1
|
Yang Y, Liu P, Jin Y, Zhu H, Wang M, Jiang X, Gao H. A combined treatment with Ursolic acid and Solasodine inhibits colorectal cancer progression through the AKT1/ERK1/2-GSK-3β-β-catenin axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156068. [PMID: 39515101 DOI: 10.1016/j.phymed.2024.156068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Conventional chemotherapy medications are inadequate for managing the primary or acquired drug resistance, high toxicity, and adverse effects of colorectal cancer (CRC) treatment. Ursolic acid (UA) and Solasodine (Sol) are natural compounds found in a wide variety of traditional medicinal plants, as well as in many fruits and vegetables, such as Actinidia arguta (Sieb. & Zucc) Planch and Solanum nigrum L.. These compounds exhibit significant anti-tumor activity. Recent investigations have demonstrated that a combination strategy using natural products exhibits greater potential in CRC treatment compared to a single-drug strategy. PURPOSE This study aimed to elucidate the potential of UA-Sol synergy against CRC and to investigate the mechanism of action involved in inducing apoptosis and inhibiting metastasis through the AKT1/ERK1/2-GSK-3β-β-catenin axis. METHODS The optimal ratio of UA-Sol and its synergistic effects were explored using an MTT assay combined with the technique of Chou Talalay. The effects of UA-Sol on the apoptosis, autophagy, and metastasis of CRC cells were assessed using Annexin V-FITC/PI, TUNEL, Immunofluorescence, Wound healing, Transwell migration, and western blotting. The core mechanism of action of UA-Sol against CRC was investigated employing network pharmacology prediction combined with CETSA and plasmid transfection. Finally, in vivo validation was conducted using mouse xenograft tumor and lung metastasis models. RESULTS The combination of UA and Sol synergistically inhibited CRC cell viability at a molar ratio of 6:24. UA-Sol induced the expression of pro-apoptotic and autophagy genes such as Bax/Bcl-2 and LC3, ultimately leading to apoptosis and autophagy in CRC cells in vitro. In addition, this combination inhibited MMP-9 and promoted the expression of the adhesion protein E-cadherin, thereby inhibiting CRC cell metastasis. Mechanistically, UA-Sol regulated the expression of a downstream protein GSK-3β by targeting AKT1 and ERK1/2 inhibition. This induced a cross-talk between the MAPK cascade pathway and the PI3K/AKT pathway, thereby inhibiting the nuclear translocation of β-catenin and participating in the regulation of CRC cell processes. CONCLUSION UA-Sol inhibited the AKT1/ERK1/2-GSK-3β-β-catenin axis to induce apoptosis, autophagy and anti-metastasis by targeting AKT1 and ERK1/2 inhibition. This dual-target drug combination strategy provides promising insights into the development of novel, safe, and efficient drugs for the treatment of CRC.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Huilin Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
2
|
Gupta KB, Gao J, Li X, Thangaraju M, Panda SS, Lokeshwar BL. Cytotoxic Autophagy: A Novel Treatment Paradigm against Breast Cancer Using Oleanolic Acid and Ursolic Acid. Cancers (Basel) 2024; 16:3367. [PMID: 39409987 PMCID: PMC11476055 DOI: 10.3390/cancers16193367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Oleanolic acid (OA) and Ursolic acid (UA) are bioactive triterpenoids. Reported activities vary with the dose used for testing their activities in vitro. Studies using doses of ≥20 µM showed apoptosis activities in cancer cells. However, reported drug levels in circulation achieved by oral administration of UA and OA are ≤2 µM, thus limiting their use for treatment or delivering a combination treatment. MATERIALS AND METHODS The present report demonstrates the efficacy of OA, UA, and OA + UA on tumor cell-specific cytotoxicity at low doses (5 µM to 10 µM) in breast cancer (BrCa) cell lines MCF7 and MDA-MB231. RESULTS The data show that both OA and UA killed BrCa cells at low doses, but were significantly less toxic to MCF-12A, a non-tumorigenic cell line. Moreover, OA + UA at ≤10 µM was lethal to BrCa cells. Mechanistic studies unraveled the significant absence of apoptosis, but their cytotoxicity was due to the induction of excessive autophagy at a OA + UA dose of 5 µM each. A link to drug-induced cytotoxic autophagy was established by demonstrating a lack of their cytotoxicity by silencing the autophagy-targeting genes (ATGs), which prevented OA-, UA-, or OA + UA-induced cell death. Further, UA or OA + UA treatment of BrCa cells caused an inhibition of PI3 kinase-mediated phosphorylation of Akt/mTOR, the key pathways that regulate cancer cell survival, metabolism, and proliferation. DISCUSSION Combinations of a PI3K inhibitor (LY294002) with OA, UA, or OA + UA synergistically inhibited BrCa cell survival. Therefore, the dominance of cytotoxic autophagy by inhibiting PI3K-mediated autophagy may be the primary mechanism of PTT-induced anticancer activity in BrCa cells. CONCLUSION These results suggest it would be worthwhile testing combined OA and UA in clinical settings.
Collapse
Affiliation(s)
- Kunj Bihari Gupta
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.B.G.); (J.G.); (X.L.)
| | - Jie Gao
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.B.G.); (J.G.); (X.L.)
- Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xin Li
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.B.G.); (J.G.); (X.L.)
- The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.T.); (S.S.P.)
| | - Siva S. Panda
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (M.T.); (S.S.P.)
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Augusta University, Augusta, GA 30912, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.B.G.); (J.G.); (X.L.)
| |
Collapse
|
3
|
Liu Y, Wang Y, Zhang J, Peng Q, Wang X, Xiao X, Shi K. Nanotherapeutics targeting autophagy regulation for improved cancer therapy. Acta Pharm Sin B 2024; 14:2447-2474. [PMID: 38828133 PMCID: PMC11143539 DOI: 10.1016/j.apsb.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical efficacy of current cancer therapies falls short, and there is a pressing demand to integrate new targets with conventional therapies. Autophagy, a highly conserved self-degradation process, has received considerable attention as an emerging therapeutic target for cancer. With the rapid development of nanomedicine, nanomaterials have been widely utilized in cancer therapy due to their unrivaled delivery performance. Hence, considering the potential benefits of integrating autophagy and nanotechnology in cancer therapy, we outline the latest advances in autophagy-based nanotherapeutics. Based on a brief background related to autophagy and nanotherapeutics and their impact on tumor progression, the feasibility of autophagy-based nanotherapeutics for cancer treatment is demonstrated. Further, emerging nanotherapeutics developed to modulate autophagy are reviewed from the perspective of cell signaling pathways, including modulation of the mammalian target of rapamycin (mTOR) pathway, autophagy-related (ATG) and its complex expression, reactive oxygen species (ROS) and mitophagy, interference with autophagosome-lysosome fusion, and inhibition of hypoxia-mediated autophagy. In addition, combination therapies in which nano-autophagy modulation is combined with chemotherapy, phototherapy, and immunotherapy are also described. Finally, the prospects and challenges of autophagy-based nanotherapeutics for efficient cancer treatment are envisioned.
Collapse
Affiliation(s)
- Yunmeng Liu
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yaxin Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jincheng Zhang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qikai Peng
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xingdong Wang
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiyue Xiao
- College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Kai Shi
- College of Pharmacy, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Oyeyemi IT, Ojo TD, Oyeyemi OT. Hoslundia opposita Vahl. - A Promising Source of Bioactive Compounds
against Infectious and Non-infectious Diseases. CURRENT TRADITIONAL MEDICINE 2023; 9. [DOI: 10.2174/2215083808666220921163011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hoslundia opposita is an aromatic plant of the family Lamiaceae and the only member of
the Hoslundia genus. It is used traditionally for treating HIV/AIDs related diseases, Breast cancer,
gonorrhea, syphilis, appendicitis, epilepsy and convulsion, malaria, etc. A review of relevant literature
on biology, folkloric uses, phytochemistry and pharmacology were done. The electronic databases
searched included Google Scholar, PubMed, Science Direct, Wiley and Springer. Sixteen bioactive
compounds have been isolated from the plants, namely; 3-O-benzoylhosloppone, 3-Ocinnamoylhosloppone,
3-O-benzoylhinokiol, 3-O-benzoylhosloquine, Euscaphic acid, 5,7-
dimethoxy6-methylflavone, Hoslunddiol, Oppositin, 5-O-methylhoslundin, Tectochrysin, Hoslundin,
Hoslunfuranine, 5-O-methylhoslunfuranine, Hosloppin, Hoslundal and Ursolic acid. The
plant, with its phytochemicals, has shown various pharmacological effects such as antimalarial, antidiabetes,
antioxidant, anti-inflammatory, anticancer and immunomodulatory effects. This review
presented scientific findings on the therapeutic potential of Hoslundia opposita against several infectious
and non-infectious diseases. There is a need for further investigation of the mechanism underlying
the therapeutic potential of this plant against various diseases. There is also a need for clinical
trials which will validate its efficacy and safety.
Collapse
Affiliation(s)
- Ifeoluwa T. Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Odosida, Nigeria
| | - Tunbi D. Ojo
- Department of Pharmacognosy,
University of Ibadan, Ibadan, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biological Sciences, University of Medical Sciences, Odosida, Nigeria
| |
Collapse
|
5
|
Bang Y, Kwon Y, Kim M, Moon SH, Jung K, Choi HJ. Ursolic acid enhances autophagic clearance and ameliorates motor and non-motor symptoms in Parkinson's disease mice model. Acta Pharmacol Sin 2023; 44:752-765. [PMID: 36138143 PMCID: PMC10042858 DOI: 10.1038/s41401-022-00988-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
Protein aggregation and the abnormal accumulation of aggregates are considered as common mechanisms of neurodegeneration such as Parkinson's disease (PD). Ursolic acid (UA), a natural pentacyclic triterpenoid compound, has shown a protective activity in several experimental models of brain dysfunction through inhibiting oxidative stress and inflammatory responses and suppressing apoptotic signaling in the brain. In this study, we investigated whether UA promoted autophagic clearance of protein aggregates and attenuated the pathology and characteristic symptoms in PD mouse model. Mice were injected with rotenone (1 mg · kg-1 · d-1, i.p.) five times per week for 1 or 2 weeks. We showed that rotenone injection induced significant motor deficit and prodromal non-motor symptoms accompanied by a significant dopaminergic neuronal loss and the deposition of aggregated proteins such as p62 and ubiquitin in the substantia nigra and striatum. Co-injection of UA (10 mg · kg-1 · d-1, i.p.) ameliorated all the rotenone-induced pathological alterations. In differentiated human neuroblastoma SH-SY5Y cells, two-step treatment with a proteasome inhibitor MG132 (0.25, 2.5 μM) induced marked accumulation of ubiquitin and p62 with clear and larger aggresome formation, while UA (5 μM) significantly attenuated the MG132-induced protein accumulation. Furthermore, we demonstrated that UA (5 μM) significantly increased autophagic clearance by promoting autophagic flux in primary neuronal cells and SH-SY5Y cells; UA affected autophagy regulation by increasing the phosphorylation of JNK, which triggered the dissociation of Bcl-2 from Beclin 1. These results suggest that UA could be a promising therapeutic candidate for reducing PD progression from the prodromal stage by regulating abnormal protein accumulation in the brain.
Collapse
Affiliation(s)
- Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Yoonjung Kwon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Mihyang Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Soung Hee Moon
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Kiwon Jung
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, South Korea.
| |
Collapse
|
6
|
Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells 2022; 11:cells11244079. [PMID: 36552844 PMCID: PMC9776894 DOI: 10.3390/cells11244079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.
Collapse
|
7
|
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022; 30:1493-1501. [PMID: 35922738 PMCID: PMC9362167 DOI: 10.1007/s10787-022-01038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW Australia
- AFNP Med, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AL Beheira, Damanhour, 22511 Egypt
| |
Collapse
|
8
|
Vanrell MC, Martinez SJ, Muñoz LI, Salassa BN, Gambarte Tudela J, Romano PS. Induction of Autophagy by Ursolic Acid Promotes the Elimination of Trypanosoma cruzi Amastigotes From Macrophages and Cardiac Cells. Front Cell Infect Microbiol 2022; 12:919096. [PMID: 36004334 PMCID: PMC9394444 DOI: 10.3389/fcimb.2022.919096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi, is an infectious illness endemic to Latin America and still lacks an effective treatment for the chronic stage. In a previous study in our laboratory, we established the protective role of host autophagy in vivo during T. cruzi infection in mice and proposed this process as one of the mechanisms involved in the innate immune response against this parasite. In the search for an autophagy inducer that increases the anti-T. cruzi response in the host, we found ursolic acid (UA), a natural pentacyclic triterpene with many biological actions including autophagy induction. The aim of this work was to study the effect of UA on T. cruzi infection in vitro in the late infection stage, when the nests of intracellular parasites are forming, in both macrophages and cardiac cells. To test this effect, the cells were infected with T. cruzi for 24 h and then treated with UA (5–10 µM). The data showed that UA significantly decreased the number of amastigotes found in infected cells in comparison with non-treated cells. UA also induced the autophagy response in both macrophages and cardiac cells under the studied conditions, and the inhibition of this pathway during UA treatment restored the level of infection. Interestingly, LC3 protein, the main marker of autophagy, was recruited around amastigotes and the acidic probe LysoTracker localized with them, two key features of xenophagy. A direct cytotoxic effect of UA was also found on trypomastigotes of T. cruzi, whereas epimastigotes and amastigotes displayed more resistance to this drug at the studied concentrations. Taken together, these data showed that this natural compound reduces T. cruzi infection in the later stages by promoting parasite damage through the induction of autophagy. This action, in addition to the effect of this compound on trypomastigotes, points to UA as an interesting lead for Chagas disease treatment in the future.
Collapse
Affiliation(s)
- María Cristina Vanrell
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| | - Santiago José Martinez
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Lucila Ibel Muñoz
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Patricia Silvia Romano
- Laboratorio de biología de Trypanosoma cruzi y la célula hospedadora, Instituto de Histología y Embriología de Mendoza, Instituto de Histología y Embriología de Mendoza-Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET)-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: María Cristina Vanrell, ; Patricia Silvia Romano,
| |
Collapse
|
9
|
Wang Z, Zhang P, Jiang H, Sun B, Luo H, Jia A. Ursolic Acid Enhances the Sensitivity of MCF-7 and MDA-MB-231 Cells to Epirubicin by Modulating the Autophagy Pathway. Molecules 2022; 27:3399. [PMID: 35684339 PMCID: PMC9182048 DOI: 10.3390/molecules27113399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women in the world, and its morbidity and mortality are increasing year by year. Epirubicin (EPI) is a commonly used drug for the treatment of breast cancer but unfortunately can cause cardiac toxicity in patients because of dose accumulation. Therefore, there is an urgent need for new therapies to enhance the sensitivity of breast cancer cells to EPI. In this study, we found ursolic acid (UA) can significantly improve the drug sensitivity of human breast cancer MCF-7/MDA-MB-231 cells to EPI. Next, we observed that the co-treatment of UA and EPI can up-regulate the expression of autophagy-related proteins Beclin-1, LC3-II/LC3-I, Atg5, and Atg7, and decrease the expression levels of PI3K and AKT, which indicates that the potential mechanism should be carried out by the regulating class III PI3K(VPS34)/Beclin-1 pathway and PI3K/AKT/mTOR pathway. Furthermore, we found the autophagy inhibitor 3-methyladenine (3-MA) could significantly reverse the inhibitory effect of co-treatment of UA and EPI on MCF-7 and MDA-MB-231 cells. These findings indicate that UA can dramatically enhance the sensitivity of MCF-7 and MDA-MB-231 cells to EPI by modulating the autophagy pathway. Our study may provide a new therapeutic strategy for combination therapy.
Collapse
Affiliation(s)
- Zhennan Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Pingping Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Huan Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Bing Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Huaizhi Luo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (Z.W.); (H.J.); (B.S.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| |
Collapse
|
10
|
Antitumor Effects of Natural Bioactive Ursolic Acid in Embryonic Cancer Stem Cells. JOURNAL OF ONCOLOGY 2022; 2022:6737248. [PMID: 35222644 PMCID: PMC8866021 DOI: 10.1155/2022/6737248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/22/2022] [Indexed: 11/17/2022]
Abstract
Embryonic cancer cells (CSCs) could cause different types of cancer, a skill that makes them even more dangerous than other cancer cells. Identifying CSCs using natural products is a good option as it inhibits the recurrence of cancer with moderate various effects. Ursolic acid (UA) is a pentacyclic triterpenoid extracted from fruit and herbal remedies and has known anticancer functions against various cancer cells. However, its potential against CSCs remains uncertain. This study was planned to examine the induction of cell apoptosis by the UA. For cell signaling studies, we performed experiments, which are real-time qPCR and immunoblotting. Also, various cellular processes were analyzed using flow cytometry. The results raised a barrier to cell proliferation by the UA in NTERA-2 and NCCIT cells. Morphological studies also confirmed the UA's ability to cause cell death in embryonic CSCs. Examination of cell death importation showed that the UA formed the expression of the iNOS and thus the cell generation and mitochondrial reactive oxygen generation, which created a reaction to cellular DNA damage by raising the protein levels of phospho-histone ATR and ATM. In addition, the UA created the binding of the G0/G1 cell cycle to NTERA-2 and NCCIT cells, improved the expression levels of p21 and p27, and reduced the expression levels of CDK4, cyclin D1, and cyclin E, confirming the UA's ability to initiate cell cycle arrest. Finally, the UA created an internal mechanism of apoptosis in the embryonic CSC using BAX and cytochrome c regulation as well as the regulation of BCL-xL and BCL-2 proteins. Therefore, UA could be the best candidate for targeting CSCs and thus suppressing the emergence of cancer.
Collapse
|
11
|
Wang S, Chang X, Zhang J, Li J, Wang N, Yang B, Pan B, Zheng Y, Wang X, Ou H, Wang Z. Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling. Front Oncol 2021; 11:745584. [PMID: 34568078 PMCID: PMC8457520 DOI: 10.3389/fonc.2021.745584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023] Open
Abstract
Breast cancer remains the most common malignancy and the leading causality of cancer-associated mortality among women worldwide. With proven efficacy, Oldenlandia diffusa has been extensively applied in breast cancer treatment in Traditional Chinese Medicine (TCM) for thousands of years. However, the bioactive compounds of Oldenlandia diffusa accounting for its anti-breast cancer activity and the underlying biological mechanisms remain to be uncovered. Herein, bioactivity-guided fractionation suggested ursolic acid as the strongest anti-breast cancer compound in Oldenlandia diffusa. Ursolic acid treatment dramatically suppressed the proliferation and promoted mitochondrial-mediated apoptosis in breast cancer cells while brought little cytotoxicities in nonmalignant mammary epithelial cells in vitro. Meanwhile, ursolic acid dramatically impaired both the glycolytic metabolism and mitochondrial respiration function of breast cancer cells. Further investigations demonstrated that ursolic acid may impair the glycolytic metabolism of breast cancer cells by activating Caveolin-1 (Cav-1) signaling, as Cav-1 knockdown could partially abrogate the suppressive effect of ursolic acid on that. Mechanistically, ursolic acid could activate SP1-mediated CAV1 transcription by promoting SP1 expression as well as its binding with CAV1 promoter region. More meaningfully, ursolic acid administration could dramatically suppress the growth and metastasis of breast cancer in both the zebrafish and mouse xenotransplantation models of breast cancer in vivo without any detectable hepatotoxicity, nephrotoxicity or hematotoxicity. This study not only provides preclinical evidence supporting the application of ursolic acid as a promising candidate drug for breast cancer treatment but also sheds novel light on Cav-1 as a druggable target for glycolytic modulation of breast cancer.
Collapse
Affiliation(s)
- Shengqi Wang
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hesheng Ou
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhiyu Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Wang C, Qu L, Li S, Yin F, Ji L, Peng W, Luo H, Lu D, Liu X, Chen X, Kong L, Wang X. Discovery of First-in-Class Dual PARP and EZH2 Inhibitors for Triple-Negative Breast Cancer with Wild-Type BRCA. J Med Chem 2021; 64:12630-12650. [PMID: 34455779 DOI: 10.1021/acs.jmedchem.1c00567] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PARP inhibitors have highly significant effects on BRCA mutant cells, allowing targeted therapy of triple-negative breast cancer (TNBC). However, some TBNC patients lack BRCA mutations. Recent studies have shown that EZH2 inhibitors can increase the sensitivity of wild-type BRCA cells to PARP inhibitors. We designed a series of dual PARP and EZH2 inhibitors, and the most promising compound, 5a, showed good inhibitory activity against PARP-1 and EZH2 and good inhibitory effects on MDA-MB-231 (IC50 = 2.63 μM) and MDA-MB-468 (IC50 = 0.41 μM) cells with wild-type BRCA. Compared with that of olaparib, the growth inhibitory activities against these two cell types increased by approximately 15- and 80-fold, respectively, which was even more effective than the combination of olaparib and tazemetostat/GSK126. 5a can induce autophagy death of tumor cells and cause less damage to normal cells. Therefore, 5a, as a first-in-class dual PARP and EZH2 inhibitor, is a potential anticancer drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
13
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
14
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
15
|
Tumor-suppressing effect of bartogenic acid in ovarian (SKOV-3) xenograft mouse model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1815-1826. [PMID: 34255109 DOI: 10.1007/s00210-021-02088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Bartogenic acid (BA), a natural pentacyclic triterpenoid, proved to have chemomodulatory, anticancer, antidiabetic, anti-arthritic, and anti-inflammatory activity. Based on structure-activity relationship (SAR) approaches, BA has close structural resemblance to oleanolic acid and ursolic acid. These two pentacyclic triterpenoids are well accepted with respect to their therapeutic value in various ailments including anti-cancer activity. The aim of this study is to evaluate the efficacy of BA as a possible antitumor agent, along with its safety in SKOV-3 ovarian cancer. In vitro cytotoxicity of BA and paclitaxel on human ovarian cancer cells (SKOV-3) was assessed using MTT assay. Antitumor potential of BA alone, standard anticancer drug (paclitaxel) alone, and BA in combination with paclitaxel were evaluated in SKOV-3 xenografted SCID mice. Immunohistochemical analysis of NF-κB was performed and analyzed in SKOV-3 tumors. BA alone and BA in combination with paclitaxel significantly inhibited the tumor growth. IC50 of BA was found to be 15.72 μM. Similarly, paclitaxel showed significant antitumor effect with IC50 of 3.234 μM. Treatments of paclitaxel, BA, and combination of BA with paclitaxel were well tolerated during treatment period. Immunohistochemical analysis of NF-κB in SKOV-3 tumors treated with BA in combination with paclitaxel revealed antitumor effect in terms of inhibition of NF-κB. Our results suggested that BA exhibits promising antitumor effect in the restriction of SKOV-3 cells and tumors with considerable safety.
Collapse
|
16
|
Kang DY, Sp N, Lee JM, Jang KJ. Antitumor Effects of Ursolic Acid through Mediating the Inhibition of STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer Cells. Biomedicines 2021; 9:biomedicines9030297. [PMID: 33805840 PMCID: PMC7998465 DOI: 10.3390/biomedicines9030297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Targeted therapy based on natural compounds is one of the best approaches against non-small cell lung cancer. Ursolic acid (UA), a pentacyclic triterpenoid derived from medicinal herbs, has anticancer activity. Studies on the molecular mechanism underlying UA’s anticancer activity are ongoing. Here, we demonstrated UA’s anticancer activity and the underlying signaling mechanisms. We used Western blotting and real-time quantitative polymerase chain reaction for molecular signaling analysis. We also used in vitro angiogenesis, wound healing, and invasion assays to study UA’s anticancer activity. In addition, we used tumorsphere formation and chromatin immunoprecipitation assays for binding studies. The results showed that UA inhibited the proliferation of A549 and H460 cells in a concentration-dependent manner. UA exerted anticancer effects by inducing G0/G1 cell cycle arrest and apoptosis. It also inhibited tumor angiogenesis, migration, invasion, and tumorsphere formation. The molecular mechanism underlying UA activity involves UA’s binding to epidermal growth factor receptor (EGFR), reducing the level of phospho-EGFR, and thus inhibiting the downstream JAK2/STAT3 pathway. Furthermore, UA reduced the expressions of vascular endothelial growth factor (VEGF), metalloproteinases (MMPs) and programmed death ligand-1 (PD-L1), as well as the formation of STAT3/MMP2 and STAT3/PD-L1 complexes. Altogether, UA exhibits anticancer activities by inhibiting MMP2 and PD-L1 expression through EGFR/JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju 27478, Korea; (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
17
|
Ursolic Acid Inhibits Collective Cell Migration and Promotes JNK-Dependent Lysosomal Associated Cell Death in Glioblastoma Multiforme Cells. Pharmaceuticals (Basel) 2021; 14:ph14020091. [PMID: 33530486 PMCID: PMC7911358 DOI: 10.3390/ph14020091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a bioactive compound which has demonstrated therapeutic efficacy in a variety of cancer cell lines. UA activates various signalling pathways in Glioblastoma multiforme (GBM) and offers a promising starting point in drug discovery; however, understanding the relationship between cell death and migration has yet to be elucidated. UA induces a dose dependent cytotoxic response demonstrated by flow cytometry and biochemical cytotoxicity assays. Inhibitor and fluorescent probe studies demonstrate that UA induces a caspase independent, JNK dependent, mechanism of cell death. Migration studies established that UA inhibits GBM collective cell migration in a time dependent manner that is independent of the JNK signalling pathway. Cytotoxicity induced by UA results in the formation of acidic vesicle organelles (AVOs), speculating the activation of autophagy. However, inhibitor and spectrophotometric analysis demonstrated that autophagy was not responsible for the formation of the AVOs. Confocal microscopy and isosurface visualisation determined co-localisation of lysosomes with the previously identified AVOs, thus providing evidence that lysosomes are likely to be playing a role in UA induced cell death. Collectively, our data identify that UA rapidly induces a lysosomal associated mechanism of cell death in addition to UA acting as an inhibitor of GBM collective cell migration.
Collapse
|
18
|
Lee NR, Meng RY, Rah SY, Jin H, Ray N, Kim SH, Park BH, Kim SM. Reactive Oxygen Species-Mediated Autophagy by Ursolic Acid Inhibits Growth and Metastasis of Esophageal Cancer Cells. Int J Mol Sci 2020; 21:E9409. [PMID: 33321911 PMCID: PMC7764507 DOI: 10.3390/ijms21249409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) possesses various pharmacological activities, such as antitumorigenic and anti-inflammatory effects. In the present study, we investigated the mechanisms underlying the effects of UA against esophageal squamous cell carcinoma (ESCC) (TE-8 cells and TE-12 cells). The cell viability assay showed that UA decreased the viability of ESCC in a dose-dependent manner. In the soft agar colony formation assay, the colony numbers and size were reduced in a dose-dependent manner after UA treatment. UA caused the accumulation of vacuoles and LC3 puncta, a marker of autophagosome, in a dose-dependent manner. Autophagy induction was confirmed by measuring the expression levels of LC3 and p62 protein in ESCC cells. UA increased LC3-II protein levels and decreased p62 levels in ESCC cells. When autophagy was hampered using 3-methyladenine (3-MA), the effect of UA on cell viability was reversed. UA also significantly inhibited protein kinase B (Akt) activation and increased p-Akt expression in a dose-dependent manner in ESCC cells. Accumulated LC3 puncta by UA was reversed after wortmannin treatment. LC3-II protein levels were also decreased after treatment with Akt inhibitor and wortmannin. Moreover, UA treatment increased cellular reactive oxygen species (ROS) levels in ESCC in a time- and dose-dependent manner. Diphenyleneiodonium (an ROS production inhibitor) blocked the ROS and UA induced accumulation of LC3-II levels in ESCC cells, suggesting that UA-induced cell death and autophagy are mediated by ROS. Therefore, our data indicate that UA inhibits the growth of ESCC cells by inducing ROS-dependent autophagy.
Collapse
Affiliation(s)
- Na-Ri Lee
- Division of Hematology and Oncology, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine, Biomedical Research Institute of Jeonbuk National University Medical School, Jeonju 54907, Korea
| | - Ruo Yu Meng
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| | - So-Young Rah
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.-Y.R.); (B.H.P.)
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Navin Ray
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| | - Seong-Hun Kim
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54907, Korea;
| | - Byung Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.-Y.R.); (B.H.P.)
| | - Soo Mi Kim
- Department of Physiology and Institute of Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Korea; (R.Y.M.); (N.R.)
| |
Collapse
|
19
|
Rajamani K, Thirugnanasambandan SS, Natesan C, Subramaniam S, Thangavel B, Aravindan N. Squalene deters drivers of RCC disease progression beyond VHL status. Cell Biol Toxicol 2020; 37:611-631. [PMID: 33219891 DOI: 10.1007/s10565-020-09566-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Identifying drug candidates to target cellular events/signaling that evades von Hippel-Lindau tumor suppressor (VHL) gene interaction is critical for the cure of renal cell carcinoma (RCC). Recently, we characterized a triterpene-squalene derived from marine brown alga. Herein, we investigated the potential of squalene in targeting HIF-signaling and other drivers of RCC progression. Squalene inhibited cell proliferation, induced cell dealth and reverted the cells' metastatic state (migration, clonal expansion) independent of their VHL status. Near-identical inhibition of HIF-1α and HIF-2α and the regulation of downstream targets in VHL wild type and mutant cell lines demonstrated squalene efficacy beyond VHL-HIF interaction. In a rat model of chemically induced RCC, squalene displayed chemopreventive capabilities by substantial reversal of lipid peroxidation, mitochondrial redox regulation, maintaining ∆ψm, inflammation [Akt, nuclear factor κB (NF-κB)], angiogenesis (VEGFα), metastasis [matrix metalloproteinase 2 (MMP-2)], and survival (Bax/Bcl2, cytochrome-c, Casp3). Squalene restored glutathione, glutathione reductase, glutathione-s-transferase, catalase, and superoxide dismutase and stabilized alkaline phosphatase, alkaline transaminase, and aspartate transaminase. The correlation of thiobarbituric acid reactive substance with VEGF/NF-κB and negative association of GSH with Casp3 show that squalene employs reduction in ROS regulation. Cytokinesis-block micronuclei (CBMN) assay in VHLwt/mut cells revealed both direct and bystander effects of squalene with increased micronucleus (MN) frequency. Clastogenicity analysis of rat bone marrow cells demonstrated an anti-clastogenic effect of squalene, with increased polychromatic erythrocytes (PCEs), decreased MNPCE,s and MN normochromatic erythrocytes. Squalene could effectively target HIF signaling that orchestrate RCC evolution. The efficacy of squalene is similar in VHLwt and VHLmut RCC cells, and hence, squalene could serve as a promising drug candidate for an RCC cure beyond VHL status and VHL-HIF interaction dependency. Summary: Squalene derived from marine brown algae displays strong anti-cancer (RCC) activity, functionally targeting HIF-signaling pathway, and affects various cellular process. The significance of squalene effect for RCC is highlighted by its efficiency beyond VHL status, designating itself a promising drug candidate. Graphical abstract.
Collapse
Affiliation(s)
- Karthikeyan Rajamani
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608502, TN, India.
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India.
- WHO Collaborating Center for Occupational and Environmental Health, ICMR Center for Air Quality, Climate and Health, Department of Environmental Health Engineering, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, TN, 600116, India.
| | | | - Chidambaram Natesan
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India
| | - Sethupathy Subramaniam
- Rajah Muthiah Medical College, Annamalai University, Annamalai Nagar, Chidambaram, 608002, TN, India
| | | | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, BMSB 737, 947 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Molecular Insights into the Multifunctional Role of Natural Compounds: Autophagy Modulation and Cancer Prevention. Biomedicines 2020; 8:biomedicines8110517. [PMID: 33228222 PMCID: PMC7699596 DOI: 10.3390/biomedicines8110517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a vacuolar, lysosomal degradation pathway for injured and damaged protein molecules and organelles in eukaryotic cells, which is controlled by nutrients and stress responses. Dysregulation of cellular autophagy may lead to various diseases such as neurodegenerative disease, obesity, cardiovascular disease, diabetes, and malignancies. Recently, natural compounds have come to attention for being able to modulate the autophagy pathway in cancer prevention, although the prospective role of autophagy in cancer treatment is very complex and not yet clearly elucidated. Numerous synthetic chemicals have been identified that modulate autophagy and are favorable candidates for cancer treatment, but they have adverse side effects. Therefore, different phytochemicals, which include natural compounds and their derivatives, have attracted significant attention for use as autophagy modulators in cancer treatment with minimal side effects. In the current review, we discuss the promising role of natural compounds in modulating the autophagy pathway to control and prevent cancer, and provide possible therapeutic options.
Collapse
|
21
|
Wang M, Yu H, Wu R, Chen ZY, Hu Q, Zhang YF, Gao SH, Zhou GB. Autophagy inhibition enhances the inhibitory effects of ursolic acid on lung cancer cells. Int J Mol Med 2020; 46:1816-1826. [PMID: 32901853 PMCID: PMC7521584 DOI: 10.3892/ijmm.2020.4714] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to identify natural compounds that bear significant anti‑tumor activity. Thus, the effects of 63 small molecules that were isolated from traditional Chinese medicinal herbs on A549 human non‑small cell lung cancer (NSCLC) and MCF‑7 breast cancer cells were examined. It was found that ursolic acid (UA), a natural pentacyclic triterpenoid, exerted significant inhibitory effect on these cells. Further experiments revealed that UA inhibited the proliferation of various lung cancer cells, including the NSCLC cells, H460, H1975, A549, H1299 and H520, the human small cell lung cancer (SCLC) cells, H82 and H446, and murine Lewis lung carcinoma (LLC) cells. UA induced the apoptosis and autophagy of NSCLC cells. The inhibition of the mammalian target of rapamycin (mTOR) signaling pathway, but not the activation of the extracellular signal‑regulated kinase 1/2 (ERK1/2) signaling pathway contributed to the UA‑induced autophagy of NSCLC cells. Moreover, the inhibition of autophagy by chloroquine (CQ) or siRNA for autophagy‑related gene 5 (ATG5) enhanced the UA‑induced inhibition of cell proliferation and promotion of apoptosis, indicating that UA‑induced autophagy is a pro‑survival mechanism in NSCLC cells. On the whole, these findings suggest that combination treatment with autophagy inhibitors may be a novel strategy with which enhance the antitumor activity of UA in lung cancer.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan 450052
| | - Hong Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Ran Wu
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Zhen-Yin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - San-Hui Gao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100101
| |
Collapse
|
22
|
Zhao Q, Peng C, Zheng C, He XH, Huang W, Han B. Recent Advances in Characterizing Natural Products that Regulate Autophagy. Anticancer Agents Med Chem 2020; 19:2177-2196. [PMID: 31749434 DOI: 10.2174/1871520619666191015104458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/16/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy, an intricate response to nutrient deprivation, pathogen infection, Endoplasmic Reticulum (ER)-stress and drugs, is crucial for the homeostatic maintenance in living cells. This highly regulated, multistep process has been involved in several diseases including cardiovascular and neurodegenerative diseases, especially in cancer. It can function as either a promoter or a suppressor in cancer, which underlines the potential utility as a therapeutic target. In recent years, increasing evidence has suggested that many natural products could modulate autophagy through diverse signaling pathways, either inducing or inhibiting. In this review, we briefly introduce autophagy and systematically describe several classes of natural products that implicated autophagy modulation. These compounds are of great interest for their potential activity against many types of cancer, such as ovarian, breast, cervical, pancreatic, and so on, hoping to provide valuable information for the development of cancer treatments based on autophagy.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Chuan Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China.,The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
23
|
Stable Isotope Tracing Metabolomics to Investigate the Metabolic Activity of Bioactive Compounds for Cancer Prevention and Treatment. Cancers (Basel) 2020; 12:cancers12082147. [PMID: 32756373 PMCID: PMC7463803 DOI: 10.3390/cancers12082147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
A major hallmark of cancer is the metabolic reprogramming of cancer cells to fuel tumor growth and proliferation. Various plant-derived bioactive compounds efficiently target the metabolic vulnerabilities of cancer cells and exhibit potential as emerging therapeutic agents. Due to their safety and common use as dietary components, they are also ideal for cancer prevention. However, to render their use as efficient as possible, the mechanism of action of these phytochemicals needs to be well characterized. Stable isotope tracing is an essential technology to study the molecular mechanisms by which nutraceuticals modulate and target cancer metabolism. The use of positionally labeled tracers as exogenous nutrients and the monitoring of their downstream metabolites labeling patterns enable the analysis of the specific metabolic pathway activity, via the relative production and consumption of the labeled metabolites. Although stable isotope tracing metabolomics is a powerful tool to investigate the molecular activity of bioactive compounds as well as to design synergistic nutraceutical combinations, this methodology is still underutilized. This review aims to investigate the research efforts and potentials surrounding the use of stable isotope tracing metabolomics to examine the metabolic alterations mediated by bioactive compounds in cancer.
Collapse
|
24
|
Lin JH, Chen SY, Lu CC, Lin JA, Yen GC. Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine-resistant human pancreatic cancer cells. Phytother Res 2020; 34:2053-2066. [PMID: 32185829 DOI: 10.1002/ptr.6669] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023]
Abstract
Gemcitabine (GEM) resistance in pancreatic adenocarcinoma mediated by the receptor for advanced glycation end products (RAGE) has been demonstrated. Therefore, investigating the safety and the potential of new auxiliary methods for pancreatic cancer treatment is urgent. Ursolic acid (UA), a natural pentacyclic triterpenoid found in apple peels, rosemary, and thyme, has been reported to have anticancer capacity. This study aimed to reveal the underlying mechanisms of UA in cell death and drug enhancement, especially in GEM-resistant pancreatic cancer cells. First, GEM-resistant cells (MIA Paca-2GEMR cells) were established by incrementally increasing GEM culture concentrations. UA treatment reduced cell viability through cell cycle arrest and endoplasmic reticulum (ER) stress, resulting in apoptosis and autophagy in a dose-dependent manner in MIA Paca-2 and MIA Paca-2GEMR cells. High RAGE expression in MIA Paca-2GEMR cells was suppressed by UA treatment. Interestingly, knocking down RAGE expression showed similar UA-induced effects in both cell lines. Remarkably, UA had a drug-enhancing effect by decreasing cell viability and increasing cell cytotoxicity when combined with GEM treatment. In conclusions, UA triggered ER stress, subsequently regulating apoptosis- and autophagy-related pathways and increasing GEM chemosensitivity in pancreatic cancer cells by inhibiting the expression of RAGE.
Collapse
Affiliation(s)
- Ji-Hua Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Forouzanfar F, Mousavi SH. Targeting Autophagic Pathways by Plant Natural Compounds in Cancer Treatment. Curr Drug Targets 2020; 21:1237-1249. [PMID: 32364070 DOI: 10.2174/1389450121666200504072635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/26/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
Nowadays, natural compounds of plant origin with anticancer effects have gained more attention because of their clinical safety and broad efficacy profiles. Autophagy is a multistep lysosomal degradation pathway that may have a unique potential for clinical benefit in the setting of cancer treatment. To retrieve articles related to the study, the databases of Google Scholar, Web of sciences, Medline and Scopus, using the following keywords: Autophagic pathways; herbal medicine, oncogenic autophagic pathways, tumor-suppressive autophagic pathways, and cancer were searched. Although natural plant compounds such as resveratrol, curcumin, oridonin, gossypol, and paclitaxel have proven anticancer potential via autophagic signaling pathways, there is still a great need to find new natural compounds and investigate the underlying mechanisms, to facilitate their clinical use as potential anticancer agents through autophagic induction.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Srinivasan R, Aruna A, Lee JS, Kim M, Shivakumar MS, Natarajan D. Antioxidant and Antiproliferative Potential of Bioactive Molecules Ursolic Acid and Thujone Isolated from Memecylon edule and Elaeagnus indica and Their Inhibitory Effect on Topoisomerase II by Molecular Docking Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8716927. [PMID: 32149143 PMCID: PMC7042705 DOI: 10.1155/2020/8716927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 01/24/2023]
Abstract
The present study aimed to evaluate the antioxidant and antiproliferative potential of ursolic acid and thujone isolated from leaves of Elaeagnus indica and Memecylon edule and their inhibitory effect on topoisomerase II using molecular docking study. The isolated ursolic acid and thujone were examined for different types of free radicals scavenging activity, the antiproliferative potential on U-937 and HT-60 cell lines by adopting standard methods. Further, these compounds were docked with the active site of the ATPase region of topoisomerase II. The findings of the research revealed that ursolic acid harbor strong antioxidant and antiproliferative capacity with low IC50 values than the thujone in all tested methods. Moreover, ursolic acid shows significant inhibition effect on topoisomerase II with a considerable docking score (-8.0312) and GLIDE energy (-51.86 kca/mol). The present outcome concludes that ursolic acid possesses significant antioxidant and antiproliferative potential, which can be used in the development of novel antioxidant and antiproliferative agents in the future.
Collapse
Affiliation(s)
- Ramalingam Srinivasan
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
- Department of Biotechnology, K. S. Rangasamy College of Arts and Science, K. S. R. Kalvi Nagar, Tiruchengode 637215, Namakkal, Tamil Nadu, India
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Arumugam Aruna
- Department of Biotechnology, K. S. Rangasamy College of Arts and Science, K. S. R. Kalvi Nagar, Tiruchengode 637215, Namakkal, Tamil Nadu, India
| | - Jong Suk Lee
- Department of Food & Nutrition & Cook, Taegu Science University, Daegu 41453, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | | | - Devarajan Natarajan
- Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India
| |
Collapse
|
27
|
Kim GH, Kan SY, Kang H, Lee S, Ko HM, Kim JH, Lim JH. Ursolic Acid Suppresses Cholesterol Biosynthesis and Exerts Anti-Cancer Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:E4767. [PMID: 31561416 PMCID: PMC6802365 DOI: 10.3390/ijms20194767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Abnormally upregulated cholesterol and lipid metabolism, observed commonly in multiple cancer types, contributes to cancer development and progression through the activation of oncogenic growth signaling pathways. Although accumulating evidence has shown the preventive and therapeutic benefits of cholesterol-lowering drugs for cancer management, the development of cholesterol-lowering drugs is needed for treatment of cancer as well as metabolism-related chronic diseases. Ursolic acid (UA), a natural pentacyclic terpenoid, suppresses cancer growth and metastasis, but the precise underlying molecular mechanism for its anti-cancer effects is poorly understood. Here, using sterol regulatory element (SRE)-luciferase assay-based screening on a library of 502 natural compounds, this study found that UA activates sterol regulatory element-binding protein 2 (SREBP2). The expression of cholesterol biosynthesis-related genes and enzymes increased in UA-treated hepatocellular carcinoma (HCC) cells. The UA increased cell cycle arrest and apoptotic death in HCC cells and reduced the activation of oncogenic growth signaling factors, all of which was significantly reversed by cholesterol supplementation. As cholesterol supplementation successfully reversed UA-induced attenuation of growth in HCC cells, it indicated that UA suppresses HCC cells growth through its cholesterol-lowering effect. Overall, these results suggested that UA is a promising cholesterol-lowering nutraceutical for the prevention and treatment of patients with HCC and cholesterol-related chronic diseases.
Collapse
Affiliation(s)
- Geon-Hee Kim
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Sang-Yeon Kan
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Hyeji Kang
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Sujin Lee
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, 66 Daehak-ro, Jincheon-eup, Chungcheongbuk-do 27841, Korea.
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji-Hong Lim
- Department of Applied Life Science, Graduate School of Konkuk University, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
28
|
Castrejón-Jiménez NS, Leyva-Paredes K, Baltierra-Uribe SL, Castillo-Cruz J, Campillo-Navarro M, Hernández-Pérez AD, Luna-Angulo AB, Chacón-Salinas R, Coral-Vázquez RM, Estrada-García I, Sánchez-Torres LE, Torres-Torres C, García-Pérez BE. Ursolic and Oleanolic Acids Induce Mitophagy in A549 Human Lung Cancer Cells. Molecules 2019; 24:E3444. [PMID: 31547522 PMCID: PMC6803966 DOI: 10.3390/molecules24193444] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 01/07/2023] Open
Abstract
Ursolic and oleanolic acids are natural isomeric triterpenes known for their anticancer activity. Here, we investigated the effect of triterpenes on the viability of A549 human lung cancer cells and the role of autophagy in their activity. The induction of autophagy, the mitochondrial changes and signaling pathway stimulated by triterpenes were systematically explored by confocal microscopy and western blotting. Ursolic and oleanolic acids induce autophagy in A549 cells. Ursolic acid activates AKT/mTOR pathways and oleanolic acid triggers a pathway independent on AKT. Both acids promote many mitochondrial changes, suggesting that mitochondria are targets of autophagy in a process known as mitophagy. The PINK1/Parkin axis is a pathway usually associated with mitophagy, however, the mitophagy induced by ursolic or oleanolic acid is just dependent on PINK1. Moreover, both acids induce an ROS production. The blockage of autophagy with wortmannin is responsible for a decrease of mitochondrial membrane potential (Δψ) and cell death. The wortmannin treatment causes an over-increase of p62 and Nrf2 proteins promote a detoxifying effect to rescue cells from the death conducted by ROS. In conclusion, the mitophagy and p62 protein play an important function as a survival mechanism in A549 cells and could be target to therapeutic control.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Av. Universidad km. 1. Exhacienda de Aquetzalpa A.P. 32, Tulancingo 43600, Hidalgo, Mexico.
| | - Kahiry Leyva-Paredes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Shantal Lizbeth Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Juan Castillo-Cruz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
- Laboratorio de Inmunología Integrativa, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc. 16, Ciudad de México 14080, Mexico.
| | - Alma Delia Hernández-Pérez
- Departamento de Anatomía Patológica, Instituto Nacional de Rehabilitación, México-Xochimilco No. 289. Arenal de Guadalupe, Ciudad de México 14389, Mexico.
| | - Alexandra Berenice Luna-Angulo
- Departamento de Neurociencias, Instituto Nacional de Rehabilitación, México-Xochimilco No. 289, Arenal de Guadalupe, Ciudad de México 14389, Mexico.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México 11340, Mexico.
- Subdirección de Enseñanza e Investigación, División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Félix Cuevas 540, Col del Valle Sur, Ciudad de México 03100, Mexico.
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Luvia Enid Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| | - Carlos Torres-Torres
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco, Instituto Politécnico Nacional, Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Blanca Estela García-Pérez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Ciudad de México 11340, Mexico.
| |
Collapse
|
29
|
Conway GE, He Z, Hutanu AL, Cribaro GP, Manaloto E, Casey A, Traynor D, Milosavljevic V, Howe O, Barcia C, Murray JT, Cullen PJ, Curtin JF. Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep 2019; 9:12891. [PMID: 31501494 PMCID: PMC6733837 DOI: 10.1038/s41598-019-49013-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Room temperature Cold Atmospheric Plasma (CAP) has shown promising efficacy for the treatment of cancer but the exact mechanisms of action remain unclear. Both apoptosis and necrosis have been implicated as the mode of cell death in various cancer cells. We have previously demonstrated a caspase-independent mechanism of cell death in p53-mutated glioblastoma multiforme (GBM) cells exposed to plasma. The purpose of this study was to elucidate the molecular mechanisms involved in caspase-independent cell death induced by plasma treatment. We demonstrate that plasma induces rapid cell death in GBM cells, independent of caspases. Accumulation of vesicles was observed in plasma treated cells that stained positive with acridine orange. Western immunoblotting confirmed that autophagy is not activated following plasma treatment. Acridine orange intensity correlates closely with the lysosomal marker Lyso TrackerTM Deep Red. Further investigation using isosurface visualisation of confocal imaging confirmed that lysosomal accumulation occurs in plasma treated cells. The accumulation of lysosomes was associated with concomitant cell death following plasma treatment. In conclusion, we observed rapid accumulation of acidic vesicles and cell death following CAP treatment in GBM cells. We found no evidence that either apoptosis or autophagy, however, determined that a rapid accumulation of late stage endosomes/lysosomes precedes membrane permeabilisation, mitochondrial membrane depolarisation and caspase independent cell death.
Collapse
Affiliation(s)
- Gillian E Conway
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland. .,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland. .,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland. .,In-Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK.
| | - Zhonglei He
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| | - Ana Lacramioara Hutanu
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - George Paul Cribaro
- Institut de Neurociències & Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eline Manaloto
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| | - Alan Casey
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Damien Traynor
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Vladimir Milosavljevic
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Orla Howe
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.,School of Biological & Health Sciences, Technological University Dublin, Dublin, Ireland
| | - Carlos Barcia
- Institut de Neurociències & Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - James T Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Patrick J Cullen
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland.,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.,School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, Australia
| | - James F Curtin
- School of Food Science & Environmental Health, Technological University Dublin, Dublin, Ireland. .,FOCAS Research Institute, Technological University Dublin, Dublin, Ireland. .,Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125:1228-1246. [DOI: 10.1002/cncr.31978] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shuo Deng
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Muthu K. Shanmugam
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Alan Prem Kumar
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Cancer Science Institute of Singapore National University of Singapore Singapore
- Cancer Program, Medical Science Cluster Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
- Curtin Medical School, Faculty of Health Sciences Curtin University Perth West Australia Australia
| | - Celestial T. Yap
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- National University Cancer Institute National University Health System Singapore
| | - Gautam Sethi
- Department of Pharmacology Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | | |
Collapse
|
31
|
Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko KS, Kwak HB, Han J. Ursolic acid in health and disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:235-248. [PMID: 29719446 PMCID: PMC5928337 DOI: 10.4196/kjpp.2018.22.3.235] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Convergence Biomedical Science, Inje University, Busan 47392, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
| |
Collapse
|
32
|
Li M, Ma F, Wang J, Li Q, Zhang P, Yuan P, Luo Y, Cai R, Fan Y, Chen S, Li Q, Xu B. Genetic polymorphisms of autophagy-related gene 5 (ATG5) rs473543 predict different disease-free survivals of triple-negative breast cancer patients receiving anthracycline- and/or taxane-based adjuvant chemotherapy. CHINESE JOURNAL OF CANCER 2018; 37:4. [PMID: 29382381 PMCID: PMC5791378 DOI: 10.1186/s40880-018-0268-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Background Autophagy plays a crucial role in chemotherapy resistance of triple-negative breast cancer (TNBC). Hence, autophagy-related gene 5 (ATG5), an essential molecule involved in autophagy regulation, is presumably associated with recurrence of TNBC. This study was aimed to investigate the potential influence of single-nucleotide polymorphisms in ATG5 on the disease-free survival (DFS) of early-stage TNBC patients treated with anthracycline- and/or taxane-based chemotherapy. Methods We genotyped ATG5 SNP rs473543 in a cohort of 316 TNBC patients treated with anthracycline- and/or taxane-based chemotherapy using the sequenom’s MassARRAY system. Kaplan–Meier survival analysis and Cox proportional hazard regression analysis were used to analyze the association between ATG5 rs473543 genotypes and the clinical outcome of TNBC patients. Results Three genotypes, AA, GA, and GG, were detected in the rs473543 of ATG5 gene. The distribution of ATG5 rs473543 genotypes was significantly different between patients with and without recurrence (P = 0.024). Kaplan–Meier survival analysis showed that patients carrying A allele of ATG5 rs473543 had an increased risk of recurrence and shorter DFS compared with those carrying the variant genotype GG in rs473543 (P = 0.034). In addition, after adjusting for clinical factors, multivariate Cox regression analyses revealed that the AA/GA genotype of rs473543 was an independent predictor for DFS (hazard risk [HR], 1.73; 95% confidence interval [CI], 1.04–2.87; P = 0.034). In addition, DFS was shorter in node-negative patients with the presence of A allele (AA/GA) than in those with the absence of A allele (P = 0.027). Conclusion ATG5 rs473543 genotypes may serve as a potential marker for predicting recurrence of early-stage TNBC patients who received anthracycline-and/or taxane-based regimens as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Meiying Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China.
| |
Collapse
|
33
|
De Los Reyes MM, Oyong GG, S. Ng VA, Shen CC, Ragasa CY. Cytotoxic Compounds from Wrightia pubescens (R.Br.). Pharmacognosy Res 2018; 10:9-15. [PMID: 29568181 PMCID: PMC5855380 DOI: 10.4103/pr.pr_45_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Mixtures of ursolic acid (1) and oleanolic acid (2) (1:1 and 1:2), oleanolic acid (2), squalene (3), chlorophyll a (4), wrightiadione (5), and α-amyrin acetate (6) were isolated from the dichloromethane (CH2 Cl2) extracts of the leaves and twigs of Wrightia pubescens (R.Br.). OBJECTIVES To test for the cytotoxicity potentials of 1-6. MATERIALS AND METHODS The antiproliferative activities of 1-6 against three human cancer cell lines, breast (MCF-7) and colon (HT-29 and HCT-116), and a normal cell line, human dermal fibroblast neonatal (HDFn), were evaluated using the PrestoBlue® cell viability assay. RESULTS Compounds 4, 1 and 2 (1:2), 2, 1 and 2 (1:1), and 5 exhibited the most cytotoxic effects against HT-29 with half maximal inhibitory concentration (IC50) values of 0.68, 0.74, 0.89, 1.70, and 4.07 μg/mL, respectively. Comparing 2 with its 1:1 mixture with 1 (IC50 = 1.70 and 7.18 μg/mL for HT-29 and HCT-116, respectively) and 1:2 mixture with 1 (0.74 and 3.46 μg/mL for HT-29 and HCT-116, respectively), 2 also showed strong cytotoxic potential against HT-29 and HCT-116 (0.89 and 2.33 μg/mL, respectively). Unlike the mixtures which exhibited low effects on MCF-7 (IC50 = 20.75 and 30.06 μg/mL for 1:1 and 1:2, respectively), 2 showed moderate activity against MCF-7 (10.99 μg/mL). Compound 6 showed the highest cytotoxicity against HCT-116 (IC50 = 4.07 μg/mL). CONCLUSION Mixtures of 1 and 2 (1:1 and 1:2), 2, 3, 4, 5, and 6 from the CH2 Cl2 extracts of the leaves and twigs of W. pubescens (R.Br.) exhibited varying cytotoxic activities. All the compounds except 6 exhibited the strongest cytotoxic effects against HT-29. On the other hand, 6 was most cytotoxic against HCT-116. Overall, the toxicities of 1-6 were highest against HT-29, followed by HCT-116 and MCF-7. All the compounds showed varying activities against HDFn (IC50 < 30 μg/mL). SUMMARY Mixtures of ursolic acid (1) and oleanolic acid (2) (1:1 and 1:2), oleanolic acid (2), squalene (3), chlorophyll a (4), wrightiadione (5), and α-amyrin acetate (6), isolated from the dichloromethane extracts of the leaves and twigs of Wrightia pubescens (R.Br.), showed varying cytotoxic activities against three human cancer cell lines, breast (MCF-7) and colon (HT-29 and HCT-116), and a normal cell line, human dermal fibroblast-neonatal (HDFn), as evaluated using the PrestoBlue® cell viability assay.Abbreviation Used: IC50: Half maximal inhibitory concentration.
Collapse
Affiliation(s)
- Mariquit M. De Los Reyes
- Biology Department, De La Salle University Laguna Campus, Biñan City, Laguna 4024, Philippines
- Biology Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Glenn G. Oyong
- Biology Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
- Center for Natural Science and Environmental Research, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Vincent Antonio S. Ng
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Chien-Chang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Li-Nong St., Sec. 2, Taipei 112, Taiwan
| | - Consolacion Y. Ragasa
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
- Chemistry Department, De La Salle University Laguna Campus, Biñan City, Laguna 4024, Philippines
| |
Collapse
|
34
|
Sohn EJ, Park HT. Natural agents mediated autophagic signal networks in cancer. Cancer Cell Int 2017; 17:110. [PMID: 29209152 PMCID: PMC5704453 DOI: 10.1186/s12935-017-0486-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/23/2017] [Indexed: 01/01/2023] Open
Abstract
Recent studies suggested that natural compounds are important in finding targets for cancer treatments. Autophagy (“self-eating”) plays important roles in multiple diseases and acts as a tumor suppressor in cancer. Here, we examined the molecular mechanism by which natural agents regulate autophagic signals. Understanding the relationship between natural agents and cellular autophagy may provide more information for cancer diagnosis and chemoprevention.
Collapse
Affiliation(s)
- Eun Jung Sohn
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea.,Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Dongdaesin-Dong, Seo-Gu, Busan, 602-714 Republic of Korea
| |
Collapse
|
35
|
Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, Ma N, Leng S. NF- κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov 2017; 3:17059. [PMID: 28904818 PMCID: PMC5592653 DOI: 10.1038/cddiscovery.2017.59] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Targeting endoplasmic reticulum (ER) stress is being investigated for its anticancer effect in various cancers, including cervical cancer. However, the molecular pathways whereby ER stress mediates cell death remain to be fully elucidated. In this study, we confirmed that ER stress triggered by compounds such as brefeldin A (BFA), tunicamycin (TM), and thapsigargin (TG) leads to the induction of the unfolded protein response (UPR) in cervical cancer cell lines, which is characterized by elevated levels of inositol-requiring kinase 1α, glucose-regulated protein-78, and C/EBP homologous protein, and swelling of the ER observed by transmission electron microscope (TEM). We found that BFA significantly increased autophagy in tumor cells and induced TC-1 tumor cell death in a dose-dependent manner. BFA increased punctate staining of LC3 and the number of autophagosomes observed by TEM in TC-1 and HeLa cells. The autophagic flux was also assessed. Bafilomycin, which blocked degradation of LC3 in lysosomes, caused both LC3I and LC3II accumulation. BFA initiated apoptosis of TC-1 tumor cells through activation of the caspase-12/caspase-3 pathway. At the same time, BFA enhanced the phosphorylation of IκBα protein and translocation into the nucleus of NF-κB p65. Quinazolinediamine, an NF-κB inhibitor, attenuated both autophagy and apoptosis induced by BFA; meanwhile, it partly enhances survival of cervical cancer cells following BFA treatment. In conclusion, our results indicate that the cross-talk between ER stress, autophagy, apoptosis, and the NF-κB pathways controls the fate of cervical cancer cells. Careful evaluation should be given to the addition of an NF-κB pathway inhibitor to treat cervical cancer in combination with drugs that induce ER stress-mediated cell death.
Collapse
Affiliation(s)
- Xiaolan Zhu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Li Huang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Jie Gong
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Chun Shi
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Zhiming Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Bingkun Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Aiguo Xuan
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiaosong He
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Dahong Long
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Guangdong Medical College, Zhanjiang/Dongguan, People's Republic of China
| | - Ningfang Ma
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Shuilong Leng
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
| |
Collapse
|
36
|
Lewinska A, Adamczyk-Grochala J, Kwasniewicz E, Deregowska A, Wnuk M. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells. Apoptosis 2017; 22:800-815. [PMID: 28213701 PMCID: PMC5401707 DOI: 10.1007/s10495-017-1353-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER+, PR+/-, HER2-), MDA-MB-231 (ER-, PR-, HER2-) and SK-BR-3 (ER-, PR-, HER2+). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5-10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland.
| | | | - Ewa Kwasniewicz
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Werynia 502, 36-100, Kolbuszowa, Poland
| |
Collapse
|
37
|
Shao FY, Wang S, Li HY, Chen WB, Wang GC, Ma DL, Wong NS, Xiao H, Liu QY, Zhou GX, Li YL, Li MM, Wang YF, Liu Z. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells. Oncotarget 2017; 7:6790-808. [PMID: 26758418 PMCID: PMC4872749 DOI: 10.18632/oncotarget.6828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022] Open
Abstract
Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Fang-Yuan Shao
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sheng Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Hong-Yu Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wen-Bo Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Guo-Cai Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong-Lei Ma
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Nai Sum Wong
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hao Xiao
- University of The Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | - Yao-Lan Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Man-Mei Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
38
|
Wu S, Zhang T, Du J. Ursolic acid sensitizes cisplatin-resistant HepG2/DDP cells to cisplatin via inhibiting Nrf2/ARE pathway. Drug Des Devel Ther 2016; 10:3471-3481. [PMID: 27822011 PMCID: PMC5087784 DOI: 10.2147/dddt.s110505] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Combinations of adjuvant sensitizers with anticancer drugs is a promising new strategy to reverse chemoresistance. Ursolic acid (UA) is one of the natural pentacyclic triterpene compounds known to have many pharmacological characteristics such as anti-inflammatory and anticancer properties. This study investigates whether UA can sensitize hepatocellular carcinoma cells to cisplatin. MATERIALS AND METHODS Cells were transfected with nuclear factor erythroid-2-related factor 2 (Nrf2) small interfering RNA and Nrf2 complementary DNA by using Lipofectin 2000. The cytotoxicity of cells was investigated by Cell Counting Kit 8 assay. Cell apoptosis, cell cycle, reactive oxygen species, and mitochondrial membrane potential were detected by flow cytometry fluorescence-activated cell sorting. The protein level of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and heme oxygenase-1 (HO-1) was detected by Western blot analysis. RESULTS The results showed that the reverse index was 2.9- and 9.69-fold by UA of 1.125 μg/mL and 2.25 μg/mL, respectively, for cisplatin to HepG2/DDP cells. UA-cisplatin combination induced cell apoptosis and reactive oxygen species, blocked the cell cycle in G0/G1 phase, and reduced the mitochondrial membrane potential. Mechanistically, UA-cisplatin dramatically decreased the expression of Nrf2 and its downstream genes. The sensibilization of UA-cisplatin combination was diminished in Nrf2 small interfering RNA-transfected HepG2/DDP cells, as well as in Nrf2 complementary DNA-transfected HepG2/DDP cells. CONCLUSION The results confirmed the sensibilization of UA on HepG2/DDP cells to cisplatin, which was possibly mediated via the Nrf2/antioxidant response element pathway.
Collapse
Affiliation(s)
- Shouhai Wu
- School of Life Sciences, Sun Yat-sen University
- Center for Regenerative and Translational Medicine
| | | | - Jingsheng Du
- Department of Pharmacy, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
39
|
Chiang CK, Wang CC, Lu TF, Huang KH, Sheu ML, Liu SH, Hung KY. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury. Sci Rep 2016; 6:34167. [PMID: 27665710 PMCID: PMC5035926 DOI: 10.1038/srep34167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics &Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Fong Lu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Jiang Q, Hao R, Wang W, Gao H, Wang C. SIRT1/Atg5/autophagy are involved in the antiatherosclerosis effects of ursolic acid. Mol Cell Biochem 2016; 420:171-84. [PMID: 27514536 DOI: 10.1007/s11010-016-2787-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the antiatherosclerosis effects of ursolic acid (UA) in high-fat diet-fed quails (Coturnix coturnix) and potential mechanism. Quails were treated with high-fat diet (14 % pork oil, 1 % cholesterol w/w) with or without UA (50, 150, or 300 mg/kg/day) for 10 weeks. Serum lipid profile was assessed at 0, 4.5, and 10 weeks. After 10 weeks, serum antioxidant status and morphology of aorta were assessed. Additionally, human umbilical vein endothelial cells (HUVECs) were exposed to 100 μg/ml oxidized low-density lipoprotein (ox-LDL) for 24 h, with or without pretreatment with UA (5, 10 or 20 μM) for 16 h, autophagy inhibitor 3-MA 5 mM for 2 h, or SIRT1 inhibitor EX-527 10 μM for 2 h. Cell viability and oxidative stress status were assessed and autophagy status was determined. Acetylation of lysine residue on Atg5 was assessed with immunoprecipitation. In results, high-fat diet negatively affected serum lipid profile and antioxidant status in quails and induced significant histological changes. Cotreatment with UA remarkably alleviated such changes. In HUVECs, ox-LDL treatment induced significant cytotoxicity along with oxidative stress, while UA cotreatment alleviated such changes significantly. UA treatment induced autophagy, enhanced SIRT1 expression, and decreased acetylation of lysine residue on Atg5. Cotreatment with 3-MA or EX-527 effectively abolished UA's protective effects. In summary, UA exerted antiatherosclerosis effects in quails and protected HUVECs from ox-LDL induced cytotoxicity, and the mechanism is associated with increased SIRT1 expression, decreased Atg5 acetylation on lysine residue, and increased autophagy.
Collapse
Affiliation(s)
- Qixiao Jiang
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Ranran Hao
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Wencheng Wang
- The Institute of Human Nutrition Medical College, 38 Dengzhou Road, Qingdao, 266071, Shandong, China
| | - Hui Gao
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Chunbo Wang
- Department of Pharmacology, Qingdao University Medical College, Boya Building Room 422, 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
41
|
Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I, Razani B, Fan D. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res 2016; 57:1006-16. [PMID: 27063951 PMCID: PMC4878185 DOI: 10.1194/jlr.m065888] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/01/2016] [Indexed: 12/29/2022] Open
Abstract
Macrophage autophagy has been shown to be protective against atherosclerosis. We previously discovered that ursolic acid (UA) promoted cancer cell autophagy. In the present study, we aimed to examine whether UA enhances macrophage autophagy in the context of atherogenesis. Cell culture study showed that UA enhanced autophagy of macrophages by increasing the expression of Atg5 and Atg16l1, which led to altered macrophage function. UA reduced pro-interleukin (IL)-1β protein levels and mature IL-1β secretion in macrophages in response to lipopolysaccharide (LPS), without reducing IL-1β mRNA expression. Confocal microscopy showed that in LPS-treated macrophages, UA increased LC3 protein levels and LC3 appeared to colocalize with IL-1β. In cholesterol-loaded macrophages, UA increased cholesterol efflux to apoAI, although it did not alter mRNA or protein levels of ABCA1 and ABCG1. Electron microscopy showed that UA induced lipophagy in acetylated LDL-loaded macrophages, which may result in increased cholesterol ester hydrolysis in autophagolysosomes and presentation of free cholesterol to the cell membrane. In LDLR(-/-) mice fed a Western diet to induce atherogenesis, UA treatment significantly reduced atherosclerotic lesion size, accompanied by increased macrophage autophagy. In conclusion, the data suggest that UA promotes macrophage autophagy and, thereby, suppresses IL-1β secretion, promotes cholesterol efflux, and attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shuilong Leng
- Department of Human Anatomy, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ismail Sergin
- Cardiovascular Division, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak Razani
- Cardiovascular Division, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
42
|
Roles of autophagy induced by natural compounds in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121826. [PMID: 25821782 PMCID: PMC4364006 DOI: 10.1155/2015/121826] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment.
Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.
Collapse
|
43
|
Lu X, Fan Q, Xu L, Li L, Yue Y, Xu Y, Su Y, Zhang D, Wang L. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression. PLoS One 2015; 10:e0117400. [PMID: 25689721 PMCID: PMC4331365 DOI: 10.1371/journal.pone.0117400] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/21/2014] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in rat mesangial cells cultured under high glucose (HG) conditions. METHODS Rat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN)/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy. RESULTS Compared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression. CONCLUSIONS Ursolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.
Collapse
Affiliation(s)
- Xinxing Lu
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
- Department of nephrology, the People’s Hospital of Liaoning Province, Shenyang, 110001, China
| | - Qiuling Fan
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Li Xu
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Lin Li
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuan Yue
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yanyan Xu
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yan Su
- Department of nephrology, the People’s Hospital of Liaoning Province, Shenyang, 110001, China
| | - Dongcheng Zhang
- Department of nephrology, the People’s Hospital of Liaoning Province, Shenyang, 110001, China
| | - Lining Wang
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
44
|
Wu H, Huang S, Zhang D. Autophagic responses to hypoxia and anticancer therapy in head and neck cancer. Pathol Res Pract 2015; 211:101-8. [DOI: 10.1016/j.prp.2014.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 02/07/2023]
|
45
|
Autophagy as a pro-death pathway. Immunol Cell Biol 2014; 93:35-42. [PMID: 25331550 DOI: 10.1038/icb.2014.85] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.
Collapse
|
46
|
Baek SY, Lee J, Lee DG, Park MK, Lee J, Kwok SK, Cho ML, Park SH. Ursolic acid ameliorates autoimmune arthritis via suppression of Th17 and B cell differentiation. Acta Pharmacol Sin 2014; 35:1177-87. [PMID: 25087995 PMCID: PMC4155530 DOI: 10.1038/aps.2014.58] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
AIM Ursolic acid (UA) is a pentacyclic triterpenoid found in most plant species, which has been shown anti-inflammatory and anti-oxidative activities. In this study, we examined the effects of UA on collagen-induced arthritis (CIA) in mice, and to identify the mechanisms underlying the effects. METHODS CIA was induced in mice. Two weeks later, the mice were treated with UA (150 mg/kg, ip, 3 times per week) for 4 weeks. The expression of cytokines and oxidative stress markers in joint tissues was measured with immunohistochemistry. The numbers of CD4+IL-17+, CD4+CD25+Foxp3+ and pSTAT3 cells in spleens were determined using confocal immunostaining or flowcytometric analyses. Serum antibody levels and B cell-associated marker mRNAs were analyzed with ELISAs and qRT-PCR, respectively. CD4+ T cells and CD19+ B cells were purified from mice spleens for in vitro studies. RESULTS UA treatment significantly reduced the incidence and severity of CIA-induced arthritis, accompanied by decreased expression of proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-21 and IL-17) and oxidative stress markers (nitrotyrosine and iNOS) in arthritic joints. In CIA mice, UA treatment significantly decreased the number of Th17 cells, while increased the number of Treg cells in the spleens, which was consistent with decreased expression of pSTAT3, along with IL-17 and RORγt in the splenocytes. In addition, UA treatment significantly reduced the serum CII-specific IgG levels in CIA mice. The inhibitory effects of UA on Th17 cells were confirmed in an in vitro model of Th17 differentiation. Furthermore, UA dose-dependently suppressed the expression of B cell-associated markers Bcl-6, Blimp1 and AID mRNAs in purified CD19+ B cells pretreated with IL-21 or LPS in vitro. CONCLUSION UA treatment significantly ameliorates CIA in mice via suppression of Th17 and differentiation. By targeting pathogenic Th17 cells and autoantibody production, UA may be useful for the treatment of autoimmune arthritis and other Th17-related diseases.
Collapse
Affiliation(s)
- Seung-ye Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jaeseon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Dong-gun Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mi-kyung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jennifer Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| | - Seung-ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| | - Mi-la Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- Divison of Rheumatology, Department of Internal Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul 137–040, South Korea
| |
Collapse
|
47
|
Zou Y, Lee Y, Huh J, Park JW. Synergistic effect of xylitol and ursolic acid combination on oral biofilms. Restor Dent Endod 2014; 39:288-95. [PMID: 25383348 PMCID: PMC4223099 DOI: 10.5395/rde.2014.39.4.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/04/2014] [Indexed: 12/13/2022] Open
Abstract
Objectives This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.
Collapse
Affiliation(s)
- Yunyun Zou
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Yoon Lee
- Department of Conservative Dentistry, Wonju Severance Christian Hospital, Yonsei University, Wonju, Korea
| | - Jinyoung Huh
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong-Won Park
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
48
|
Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine and hydroxychloroquine for cancer therapy. Mol Cell Oncol 2014; 1:e29911. [PMID: 27308318 PMCID: PMC4905171 DOI: 10.4161/mco.29911] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
Abstract
Macroautophagy (herein referred to as autophagy) is a highly conserved mechanism for the lysosomal degradation of cytoplasmic components. Autophagy is critical for the maintenance of intracellular homeostasis, both in baseline conditions and in the context of adaptive responses to stress. In line with this notion, defects in the autophagic machinery have been etiologically associated with various human disorders including infectious, inflammatory and neoplastic conditions. Once tumors are established, however, autophagy sustains the survival of malignant cells, hence representing an appealing target for the design of novel anticancer regimens. Accordingly, inhibitors of autophagy including chloroquine and hydroxychloroquine have been shown to mediate substantial antineoplastic effects in preclinical models, especially when combined with chemo- or radiotherapeutic interventions. The pharmacological profile of chloroquine and hydroxychloroquine, however, appear to involve mechanisms other than autophagy inhibition. Here, we discuss the dual role of autophagy in oncogenesis and tumor progression, and summarize the results or design of clinical studies recently completed or initiated to evaluate the therapeutic activity of chloroquine derivatives in cancer patients.
Collapse
Affiliation(s)
| | - Florine Obrist
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France; INSERM, UMRS1138; Villejuif, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| | - Guido Kroemer
- INSERM, UMRS1138; Villejuif, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP; Paris, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Lorenzo Galluzzi
- Regina Elena National Cancer Institute; Rome, Italy; Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France; Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
49
|
Nepal S, Kim MJ, Lee ES, Kim JA, Choi DY, Sohn DH, Lee SH, Song K, Kim SH, Jeong GS, Jeong TC, Park PH. Modulation of Atg5 expression by globular adiponectin contributes to autophagy flux and suppression of ethanol-induced cell death in liver cells. Food Chem Toxicol 2014; 68:11-22. [DOI: 10.1016/j.fct.2014.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/08/2014] [Accepted: 02/11/2014] [Indexed: 12/25/2022]
|
50
|
Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome. PLoS One 2014; 9:e95393. [PMID: 24740400 PMCID: PMC3989317 DOI: 10.1371/journal.pone.0095393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/26/2014] [Indexed: 02/02/2023] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function.
Collapse
Affiliation(s)
- Xiang Ou
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Meilian Liu
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hairong Luo
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lily Q. Dong
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Feng Liu
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|