed a novel tumor site-specific cleavable PEGylation strategy for small-sized ADC design. The small ADC molecule ZHER2-MMAE was site-specifically PEGylated at its N-terminus with a 20 kDa polyethylene glycol (PEG) chain and a uPA (LSGRSDNH) cleavage sequence was inserted between them (PEG20k-U-ZHER2-MMAE). Our results showed that PEG20k-U-ZHER2-MMAE achieves a similar half-life extension (6.4 and 6.0 h) compared to the conventional PEG20k-ZHER2-MMAE, both representing about a 26-fold improvement compared to ZHER2-MMAE. Importantly, PEG20k-U-ZHER2-MMAE exhibited significantly higher drug accumulation at the tumor site, leading to the complete eradication of NCI-N87 and SK-OV-3 tumors at a dose of 5.5 mg/kg. Additionally, it demonstrated a maximum tolerated dose (MTD) exceeding 35 mg/kg, while the noncleavable PEG20k-ZHER2-MMAE could only slow tumor growth. In addition, compared to ZHER2-MMAE, the in vitro cytotoxic activity of PEG20k-ZHER2-MMAE or PEG20k-U-ZHER2-MMAE was reduced by about 50 times, with the latter expected to reduce the on-target/off-tumor side effects due to the specific activation by uPA at tumor sites. These data fully demonstrate the effectiveness and high safety of our tumor-specific cleavable PEGylation strategy, supporting the potential in the development of next-generation ADCs for cancer therapy.
Collapse
Affiliation(s)
- Jiani Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Keyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Liu Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yu Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xi Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Dongming Yin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Jian Wang
- Department of Comprehensive Surgery, Tianjin First Central Hospital, No. 24 Fukang Road, Tianjin 300192, P. R. China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
- Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen 518045, P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
- Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen 518045, P. R. China
| |
Collapse
|
6
|
Wu X, Qiao J, Xiao F, Guo L. Enhancing GLP-1 expression via IVT mRNA and fusion protein technology for diabetes therapy. J Pharm Sci 2025; 114:103829. [PMID: 40393145 DOI: 10.1016/j.xphs.2025.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Diabetes is a chronic metabolic disorder with high incidence and prevalence worldwide. This study explores a novel glucagon-like peptide-1-Fc (GLP-1-Fc) mRNA designed to improve diabetes management by inducing stable and persistent production of GLP-1-Fc protein. METHODS The GLP-1-Fc mRNA was generated using in vitro transcription and fusion protein technology. Protein expression was assessed via western blot and enzyme-linked immunosorbent assay (ELISA) in Human Embryonic Kidney 293T (HEK293T) cells. GLP-1-Fc mRNA and GLP-1-Fc protein (dulaglutide) were administered to C57BL/6J and db/db mice to evaluate protein levels, GLP-1 receptor activity, hypoglycemic effects, and safety using ELISA, lance ultra cAMP assay, blood glucose levels detection, immunofluorescence, and hematoxylin and eosin staining. RESULTS The designed mRNA fused with the Fc region successfully encoded GLP-1-Fc, showing optimal stability and translation efficiency. The GLP-1-Fc protein levels were significantly higher in the GLP-1-Fc mRNA treatment group than those in the control mice. The GLP-1-Fc mRNA effectively reduced blood glucose levels and increased GLP-1 receptor expression in db/db mice after both single and repeated administrations. Moreover, the GLP-1-Fc mRNA provided prolonged glucose reduction with similar efficacy to GLP-1 protein drug, dulaglutide. Besides, intraperitoneal delivery of GLP-1-Fc mRNA does not induce tissue damage. CONCLUSIONS Compared to conventional peptide-based therapies, GLP-1-Fc mRNA represents a promising strategy for diabetes treatment by enabling sustained in vivo protein expression, achieving effective glycemic control, and offering a streamlined manufacturing process with reduced production complexity.
Collapse
Affiliation(s)
- Xiaoying Wu
- Peking University Fifth School of Clinical Medicine, Beijing, China; Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China
| | - Jingtao Qiao
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China
| | - Fei Xiao
- Peking University Fifth School of Clinical Medicine, Beijing, China; Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lixin Guo
- Peking University Fifth School of Clinical Medicine, Beijing, China; Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Beijing, China.
| |
Collapse
|
7
|
Lee JM, Kang JS, Yang YR, Park JH. High-Yield Production of Recombinant CLCF1 Protein fused with Human Serum Albumin in Animal cells and Toxicity Evaluation in Rodents. Protein Expr Purif 2025:106740. [PMID: 40393625 DOI: 10.1016/j.pep.2025.106740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
Recombinant protein based biopharmaceutics have been developed as therapeutics of various diseases, especially cancer, diabetes, infectious diseases, and autoimmune diseases. In this study, we conducted a study for the development of biopharmaceuticals based on the CLCF1 protein. First, we established strategies for producing recombinant human CLCF1 protein by transient gene expression in ExpiCHO-S™ Cells and Expi293F™ Cells. For the secretion of CLCF1 protein, we established strategies that human CRLF1 or sCNTFR with CLCF1 protein were co-expressed. As a result, the CLCF1 protein formed a complex with CRLF1 or sCNTFR, which was successfully secreted. Furthermore, the productivity of CLCF1 protein was significantly increased. The ratio of co-transfected plasmids, temperature, CO2 level and time of harvest were explored, so that the productivity of CLCF1 was remarkably increased 7-fold from 3 mg/L to 22 mg/L. Next, we generated recombinant CLCF1 fusion protein with HSA (Albumin CLCF1) considering the improvement of pharmacokinetic properties and the proven production method in GMP facilities. We evaluated the biological activity of various CLCF1 proteins. In consideration of protein productivity, physical properties, and efficacy, we conducted a single intravenous administration of 4 types of proteins in Sprague-Dawley rats to evaluate the short-term toxicity. As a result, no toxicity related CLCF1 proteins was observed based on the behavior sign observation and body weight changes. In conclusion, we successfully established the strategies of production and characterization of biologically active recombinant CLCF1 proteins in mammalian cells as potential biotherapeutics.
Collapse
Affiliation(s)
- Jeong-Min Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jae Sook Kang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong Ryoul Yang
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Bimolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ji Hoon Park
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Republic of Korea
| |
Collapse
|
8
|
Ballesteros ME, Tolbert T, Schöneich C. Near UV and visible light-induced site-specific fragmentation of IgG1-based modalities mediated by histidine and Fe(III): a role for intra-domain interactions? J Pharm Sci 2025; 114:103810. [PMID: 40324686 DOI: 10.1016/j.xphs.2025.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Photo-stability represents a critical quality attribute for the development of therapeutic proteins where the exposure to near UV or visible light can lead to protein fragmentation. Here, we compare the photo-stability of three IgG1 based modalities, formulated in histidine (His) buffer containing various levels of Fe(III). We report a significant difference in the extent of photo-degradation between a high mannose Fc fragment (HM-Fc), NISTmAb and a fusion protein, Flt-3L-Ig. Our results indicate that despite preserving the Fc domain sequence, the NISTmAb and Flt-3L-Ig are more susceptible to site-specific Thr259 photo-fragmentation in the CH2 domain compared to the HM-Fc (amino acid numbering based on the NISTmAb sequence). Enzymatic deglycoslyation enhanced the susceptibility of both NISTmAb and HM-Fc to photo-fragmentation, while enzymatic cleavage of the Fab domain from NISTmAb decreased the extent of photo-fragmentation. Our findings suggest that differences in photo-stability may be attributed to differences in domain-domain interactions, glycan structure, and the thermal stability of these modalities. Therefore, careful consideration should be given to photostability studies during the development of such proteins into therapeutic drug products.
Collapse
Affiliation(s)
| | - Thomas Tolbert
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
9
|
Almutairi MM, Chen YL, Lee J, Liu Z, Strych U, Hotez PJ, Bottazzi ME, Chen WH. Characteristic profiling of CHO-cell expressed MERS-CoV RBD-Fc. Int J Biol Macromol 2025; 311:143678. [PMID: 40318720 DOI: 10.1016/j.ijbiomac.2025.143678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/26/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The ongoing circulation of the Middle East Respiratory Syndrome coronavirus (MERS-CoV) in camels across Asia, the Middle East, and Africa, along with its occasional transmission to humans, demonstrates a need for a MERS vaccine. Previously, we have reported a receptor binding domain (RBD) of MERS-CoV fused with human Fc as a promising vaccine antigen (MERS-CoV RBD-Fc). We generated a stable recombinant CHO cell line expressing such a protein and developed a basic production process suitable for future technological transfer to pilot-scale manufacture. In this study, we employed various in-house analytical assays to examine the characteristics of purified RBD-Fc protein and evaluate its integrity and identity. We also performed buffer screening to assess the optimal formulation for protein stabilization. We discovered that the protein maintained its structure and functionality at a wide pH range from 3.5 to 9.5, but a neutral to basic environment was necessary to provide a more stabilizing condition that could reduce surface hydrophobicity and increase colloidal stability. Collectively, these data provide valuable insight into the product characteristics of our recombinant RBD-Fc protein, contributing to the advancement of MERS vaccine development.
Collapse
Affiliation(s)
- Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yi-Lin Chen
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Jungsoon Lee
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Zhuyun Liu
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Ulrich Strych
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA; Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76706, USA; James A. Baker III Institute for Public Policy, Rice University, Houston, TX 77005, USA; Hagler Institute for Advanced Study at Texas A&M University, College Station, Houston, TX 77843, USA
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA; Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76706, USA
| | - Wen-Hsiang Chen
- National School of Tropical Medicine, Departments of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Gong L, Qi Y, Zhang F, Sun Y, Wang X, Gao W. Thermo-pH-Sensitive Polypeptides Boost Protein Drug's Tumor Permeation and Pharmacology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2501787. [PMID: 40143732 DOI: 10.1002/smll.202501787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/12/2025] [Indexed: 03/28/2025]
Abstract
Proteins are typically subject to poor stability, short half-life, and poor cell and tissue permeability, which restrict their wide applications as drugs for disease treatment. Current protein modification techniques mostly focus on improving the stability and half-life of proteins, but hardly solve their poor cell and tissue permeability. To address this issue, the study innovatively designs thermo-pH-sensitive elastin-like polypeptides to modify proteins, named ELP(HX)n in which histidine (H) and any amino acid except proline (X) are guest amino acids in the polypeptides and n is the total number of the guest amino acids. H in ELP(HX)n can be protonated under acidic conditions. To prove the concept, an important protein drug of L-asparaginase (ASP) is genetically fused to ELP(HV)60 to generate ASP-ELP(HV)60. Compared with ASP and PEGylated ASP, ASP-ELP(HV)60 exhibits not only elevated stability and extended half-life but also enhanced tumor cell and tissue penetration, resulting in improved antitumor efficacy. These findings demonstrate that ELP(HX)n fusion is a novel and general protein modification method to overcome the intrinsic limitations of proteins as therapeutics, rendering it feasible to design intelligent protein therapeutics, especially for efficient tumor therapy.
Collapse
Affiliation(s)
- Like Gong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yanshuang Qi
- Biomedical Engineering, Department of Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Fan Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yuanzi Sun
- Biomedical Engineering, Department of Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Xuan Wang
- Biomedical Engineering, Department of Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, China
| | - Weiping Gao
- Institute of Medical Technology, Biomedical Engineering Department of Institute of Advanced Clinical Medicine, Peking University-Yunnan Baiyao International Medical Research Center, Frontiers Science Center for Cancer Integrative Omics of Peking University International Cancer Institute, State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Department of Biomedical Engineering in College of Future Technology, Peking University, Beijing, 100191, China
| |
Collapse
|
11
|
Christopher BN, Golick L, Basar A, Reyes L, Robinson RM, Angerstein AO, Krieg C, Hobbs GA, Guttridge DC, O'Bryan JP, Dolloff NG. Modulating the CXCR2 Signaling Axis Using Engineered Chemokine Fusion Proteins to Disrupt Myeloid Cell Infiltration in Pancreatic Cancer. Biomolecules 2025; 15:645. [PMID: 40427538 DOI: 10.3390/biom15050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers, and limited treatment options exist. Immunotherapy is effective in some cancer types, but the immunosuppressive tumor microenvironment (TME) of PDAC is a barrier to effective immunotherapy. CXCR2+ myeloid-derived suppressor cells (MDSCs) are abundant in PDAC tumors in humans and in mouse models. MDSCs suppress effector cell function, making them attractive targets for restoring anti-tumor immunity. In this study, we show that the most abundant soluble factors released from a genetically diverse set of human and mouse PDAC cells are CXCR2 ligands, including CXCL8, CXCL5, and CXCL1. Expression of CXCR2 ligands is at least partially dependent on mutant KRAS and NFκB signaling, which are two of the most commonly dysregulated pathways in PDAC. We show that MDSCs are the most prevalent immune cells in PDAC tumors. MDSCs expressed high levels of CXCR2, and we found that myeloid cells readily migrate toward conditioned media (CM) prepared from PDAC cultures. We designed CXCR2 ligand-Fc fusion proteins to modulate the CXCR2 chemotactic signaling axis. Unexpectedly, these fusion proteins were superior to native chemokines in binding and activation of CXCR2 on myeloid cells. These "superkines" were potent inhibitors of PDAC CM-induced myeloid cell migration and were superior to CXCR2 small-molecule inhibitors and neutralizing antibodies. Our findings suggest that CXCR2 superkines may disrupt myeloid cell recruitment to PDAC tumors, ultimately improving immunotherapy outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Benjamin N Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ashton Basar
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Reeder M Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aaron O Angerstein
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - G Aaron Hobbs
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Denis C Guttridge
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- MUSC Darby Children's Research Institute, Charleston, SC 29425, USA
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John P O'Bryan
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
| | - Nathan G Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
- MUSC Hollings Cancer Center, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Ko S, Jo M, Kyung M, Lee W, Ko WH, Na JH, Chun YS, Ko BJ, Jung ST. Engineering FcRn binding kinetics dramatically extends antibody serum half-life and enhances therapeutic potential. J Biol Eng 2025; 19:35. [PMID: 40251669 PMCID: PMC12007268 DOI: 10.1186/s13036-025-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Optimizing the IgG Fc domain for neonatal Fc receptor (FcRn) binding is crucial for enhancing antibody pharmacokinetics. The prolonged serum half-life of IgG antibody is governed by its pH-dependent interaction with FcRn, enabling efficient binding at acidic endosomal pH, intracellular trafficking, and release at neutral serum pH. However, a critical yet previously unrecognized challenge in Fc engineering for extending the serum half-life of therapeutic antibodies is the intense competition with endogenous IgG for FcRn binding during intracellular trafficking, which limits FcRn-mediated transport and reduces the serum persistence of therapeutic antibodies. To address this, we developed an Fc variant that precisely modulates pH-dependent FcRn binding kinetics, accelerates FcRn association at acidic pH, and promotes rapid dissociation at neutral pH, thereby enhancing FcRn-driven intracellular transport, outcompeting endogenous IgG, and achieving unprecedented improvement in the serum half-life of therapeutic antibodies. RESULTS Using comprehensive site-directed saturation mutagenesis coupled with functional screening, we generated a diverse panel of Fc variants and identified two with distinct FcRn binding kinetics: YML (L309Y/Q311M/M428L), which exhibited superior FcRn association at acidic pH and accelerated dissociation at neutral pH, and EML (L309E/Q311M/M428L), which displayed attenuated binding kinetics. In human FcRn transgenic mice, YML extended the serum half-life of clinically used trastuzumab with a wild-type Fc by 6.1-fold, demonstrating a remarkable improvement over previously reported Fc-engineered variants, including PFc29 (Q311R/M428L) and DHS (L309D/Q311H/N434S), which represent the most effective Fc modifications for prolonging serum persistence to date. This in vivo validation underscores the pivotal role of FcRn kinetic tuning in overcoming endogenous IgG competition and maximizing FcRn-mediated antibody transport. Additionally, YML exhibited potent complement-dependent cytotoxicity (CDC) while maintaining favorable physicochemical properties. CONCLUSION This study presents a rational Fc engineering framework to optimize FcRn binding kinetics, addressing a previously unconsidered challenge-endogenous IgG competition during intracellular trafficking of therapeutic antibodies. The distinct kinetic behaviors of YML and EML highlight the critical necessity of precise control over pH-dependent association and dissociation rates in FcRn binding. YML represents a next-generation Fc platform, offering enhanced pharmacokinetics and improved effector functions, thus providing a powerful strategy for developing biologics with superior serum persistence and therapeutic efficacy.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Migyeong Jo
- Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Munsu Kyung
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Wonju Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Manufacturing Science & Technology Team, Manufacturing Science Group2, Samsung Bioepis, Incheon, Republic of Korea
| | - Woo Hyung Ko
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jung-Hyun Na
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Youn Seo Chun
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Science, Sungshin Women's University, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Sang Taek Jung
- Institute of Chemical Processes, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Föderl-Höbenreich E, Izadi S, Hofacker L, Kienzl NF, Castilho A, Strasser R, Tarrés-Freixas F, Cantero G, Roca N, Pérez M, Lorca-Oró C, Usai C, Segalés J, Vergara-Alert J, Mach L, Zatloukal K. An ACE2-Fc decoy produced in glycoengineered plants neutralizes ancestral and newly emerging SARS-CoV-2 variants and demonstrates therapeutic efficacy in hamsters. Sci Rep 2025; 15:11307. [PMID: 40175560 PMCID: PMC11965572 DOI: 10.1038/s41598-025-95494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
Newly emerging SARS-CoV-2 variants of concern (VOCs) continue to drive COVID-19 waves and are typically associated with immune escape and increased resistance to current therapeutics including monoclonal antibodies. By contrast, VOCs still display strong binding to the host cell receptor ACE2. Consistent with these properties, we have now found that a soluble ACE2-Fc decoy produced in glycoengineered plants effectively neutralizes different SARS-CoV-2 isolates and exhibits even increased potency against VOCs as compared to an ancestral virus strain. In a golden Syrian hamster model, therapeutic intranasal delivery of ACE2-Fc effectively reduced weight loss and SARS-CoV-2 replication in the lungs when administered 24 h post-inoculation. This protective effect was not observed upon treatment of the infected animals with a non-binding ACE2-Fc mutant, demonstrating that the plant-derived ACE2-Fc decoy interferes specifically with the attachment of the virus to host cells. The results obtained provide support for further development of decoy-based antiviral approaches by plant molecular pharming.
Collapse
Affiliation(s)
| | - Shiva Izadi
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Lara Hofacker
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Nikolaus F Kienzl
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Alexandra Castilho
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Richard Strasser
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria
| | - Ferran Tarrés-Freixas
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Guillermo Cantero
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Núria Roca
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Mònica Pérez
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Cristina Lorca-Oró
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Carla Usai
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- IRTA, Animal Health, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
- Unitat mixta d'investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Catalonia, Spain
| | - Lukas Mach
- Department of Biotechnology and Food Sciences, Institute of Plant Biotechnology and Cell Biology, BOKU University, Vienna, Austria.
| | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Zhu N, Smallwood PM, Williams J, Wang Y, Nathans JH. Utility of binding protein fusions to immunoglobulin heavy chain constant regions from mammalian and avian species. J Biol Chem 2025; 301:108324. [PMID: 39971160 PMCID: PMC11964738 DOI: 10.1016/j.jbc.2025.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025] Open
Abstract
Antibodies are of central importance as reagents for the localization of proteins and other biomolecules in cells and tissues. To expand the repertoire of antibody-based reagents, we have constructed a series of plasmid vectors that permit expression of amino-terminal fusions to the hinge and Fc regions from goat, guinea pig, human, mouse, and rabbit immunoglobulin Gs, and chicken immunogloblin Y. The resulting fusion proteins can be produced in transfected mammalian cells and detected with commercially available and species-specific secondary antibody reagents. We demonstrate the utility of this platform by constructing and testing Fc fusions with DARPin, single-chain Fv, nanobody, toxin, and chemokine partners. The resulting fusion proteins were used to detect their targets in tissue sections or on the surface of transfected cells by immunofluorescent staining or on the surface of immune cells by flow cytometry. By expanding the range of Fc sequences available for fusion protein production, this platform will expand the repertoire of primary antibody reagents for multiplexed immunostaining and fluorescence-activated cell sorting analyses.
Collapse
Affiliation(s)
- Ningyu Zhu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy H Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Kou F, Li XY, Feng Z, Hua J, Wu X, Gao H, Lin J, Kang D, Li A, Li J, Ding Y, Ban T, Zhang Q, Liu Z. GPR171 restrains intestinal inflammation by suppressing FABP5-mediated Th17 cell differentiation and lipid metabolism. Gut 2025:gutjnl-2024-334010. [PMID: 40074327 DOI: 10.1136/gutjnl-2024-334010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear. OBJECTIVE We aimed to investigate the role of GPR171 in modulating CD4+ T cell effector functions in IBD and evaluate its therapeutic potential. DESIGN We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4+ T cell differentiation through administration of its endogenous ligand (BigLEN). We further determined the role of GPR171 in dextran sulfate sodium (DSS)-induced colitis and CD45RBhighCD4+ T-cell transfer colitis model and deciphered the underlying mechanisms using RNA sequencing (RNA-seq) and lipidomics. We developed a novel BigLEN-based Fc fusion protein (BigLEN-Fc) and evaluated its potential in preventing and treating colitis. RESULTS GPR171 was markedly increased in inflamed mucosa and CD4+ T cells of patients with IBD compared with controls. BigLEN-triggered GPR171 activation inhibited Th17 cell differentiation in vitro. GPR171 deficiency exacerbated DSS- and CD45RBhighCD4+ T cell-induced colitis in mice, characterised by increased Th17 cell responses in intestinal mucosa. Mechanistically, GPR171 deficiency promoted Th17 cell differentiation and altered lipidome profile in Th17 cells via the cAMP-pCREB-FABP5 axis. Blockage of FABP5 reduced Th17 cell differentiation in vitro and ameliorated DSS-induced colitis in Gpr171 -/- mice. Furthermore, BigLEN-mutFc administration potently mitigated colitis in mice. CONCLUSIONS GPR171 deficiency promotes Th17 cell differentiation and causes lipid metabolism perturbation, contributing to intestinal inflammation in a FABP5-dependent manner. Target therapy (eg, BigLEN-Fc) represents a novel therapeutic approach for IBD treatment.
Collapse
Affiliation(s)
- Fushun Kou
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiao-Yu Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jinghan Hua
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Han Gao
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dengfeng Kang
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Ai Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Junxiang Li
- Department of Gastroenterology, Beijing University of Chinese Medicine, Dongfang Hospital, Beijing, China
| | - Yao Ding
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Ting Ban
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Qing Zhang
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Yan R, Zhang Y, Zhang H, Ma J. Nanobody fusion enhances production of difficult-to-produce secretory proteins. J Biol Chem 2025; 301:108292. [PMID: 39952409 PMCID: PMC11930436 DOI: 10.1016/j.jbc.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Secretory protein expression in mammalian cells is widely used in various fields, including biomedical research and biopharmaceutical production. However, achieving high-level expression of certain secretory proteins/peptides can be challenging. The naturally occurring N1 fragment of the prion protein is one of these difficult-to-produce secretory proteins, which hinders our understanding of its biological functions and limits its potential as a therapeutic molecule. To improve N1 production, we screened several well-folded protein domains and found that fusing N1 with a camelid nanobody (Nb) improved its translocation into the endoplasmic reticulum and significantly enhanced its secretion. Nb fusion does not alter the translocation mechanism, which remains dependent on the Sec61-Sec62-Sec63 complex. This approach also resulted in a significant increase in N1 production in the mouse brain using recombinant adeno-associated virus. Furthermore, fusing Nb to another unstructured protein, Shadoo (without glycosylphosphatidylinositol anchor), or a peptide hormone, somatostatin, also greatly increased their production, demonstrating the applicability of this approach to other proteins and peptides. The enhancement of N1 production is comparable or better than Fc fusion, and the effect is observed with all tested camelid Nb but not with a shark Nb and to a lesser extent with a human immunoglobulin heavy chain variable region. Importantly, the Nb in the fusion protein retained its antigen-binding capability, paving the way for the development of a dual-functional protein. Collectively, we present a novel strategy for enhancing the production of secretory proteins, which holds great promise in creating functional biological molecules for a wide range of applications.
Collapse
Affiliation(s)
- Runchuan Yan
- College of Biological Sciences, China Agricultural University, Beijing, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Yan Zhang
- College of Biological Sciences, China Agricultural University, Beijing, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Hui Zhang
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China
| | - Jiyan Ma
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
17
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2025; 229:105-113. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
18
|
Withanage TJ, Alcalay R, Krichevsky O, Wachtel E, Mazor O, Patchornik G. Purification of a Fc-Fusion Protein with [Bathophenathroline:metal] Complexes. Antibodies (Basel) 2025; 14:11. [PMID: 39982226 PMCID: PMC11843901 DOI: 10.3390/antib14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
In this study, we assess an alternative Fc-fusion protein purification method that does not rely on chromatographic media or ligands. Recombinant human acetylcholinesterase, fused to the Fc domain of human IgG1 (henceforth, AChE-Fc), was purified with precipitated aromatic complexes composed of the bathophenanthroline (henceforth, batho) chelator with either Zn2+ or Cu2+ ions (i.e., [(batho)3:Zn2+] or [(batho)2:Cu2+]) in the presence of polyethylene glycol 6000 (PEG-6000). In a three-step purification process conducted at pH 7, AChE-Fc was captured by the aromatic complexes (Step 1); unbound or weakly bound protein impurities were removed with 20 mM NaCl (Step 2); and AChE-Fc was then extracted at pH 7 (Step 3) using 100 mM Na citrate buffer in 250 mM NaCl. Purified AChE-Fc was not aggregated (as determined by dynamic light scattering (DLS) and Native PAGE). However, full enzymatic activity was only preserved with the [(batho)3:Zn2+] complex. Interaction between AChE-Fc and [(batho)3:Zn2+] led to ~83-88% overall protein yield. Thirty-fold process upscaling by volume required only proportional increase in the amounts of [(batho)3:Zn2+] and PEG-6000. Efficient (95-97%) chelator recycling was achieved by recrystallization. Chelator leaching into purified AchE-Fc was estimated to be ~0.3% relative to the total amount used. Taken together, this novel procedure has the potential to provide an economical and practical avenue for the industrial purification of Fc-fusion proteins.
Collapse
Affiliation(s)
| | - Ron Alcalay
- Israel Institute for Biological Research, Ness-Ziona 7410001, Israel
| | - Olga Krichevsky
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Mazor
- Israel Institute for Biological Research, Ness-Ziona 7410001, Israel
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
19
|
Kwak H, Choi G, Kim S, Park JM, Kwon Y, Lee Y, Lee C, Yang S, Cataland S, Kim S, Bang SM, Yoon JH, Lee W, Nam HJ. GC1126A, a novel ADAMTS13 mutein, evades autoantibodies in immune-mediated thrombotic thrombocytopenic purpura. Sci Rep 2025; 15:1613. [PMID: 39794345 PMCID: PMC11723924 DOI: 10.1038/s41598-024-80674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare and life-threatening blood disorder characterized by the formation of blood clots in small blood vessels. It is caused by antibodies targeting the A disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13 (ADAMTS13), which plays a role in cleaving von Willebrand factor. Most patients with iTTP have autoantibodies against specific domains of the ADAMTS13 protein, particularly the cysteine-rich and spacer domains. This study aimed to identify ADAMTS13 muteins that are resistant to autoantibodies and maintain their enzymatic activity. A panel of muteins was generated using rational and random mutagenesis methods and screened for autoantibody binding and ADAMTS13 activity. The selected muteins were assessed for pharmacodynamic biomarkers and pharmacokinetic profiles in the iTTP-mimic and wild-type mice, respectively. GC1126A was the most effective variant for escaping autoantibodies and had a longer half-life than the wild-type ADAMTS13 fragment (MDTCS). In the iTTP-mimic mouse model, GC1126A treatment significantly improved platelet counts, lactate dehydrogenase levels, and ADAMTS13 residual activity. In addition, GC1126A outperformed recombinant human wild-type ADAMTS13 (rh WT-ADAMTS13) and caplacizumab in terms of platelet recovery and sustained effectiveness. Results from the ex vivo study using plasma from patients with iTTP showed that GC1126A exhibited higher residual activity than rh WT-ADAMTS13, particularly in patients with high autoantibody titers. These findings suggest that GC1126A could be a promising new treatment option for patients with iTTP.
Collapse
Affiliation(s)
- Heechun Kwak
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea
| | - Gahee Choi
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Suyong Kim
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Ji-Min Park
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Youngeun Kwon
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Yongmin Lee
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Chaemok Lee
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Shangbin Yang
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - Spero Cataland
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sunghyun Kim
- Department of Internal Medicine, Dong-A University Hospital, Dong-A University College of Medicine, Busan, South Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Jae-Ho Yoon
- Department of Hematology, Catholic Hematology Hospital and Leukemia Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, South Korea.
| | - Hyun-Ja Nam
- Discovery3 Team, Department of Research and Early Development, GC Biopharma, 93, Ihyeon-ro 30Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
| |
Collapse
|
20
|
Bermúdez-Abreut E, Fundora-Barrios T, Hernández Fernández DR, Noa Romero E, Fraga-Quintero A, Casadesús Pazos AV, Fernández-Marrero B, Plasencia Iglesias CA, Clavel Pérez M, Sosa Aguiar K, Sánchez-Ramírez B, Hernández T. Antiviral activity of an ACE2-Fc fusion protein against SARS-CoV-2 and its variants. PLoS One 2025; 20:e0312402. [PMID: 39752453 PMCID: PMC11698409 DOI: 10.1371/journal.pone.0312402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/04/2024] [Indexed: 01/06/2025] Open
Abstract
SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19. This fusion protein was able to block the binding of SARS-CoV-2 RBD to ACE2 receptor as measured by ELISA and flow cytometry inhibition assays. Moreover, we used classical neutralization assays and a progeny neutralization assay to show that the ACE2-hFcLALA fusion protein is capable of neutralizing the authentic virus. Additionally, we found that this fusion protein was more effective in preventing in vitro infection with different variants of interest (alpha, beta, delta, and omicron) compared to the D614G strain. Our results suggest the potential of this molecule to be used in both therapeutic and preventive settings against current and emerging mutants that use ACE2 as a gateway to human cells.
Collapse
Affiliation(s)
| | - Talia Fundora-Barrios
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Enrique Noa Romero
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Anitza Fraga-Quintero
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Ana V. Casadesús Pazos
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | | | - Marilyn Clavel Pérez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | - Katya Sosa Aguiar
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| | | | - Tays Hernández
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), Havana, Cuba
| |
Collapse
|
21
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
22
|
Zhou T, Hou X, Yan J, Li L, Xie Y, Bai W, Jiang W, Zou Y, Li X, Liu Z, Zhang Z, Xu B, Mao G, Wang Y, Gao S, Wang X, Zhao T, Wang H, Sun H, Zhang X, Yu J, Huang C, Liu J, Hao J. CD64 + fibroblast-targeted vilanterol and a STING agonist augment CLDN18.2 BiTEs efficacy against pancreatic cancer by reducing desmoplasia and enriching stem-like CD8 + T cells. Gut 2024; 73:1984-1998. [PMID: 39187291 DOI: 10.1136/gutjnl-2024-332371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
OBJECTIVE The objective of this study is to improve the efficacy of CLDN18.2/CD3 bispecific T-cell engagers (BiTEs) as a promising immunotherapy against pancreatic ductal adenocarcinoma (PDAC). DESIGN Humanised hCD34+/hCD3e+, Trp53R172HKrasG12DPdx1-Cre (KPC), pancreas-specific Cldn18.2 knockout (KO), fibroblast-specific Fcgr1 KO and patient-derived xenograft/organoid mouse models were constructed. Flow cytometry, Masson staining, Cell Titer Glo assay, virtual drug screening, molecular docking and chromatin immunoprecipitation were conducted. RESULTS CLDN18.2 BiTEs effectively inhibited early tumour growth, but late-stage efficacy was significantly diminished. Mechanically, the Fc fragment of BiTEs interacted with CD64+ cancer-associated fibroblasts (CAFs) via activation of the SYK-VAV2-RhoA-ROCK-MLC2-MRTF-A-α-SMA/collagen-I pathway, which enhanced desmoplasia and limited late-stage infiltration of T cells. Molecular docking analysis found that vilanterol suppressed BiTEs-induced phosphorylation of VAV2 (Y172) in CD64+ CAFs and weakened desmoplasia. Additionally, decreased cyclic guanosine-adenosine monophosphate synthase/stimulator of interferon genes (STING) activity reduced proliferation of TCF-1+PD-1+ stem-like CD8+ T cells, which limited late-stage effects of BiTEs. Finally, vilanterol and the STING agonist synergistically boosted the efficacy of BiTEs by inhibiting the activation of CD64+ CAFs and enriching proliferation of stem-like CD8+ T cells, resulting in sustained anti-tumour activity. CONCLUSION Vilanterol plus the STING agonist sensitised PDAC to CLDN18.2 BiTEs and augmented efficacy as a potential novel strategy.
Collapse
Affiliation(s)
- Tianxing Zhou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xupeng Hou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Jingrui Yan
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lin Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yongjie Xie
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Weiwei Bai
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yiping Zou
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xueyang Li
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Ziyun Liu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Zhaoyu Zhang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Bohang Xu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Guohua Mao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Yifei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Song Gao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Xiuchao Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Tiansuo Zhao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongwei Wang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Hongxia Sun
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jun Yu
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Chongbiao Huang
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Jing Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jihui Hao
- Pancreas Center, Department of pancreatic cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Kim MY, Mason HS, Ma JKC, Reljic R. Recombinant immune complexes as vaccines against infectious diseases. Trends Biotechnol 2024; 42:1427-1438. [PMID: 38825437 DOI: 10.1016/j.tibtech.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 06/04/2024]
Abstract
New vaccine technologies are needed to combat many existing infections and prepare better for those that may emerge in the future. The conventional technologies that rely on protein-based vaccines are still severely restricted by the sparsity and poor accessibility of available adjuvants. One possible solution to this problem is to enhance antigen immunogenicity by a more natural means by complexing it with antibodies in the form of immune complexes (ICs). However, natural ICs are impractical as vaccines, and significant research efforts have been made to generate them in recombinant form, with plant bioengineering being at the forefront of these efforts. Here, we describe the challenges and progress made to date to make recombinant IC vaccines applicable to humans.
Collapse
Affiliation(s)
- Mi-Young Kim
- St. George's University of London, London, UK; Jeonbuk National University, Jeonju, South Korea
| | - Hugh S Mason
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
24
|
Jang D, Altern SH, Cramer SM. In silico mediated workflow for rapid development of downstream processing: Orthogonal product-related impurity removal for a Fc-containing therapeutic. J Chromatogr A 2024; 1735:465281. [PMID: 39243589 DOI: 10.1016/j.chroma.2024.465281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
Therapeutic formats derived from the monoclonal antibody structure have been gaining significant traction in the biopharmaceutical market. Being structurally similar to mAbs, most Fc-containing therapeutics exhibit product-related impurities in the form of aggregates, charge variants, fragments, and glycoforms, which are inherently challenging to remove. In this work, we developed a workflow that employed rapid resin screening in conjunction with an in silico tool to identify and rank orthogonally selective processes for the removal of product-related impurities from a Fc-containing therapeutic product. Linear salt gradient screens were performed at various pH conditions on a set of ion-exchange, multimodal ion-exchange, and hydrophobic interaction resins. Select fractions from the screening experiments were analyzed by three different analytical techniques to characterize aggregates, charge variants, fragments, and glycoforms. The retention database generated by the resin screens and subsequent impurity characterization were then processed by an in silico tool that generated and ranked all possible two-step resin sequences for the removal of product-related impurities. A highly-ranked process was then evaluated and refined at the bench-scale to develop a completely flowthrough two-step polishing process which resulted in complete removal of the Man5 glycoform and aggregate impurities with a 73% overall yield. The successful implementation of the in silico mediated workflow suggests the possibility of a platformable workflow that could facilitate polishing process development for a wide variety of mAb-based therapeutics.
Collapse
Affiliation(s)
- Dongyoun Jang
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
25
|
Khezri H, Mostafavi M, Dabirmanesh B, Khajeh K. Peptibodies: Bridging the gap between peptides and antibodies. Int J Biol Macromol 2024; 278:134718. [PMID: 39142490 DOI: 10.1016/j.ijbiomac.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Peptides are a very critical class of pharmaceutical compounds that can control several signaling pathways and thereby affect many physiological and biochemical processes. Previous research suggests that both peptides and antibodies may serve as potent tools for research, diagnostics, vaccination, and therapeutics across diverse domains. The distinct attributes of peptides, like their profound tissue penetration, efficient cellular internalization, reduced immunogenicity, and adaptability to chemical modification, underscore their significance in biomedical applications. However, they also possess drawbacks such as lower affinity, poor absorption, low stability to proteolytic digestion, and rapid clearance. The advent of peptibodies is a significant advance that improves the limitations of both peptides and antibodies. Peptibodies, or Peptide-Fc fusions, represent a promising therapeutic modality comprising biologically active peptides fused to an Fc domain. The stability and efficacy of the peptide are enhanced by this fusion strategy, which overcomes some of the inherent limitations. Many peptibodies have been developed to treat conditions like cancer, diabetes, and lupus. Romiplostim and Dulaglutide are the only ones approved by the EMA and FDA, respectively. Given the growing significance of peptibodies in the pharmaceutical landscape, this investigation aims to explain key aspects encompassing the intrinsic properties of peptides, the intricacies of peptibody production, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Hamidhossein Khezri
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdiyeh Mostafavi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
26
|
Dashti N, Golsaz-Shirazi F, Soltanghoraee H, Zarnani AH, Mohammadi M, Imani D, Jeddi-Tehrani M, Amiri MM, Shokri F. Preclinical assessment of a recombinant RBD-Fc fusion protein as SARS-CoV-2 candidate vaccine. Eur J Microbiol Immunol (Bp) 2024; 14:228-242. [PMID: 38753442 PMCID: PMC11393645 DOI: 10.1556/1886.2024.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Waning immunity and emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the need for further research in vaccine development. Methods A recombinant fusion protein containing the receptor-binding domain (RBD) fused to the human IgG1 Fc (RBD-Fc) was produced in CHO-K1 cells. RBD-Fc was emulsified with four adjuvants to evaluate its immunogenicity. The RBD-specific humoral and cellular immune responses were assessed by ELISA. The virus neutralizing potency of the vaccine was investigated using four neutralization methods. Safety was studied in mice and rabbits, and Antibody-Dependent Enhancement (ADE) effects were investigated by flow cytometry. Results RBD-Fc emulsified in Alum induced a high titer of anti-RBD antibodies with remarkable efficacy in neutralizing both pseudotyped and live SARS-CoV-2 Delta variant. The neutralization potency dropped significantly in response to the Omicron variant. RBD-Fc induced both TH2 and particularly TH1 immune responses. Histopathologic examinations demonstrated no substantial pathologic changes in different organs. No changes in serum biochemical and hematologic parameters were observed. ADE effect was not observed following immunization with RBD-Fc. Conclusion RBD-Fc elicits highly robust neutralizing antibodies and cellular immune responses, with no adverse effects. Therefore, it could be considered a promising and safe subunit vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Navid Dashti
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- 2Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- 3Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Mohammadi
- 4Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Danyal Imani
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- 5Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Amiri
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Erlandson S, Wang J, Jiang H, Osei-Owusu J, Rockman HA, Kruse AC. Engineering and Characterization of a Long-Half-Life Relaxin Receptor RXFP1 Agonist. Mol Pharm 2024; 21:4441-4449. [PMID: 39134056 PMCID: PMC11372834 DOI: 10.1021/acs.molpharmaceut.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 09/03/2024]
Abstract
Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and antifibrotic effects has led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here, we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of around 3 to 5 days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo.
Collapse
Affiliation(s)
- Sarah
C. Erlandson
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jialu Wang
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haoran Jiang
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James Osei-Owusu
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Howard A. Rockman
- Department
of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department
of Cell Biology, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Andrew C. Kruse
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Lu F, Wu X, Zhang F, Wu J, Yuan Z, Wang B, Tan G, Guo S. Comparison of single-chain variable fragments and monoclonal antibody against dihydroartemisinin. J Immunol Methods 2024; 532:113728. [PMID: 39059746 DOI: 10.1016/j.jim.2024.113728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Immunoassay relies on antibodies, but traditional antibodies such as monoclonal antibody (mAb) require animal immunization and complex procedures. Single-chain variable fragment (scFv) becomes a potential alternative to mAb with advantages of the low cost, rapid and easy prepared. In the present study, we prepared scFvs against dihydroartemisinin (DHA) based on E. coli and HEK293T cell expression system, named MBP-scFv and scFv-Fc, respectively. Their properties were compared with the parent mAb. The calculated affinity constants of mAb, MBP-scFv and scFv-Fc were 2.1 × 108 L mol-1, 2.2 × 107 L mol-1 and 1.6 × 108 L mol-1, respectively. The half inhibitory concentration (IC50) of mAb, MBP-scFv and scFv-Fc were 1.16 ng mL-1, 2.15 ng mL-1 and 6.57 ng mL-1, respectively. Both the scFv showed less sensitive than the mAb based on the IC50. The cross-reactivities of MBP-scFv for artemisinin and artesunate exhibited similarities to the mAb, yet the cross-reactivities of scFv-Fc for these compounds exceeded those of the mAb significantly. The stability of the scFvs was ascertained to be maintained for over 5 days at room temperature, and for more than a month at both 4 °C and - 20 °C. After that, the indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on the scFv from E. coli were used to detect the DHA content in eight drug samples, and the result was consistent with ultra-performance liquid chromatography simultaneously. Although scFv can be used for quantitative determination of drugs, but it still cannot completely replace mAb in immunoassay without evolution and modification.
Collapse
Affiliation(s)
- Fang Lu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Xiqun Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Fa Zhang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China; Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Jiaqiang Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Zhaodong Yuan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baomin Wang
- College of Agronomy and Biotechnology, China Agricultural University, 100193 Beijing, China
| | - Guiyu Tan
- Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China.
| | - Suqin Guo
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, China.
| |
Collapse
|
29
|
Santisteban Celis IC, Matoba N. Lectibodies as antivirals. Antiviral Res 2024; 227:105901. [PMID: 38734211 DOI: 10.1016/j.antiviral.2024.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.
Collapse
Affiliation(s)
- Ian Carlosalberto Santisteban Celis
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
30
|
Zheng Y, Chen G, Liu G, Rana GE, Wang C. A single-step high-throughput bioassay for quantifying Fc-containing recombinant proteins based on non-classical calculation of fluorescence polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3917-3926. [PMID: 38832468 DOI: 10.1039/d4ay00372a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The titer of recombinant proteins is one of the key parameters in biopharmaceutical manufacturing processes. The fluorescence polarization (FP)-based assay, a homogeneous, high-throughput and real-time analytical method, had emerged as a powerful tool for biochemical analysis and environmental monitoring. In this study, an FP-based bioassay was utilized to quantify antibody fragment crystallizable (Fc)-containing proteins, such as recombinant monoclonal antibodies (mAbs) and mAb derivatives, in the cell culture supernatant, and the impacts of tracer molecular weight and FITC-coupling conditions on fluorescence polarization were methodically examined. Distinct from the fluorescence polarization potency calculated by classical formula, we for the first time proposed a new concept and calculation of fluorescence polarization intensity, based on which an analytical method with broader detection range and analysis window was established for quantifying Fc-containing proteins. This provided new ideas for the practical application of fluorescence polarization theory. The established method could detect 96 samples within 30 minutes, with dynamic titer range of 2.5-400 mg L-1, and a linear fitting R2 between the measured and actual concentration reaching 0.99. The method had great application prospects in determining the titer of recombinant proteins with Fc fragments, especially when applied to large-scale screening of high-yield and stable expression CHO cell lines commonly used in biopharmaceutical industry.
Collapse
Affiliation(s)
- Yujuan Zheng
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganjun Chen
- Dartsbio Pharmaceuticals Co., Ltd, Zhongshan 528400, China
| | - Guojian Liu
- Shanghai Mabstone Biotechnology Co., Ltd, Shanghai 201203, China
| | - Gul E Rana
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- Dartsbio Pharmaceuticals Co., Ltd, Zhongshan 528400, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Villafuerte-Vega RC, Li HW, Bergman AE, Slaney TR, Chennamsetty N, Chen G, Tao L, Ruotolo BT. Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding Rapidly Characterize the Structural Polydispersity and Stability of an Fc-Fusion Protein. Anal Chem 2024; 96:10003-10012. [PMID: 38853531 DOI: 10.1021/acs.analchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.
Collapse
Affiliation(s)
| | - Henry W Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Addison E Bergman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas R Slaney
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Naresh Chennamsetty
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
32
|
Kawai A, Hirata H, Tokunoh N, Ono C, Matsuura Y, Hirai T, Yoshioka Y. Adjuvant-free parenterally injectable vaccine platform that harnesses previously induced IgG as an antigen delivery carrier. Biochem Biophys Res Commun 2024; 711:149919. [PMID: 38608435 DOI: 10.1016/j.bbrc.2024.149919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruki Hirata
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
33
|
Cardona-Echavarría MC, Santillán C, Miranda-Blancas R, Stojanoff V, Rudiño-Piñera E. Unveiling success determinants for AMB-assisted phase expansion of fusion proteins in ARP/wARP. J Struct Biol 2024; 216:108089. [PMID: 38537893 DOI: 10.1016/j.jsb.2024.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Fusion proteins (FPs) are frequently utilized as a biotechnological tool in the determination of macromolecular structures using X-ray methods. Here, we explore the use of different protein tags in various FP, to obtain initial phases by using them in a partial molecular replacement (MR) and constructing the remaining FP structure with ARP/wARP. Usually, the tag is removed prior to crystallization, however leaving the tag on may facilitate crystal formation, and structural determination by expanding phases from known to unknown segments of the complex. In this study, the Protein Data Bank was mined for an up-to-date list of FPs with the most used protein tags, Maltose Binding Protein (MBP), Green Fluorescent Protein (GFP), Thioredoxin (TRX), Glutathione transferase (GST) and the Small Ubiquitin-like Modifier Protein (SUMO). Partial MR using the protein tag, followed by automatic model building, was tested on a subset of 116 FP. The efficiency of this method was analyzed and factors that influence the coordinate construction of a substantial portions of the fused protein were identified. Using MBP, GFP, and SUMO as phase generators it was possible to build at least 75 % of the protein of interest in 36 of the 116 cases tested. Our results reveal that tag selection has a significant impact; tags with greater structural stability, such as GFP, increase the success rate. Further statistical analysis identifies that resolution, Wilson B factor, solvent percentage, completeness, multiplicity, protein tag percentage in the FP (considering amino acids), and the linker length play pivotal roles using our approach. In cases where a structural homologous is absent, this method merits inclusion in the toolkit of protein crystallographers.
Collapse
Affiliation(s)
- María C Cardona-Echavarría
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P. 62210, Mexico; Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos C.P. 62209, Mexico.
| | | | - Ricardo Miranda-Blancas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México C.P. 04510, Mexico
| | - Vivian Stojanoff
- Brookhaven National Laboratory, Upton, NY 11973-5000, United States
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
34
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Niu L, Jang E, Chin AL, Huo Z, Wang W, Cai W, Tong R. Noncovalently particle-anchored cytokines with prolonged tumor retention safely elicit potent antitumor immunity. SCIENCE ADVANCES 2024; 10:eadk7695. [PMID: 38640236 PMCID: PMC11029804 DOI: 10.1126/sciadv.adk7695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines' immunostimulatory properties from their systemic toxicities for potential clinical application.
Collapse
Affiliation(s)
- Liqian Niu
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Eungyo Jang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| | - Wenbo Wang
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Wenjun Cai
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 445 Old Turner Street, Blacksburg, VA, 24061, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA
| |
Collapse
|
36
|
Karbalaei M, Mosavat A, Soleimanpour S, Farsiani H, Ghazvini K, Amini AA, Sankian M, Rezaee SA. Production and Evaluation of Ag85B:HspX:hFcγ1 Immunogenicity as an Fc Fusion Recombinant Multi-Stage Vaccine Candidate Against Mycobacterium tuberculosis. Curr Microbiol 2024; 81:127. [PMID: 38575759 DOI: 10.1007/s00284-024-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
An urgent need is to introduce an effective vaccine against Mycobacterium tuberculosis (M.tb) infection. In the present study, a multi-stage M.tb immunodominant Fcγ1 fusion protein (Ag85B:HspX:hFcγ1) was designed and produced, and the immunogenicity of purified protein was evaluated. This recombinant fusion protein was produced in the Pichia pastoris expression system. The HiTrap-rPA column affinity chromatography purified and confirmed the fusion protein using ELISA and Western blotting methods. The co-localisation assay was used to confirm its proper folding and function. IFN-γ, IL-12, IL-4, and TGF-β expression in C57BL/6 mice then evaluated the immunogenicity of the construct in the presence and absence of BCG. After expression optimisation, medium-scale production and the Western blotting test confirmed suitable production of Ag85B:HspX:hFcγ1. The co-localisation results on antigen-presenting cells (APCs) showed that Ag85B:HspX:hFcγ1 properly folded and bound to hFcγRI. This strong co-localisation with its receptor can confirm inducing proper Th1 responses. The in vivo immunisation assay showed no difference in the expression of IL-4 but a substantial increase in the expression of IFN-γ and IL-12 (P ≤ 0.02) and a moderate increase in TGF-β (P = 0.05). In vivo immunisation assay revealed that Th1-inducing pathways have been stimulated, as IFN-γ and IL-12 strongly, and TGF-β expression moderately increased in Ag85B:HspX:hFcγ1 group and Ag85B:HspX:hFcγ1+BCG. Furthermore, the production of IFN-γ from splenocytes in the Ag85B:HspX:hFcγ1 group was enormously higher than in other treatments. Therefore, this Fc fusion protein can make a selective multi-stage delivery system for inducing appropriate Th1 responses and is used as a subunit vaccine alone or in combination with others.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Ali Amini
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Immunology Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
37
|
Pedram K, Shon DJ, Tender GS, Mantuano NR, Northey JJ, Metcalf KJ, Wisnovsky SP, Riley NM, Forcina GC, Malaker SA, Kuo A, George BM, Miller CL, Casey KM, Vilches-Moure JG, Ferracane MJ, Weaver VM, Läubli H, Bertozzi CR. Design of a mucin-selective protease for targeted degradation of cancer-associated mucins. Nat Biotechnol 2024; 42:597-607. [PMID: 37537499 PMCID: PMC11018308 DOI: 10.1038/s41587-023-01840-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/22/2023] [Indexed: 08/05/2023]
Abstract
Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms. Engineering of a bacterial mucin-selective protease yielded a variant for fusion to a cancer antigen-binding nanobody. The resulting conjugate selectively degraded mucins on cancer cells, promoted cell death in culture models of mucin-driven growth and survival, and reduced tumor growth in mouse models of breast cancer progression. This work establishes a blueprint for the development of biologics that degrade specific protein glycoforms on target cells.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Judy Shon
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Gabrielle S Tender
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natalia R Mantuano
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Jason J Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kevin J Metcalf
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Simon P Wisnovsky
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas M Riley
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Giovanni C Forcina
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Stacy A Malaker
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Angel Kuo
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Benson M George
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Caitlyn L Miller
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Departments of Radiation Oncology and Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Helen Diller Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Heinz Läubli
- Cancer Immunotherapy Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, Department of Theragnostics, University Hospital, Basel, Switzerland
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
38
|
Forder JK, Palakollu V, Adhikari S, Blanco MA, Derebe MG, Ferguson HM, Luthra SA, Munsell EV, Roberts CJ. Electrostatically Mediated Attractive Self-Interactions and Reversible Self-Association of Fc-Fusion Proteins. Mol Pharm 2024; 21:1321-1333. [PMID: 38334418 DOI: 10.1021/acs.molpharmaceut.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Attractive self-interactions and reversible self-association are implicated in many problematic solution behaviors for therapeutic proteins, such as irreversible aggregation, elevated viscosity, phase separation, and opalescence. Protein self-interactions and reversible oligomerization of two Fc-fusion proteins (monovalent and bivalent) and the corresponding fusion partner protein were characterized experimentally with static and dynamic light scattering as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 mM). The fusion partner protein and monovalent Fc-fusion each displayed net attractive electrostatic self-interactions at pH 6.5 and net repulsive electrostatic self-interactions at pH 5. Solutions of the bivalent Fc-fusion contained higher molecular weight species that prevented quantification of typical interaction parameters (B22 and kD). All three of the proteins displayed reversible self-association at pH 6.5, where oligomers dissociated with increased ionic strength. Coarse-grained molecular simulations were used to model the self-interactions measured experimentally, assess net self-interactions for the bivalent Fc-fusion, and probe the specific electrostatic interactions between charged amino acids that were involved in attractive electrostatic self-interactions. Mayer-weighted pairwise electrostatic energies from the simulations suggested that attractive electrostatic self-interactions at pH 6.5 for the two Fc-fusion proteins were due to cross-domain interactions between the fusion partner domain(s) and the Fc domain.
Collapse
Affiliation(s)
- James K Forder
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Veerabhadraiah Palakollu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| | - Sudeep Adhikari
- Analytical R&D, Digital & NMR Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marco A Blanco
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mehabaw Getahun Derebe
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Heidi M Ferguson
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Suman A Luthra
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Erik V Munsell
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19713, United States
| |
Collapse
|
39
|
Pisuttinusart N, Shanmugaraj B, Srisaowakarn C, Ketloy C, Prompetchara E, Thitithanyanont A, Phoolcharoen W. Immunogenicity of a recombinant plant-produced respiratory syncytial virus F subunit vaccine in mice. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00826. [PMID: 38234330 PMCID: PMC10793081 DOI: 10.1016/j.btre.2023.e00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Respiratory syncytial virus (RSV) is a highly infectious respiratory virus that causes serious illness, particularly in young children, elderly people, and those with immunocompromised individuals. RSV infection is the leading cause of infant hospitalization and can lead to serious complications such as pneumonia and bronchiolitis. Currently, there is an RSV vaccine approved exclusively for the elderly population, but no approved vaccine specifically designed for infants or any other age groups. Therefore, it is crucial to continue the development of an RSV vaccine specifically tailored for these populations. In this study, the immunogenicity of the two plant-produced RSV-F Fc fusion proteins (Native construct and structural stabilized construct) were examined to assess them as potential vaccine candidates for RSV. The RSV-F Fc fusion proteins were transiently expressed in Nicotiana benthamiana and purified using protein A affinity column chromatography. The recombinant RSV-F Fc fusion protein was recognized by the monoclonal antibody Motavizumab specific against RSV-F protein. Moreover, the immunogenicity of the two purified RSV-F Fc proteins were evaluated in mice by formulating with different adjuvants. According to our results, the plant-produced RSV-F Fc fusion protein is immunogenic in mice. These preliminary findings, demonstrate the immunogenicity of plant-based RSV-F Fc fusion protein, however, further preclinical studies such as antigen dose and adjuvant optimization, safety, toxicity, and challenge studies in animal models are necessary in order to prove the vaccine efficacy.
Collapse
Affiliation(s)
- Nuttapat Pisuttinusart
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Balamurugan Shanmugaraj
- Department of Biotechnology, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
- Baiya Phytopharm Co., Ltd, Bangkok 10330, Thailand
| | - Chanya Srisaowakarn
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula VRC), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula VRC), Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Liao K, Mackenzie H, Ait-Oudhia S, Manimaran S, Zeng Y, Akers T, Yun T, de Oliveira Pena J. The Impact of Immunogenicity on the Pharmacokinetics, Efficacy, and Safety of Sotatercept in a Phase III Study of Pulmonary Arterial Hypertension. Clin Pharmacol Ther 2024; 115:478-487. [PMID: 38012534 DOI: 10.1002/cpt.3116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Sotatercept, a soluble fusion protein comprising the extracellular domain of activin receptor type IIA linked to the Fc portion of human IgG1, is a first-in-class activin signaling inhibitor under development for the treatment of pulmonary arterial hypertension (PAH). We evaluated antidrug antibody (ADA) development and determined the effects of immunogenicity on the pharmacokinetics (PKs), efficacy, and safety of sotatercept in STELLAR, a multicenter, double-blind phase III trial (NCT04576988) wherein participants with PAH were randomized 1:1 to receive sotatercept (starting dose 0.3; target dose 0.7 mg/kg) or placebo subcutaneously every 3 weeks in combination with background therapies for ≤ 72 weeks. ADA-positive (ADA-POS) participants were identified and characterized for neutralizing antibodies (NAbs). PKs, efficacy, and safety were evaluated by ADA and NAb status. Of 162 evaluable participants, 42 (25.9%) were ADA-POS through week 24, of whom 11 (6.8%) were also NAb-POS. Median onset of ADAs was 3.29 weeks (interquartile range (IQR): 3.14-6.14), and median duration was 6 weeks (IQR: 3.14-17.86). No clinically meaningful differences were found across subgroups that were ADA-NEG, ADA-POS/NAb-NEG, and ADA-POS/NAb-POS, in terms of PKs (sotatercept trough concentration over time, mean postdose trough concentration at the end of treatment, and clearance), efficacy (changes from baseline in 6-minute walk distance, pulmonary vascular resistance, and N-terminal pro-B-type natriuretic peptide levels), and safety (incidence of hypersensitivity, anaphylactic reactions, and administration site reactions). We conclude that ADA incidence from sotatercept treatment was 25.9% and did not meaningfully affect the PKs, efficacy, or safety of sotatercept in participants with PAH.
Collapse
Affiliation(s)
- Karen Liao
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | | | | | | - Tad Akers
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | | |
Collapse
|
41
|
Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, Ventura-Aguiar P, LeGuern C, Madsen JC, Shriver Z, Babcock GJ, Borges TJ, Riella LV. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest 2024; 134:e173107. [PMID: 38426492 PMCID: PMC10904054 DOI: 10.1172/jci173107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.
Collapse
Affiliation(s)
- Orhan Efe
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | - Leela Morena
- Center for Transplantation Sciences, Department of Surgery
| | | | - Ayman Al Jurdi
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | | | | | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| |
Collapse
|
42
|
Huang C, Wang Y, Huang J, Liu H, Chen Z, Jiang Y, Chen Y, Qian F. A bioengineered anti-VEGF protein with high affinity and high concentration for intravitreal treatment of wet age-related macular degeneration. Bioeng Transl Med 2024; 9:e10632. [PMID: 38435828 PMCID: PMC10905556 DOI: 10.1002/btm2.10632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 03/05/2024] Open
Abstract
Intravitreal (IVT) injection of anti-vascular endothelial growth factor (anti-VEGF) has greatly improved the treatment of many retinal disorders, including wet age-related macular degeneration (wAMD), which is the third leading cause of blindness. However, frequent injections can be difficult for patients and may lead to various risks such as elevated intraocular pressure, infection, and retinal detachment. To address this issue, researchers have found that IVT injection of anti-VEGF proteins at their maximally viable concentration and dose can be an effective strategy. However, the intrinsic protein structure can limit the maximum concentration due to stability and solution viscosity. To overcome this challenge, we developed a novel anti-VEGF protein called nanoFc by fusing anti-VEGF nanobodies with a crystallizable fragment (Fc). NanoFc has demonstrated high binding affinity to VEGF165 through multivalency and potent bioactivity in various bioassays. Furthermore, nanoFc maintains satisfactory chemical and physical stability at 4°C over 1 month and is easily injectable at concentrations up to 200 mg/mL due to its unique architecture that yields a smaller shape factor. The design of nanoFc offers a bioengineering strategy to ensure both strong anti-VEGF binding affinity and high protein concentration, with the goal of reducing the frequency of IV injections.
Collapse
Affiliation(s)
- Chengnan Huang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
- Present address:
Department of AnesthesiaUniversity of California at San FranciscoSan FranciscoCaliforniaUSA
| | - Yuelin Wang
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jinliang Huang
- Quaerite Biopharm ResearchBeijingPeople's Republic of China
| | - Huiqin Liu
- Quaerite Biopharm ResearchBeijingPeople's Republic of China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| | - Yang Jiang
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Youxin Chen
- Department of OphthalmologyPeking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
- Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Tsinghua UniversityBeijingPeople's Republic of China
| |
Collapse
|
43
|
Klotskova H, Kidess E, Nadal AL, Brugman S. The role of interleukin-22 in mammalian intestinal homeostasis: Friend and foe. Immun Inflamm Dis 2024; 12:e1144. [PMID: 38363052 PMCID: PMC10870696 DOI: 10.1002/iid3.1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024] Open
Abstract
Interleukin-22 (IL-22) is an important cytokine in the intestinal environment. IL-22 is mainly produced by immune cells and targeted at nonimmune cells such as epithelial and stromal cells in a broad array of tissues such as -but not restricted to- the liver and adipose tissue. IL-22 therefore connects immune functions with metabolic functions of the host, and since it is induced by the microbiota, connects host functioning to the outside environment. IL-22 induces epithelial cell proliferation aiding in rapid epithelium regeneration and wound healing. Additionally, IL-22 activates antiapoptotic genes and DNA damage response pathways, enhancing epithelial cell survival. Recently, it has also been shown that IL-22 induces Paneth cell differentiation in humans. However, IL-22 can also contribute to intestinal epithelium damage and reduces microbial diversity in the intestine directly or indirectly by inducing excessive antimicrobial peptide production by epithelial cells. Moreover, IL-22 enhances angiogenesis and may therefore support tumorigenesis in the intestine. In conclusion, it appears that whether IL-22 has a beneficial or harmful effect in the mammalian intestine largely depends on its regulation. This review aims to provide a comprehensive overview of the current literature and emphasizes that IL-22 signaling outcome depends on the timing and duration of IL-22 production, the presence of it regulators such as IL-22BP, and the specific location of the cytokine production in the gastrointestinal tract.
Collapse
Affiliation(s)
- Hedi‐Britt Klotskova
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Evelien Kidess
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Adria L. Nadal
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Sylvia Brugman
- Host Microbe Interactomics, Animal Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
44
|
Alfaleh MA, Alsulaiman RM, Almahboub SA, Nezamuldeen L, Zawawi A, Aljehani ND, Yasir M, Abdulal RH, Alkhaldi R, Helal A, Alamri SS, Malki J, Alhabbab RY, Abujamel TS, Alhakamy NA, Alnami A, Algaissi A, Hassanain M, Hashem AM. ACE2-Fc and DPP4-Fc decoy receptors against SARS-CoV-2 and MERS-CoV variants: a quick therapeutic option for current and future coronaviruses outbreaks. Antib Ther 2024; 7:53-66. [PMID: 38371953 PMCID: PMC10873275 DOI: 10.1093/abt/tbad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Reem M Alsulaiman
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Sarah A Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Leena Nezamuldeen
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Ayat Zawawi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Najwa D Aljehani
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Muhammad Yasir
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rwaa H Abdulal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rami Alkhaldi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Assala Helal
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Sawsan S Alamri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Jana Malki
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Turki S Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Aisha Alnami
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Abdullah Algaissi
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mazen Hassanain
- Department of Surgery, Faculty of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
45
|
Condado-Morales I, Dingfelder F, Waibel I, Turnbull OM, Patel B, Cao Z, Rose Bjelke J, Nedergaard Grell S, Bennet A, Hummer AM, Raybould MIJ, Deane CM, Egebjerg T, Lorenzen N, Arosio P. A comparative study of the developability of full-length antibodies, fragments, and bispecific formats reveals higher stability risks for engineered constructs. MAbs 2024; 16:2403156. [PMID: 39364796 PMCID: PMC11457596 DOI: 10.1080/19420862.2024.2403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
Engineered antibody formats, such as antibody fragments and bispecifics, have the potential to offer improved therapeutic efficacy compared to traditional full-length monoclonal antibodies (mAbs). However, the translation of these non-natural molecules into successful therapeutics can be hampered by developability challenges. Here, we systematically analyzed 64 different antibody constructs targeting Tumor Necrosis Factor (TNF) which cover 8 distinct molecular format families, encompassing full-length antibodies, various types of single chain variable fragments, and bispecifics. We measured 15 biophysical properties related to activity, manufacturing, and stability, scoring variants with a flag-based risk approach and a recent in silico developability profiler. Our comparative assessment revealed that overall developability is higher for the natural full-length antibody format. Bispecific antibodies, antibodies with scFv fragments at the C-terminus of the light chain, and single-chain Fv antibody fragments (scFvs) have intermediate developability properties, while more complicated formats, such as scFv- scFv, bispecific mAbs with one Fab exchanged with a scFv, and diabody formats are collectively more challenging. In particular, our study highlights the propensity for fragmentation and aggregation, both in bulk and at interfaces, for many current engineered formats.
Collapse
Affiliation(s)
- Itzel Condado-Morales
- Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Fabian Dingfelder
- Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Isabel Waibel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | - Bhargav Patel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Zheng Cao
- Department of Bioanalysis, Beijing Novo Nordisk Pharmaceutical Science & Technology Co. Ltd (Novo Nordisk R&D China), Beijing, China
| | - Jais Rose Bjelke
- Department of Purification Technologies, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | | | - Anja Bennet
- Department of Kidney Biology, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | - Thomas Egebjerg
- Department of Mammalian Expression, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Nikolai Lorenzen
- Department of Biophysics and Injectable Formulation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
46
|
Zare H, Farkhondeh T, Bakherad H, Sharifi H, Shirzeyli MH, Samarghandian S, Ghasemi F. Covid-19 Prevention and Treatment by Targeting Fc-fusion Proteins: An Experience to Fight Emerging Diseases. Curr Mol Med 2024; 24:428-434. [PMID: 37038291 DOI: 10.2174/1566524023666230410093243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 04/12/2023]
Abstract
The coronavirus disease 2019 (Covid-19) pandemic has been considered a major threat to human health. Effective therapeutic approaches are urgently required. Spike protein and the Angiotensin-converting enzyme 2 (ACE2) receptors have critical roles in SARS-CoV-2 infection. As a result, these two proteins are considered potential targets for the development of a wide variety of biotherapeutics and vaccines for controlling Covid-19. The fusion proteins have desirable medicinal properties, including high serum half-life, stability, and solubility in the body. Moreover, other Fc-fusion proteins used to treat other diseases have no known side effects. These Fc-fusion proteins are valuable biopharmaceuticals and have been proposed as therapeutic candidates for the treatment and prevention of Covid-19 owing to their potential therapeutic benefits.
Collapse
Affiliation(s)
- Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hengame Sharifi
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Hosseinzade Shirzeyli
- Department of Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
47
|
Tokizaki S, Podyma‐Inoue KA, Matsumoto T, Takahashi K, Kobayashi M, Ibi H, Uchida S, Iwabuchi S, Harada H, Hashimoto S, Miyazono K, Shirouzu M, Watabe T. Inhibition of transforming growth factor-β signals suppresses tumor formation by regulation of tumor microenvironment networks. Cancer Sci 2024; 115:211-226. [PMID: 37972575 PMCID: PMC10823284 DOI: 10.1111/cas.16006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
The tumor microenvironment (TME) consists of cancer cells surrounded by stromal components including tumor vessels. Transforming growth factor-β (TGF-β) promotes tumor progression by inducing epithelial-mesenchymal transition (EMT) in cancer cells and stimulating tumor angiogenesis in the tumor stroma. We previously developed an Fc chimeric TGF-β receptor containing both TGF-β type I (TβRI) and type II (TβRII) receptors (TβRI-TβRII-Fc), which trapped all TGF-β isoforms and suppressed tumor growth. However, the precise mechanisms underlying this action have not yet been elucidated. In the present study, we showed that the recombinant TβRI-TβRII-Fc protein effectively suppressed in vitro EMT of oral cancer cells and in vivo tumor growth in a human oral cancer cell xenograft mouse model. Tumor cell proliferation and angiogenesis were suppressed in tumors treated with TβRI-TβRII-Fc. Molecular profiling of human cancer cells and mouse stroma revealed that K-Ras signaling and angiogenesis were suppressed. Administration of TβRI-TβRII-Fc protein decreased the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF), interleukin-1β (IL-1β) and epiregulin (EREG) in the TME of oral cancer tumor xenografts. HB-EGF increased proliferation of human oral cancer cells and mouse endothelial cells by activating ERK1/2 phosphorylation. HB-EGF also promoted oral cancer cell-derived tumor formation by enhancing cancer cell proliferation and tumor angiogenesis. In addition, increased expressions of IL-1β and EREG in oral cancer cells significantly enhanced tumor formation. These results suggest that TGF-β signaling in the TME controls cancer cell proliferation and angiogenesis by activating HB-EGF/IL-1β/EREG pathways and that TβRI-TβRII-Fc protein is a promising tool for targeting the TME networks.
Collapse
Affiliation(s)
- Shiori Tokizaki
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Katarzyna A. Podyma‐Inoue
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | | | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Institute of Industrial ScienceThe University of TokyoTokyoJapan
| | - Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Haruka Ibi
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical MedicineAalborg UniversityCopenhagenDenmark
| | - Sadahiro Iwabuchi
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shinichi Hashimoto
- Department of Molecular PathophysiologyWakayama Medical UniversityWakayamaJapan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
- RIKEN Center for Integrative Medical SciencesYokohamaJapan
| | | | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
48
|
Wei Y, Geng S, Si Y, Yang Y, Chen Q, Huang S, Chen X, Xu W, Liu Y, Jiang J. The Interaction between Collagen 1 and High Mannose Type CD133 Up-Regulates Glutamine Transporter SLC1A5 to Promote the Tumorigenesis of Glioblastoma Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306715. [PMID: 37997289 PMCID: PMC10797482 DOI: 10.1002/advs.202306715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 11/25/2023]
Abstract
Targeting the niche components surrounding glioblastoma stem cells (GSCs) helps to develop more effective glioblastoma treatments. However, the mechanisms underlying the crosstalk between GSCs and microenvironment remain largely unknown. Clarifying the extracellular molecules binding to GSCs marker CD133 helps to elucidate the mechanism of the communication between GSCs and the microenvironment. Here, it is found that the extracellular domain of high mannose type CD133 physically interacts with Collagen 1 (COL1) in GSCs. COL1, mainly secreted by cancer-associated fibroblasts, is a niche component for GSCs. COL1 enhances the interaction between CD133 and p85 and activates Akt phosphorylation. Activation of Akt pathway increases transcription factor ATF4 protein level, subsequently enhances SLC1A5-dependent glutamine uptake and glutathione synthesis. The inhibition of CD133-COL1 interaction or down-regulation of SLC1A5 reduces COL1-accelerated GSCs self-renewal and tumorigenesis. Analysis of glioma samples reveals that the level of COL1 is correlated with histopathological grade of glioma and the expression of SLC1A5. Collectively, COL1, a niche component for GSCs, enhances the tumorigenesis of GSCs partially through CD133-Akt-SLC1A5 signaling axis, providing a new mechanism underlying the cross-talk between GSCs and extracellular matrix (ECM) microenvironment.
Collapse
Affiliation(s)
- Yuanyan Wei
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Shuting Geng
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yu Si
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Yuerong Yang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Qihang Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Sijing Huang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaoning Chen
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| | - Wenlong Xu
- Division of NeurosurgeryZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yinchao Liu
- Department of NeurosurgeryProvincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021P. R. China
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjuates ResearchDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
49
|
van der Zon AAM, Verduin J, van den Hurk RS, Gargano AFG, Pirok BWJ. Sample transformation in online separations: how chemical conversion advances analytical technology. Chem Commun (Camb) 2023; 60:36-50. [PMID: 38053451 PMCID: PMC10729587 DOI: 10.1039/d3cc03599a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
While the advent of modern analytical technology has allowed scientists to determine the complexity of mixtures, it also spurred the demand to understand these sophisticated mixtures better. Chemical transformation can be used to provide insights into properties of complex samples such as degradation pathways or molecular heterogeneity that are otherwise unaccessible. In this article, we explore how sample transformation is exploited across different application fields to empower analytical methods. Transformation mechanisms include molecular-weight reduction, controlled degradation, and derivatization. Both offline and online transformation methods have been explored. The covered studies show that sample transformation facilitates faster reactions (e.g. several hours to minutes), reduces sample complexity, unlocks new sample dimensions (e.g. functional groups), provides correlations between multiple sample dimensions, and improves detectability. The article highlights the state-of-the-art and future prospects, focusing in particular on the characterization of protein and nucleic-acid therapeutics, nanoparticles, synthetic polymers, and small molecules.
Collapse
Affiliation(s)
- Annika A M van der Zon
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joshka Verduin
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Rick S van den Hurk
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bob W J Pirok
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
50
|
Kawai A, Tokunoh N, Kawahara E, Tamiya S, Okamura S, Ono C, Anindita J, Tanaka H, Akita H, Yamasaki S, Kunisawa J, Okamoto T, Matsuura Y, Hirai T, Yoshioka Y. Intranasal immunization with an RBD-hemagglutinin fusion protein harnesses preexisting immunity to enhance antigen-specific responses. J Clin Invest 2023; 133:e166827. [PMID: 38038133 PMCID: PMC10688985 DOI: 10.1172/jci166827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Eigo Kawahara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hidetaka Akita
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Sho Yamasaki
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, and
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Toru Okamoto
- Center for Infectious Disease Education and Research and
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|