1
|
Hou J, Du K, Li J, Li Z, Cao S, Zhang S, Huang W, Liu H, Yang X, Sun S, Mo S, Qin T, Zhang X, Yin S, Nie X, Lu X. Research trends in the use of nanobodies for cancer therapy. J Control Release 2025; 381:113454. [PMID: 39922288 DOI: 10.1016/j.jconrel.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although there are many challenges in using nanobodies for treating various complex tumor diseases, including rapid renal clearance and the complex blood-brain barrier environment, nanobodies have shown great potential due to their high antigen affinity, excellent tumor penetration ability, and favorable safety profile. Since the discovery of the variable domain (VHH) of camelid heavy-chain antibodies in 1993, nanobodies have been progressively applied to various cancer therapy platforms, such as antagonistic drugs and targeting agents for effector domains. In recent years, several nanobody-based drugs, including Caplacizumab, KN-035, and Ozoralizumab, have been approved for clinical use. Among them, KN-035 is used for treating advanced solid tumors, and these advancements have propelled nanobody development to new heights. Currently, nanobodies are being rapidly applied to the treatment of a wide range of diseases, from viral infections to cancer, demonstrating strong advantages in areas such as targeted protein degradation, bioimaging, nanobody-drug conjugation, bispecific T-cell engagers, and vaccine applications. Bibliometric tools, including CiteSpace, HisCite Pro, and Alluvial Generator, were employed to trace the historical development of nanobodies in cancer research. The contributions of authors, countries, and institutions in this field were analyzed, and research hotspots and emerging trends were identified through keyword analysis and influential articles. Future trends were also predicted. This study provides a unique, comprehensive, and objective perspective on the use of nanobodies in tumor research, laying a foundation for future research directions and offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jun Hou
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Kejiang Du
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Jinling Li
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shaorui Cao
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shilin Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Huang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Heng Liu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaomei Yang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shuyang Sun
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shanzhao Mo
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tianyu Qin
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xilei Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shihua Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xinyu Nie
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230002, China.
| | - Xiaoling Lu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Cui J, Zheng Q, Weng Y, Zhai X, Su Z, Du Y, Wei X, Yu Y, Qu Q, Pan M. Structure-Guided Development of Chemically Tailored Peptide Binders of RNF43/ZNRF3 to Enable Versatile Design of Membrane Protein-Targeting PROTACs. Angew Chem Int Ed Engl 2025; 64:e202501488. [PMID: 40000409 DOI: 10.1002/anie.202501488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Targeted membrane protein degradation using cell surface E3 ligases RNF43/ZNRF3 via proteolysis targeting chimeras (PROTACs) represents an effective strategy for treating membrane drug targets that cannot be fully inhibited using traditional inhibitors. Several ingenious chimeras have been developed to tether RNF43/ZNRF3 to target membrane proteins, resulting in the degradation of targets at sub-nanomolar concentrations both in vitro and in vivo. However, currently available RNF43/ZNRF3 binders are genetically encoded and have poor plasticity, which limits the design and promotion of such PROTACs. Here, we exploited the AlphaFold-predicted complex structures of ligand-bound RNF43/ZNRF3 and developed a class of chemically tailored peptide binders for ZNRF3/RNF43. With these peptide binders that can be conveniently prepared by de novo peptide synthesis, we established a new membrane protein degradation platform that allows versatile modular design and targeted degradation of clinically relevant membrane proteins, i.e., PD-L1 and EGFR. This study presents a new subtype within the PROTAC field to develop therapeutic peptides targeting membrane proteins.
Collapse
Affiliation(s)
- Jibin Cui
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yicheng Weng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Zhai
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Su
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiong Wei
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Yu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Qu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding, Road, Zhengzhou, Henan Province, 450016, China
| |
Collapse
|
3
|
Kim Y, Kim J, Eom S, Jun H, Lee HB, Jeong D, Kang S. Protein Nanoparticles Simultaneously Displaying TRAIL and EGFR-Binding Ligands Effectively Induce Apoptotic Cancer Cell Death and Overcome EGFR-TKI Resistance in Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25139-25151. [PMID: 40237189 DOI: 10.1021/acsami.5c04021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Lung cancer remains one of the most lethal cancers globally, with nonsmall cell lung cancer (NSCLC) representing the predominant subtype. Despite significant advancements in targeted therapies, overcoming therapeutic resistance in NSCLC remains a significant challenge, particularly in cases resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Here, we developed target-specific, apoptosis-inducing protein nanoparticles using Aquifex aeolicus lumazine synthase (AaLS), which were engineered to simultaneously display multiple TRAIL molecules and EGFR-binding ligands, including EGFR affibody (Afb) or anti-EGFR nanobodies (7D12, 9G8, and EgB4). These nanoparticles utilize the EGFR-binding ligand to enhance selective targeting of EGFR-overexpressing lung adenocarcinoma (PC9, HCC827, A549) and squamous cell carcinoma (H226) cells, regardless of mutations within the intracellular kinase domain of EGFR, which are primarily driven by tyrosine kinase inhibitors commonly used as first-line treatments in lung cancer therapy. The codisplayed EGFR-binding ligands enhance the attachment of TRAIL-displaying protein nanoparticles to cancer cells by stabilizing interactions with EGFR, promoting cell surface clustering of TRAIL molecules and improving TRAIL engagement with death receptors (DRs). This sustained interaction significantly amplifies TRAIL-mediated apoptotic cancer cell death signaling, effectively overcoming both TRAIL and EGFR-TKI resistance in NSCLC cells. Our findings suggest that dual ligand-displaying protein nanoparticles targeting DRs and EGFR represent a promising therapeutic strategy to potentiate TRAIL efficacy and circumvent EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Yunjung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Bin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Diane Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Gao B, Sabnis R, Kotnis S, Feliciano S, Poling K, Mei T, Feng M, Das JK, Song J, Sun Q. Modular Platform for Efficient Assembly of Multifunctional Antibodies Using Orthogonal Protein-Protein Interactions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20685-20692. [PMID: 40159649 PMCID: PMC11986891 DOI: 10.1021/acsami.4c21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Multifunctional antibodies, capable of simultaneously engaging multiple targets, are a unique class of antibodies that have sparked growing interest. Current approaches for making multifunctional antibodies, including chemical conjugation or genetic modifications, suffer from low product yield, complex structure design, and complicated manufacturing processes. In this study, we report a modular post-translational platform with highly specific protein-protein interactions for multifunctional antibody assembly and an elastin-like polypeptide (ELP) for easy purification. We generated and purified multifunctional antibodies with over 90% assembled scaffold and overall product purity. Additionally, we assembled antibodies with diverse applications, including detecting cancer, inhibiting cancer cell growth, and directing T cells to cancer cells for enhanced therapeutic efficacy. This platform offers high assembly efficiency, easy purification, and modularity for the redesign of antibody functions.
Collapse
Affiliation(s)
- Baizhen Gao
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Rushant Sabnis
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Siddhi Kotnis
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Sofia Feliciano
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Kyge Poling
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Tracy Mei
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Min Feng
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Jugal Kishore Das
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Jianxun Song
- Department
of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas 77807, United States
| | - Qing Sun
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77840, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
5
|
Li Y, Li D, Lin H, Wang D, Zhao J, Wang Z, Hong H, Wu Z. Reconstituting the immune killing functions and improving the pharmacokinetics of nanobodies by rhamnolipid conjugation. J Control Release 2025; 378:18-26. [PMID: 39637990 DOI: 10.1016/j.jconrel.2024.11.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/20/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Nanobodies (Nbs) hold great promise as next-generation cancer immunotherapies, but their efficacy is hindered by their poor pharmacokinetics and the inability to trigger Fc-mediated immune killing functions. To address these limitations, we designed and synthesized rhamnolipid-modified Nbs as a type of antibody-recruiting molecule by site-specifically conjugating EGFR-targeting Nb 7D12 to a series of rhamnolipid derivatives, and their biological profiles were evaluated in vitro and in vivo. Investigation of the structure-activity relationship revealed that the number of rhamnose (Rha) units and the length of the PEG linker in the conjugates affected anti-tumor activities. Conjugate R5, which contained two Rha units and a PEG2 linker, exhibited the most potent antibody-dependent cell-mediated phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) activities. In vivo, R5 had a significantly longer half-life because of its ability to bind to serum albumin and endogenous anti-Rha antibodies, and it demonstrated potent in vivo antitumor activity in a xenograft mouse model of A431 tumor. Our findings highlight the potential of rhamnolipidation as a strategy to enhance the efficacy of Nbs in cancer immunotherapy and provide a cost-effective platform for improving the therapeutic efficiency of Nbs.
Collapse
Affiliation(s)
- Yanchun Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Di Wang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Zhao
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Wang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
7
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
8
|
Liu H, Fu Z, Han Y, Fang Y, Shen W, Chen Z, Zhu R, Zhang H, Chen PR. Conditionally Activatable Chimeras for Tumor-Specific Membrane Protein Degradation. J Am Chem Soc 2024. [PMID: 39561381 DOI: 10.1021/jacs.4c06160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The recent advancements on membrane protein degraders (MPDs) have broadened the applicability of proteolysis-targeting chimeras (PROTACs) beyond intracellular proteins to include the previously "undruggable" cell-surface targets. However, the potential toxicity of MPDs caused by undesired off-target degradation poses a significant challenge to clinical deployment, mirroring concerns associated with PROTACs. Here, we introduce a conditionally activatable membrane protein degrader (Pro-MPD), which leverages the specificity and high affinity of biparatopic nanobodies combined with a tumor microenvironment-activated cell-penetrating peptide (Pro-CPP) to achieve on-target activated internalization and degradation of PD-L1 within tumor sites. This modularly designed Pro-MPD demonstrated a high target degradation efficiency and T cell reactivation, as well as sustained inhibition of tumor growth in xenograft models, highlighting its potential as a safer and highly efficient MPD for in vivo applications. Our work provides a general strategy for the development of conditionally activatable MPDs, which offers a new avenue for reducing the undesired systemic toxicity of MPDs due to the off-tumor degradation.
Collapse
Affiliation(s)
- Hongxiang Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhijiang Fu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yu Han
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yike Fang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Weijun Shen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhicheng Chen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Rongfeng Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Heng Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Peng R Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Zhang R, Li D, Zhou Z, Hong H, Shi J, Wu Z. Chemo-Enzymatic Functionalization of Bovine Milk Exosomes with an EGFR Nanobody for Target-specific Drug Delivery. Chembiochem 2024; 25:e202400512. [PMID: 39192477 DOI: 10.1002/cbic.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Bovine milk exosomes (BmExo) have been identified as versatile nanovesicles for anti-cancer drugs delivery due to their natural availability and biocompatibility. However, tumor-specific delivery based on BmExo often requires post-isolation modifications of the membrane surface with active-targeting ligands. In this study, we report an alternative approach to functionalize BmExo with nanobody combining facile chemical modification and Sortase A-mediated site-specific ligation, as demonstrated by the development of an epidermal growth factor receptor (EGFR)-targeted drug delivery system. The BmExo membrane was first coated with a diglycine-containing amphiphile molecule, NH2-GG-PEG2000-DSPE, by hydrophobic insertion. The diglycine as nucleophiles displayed on the membrane enabled the subsequent ligation of the EGFR nanobody (7D12) by Sortase A (SrtA)-mediated site-specific transpeptidation. The successful construction of BmExo-7D12 was confirmed by Western blotting analysis, electron microscopy, and dynamic light scattering (DLS). As a demonstration model, BmExo-7D12 loaded with the chemotherapeutic drug doxorubicin (Dox) was shown to be able to deliver Dox to cancer cells in response to the expression of EGFR as manifested by immunocytochemistry and flow cytometry analysis. Finally, the cytotoxicity assay showed that BmExo-7D12-Dox was more effective in killing tumor cells with high EGFR expression while significantly reduced the non-specific toxicity to EGFR negative cells. In conclusion, these results demonstrate that 7D12-functionalized BmExo can serve as a target-specific delivery system for Dox to selectively kill EGFR-expressing tumor cells. This approach should prove to be versatile and efficient for the generation of protein-ligands modified BmExo.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
10
|
Yeh YH, Kelly VW, Rahman Pour R, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. Nat Commun 2024; 15:9741. [PMID: 39528443 PMCID: PMC11554821 DOI: 10.1038/s41467-024-53845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteroides species are abundant, prevalent, and stable members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering Bacteroides as in situ bio-factories, however, requires efficient protein secretion tools, which are currently lacking. Here, we systematically investigate methods to enable heterologous protein secretion in Bacteroides. We identify a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterize signal peptide sequence features, post-secretion extracellular fate, and the size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we develop a strong, self-contained, inducible expression circuit. Finally, we validate the functionality of our secretion carriers in vivo in a mouse model. This toolkit promises to enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Chan Zuckerberg Biohub, Chicago, IL, USA
| | - Vince W Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Perlumi, Berkeley, CA, USA
| | - Shannon J Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Chan Zuckerberg Biohub, Chicago, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
11
|
Zhang Y, Chen Z, Wang X, Yan R, Bao H, Chu X, Guo L, Wang X, Li Y, Mu Y, He Q, Zhang L, Zhang C, Zhou D, Ji D. Site-specific tethering nanobodies on recombinant adeno-associated virus vectors for retargeted gene therapy. Acta Biomater 2024; 187:304-315. [PMID: 39025389 DOI: 10.1016/j.actbio.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.
Collapse
Affiliation(s)
- Yuanjie Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Zhiqian Chen
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xiaoyang Wang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Rongding Yan
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Han Bao
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xindang Chu
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Lingfeng Guo
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xinchen Wang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yuanhao Li
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Yu Mu
- Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China.
| | - Qiuchen He
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Lihe Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Chuanling Zhang
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Demin Zhou
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Shenzhen Bay Laboratory, Gaoke International Innovation Center, Shenzhen, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| | - Dezhong Ji
- Peking University-Yunnan Baiiyao International Medical Research Center, ChemicalBiology Center, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Peking University Ningbo Institute of Marine Medicines, Ningbo, China.
| |
Collapse
|
12
|
Tydings CW, Singh B, Smith AW, Ledwitch KV, Brown BP, Lovly CM, Walker AS, Meiler J. Analysis of EGFR binding hotspots for design of new EGFR inhibitory biologics. Protein Sci 2024; 33:e5141. [PMID: 39275996 PMCID: PMC11400634 DOI: 10.1002/pro.5141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/16/2024]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is activated by the binding of one of seven EGF-like ligands to its ectodomain. Ligand binding results in EGFR dimerization and stabilization of the active receptor conformation subsequently leading to activation of downstream signaling. Aberrant activation of EGFR contributes to cancer progression through EGFR overexpression/amplification, modulation of its positive and negative regulators, and/or activating mutations within EGFR. EGFR targeted therapeutic antibodies prevent dimerization and interaction with endogenous ligands by binding the ectodomain of EGFR. However, these antibodies have had limited success in the clinic, partially due to EGFR ectodomain resistance mutations, and are only applicable to a subset of patients with EGFR-driven cancers. These limitations suggest that alternative EGFR targeted biologics need to be explored for EGFR-driven cancer therapy. To this end, we analyze the EGFR interfaces of known inhibitory biologics with determined structures in the context of endogenous ligands, using the Rosetta macromolecular modeling software to highlight the most important interactions on a per-residue basis. We use this analysis to identify the structural determinants of EGFR targeted biologics. We suggest that commonly observed binding motifs serve as the basis for rational design of new EGFR targeted biologics, such as peptides, antibodies, and nanobodies.
Collapse
Affiliation(s)
- Claiborne W. Tydings
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Bhuminder Singh
- Department of Medicine – Division of Gastroenterology, Hepatology, and NutritionVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Adam W. Smith
- Department of Chemistry and BiochemistryTexas Tech UniversityLubbockTexasUSA
| | - Kaitlyn V. Ledwitch
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Benjamin P. Brown
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Christine M. Lovly
- Department of Medicine – Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Allison S. Walker
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Department of Biological SciencesVanderbilt UniversityNashvilleTennesseeUSA
| | - Jens Meiler
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Institute for Drug DiscoveryLeipzig University Medical SchoolLeipzigSACGermany
| |
Collapse
|
13
|
Chen Y, Xiong T, Peng Q, Du J, Sun W, Fan J, Peng X. Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment. Nat Commun 2024; 15:6935. [PMID: 39138197 PMCID: PMC11322375 DOI: 10.1038/s41467-024-51253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Nanobodies (Nbs), the smallest antigen-binding fragments with high stability and affinity derived from the variable domain of naturally occurring heavy-chain-only antibodies in camelids, have been shown as an efficient way to improve the specificity to tumors for photodynamic therapy (PDT). Nonetheless, the rapid clearance of Nbs in vivo restricts the accumulation and retention of the photosensitizer at the tumor site causing insufficient therapeutic outcome, especially in large-volume tumors. Herein, we develop photodynamic conjugates, MNB-Pyra Nbs, through site-specific conjugation between 7D12 Nbs and type I photosensitizer MNB-Pyra (morpholine-modified nile blue structure connected to pyrazolinone) in a 1:2 ratio. The photosensitizers with long-term retention can be released at the tumor site by reactive oxygen species cleavage after illumination, accompanied with fluorescence recovery for self-reporting the occurrence of PDT. Ultimately, a single dose of MNB-Pyra Nbs demonstrate highly effective tumor suppression with high biosafety in the large-volume tumor models after three rounds of PDT. This nanobody conjugate provides a paradigm for the design of precise long-time retention photosensitizers and is expected to promote the development of PDT.
Collapse
Affiliation(s)
- Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Tao Xiong
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Qiang Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China.
- Liaoning Binhai Laboratory, Dalian, 116023, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
- Liaoning Binhai Laboratory, Dalian, 116023, China
| |
Collapse
|
14
|
Rahman MM, Wang J, Wang G, Su Z, Li Y, Chen Y, Meng J, Yao Y, Wang L, Wilkens S, Tan J, Luo J, Zhang T, Zhu C, Cho SH, Wang L, Lee LP, Wan Y. Chimeric nanobody-decorated liposomes by self-assembly. NATURE NANOTECHNOLOGY 2024; 19:818-824. [PMID: 38374413 PMCID: PMC11904852 DOI: 10.1038/s41565-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Liposomes as drug vehicles have advantages, such as payload protection, tunable carrying capacity and improved biodistribution. However, due to the dysfunction of targeting moieties and payload loss during preparation, immunoliposomes have yet to be favoured in commercial manufacturing. Here we report a chemical modification-free biophysical approach for producing immunoliposomes in one step through the self-assembly of a chimeric nanobody (cNB) into liposome bilayers. cNB consists of a nanobody against human epidermal growth factor receptor 2 (HER2), a flexible peptide linker and a hydrophobic single transmembrane domain. We determined that 64% of therapeutic compounds can be encapsulated into 100-nm liposomes, and up to 2,500 cNBs can be anchored on liposomal membranes without steric hindrance under facile conditions. Subsequently, we demonstrate that drug-loaded immunoliposomes increase cytotoxicity on HER2-overexpressing cancer cell lines by 10- to 20-fold, inhibit the growth of xenograft tumours by 3.4-fold and improve survival by more than twofold.
Collapse
Affiliation(s)
- Md Mofizur Rahman
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Jing Wang
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Oncology and Hematology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, China
| | - Guosheng Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhipeng Su
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yizeng Li
- Biophysics and Mathematical Biology Lab, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Yundi Chen
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Jinguo Meng
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Yao Yao
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Lefei Wang
- Nanjing Regenecore Biotech Co. Ltd., Nanjing, China
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY, USA
| | - Jifu Tan
- Department of Mechanical Engineering, Northern Illinois University, Dekalb, IL, USA
| | - Juntao Luo
- Department of Pharmacology, Upstate Medical University, Syracuse, NY, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Johnson City, NY, USA
| | - Chuandong Zhu
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sung Hyun Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Lixue Wang
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
- Department of Radiotherapy, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Luke P Lee
- Harvard Medical School, Harvard University; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
15
|
Asano R, Takeuchi M, Nakakido M, Ito S, Aikawa C, Yokoyama T, Senoo A, Ueno G, Nagatoishi S, Tanaka Y, Nakagawa I, Tsumoto K. Characterization of a novel format scFv×VHH single-chain biparatopic antibody against metal binding protein MtsA. Protein Sci 2024; 33:e5017. [PMID: 38747382 PMCID: PMC11094767 DOI: 10.1002/pro.5017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.
Collapse
Affiliation(s)
- Risa Asano
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Miyu Takeuchi
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Sho Ito
- Rigaku Corporation ROD Single Crystal Analysis Group Application LaboratoriesTokyoJapan
| | - Chihiro Aikawa
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineHokkaidoJapan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Akinobu Senoo
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Go Ueno
- RIKEN SPring‐8 CenterHyogoJapan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Ichiro Nakagawa
- Department of MicrobiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kouhei Tsumoto
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
16
|
Tripathy RK, Pande AH. Molecular and functional insight into anti-EGFR nanobody: Theranostic implications for malignancies. Life Sci 2024; 345:122593. [PMID: 38554946 DOI: 10.1016/j.lfs.2024.122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Targeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies. This exploit makes use of EGFR, an established biomarker for cancer diagnostics and treatment. Despite considerable development in the last several decades in making EGFR inhibitors, they are still not free from limitations like toxicity and a short serum half-life. Nanobodies and antibodies share similar binding properties, but nanobodies have the additional advantage that they can bind to antigenic epitopes deep inside the target that conventional antibodies are unable to access. For targeted therapy, anti-EGFR nanobodies can be conjugated to various molecules such as drugs, peptides, toxins and photosensitizers. These nanobodies can be designed as novel immunoconjugates using the universal modular antibody-based platform technology (UniCAR). Furthermore, Anti-EGFR nanobodies can be expressed in neural stem cells and visualised by effective fluorescent and radioisotope labelling.
Collapse
Affiliation(s)
- Rajan K Tripathy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali) 160062, Punjab, India.
| |
Collapse
|
17
|
Wilson J, Kimmel B, Arora K, Chada N, Bharti V, Kwiatkowski A, Finklestein J, Hanna A, Arner E, Sheehy T, Pastora L, Yang J, Pagendarm H, Stone P, Taylor B, Hubert L, Gibson-Corley K, May J, McLean J, Rathmell J, Richmond A, Rathmell W, Balko J, Fingleton B, Hargrove-Wiley E. Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. RESEARCH SQUARE 2024:rs.3.rs-3243545. [PMID: 38766114 PMCID: PMC11100900 DOI: 10.21203/rs.3.rs-3243545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ann Hanna
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu X, Wang C, Bai Y, Wang W, Han Y, Cai S, An J, Qu G. Development of a double antibody sandwich ELISA method for the quantitative detection of serum C-reactive protein based on nanobody. Microb Pathog 2024; 190:106615. [PMID: 38521472 DOI: 10.1016/j.micpath.2024.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
In this study, we successfully developed a nanobody-based double antibody sandwich ELISA kit for the detection of clinical serum C-reactive protein (CRP) by using two novel CRP specific nanobodies. The developed method exhibited a linear detection range of approximately 6-200 ng/mL, with a detection limit of 1 ng/mL. Furthermore, the method demonstrated excellent specificity, as there was no cross-reactivity with interfering substances such as total bilirubin and hemoglobin and so on. To assess reproducibility, independent measurements of the samples were conducted under experimental conditions, resulting in intra- and inter-batch coefficients of variation below 10% and a recovery rate of 93%-102%. These results indicate robust reproducibility of the method. To evaluate the performance of the developed kit, we collected 90 clinical samples for correlation analysis with commercial kits. The results showed a high correlation coefficient value (R2) of 0.98, indicating accurate concordance between the developed and commercial kits. In conclusion, our study successfully developed a nanobody-based double antibody sandwich ELISA kit to detect clinical serum CRP. The utilization of nanobodies represents a significant advancement in the field of CRP immunoassay development. The developed kit demonstrates excellent performance characteristics and holds promise for clinical applications.
Collapse
Affiliation(s)
- Xin Liu
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China
| | - Yu Bai
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Weichen Wang
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shu Cai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China.
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, PR China.
| |
Collapse
|
19
|
Sahraoui PF, Vadas O, Kalia YN. Non-Invasive Delivery of Negatively Charged Nanobodies by Anodal Iontophoresis: When Electroosmosis Dominates Electromigration. Pharmaceutics 2024; 16:539. [PMID: 38675200 PMCID: PMC11055110 DOI: 10.3390/pharmaceutics16040539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged M7D12H nanobody and a series of negatively charged variants with single amino acid substitutions. Surprisingly, M7D12H and its variants were only delivered transdermally by anodal iontophoresis. In contrast, transdermal permeation after cathodal iontophoresis and passive diffusion was
Collapse
Affiliation(s)
- Phedra Firdaws Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
| | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland;
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-1 Rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Zhang W, Wang H, Wu T, Gao X, Shang Y, Zhang Z, Liu X, Li Y. A SARS-CoV-2 Nanobody Displayed on the Surface of Human Ferritin with High Neutralization Activity. Int J Nanomedicine 2024; 19:2429-2440. [PMID: 38476285 PMCID: PMC10929646 DOI: 10.2147/ijn.s450829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose COVID-19 is rampant throughout the world, which has caused great damage to human lives and seriously hindered the development of the global economy. Aiming at the treatment of SARS-CoV-2, in this study, we proposed a novel fenobody strategy based on ferritin (Fe) self-assembly technology. Methods The neutralizing nanobody H11-D4 of SARS-CoV-2 fused to the C-terminus of end-modified human ferritin was expressed in E. coli and silkworm baculovirus expression systems. A large number of nanoparticles were successfully self-assembled in silkworms, while relatively few nanoparticles can be observed in the treated products from E. coli by electron microscopy. Subsequently, the fenobody's expression level and neutralizing activity were then evaluated. Results The results showed that the IC50 of H11-D4 and fenobody Fe-H11-D4 expressed in E. coli were 171.1 nmol L-1 and 20.87 nmol L-1, respectively. However, the IC50 of Fe-HD11-D4 expressed in silkworms was 1.46 nmol L-1 showing better neutralization activity. Conclusion Therefore, fenobodies can be well self-assembled in silkworm baculovirus expression system, and ferritin self-assembly technology can effectively improve nanobody neutralization activity.
Collapse
Affiliation(s)
- Wenrong Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Life Sciences, Capital Normal University, Beijing, People’s Republic of China
| | - Haining Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuting Shang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Jha R, Kinna A, Hotblack A, Bughda R, Bulek A, Gannon I, Ilca T, Allen C, Lamb K, Dolor A, Scott I, Parekh F, Sillibourne J, Cordoba S, Onuoha S, Thomas S, Ferrari M, Pule M. Designer Small-Molecule Control System Based on Minocycline-Induced Disruption of Protein-Protein Interaction. ACS Chem Biol 2024; 19:308-324. [PMID: 38243811 PMCID: PMC10877577 DOI: 10.1021/acschembio.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
A versatile, safe, and effective small-molecule control system is highly desirable for clinical cell therapy applications. Therefore, we developed a two-component small-molecule control system based on the disruption of protein-protein interactions using minocycline, an FDA-approved antibiotic with wide availability, excellent biodistribution, and low toxicity. The system comprises an anti-minocycline single-domain antibody (sdAb) and a minocycline-displaceable cyclic peptide. Here, we show how this versatile system can be applied to OFF-switch split CAR systems (MinoCAR) and universal CAR adaptors (MinoUniCAR) with reversible, transient, and dose-dependent suppression; to a tunable T cell activation module based on MyD88/CD40 signaling; to a controllable cellular payload secretion system based on IL12 KDEL retention; and as a cell/cell inducible junction. This work represents an important step forward in the development of a remote-controlled system to precisely control the timing, intensity, and safety of therapeutic interventions.
Collapse
Affiliation(s)
- Ram Jha
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Alastair Hotblack
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| | | | - Anna Bulek
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | - Tudor Ilca
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | - Ian Scott
- Autolus
Therapeutics, London W12 7FP, U.K.
| | | | | | | | | | | | | | - Martin Pule
- Autolus
Therapeutics, London W12 7FP, U.K.
- Research
Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6DD, U.K.
| |
Collapse
|
22
|
Abdolvahab MH, Karimi P, Mohajeri N, Abedini M, Zare H. Targeted drug delivery using nanobodies to deliver effective molecules to breast cancer cells: the most attractive application of nanobodies. Cancer Cell Int 2024; 24:67. [PMID: 38341580 DOI: 10.1186/s12935-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Targeted drug delivery is one of the attractive ways in which cancer treatment can significantly reduce side effects. In the last two decades, the use of antibodies as a tool for accurate detection of cancer has been noted. On the other hand, the binding of drugs and carriers containing drugs to the specific antibodies of cancer cells can specifically target only these cells. However, the use of whole antibodies brings challenges, including their large size, the complexity of conjugation, the high cost of production, and the creation of immunogenic reactions in the body. The use of nanobodies, or VHHs, which are a small part of camel heavy chain antibodies, is very popular due to their small size, high craftsmanship, and low production cost. In this article, in addition to a brief overview of the structure and characteristics of nanobodies, the use of this molecule in the targeted drug delivery of breast cancer has been reviewed.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nasrin Mohajeri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Abedini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
23
|
Kopp A, Kwon H, Johnston C, Vance S, Legg J, Galson-Holt L, Thurber GM. Impact of tissue penetration and albumin binding on design of T cell targeted bispecific agents. Neoplasia 2024; 48:100962. [PMID: 38183712 PMCID: PMC10809211 DOI: 10.1016/j.neo.2023.100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Bispecific agents are a rapidly growing class of cancer therapeutics, and immune targeted bispecific agents have the potential to expand functionality well beyond monoclonal antibody agents. Humabodies⁎ are fully human single domain antibodies that can be linked in a modular fashion to form multispecific therapeutics. However, the effect of heterogeneous delivery on the efficacy of crosslinking bispecific agents is currently unclear. In this work, we utilize a PSMA-CD137 Humabody with an albumin binding half-life extension (HLE) domain to determine the impact of tissue penetration on T cell activating bispecific agents. Using heterotypic spheroids, we demonstrate that increased tissue penetration results in higher T cell activation at sub-saturating concentrations. Next, we tested the effect of two different albumin binding moieties on tissue distribution using albumin-specific HLE domains with varying affinities for albumin and a non-specific lipophilic dye. The results show that a specific binding mechanism to albumin does not influence tissue penetration, but a non-specific mechanism reduced both spheroid uptake and distribution in the presence of albumin. These results highlight the potential importance of tissue penetration on bispecific agent efficacy and describe how the design parameters including albumin-binding domains can be selected to maximize the efficacy of bispecific agents.
Collapse
Affiliation(s)
- Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hyeyoung Kwon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | | | | | - James Legg
- Crescendo Biologics, Cambridge, United Kingdom
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
24
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Niquille DL, Fitzgerald KM, Gera N. Biparatopic antibodies: therapeutic applications and prospects. MAbs 2024; 16:2310890. [PMID: 38439551 PMCID: PMC10936611 DOI: 10.1080/19420862.2024.2310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.
Collapse
Affiliation(s)
| | | | - Nimish Gera
- Biologics, Mythic Therapeutics, Waltham, MA, USA
| |
Collapse
|
26
|
Fournier L, Pekar L, Leuthner B, Kolmar H, Toleikis L, Becker S. Discovery of potent allosteric antibodies inhibiting EGFR. MAbs 2024; 16:2406548. [PMID: 39304998 PMCID: PMC11418213 DOI: 10.1080/19420862.2024.2406548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
In this work, we report the discovery of potent anti-epidermal growth factor receptor (EGFR) allosteric heavy-chain antibodies by combining camelid immunization and fluorescence-activated cell sorting (FACS). After immunization and yeast surface display library construction, allosteric clones were obtained by introducing the labeled EGF Fc fusion protein as an additional criterion for FACS. This sorting method enabled the identification of 11 heavy-chain antibodies that did not compete with the orthosteric ligand EGF for the binding to EGFR. These antibodies bind to a triple-negative breast cancer cell line expressing EGFR with affinities in the picomolar to nanomolar range. Those camelid-derived antibodies also exhibit interesting properties by modulating EGFR affinity for EGF. Moreover, they are also able to inhibit EGF-induced downstream signaling pathways. In particular, we identified one clone that is more potent than the approved blocking antibody cetuximab in inhibiting both PI3K/AKT and MAPK/ERK pathways. Our results suggest that allosteric antibodies may be potential new modalities for therapeutics.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
27
|
Nguyen MQ, Kim DH, Shim HJ, Ta HKK, Vu TL, Nguyen TKO, Lim JC, Choe H. Novel Anti-Mesothelin Nanobodies and Recombinant Immunotoxins with Pseudomonas Exotoxin Catalytic Domain for Cancer Therapeutics. Mol Cells 2023; 46:764-777. [PMID: 38052492 PMCID: PMC10701305 DOI: 10.14348/molcells.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.
Collapse
Affiliation(s)
- Minh Quan Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | | | - Huynh Kim Khanh Ta
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
28
|
Yeh YH, Kelly VW, Pour RR, Sirk SJ. A molecular toolkit for heterologous protein secretion across Bacteroides species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571725. [PMID: 38168418 PMCID: PMC10760143 DOI: 10.1101/2023.12.14.571725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Bacteroides species are abundant and prevalent stably colonizing members of the human gut microbiota, making them a promising chassis for developing long-term interventions for chronic diseases. Engineering these bacteria as on-site production and delivery vehicles for biologic drugs or diagnostics, however, requires efficient heterologous protein secretion tools, which are currently lacking. To address this limitation, we systematically investigated methods to enable heterologous protein secretion in Bacteroides using both endogenous and exogenous secretion systems. Here, we report a collection of secretion carriers that can export functional proteins across multiple Bacteroides species at high titers. To understand the mechanistic drivers of Bacteroides secretion, we characterized signal peptide sequence features as well as post-secretion extracellular fate and cargo size limit of protein cargo. To increase titers and enable flexible control of protein secretion, we developed a strong, self-contained, inducible expression circuit. Finally, we validated the functionality of our secretion carriers in vivo in a mouse model. This toolkit should enable expanded development of long-term living therapeutic interventions for chronic gastrointestinal disease.
Collapse
Affiliation(s)
- Yu-Hsuan Yeh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Vince W. Kelly
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Rahman Rahman Pour
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Perlumi, Berkeley, CA 94704, USA
| | - Shannon J. Sirk
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Lead Contact
| |
Collapse
|
29
|
Joest EF, Tampé R. Design principles for engineering light-controlled antibodies. Trends Biotechnol 2023; 41:1501-1517. [PMID: 37507295 DOI: 10.1016/j.tibtech.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023]
Abstract
Engineered antibodies are essential tools for research and advanced pharmacy. In the development of therapeutics, antibodies are excellent candidates as they offer both target recognition and modulation. Thanks to the latest advances in biotechnology, light-activated antibody fragments can be constructed to control spontaneous antigen interaction with high spatiotemporal precision. To implement conditional antigen binding, several optogenetic and optochemical engineering concepts have recently been developed. Here, we highlight the various strategies and discuss the features of opto-conditional antibodies. Each concept offers intrinsic advantages beneficial to different applications. In summary, the novel design approaches constitute a complementary toolset to promote current and upcoming antibody technologies with ultimate precision.
Collapse
Affiliation(s)
- Eike F Joest
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany.
| |
Collapse
|
30
|
Van Campenhout R, De Groof TWM, Kadam P, Kwak BR, Muyldermans S, Devoogdt N, Vinken M. Nanobody-based pannexin1 channel inhibitors reduce inflammation in acute liver injury. J Nanobiotechnology 2023; 21:371. [PMID: 37821897 PMCID: PMC10566086 DOI: 10.1186/s12951-023-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The opening of pannexin1 channels is considered as a key event in inflammation. Pannexin1 channel-mediated release of adenosine triphosphate triggers inflammasome signaling and activation of immune cells. By doing so, pannexin1 channels play an important role in several inflammatory diseases. Although pannexin1 channel inhibition could represent a novel clinical strategy for treatment of inflammatory disorders, therapeutic pannexin1 channel targeting is impeded by the lack of specific, potent and/or in vivo-applicable inhibitors. The goal of this study is to generate nanobody-based inhibitors of pannexin1 channels. RESULTS Pannexin1-targeting nanobodies were developed as potential new pannexin1 channel inhibitors. We identified 3 cross-reactive nanobodies that showed affinity for both murine and human pannexin1 proteins. Flow cytometry experiments revealed binding capacities in the nanomolar range. Moreover, the pannexin1-targeting nanobodies were found to block pannexin1 channel-mediated release of adenosine triphosphate. The pannexin1-targeting nanobodies were also demonstrated to display anti-inflammatory effects in vitro through reduction of interleukin 1 beta amounts. This anti-inflammatory outcome was reproduced in vivo using a human-relevant mouse model of acute liver disease relying on acetaminophen overdosing. More specifically, the pannexin1-targeting nanobodies lowered serum levels of inflammatory cytokines and diminished liver damage. These effects were linked with alteration of the expression of several NLRP3 inflammasome components. CONCLUSIONS This study introduced for the first time specific, potent and in vivo-applicable nanobody-based inhibitors of pannexin1 channels. As demonstrated for the case of liver disease, the pannexin1-targeting nanobodies hold great promise as anti-inflammatory agents, yet this should be further tested for extrahepatic inflammatory disorders. Moreover, the pannexin1-targeting nanobodies represent novel tools for fundamental research regarding the role of pannexin1 channels in pathological and physiological processes.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
- Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, CH-1211, Geneva, Switzerland
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Bioengineering Sciences Department, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090, Brussels, Belgium.
| |
Collapse
|
31
|
Bitsch P, Baum ES, Beltrán Hernández I, Bitsch S, Harwood J, Oliveira S, Kolmar H. Penetration of Nanobody-Dextran Polymer Conjugates through Tumor Spheroids. Pharmaceutics 2023; 15:2374. [PMID: 37896133 PMCID: PMC10609859 DOI: 10.3390/pharmaceutics15102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Here we report the generation of nanobody dextran polymer conjugates (dextraknobs) that are loaded with small molecules, i.e., fluorophores or photosensitizers, for potential applications in cancer diagnostics and therapy. To this end, the molecules are conjugated to the dextran polymer which is coupled to the C-terminus of an EGFR-specific nanobody using chemoenzymatic approaches. A monovalent EGFR-targeted nanobody and biparatopic version modified with different dextran average molecular weights (1000, 5000, and 10,000) were probed for their ability to penetrate tumor spheroids. For monovalent Cy5-labeled dextraknobs, the utilization of smaller sized dextran (MW 5000 vs. 10,000) was found to be beneficial for more homogeneous penetration into A431 tumor spheroids over time. For the biparatopic dual nanobody comprising MW 1000, 5000, and 10,000 dextran labeled with photosensitizer IRDye700DX, penetration behavior was comparable to that of a direct nanobody-photosensitizer conjugate lacking a dextran scaffold. Additionally, dextraknobs labeled with IRDye700DX incubated with cells in 2D and 3D showed potent cell killing upon illumination, thus inducing photodynamic therapy (PDT). In line with previous results, monovalent nanobody conjugates displayed deeper and more homogenous penetration through spheroids than the bivalent conjugates. Importantly, the smaller size dextrans did not affect the distribution of the conjugates, thus encouraging further development of dextraknobs.
Collapse
Affiliation(s)
- Peter Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Eva S. Baum
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
| | - Irati Beltrán Hernández
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Jakob Harwood
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.B.); (I.B.H.)
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany; (P.B.); (S.B.); (J.H.)
- Centre of Synthetic Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
32
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
33
|
do Valle NCH, Janssen S, Stroet MCM, Pollenus S, Van den Block S, Devoogdt N, Debacker JM, Hernot S, De Rooster H. Safety assessment of fluorescently labeled anti-EGFR Nanobodies in healthy dogs. Front Pharmacol 2023; 14:1266288. [PMID: 37781693 PMCID: PMC10538052 DOI: 10.3389/fphar.2023.1266288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction: Surgical resection is one of the main treatment options for several types of cancer, the desired outcome being complete removal of the primary tumor and its local metastases. Any malignant tissue that remains after surgery may lead to relapsing disease, negatively impacting the patient's quality of life and overall survival. Fluorescence imaging in surgical oncology aims to facilitate full resection of solid tumors through the visualization of malignant tissue during surgery, following the administration of a fluorescent contrast agent. An important class of targeting molecules are Nanobodies® (Nbs), small antigen-binding fragments derived from camelid heavy chain only antibodies. When coupled with a fluorophore, Nbs can bind to a specific receptor and demarcate tumor margins through a fluorescence camera, improving the accuracy of surgical intervention. A widely investigated target for fluorescence-guided surgery is the epidermal growth factor receptor (EGFR), which is overexpressed in several types of tumors. Promising results with the fluorescently labeled anti-EGFR Nb 7D12-s775z in murine models motivated a project employing the compound in a pioneering study in dogs with spontaneous cancer. Methods: To determine the safety profile of the study drug, three healthy purpose-bred dogs received an intravenous injection of the tracer at 5.83, 11.66, and 19.47 mg/m2, separated by a 14-day wash-out period. Physical examination and fluorescence imaging were performed at established time points, and the animals were closely monitored between doses. Blood and urine values were analyzed pre- and 24 h post administration. Results: No adverse effects were observed, and blood and urine values stayed within the reference range. Images of the oral mucosa, acquired with a fluorescence imaging device (Fluobeam®), suggest rapid clearance, which was in accordance with previous in vivo studies. Discussion: These are the first results to indicate that 7D12-s775z is well tolerated in dogs and paves the way to conduct clinical trials in canine patients with EGFR-overexpressing spontaneous tumors.
Collapse
Affiliation(s)
- Nayra Cristina Herreira do Valle
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Simone Janssen
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Marcus C. M. Stroet
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie Pollenus
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sonja Van den Block
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jens M. Debacker
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Sophie Hernot
- Molecular Imaging and Therapy Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hilde De Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
King LA, Toffoli EC, Veth M, Iglesias-Guimarais V, Slot MC, Amsen D, van de Ven R, Derks S, Fransen MF, Tuynman JB, Riedl T, Roovers RC, Adang AEP, Ruben JM, Parren PWHI, de Gruijl TD, van der Vliet HJ. A Bispecific γδ T-cell Engager Targeting EGFR Activates a Potent Vγ9Vδ2 T cell-Mediated Immune Response against EGFR-Expressing Tumors. Cancer Immunol Res 2023; 11:1237-1252. [PMID: 37368791 DOI: 10.1158/2326-6066.cir-23-0189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models. Studies to explore safety were conducted using cross-reactive surrogate engagers in nonhuman primates (NHP). We found that Vγ9Vδ2 T cells from peripheral blood and tumor specimens of patients with EGFR+ cancers had a distinct immune checkpoint expression profile characterized by low levels of PD-1, LAG-3, and TIM-3. Vγ9Vδ2 T cells could be activated by EGFR-Vδ2 bsTCEs to mediate lysis of various EGFR+ patient-derived tumor samples, and substantial tumor growth inhibition and improved survival were observed in in vivo xenograft mouse models using peripheral blood mononuclear cells (PBMC) as effector cells. EGFR-Vδ2 bsTCEs exerted preferential activity toward EGFR+ tumor cells and induced downstream activation of CD4+ and CD8+ T cells and natural killer (NK) cells without concomitant activation of suppressive regulatory T cells observed with EGFR-CD3 bsTCEs. Administration of fully cross-reactive and half-life extended surrogate engagers to NHPs did not trigger signals in the safety parameters that were assessed. Considering the effector and immune-activating properties of Vγ9Vδ2 T cells, the preclinical efficacy data and acceptable safety profile reported here provide a solid basis for testing EGFR-Vδ2 bsTCEs in patients with EGFR+ malignancies.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elisa C Toffoli
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Manon C Slot
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Otolaryngology and Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thilo Riedl
- Lava Therapeutics NV, Utrecht, the Netherlands
| | | | | | | | - Paul W H I Parren
- Lava Therapeutics NV, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Lava Therapeutics NV, Utrecht, the Netherlands
| |
Collapse
|
35
|
Pourjafar M, Saidijam M, Miehe M, Najafi R, Soleimani M, Spillner E. Surfaceome Profiling Suggests Potential of Anti-MUC1×EGFR Bispecific Antibody for Breast Cancer Targeted Therapy. J Immunother 2023; 46:245-261. [PMID: 37493044 DOI: 10.1097/cji.0000000000000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
Breast cancer (BC) treatment has traditionally been challenging due to tumor heterogeneity. Bispecific antibodies (bsAbs) offer a promising approach for overcoming these challenges by targeting multiple specific epitopes. In the current study, we designed a new bsAb against the most common BC cell surface proteins (SPs). To achieve this, we analyzed RNA-sequencing data to identify differentially expressed genes, which were further evaluated using Gene Ontology enrichment, Hidden Markov Models, clinical trial data, and survival analysis to identify druggable gene-encoding cell SPs. Based on these analyses, we constructed and expressed a bsAb targeting the mucin 1 (MUC1) and epidermal growth factor receptor (EGFR) proteins, which are the dominant druggable gene-encoding cell SPs in BC. The recombinant anti-MUC1×EGFR bsAb demonstrated efficient production and high specificity for MUC1 and EGFR + cell lines and BC tissue. Furthermore, the bsAb significantly reduced the proliferation and migration of BC cells. Our results suggested that simultaneous targeting with bsAbs could be a promising targeted therapy for improving the overall efficacy of BC treatment.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Michaela Miehe
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Edzard Spillner
- Department of Biological and Chemical Engineering, Immunological Biotechnology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
De Fauw K, Umelo IA, Teng X, Vlyminck S, Rivera G, Brigé A, Delangle A. Theoretical charge plots as a tool for targeted and accelerated ion exchange chromatography method development of NANOBODY Ⓡ molecules. J Chromatogr A 2023; 1705:464137. [PMID: 37356365 DOI: 10.1016/j.chroma.2023.464137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
NANOBODYⓇ molecules are an innovative class of biotherapeutics based on heavy chain only VHH immunoglobulins. Much like canonical antibodies, they are prone to the formation of charge variants and other post-translational modifications, which can potentially impact their critical quality attributes. Therefore, establishing high-resolution product-specific methods, such as IEX chromatography, is essential for evaluating the purity of these molecules. However, due to the lower surface charge of NANOBODYⓇ molecules, their charge-based elution behavior can differ considerably from that of classical antibodies, resulting in a more extensive method development set-up for these smaller molecules. Using an initial pH screening gradient based on theoretical protein charge plots, we investigated the IEX retention behavior of eight NANOBODYⓇ molecules with a wide range of pI values (pI 5.0 to 10.0). Our findings reveal that the charge-based chromatographic behavior of NANOBODYⓇ molecules cannot be solely attributed to the isoelectric point (pI) of the protein. Rather, a molecule-specific charge threshold was identified as a critical parameter for NANOBODYⓇ molecule retention. Furthermore, the protein charge plot also showed that NANOBODYⓇ molecule elution can be characterized by a charge plateau where the net charge of the protein remains constant over a certain pH range (∼ pH 5.5 to pH 8.0), further challenging the paradigm that elution pH and pI are fixed values. The application of this theoretical approach using protein charge plots to define NANOBODYⓇ molecule charge threshold and charge plateau parameters, can reduce overall IEX method development turnaround time by at least 2-fold.
Collapse
Affiliation(s)
- Ken De Fauw
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ijeoma A Umelo
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Xia Teng
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Silke Vlyminck
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Gustavo Rivera
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Ann Brigé
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium
| | - Aurélie Delangle
- Sanofi Large Molecules Research, NANOBODY(Ⓡ) Research Platform, Analytics, Technologiepark 21, 9052 Zwijnaarde (Ghent), Belgium.
| |
Collapse
|
37
|
Atwell B, Chalasani P, Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:616-629. [PMID: 37720348 PMCID: PMC10501894 DOI: 10.37349/etat.2023.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most well-studied oncogenes with roles in proliferation, growth, metastasis, and therapeutic resistance. This intense study has led to the development of a range of targeted therapeutics including small-molecule tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and nanobodies. These drugs are excellent at blocking the activation and kinase function of wild-type EGFR (wtEGFR) and several common EGFR mutants. These drugs have significantly improved outcomes for patients with cancers including head and neck, glioblastoma, colorectal, and non-small cell lung cancer (NSCLC). However, therapeutic resistance is often seen, resulting from acquired mutations or activation of compensatory signaling pathways. Additionally, these therapies are ineffective in tumors where EGFR is found predominantly in the nucleus, as can be found in triple negative breast cancer (TNBC). In TNBC, EGFR is subjected to alternative trafficking which drives the nuclear localization of the receptor. In the nucleus, EGFR interacts with several proteins to activate transcription, DNA repair, migration, and chemoresistance. Nuclear EGFR (nEGFR) correlates with metastatic disease and worse patient prognosis yet targeting its nuclear localization has proved difficult. This review provides an overview of current EGFR-targeted therapies and novel peptide-based therapies that block nEGFR, as well as their clinical applications and potential for use in oncology.
Collapse
Affiliation(s)
- Benjamin Atwell
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Pavani Chalasani
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Joyce Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
38
|
Kunz S, Durandy M, Seguin L, Feral CC. NANOBODY ® Molecule, a Giga Medical Tool in Nanodimensions. Int J Mol Sci 2023; 24:13229. [PMID: 37686035 PMCID: PMC10487883 DOI: 10.3390/ijms241713229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Although antibodies remain the most widely used tool for biomedical research, antibody technology is not flawless. Innovative alternatives, such as Nanobody® molecules, were developed to address the shortcomings of conventional antibodies. Nanobody® molecules are antigen-binding variable-domain fragments derived from the heavy-chain-only antibodies of camelids (VHH) and combine the advantageous properties of small molecules and monoclonal antibodies. Nanobody® molecules present a small size (~15 kDa, 4 nm long and 2.5 nm wide), high solubility, stability, specificity, and affinity, ease of cloning, and thermal and chemical resistance. Recombinant production in microorganisms is cost-effective, and VHH are also building blocks for multidomain constructs. These unique features led to numerous applications in fundamental research, diagnostics, and therapy. Nanobody® molecules are employed as biomarker probes and, when fused to radioisotopes or fluorophores, represent ideal non-invasive in vivo imaging agents. They can be used as neutralizing agents, receptor-ligand antagonists, or in targeted vehicle-based drug therapy. As early as 2018, the first Nanobody®, Cablivi (caplacizumab), a single-domain antibody (sdAb) drug developed by French pharmaceutical giant Sanofi for the treatment of adult patients with acquired thrombocytopenic purpura (aTTP), was launched. Nanobody® compounds are ideal tools for further development in clinics for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Sarah Kunz
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
- Department of Oncology, Sanofi Research Center, 94400 Vitry-sur-Seine, France
| | - Manon Durandy
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Laetitia Seguin
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| | - Chloe C. Feral
- Université Côte d’Azur, CNRS UMR7284, INSERM U1081, IRCAN, 06107 Nice, France; (S.K.); (M.D.); (L.S.)
| |
Collapse
|
39
|
Moleirinho S, Kitamura Y, Borges PSGN, Auduong S, Kilic S, Deng D, Kanaya N, Kozono D, Zhou J, Gray JJ, Revai-Lechtich E, Zhu Y, Shah K. Fate and Efficacy of Engineered Allogeneic Stem Cells Targeting Cell Death and Proliferation Pathways in Primary and Brain Metastatic Lung Cancer. Stem Cells Transl Med 2023; 12:444-458. [PMID: 37311043 PMCID: PMC10346421 DOI: 10.1093/stcltm/szad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/07/2023] [Indexed: 06/15/2023] Open
Abstract
Primary and metastatic lung cancer is a leading cause of cancer-related death and novel therapies are urgently needed. Epidermal growth factor receptor (EGFR) and death receptor (DR) 4/5 are both highly expressed in primary and metastatic non-small cell lung cancer (NSCLC); however, targeting these receptors individually has demonstrated limited therapeutic benefit in patients. In this study, we created and characterized diagnostic and therapeutic stem cells (SC), expressing EGFR-targeted nanobody (EV) fused to the extracellular domain of death DR4/5 ligand (DRL) (EVDRL) that simultaneously targets EGFR and DR4/5, in primary and metastatic NSCLC tumor models. We show that EVDRL targets both cell surface receptors, and induces caspase-mediated apoptosis in a broad spectrum of NSCLC cell lines. Utilizing real-time dual imaging and correlative immunohistochemistry, we show that allogeneic SCs home to tumors and when engineered to express EVDRL, alleviate tumor burden and significantly increase survival in primary and brain metastatic NSCLC. This study reports mechanistic insights into simultaneous targeting of EGFR- and DR4/5 in lung tumors and presents a promising approach for translation into the clinical setting.
Collapse
Affiliation(s)
- Susana Moleirinho
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yohei Kitamura
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paulo S G N Borges
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sophia Auduong
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Seyda Kilic
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David Deng
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MA, USA
| | - Esther Revai-Lechtich
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yanni Zhu
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
40
|
Liu X, Balligand T, Carpenet C, Ploegh HL. An armed anti-immunoglobulin light chain nanobody protects mice against influenza A and B infections. Sci Immunol 2023; 8:eadg9459. [PMID: 37352373 PMCID: PMC10357953 DOI: 10.1126/sciimmunol.adg9459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
The immune system eliminates pathogen intruders such as viruses and bacteria. To recruit immune effectors to virus-infected cells, we conjugated a small molecule, the influenza neuraminidase inhibitor zanamivir, to a nanobody that recognizes the kappa light chains of mouse immunoglobulins. This adduct was designed to achieve half-life extension of zanamivir through complex formation with the much-larger immunoglobulins in the circulation. The zanamivir moiety targets the adduct to virus-infected cells, whereas the anti-kappa component simultaneously delivers polyclonal immunoglobulins of indeterminate specificity and all isotypes. Activation of antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity promoted elimination of influenza neuraminidase-positive cells. A single dose of the conjugate protected mice against influenza A or B viruses and was effective even when given several days after infection with a lethal dose of virus. In the absence of circulating immunoglobulins, we observed no in vivo protection from the adduct. The type of conjugates described here may thus find application for both anti-influenza prophylaxis and therapy.
Collapse
Affiliation(s)
- Xin Liu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Balligand
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claire Carpenet
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- CBS2 University of Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Deshmukh R, Prajapati M, Harwansh RK. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med Oncol 2023; 40:159. [PMID: 37097307 DOI: 10.1007/s12032-023-02020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Colorectal cancers are among the most commonly found cancers over the world. In spite of the recent advancements in diagnosis and prognosis, the management of this metastatic condition remains a challenge. The utility of monoclonal antibodies in the healing of patients with colorectal cancer has opened a new chapter in the quest for newer therapies. The resistance to the standard treatment regimen made it mandatory to search for newer targets. Mutagenic alterations in the gene engaged in cellular differentiation and growth pathway have been the reason for resistance to treatment. The newer therapies target the various proteins and receptors involved in the signal transduction and down streaming pathways leading to cell proliferation. This review presents an insight into the newer targeted therapies for colorectal cancer involving tyrosine kinase blockers, epidermal growth factor receptors, vascular endothelial growth factor, immune checkpoint therapy, and BRAF inhibitors.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| | - Mahendra Prajapati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
42
|
Siepe DH, Picton LK, Garcia KC. Receptor Elimination by E3 Ubiquitin Ligase Recruitment (REULR): A Targeted Protein Degradation Toolbox. ACS Synth Biol 2023; 12:1081-1093. [PMID: 37011906 PMCID: PMC10127277 DOI: 10.1021/acssynbio.2c00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 04/05/2023]
Abstract
In recent years, targeted protein degradation (TPD) of plasma membrane proteins by hijacking the ubiquitin proteasome system (UPS) or the lysosomal pathway has emerged as a novel therapeutic avenue in drug development to address and inhibit canonically difficult targets. While TPD strategies have been successful in targeting cell surface receptors, these approaches are limited by the availability of suitable binders to generate heterobifunctional molecules. Here, we present the development of a nanobody (VHH)-based degradation toolbox termed REULR (Receptor Elimination by E3 Ubiquitin Ligase Recruitment). We generated human and mouse cross-reactive nanobodies against five transmembrane PA-TM-RING-type E3 ubiquitin ligases (RNF128, RNF130, RNF167, RNF43, and ZNRF3), covering a broad range and selectivity of tissue expression, with which we characterized the expression in human and mouse cell lines and immune cells (PBMCs). We demonstrate that heterobifunctional REULR molecules can enforce transmembrane E3 ligase interactions with a variety of disease-relevant target receptors (EGFR, EPOR, and PD-1) by induced proximity, resulting in effective membrane clearance of the target receptor at varying levels. In addition, we designed E3 ligase self-degrading molecules, "fratricide" REULRs (RNF128, RNF130, RENF167, RNF43, and ZNRF3), that allow downregulation of one or several E3 ligases from the cell surface and consequently modulate receptor signaling strength. REULR molecules represent a VHH-based modular and versatile "mix and match" targeting strategy for the facile modulation of cell surface proteins by induced proximity to transmembrane PA-TM-RING E3 ligases.
Collapse
Affiliation(s)
- Dirk H. Siepe
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Lora K. Picton
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - K. Christopher Garcia
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Howard
Hughes Medical Institute, Stanford University
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
43
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 PMCID: PMC11725230 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
44
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
45
|
Bridge T, Wegmann U, Crack JC, Orman K, Shaikh SA, Farndon W, Martins C, Saalbach G, Sachdeva A. Site-specific encoding of photoactivity and photoreactivity into antibody fragments. Nat Chem Biol 2023; 19:740-749. [PMID: 36797401 DOI: 10.1038/s41589-022-01251-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Design of biomolecules that perform two or more distinct functions in response to light remains challenging. Here, we have introduced concurrent photoactivity and photoreactivity into an epidermal growth factor receptor (EGFR)-targeting antibody fragment, 7D12. This was achieved by site-specific incorporation of photocaged tyrosine (pcY) for photoactivity and p-benzoyl-ʟ-phenylalanine (Bpa) for photoreactivity into 7D12. We identified a position for installing Bpa in 7D12 that has minimal effect on 7D12-EGFR binding affinity in the absence of light. Upon exposure to 365-nm light, this Bpa-containing 7D12 mutant forms a covalent bond with EGFR in an antigen-specific manner. We then developed a method for site-specific incorporation of pcY and Bpa at two distinct sites in 7D12. Finally, we demonstrated that in the absence of light, this pcY- and Bpa-containing mutant of 7D12 does not bind to EGFR, but irradiation with 365-nm light activates (1) specific binding and (2) covalent bond formation with EGFR.
Collapse
Affiliation(s)
- Thomas Bridge
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Udo Wegmann
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Kate Orman
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Saher A Shaikh
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | - Carlo Martins
- Proteomics Facility, The John Innes Centre, Norwich, UK
| | | | - Amit Sachdeva
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
46
|
Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, Ramirez JT, McKeithan WL, Fattahi F, Klein OD, Fletcher DA, Lim WA. Programming multicellular assembly with synthetic cell adhesion molecules. Nature 2023; 614:144-152. [PMID: 36509107 PMCID: PMC9892004 DOI: 10.1038/s41586-022-05622-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.
Collapse
Affiliation(s)
- Adam J Stevens
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Andrew R Harris
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Josiah Gerdts
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Ki H Kim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jonathan T Ramirez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Wesley L McKeithan
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel A Fletcher
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Center for Cellular Construction, University of California, San Francisco, CA, USA.
| |
Collapse
|
47
|
Adyani SM, Rashidzadeh H, Behdani M, Tabatabaei Rezaei SJ, Ramazani A. In vitro evaluation of anti-angiogenesis property of anti-VEGFR2 nanobody-conjugated H40-PEG carrier loaded with methotrexate. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1477-1486. [PMID: 36544521 PMCID: PMC9742571 DOI: 10.22038/ijbms.2022.67038.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Objectives In this study, Boltorn® H40-PEG-MTX-anti-VEGFR2 nanobody was fabricated in which nanobody was selected for blocking the receptor, H40 as a nanocarrier for delivery of methotrexate (MTX) to the tumor cells, and polyethylene glycol (PEG) moieties for improving the blood circulation time and safety. Materials and Methods The synthesis process of the nanosystem has been characterized by different analytical methods. Results The prepared nanoplatform exhibited high drug loading capacity, excellent colloidal stability, and an average particle size of around 105 nm. MTX was successfully conjugated through ester bonds and its release profile clearly showed that the ester bond is in favor of releasing the drug in acidic pH (5.5). The cytotoxicity of the developed nanoplatform exhibited great anti-cancer activity against MCF7 and KDR293 (cells with overexpressed anti-VEGFR2 NB receptors) cell lines while no deleterious toxicity was observed for nanocarrier against HEK293 normal cells. Furthermore, both hemolysis and LD50 assay results confirmed the hemocompatibility and biocompatibility of the developed nanoplatform. Conclusion The most striking result to derive from the data is that the designed nanoplatform could potentially inhibit cell migration and invasion and the anti-angiogenesis properties of the developed nanoplatform may serve as a promising nanosystem to suppress the formation of blood vessels around tumor cells and consequently inhibit tumor progression.
Collapse
Affiliation(s)
- Seyed Masih Adyani
- Pharmaceutical Biomaterials Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid Rashidzadeh
- Pharmaceutical Biomaterials Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Behdani
- Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran,Corresponding authors: Mahdi Behdani. Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran. Tel: +98-24-33473636; Fax: +98-24-33473639; ; Ali Ramazani. Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran. Tel: +98-24-33473636; Fax: +98-24-33473639;
| | | | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran, Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran,Corresponding authors: Mahdi Behdani. Department of Molecular Medicine, Pasture Institute of Iran, Tehran, Iran. Tel: +98-24-33473636; Fax: +98-24-33473639; ; Ali Ramazani. Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran. Tel: +98-24-33473636; Fax: +98-24-33473639;
| |
Collapse
|
48
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front Microbiol 2022; 13:1043214. [PMID: 36523835 PMCID: PMC9744969 DOI: 10.3389/fmicb.2022.1043214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
Clostridioides difficile, the most common cause of nosocomial diarrhea, has been continuously reported as a worldwide problem in healthcare settings. Additionally, the emergence of hypervirulent strains of C. difficile has always been a critical concern and led to continuous efforts to develop more accurate diagnostic methods for detection of this recalcitrant pathogen. Currently, the diagnosis of C. difficile infection (CDI) is based on clinical manifestations and laboratory tests for detecting the bacterium and/or its toxins, which exhibit varied sensitivity and specificity. In this regard, development of rapid diagnostic techniques based on antibodies has demonstrated promising results in both research and clinical environments. Recently, application of recombinant antibody (rAb) technologies like phage display has provided a faster and more cost-effective approach for antibody production. The application of rAbs for developing ultrasensitive diagnostic tools ranging from immunoassays to immunosensors, has allowed the researchers to introduce new platforms with high sensitivity and specificity. Additionally, DNA encoding antibodies are directly accessible in these approaches, which enables the application of antibody engineering to increase their sensitivity and specificity. Here, we review the latest studies about the antibody-based ultrasensitive diagnostic platforms for detection of C. difficile bacteria, with an emphasis on rAb technologies.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Kinoshita S, Nakakido M, Mori C, Kuroda D, Caaveiro JM, Tsumoto K. Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Sci 2022; 31:e4450. [PMID: 36153698 PMCID: PMC9601775 DOI: 10.1002/pro.4450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
The camelid single domain antibody, referred to VHH or Nanobody, is considered a versatile tool for various biotechnological and clinical applications because of its favorable biophysical properties. To take advantage of these characteristics and for its application in biotechnology and therapy, research on VHH engineering is currently vigorously conducted. To humanize a camelid VHH, we performed complementarity determining region (CDR) grafting using a humanized VHH currently in clinical trials, and investigated the effects of these changes on the biophysical properties of the resulting VHH. The chimeric VHH exhibited a significant decrease in affinity and thermal stability and a large conformational change in the CDR3. To elucidate the molecular basis for these changes, we performed mutational analyses on the framework regions revealing the contribution of individual residues within the framework region. It is demonstrated that the mutations resulted in the loss of affinity and lower thermal stability, revealing the significance of bulky residues in the vicinity of the CDR3, and the importance of intramolecular interactions between the CDR3 and the framework-2 region. Subsequently, we performed back-mutational analyses on the chimeric VHH. Back-mutations resulted in an increase of the thermal stability and affinity. These data suggested that back-mutations restored the intramolecular interactions, and proper positioning and/or dynamics of the CDR3, resulting in the gain of thermal stability and affinity. These observations revealed the molecular contribution of the framework region on VHHs and further designability of the framework region of VHHs without modifying the CDRs.
Collapse
Affiliation(s)
- Seisho Kinoshita
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Chinatsu Mori
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Kuroda
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Research Center for Drug and Vaccine DevelopmentNational Institute of Infectious DiseasesTokyoJapan
| | - Jose M.M. Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- Medical Proteomics Laboratory, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
50
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|