1
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
2
|
Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer's disease progression. Curr Neuropharmacol 2011; 8:218-27. [PMID: 21358972 PMCID: PMC3001215 DOI: 10.2174/157015910792246209] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/14/2010] [Accepted: 03/28/2010] [Indexed: 12/31/2022] Open
Abstract
Melatonin secretion decreases in Alzheimer´s disease (AD) and this decrease has been postulated as responsible for the circadian disorganization, decrease in sleep efficiency and impaired cognitive function seen in those patients. Half of severely ill AD patients develop chronobiological day-night rhythm disturbances like an agitated behavior during the evening hours (so-called “sundowning”). Melatonin replacement has been shown effective to treat sundowning and other sleep wake disorders in AD patients. The antioxidant, mitochondrial and antiamyloidogenic effects of melatonin indicate its potentiality to interfere with the onset of the disease. This is of particularly importance in mild cognitive impairment (MCI), an etiologically heterogeneous syndrome that precedes dementia. The aim of this manuscript was to assess published evidence of the efficacy of melatonin to treat AD and MCI patients. PubMed was searched using Entrez for articles including clinical trials and published up to 15 January 2010. Search terms were “Alzheimer” and “melatonin”. Full publications were obtained and references were checked for additional material where appropriate. Only clinical studies with empirical treatment data were reviewed. The analysis of published evidence made it possible to postulate melatonin as a useful ad-on therapeutic tool in MCI. In the case of AD, larger randomized controlled trials are necessary to yield evidence of effectiveness (i.e. clinical and subjective relevance) before melatonin´s use can be advocated.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | | | | |
Collapse
|
3
|
Gulyaeva NV, Stepanichev MY. Abeta(25-35) as proxyholder for amyloidogenic peptides: in vivo evidence. Exp Neurol 2010; 222:6-9. [PMID: 20043907 DOI: 10.1016/j.expneurol.2009.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity & Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, Moscow 117485, Russia.
| | | |
Collapse
|
4
|
Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA. Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25-35). Exp Neurol 2009; 221:26-37. [PMID: 19751725 DOI: 10.1016/j.expneurol.2009.09.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/28/2022]
Abstract
Amyloid-beta peptide (Abeta) is a central player in the pathogenesis and diagnosis of Alzheimer disease. It aggregates to form the core of Alzheimer disease-associated plaques found in coordination with tau deposits in diseased individuals. Despite this clinical relevance, no single hypothesis satisfies and explicates the role of Abeta in toxicity and progression of the disease. To explore this area, investigators have focused on mechanisms of cellular dysfunction, aggregation, and maladaptive responses. Extensive research has been conducted using various methodologies to investigate Abeta peptides and oligomers, and these multiple facets have provided a wealth of data from specific models. Notably, the utility of each experiment must be considered in regards to the brain environment. The use of Abeta(25-35) in studies of cellular dysfunction has provided data indicating that the peptide is indeed responsible for multiple disturbances to cellular integrity. We will review how Abeta peptide induces oxidative stress and calcium homeostasis, and how multiple enzymes are deleteriously impacted by Abeta(25-35). Understanding and discussing the origin and properties of Abeta peptides is essential to evaluating their effects on various intracellular metabolic processes. Attention will also be specifically directed to metabolic compartmentation in affected brain cells, including mitochondrial, cytosolic, nuclear, and lysosomal enzymes.
Collapse
Affiliation(s)
- Yury G Kaminsky
- Institute of Theoretical and Experimental Biophysics, RAS, Pushchino, Russia.
| | | | | | | |
Collapse
|
5
|
Veurink G, Fuller SJ, Atwood CS, Martins RN. ReviewGenetics, lifestyle and the roles of amyloid β and oxidative stress in Alzheimer’s disease. Ann Hum Biol 2009; 30:639-67. [PMID: 14675907 DOI: 10.1080/03014460310001620144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews a wide range of recent studies that have linked AD-associated biochemical and physiological changes with oxidative stress and damage. Some of these changes include disruptions in metal ion homeostasis, mitochondrial damage, reduced glucose metabolism, decreased intracellular pH and inflammation. Although the changes mentioned above are associated with oxidative stress, in most cases, a cause and effect relationship is not clearcut, as many changes are interlinked. Increases in the levels of Abeta peptides, the main protein components of the cerebral amyloid deposits of AD, have been demonstrated to occur in inherited early-onset forms of AD, and as a result of certain environmental and genetic risk factors. Abeta peptides have been shown to exhibit superoxide dismutase activity, producing hydrogen peroxide which may be responsible for the neurotoxicity exhibited by this peptide in vitro. This review also discusses the biochemical aspects of oxidative stress, antioxidant defence mechanisms, and possible antioxidant therapeutic measures which may be effective in counteracting increased levels of oxidative stress. In conclusion, this review provides support for the theory that damage caused by free radicals and oxidative stress is a primary cause of the neurodegeneration seen in AD with Abeta postulated as an initiator of this process.
Collapse
Affiliation(s)
- G Veurink
- The Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Australia
| | | | | | | |
Collapse
|
6
|
Miao J, Zhang W, Yin R, Liu R, Su C, Lei G, Li Z. S14G-Humanin ameliorates Abeta25-35-induced behavioral deficits by reducing neuroinflammatory responses and apoptosis in mice. Neuropeptides 2008; 42:557-67. [PMID: 18929410 DOI: 10.1016/j.npep.2008.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/21/2008] [Accepted: 08/22/2008] [Indexed: 11/27/2022]
Abstract
Cerebral amyloid-beta protein (Abeta) deposition and associated neuroinflammation and apoptosis are increasingly recognized as an important component leading to cognitive impairment in Alzheimer's disease (AD). Humanin (HN) and its derivative, S14G-HN (HNG), are best known for their ability to suppress neuronal death induced by AD-related insults in vitro. Furthermore, limited in vivo studies show that HNG can ameliorate memory impairment induced by intracerebroventricular injection of anti-cholinergic drugs or Abeta25-35. However, the mechanism underlying the in vivo effect remains unclear. In this study, we sought to determine the effects of HNG on neuroinflammatory responses and apoptosis associated with behavioral deficits induced by Abeta25-35 in vivo. Our results indicate that intracerebroventricular injection of aggregated Abeta25-35 induced impairment of learning and memory, markedly elevated numbers of reactive astrocytes, activated microglia, and apoptotic cells, as well as remarkable increased levels of IL-6 and TNFalpha. Moreover, intraperitoneal HNG treatment ameliorated behavioral deficits, and reduced neuroinflammatory responses and apoptotic cells in the brain. Cumulatively, these finding demonstrate for the first time that HNG may have the potential for attenuating Abeta-induced cognitive deficits by reducing inflammatory responses and apoptosis in vivo, which may add to the novel evidence for anti-inflammatory and antiapoptosis properties of HNG in AD treatment.
Collapse
Affiliation(s)
- Jianting Miao
- Department of Neurology, Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, Shaanxi Province 710038, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, Renfrow MB, Novak L, Wyatt RJ, Novak J. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 2008; 31:29-37. [PMID: 18182777 DOI: 10.1159/000112922] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/02/2007] [Indexed: 01/29/2023] Open
Abstract
Studies of the properties of immune complexes (IC) in the circulation, urine, and mesangium of IgA nephropathy (IgAN) patients have provided data relevant to the pathogenesis of this disease. IC contain predominantly polymeric IgA1 molecules which are deficient in galactose (Gal) residues on O-linked glycan chains in the hinge region (HR) of their heavy (H) chains. As a result of this aberrancy, a novel antigenic determinant(s) involving N-acetylgalactosamine (GalNAc) and perhaps sialic acid (SA) of O-linked glycans is generated and recognized by naturally occurring GalNAc-specific antibodies. Thus, IC in IgAN consist of Gal-deficient IgA1 molecules as an antigen, and GalNAc-specific IgG and/or IgA1 as an antibody. IgG antibodies to Gal-deficient IgA1 are probably induced by cross-reactive microbial antigens; they are present at variable levels not only in humans with or without IgAN but also in many phylogenetically diverse vertebrate species. Incubation of human mesangial cells with IC from sera of IgAN patients indicated that stimulation of cellular proliferative activity was restricted to the large (>800 kDa) complexes. These findings suggest that experimental approaches that prevent the formation of large Gal-deficient IgA1-IgG IC may be applied ultimately in an immunologically mediated therapy.
Collapse
Affiliation(s)
- J Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 i.c.v.-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology 2007; 32:1261-71. [PMID: 17133263 DOI: 10.1038/sj.npp.1301256] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Galantamine, a drug for Alzheimer's disease, is a novel cholinergic agent with a dual mode of action, which inhibits acetylcholinesterase and allosterically modulates nicotinic acetylcholine receptors (nAChRs), as a result stimulates catecholamine neurotransmission. In the present study, we investigated whether galantamine exerts cognitive improving effects through the allosteric modulation of nAChR in the intracerebroventricular beta amyloid (Abeta)(25-35)-injected animal model of Alzheimer's disease. Galantamine (3 mg/kg p.o.) significantly increased the extracellular dopamine release in the hippocampus of saline- and Abeta(25-35)-injected mice. The effects of nicotine on the extracellular dopamine release were potentiated by galantamine, but antagonized by mecamylamine, a nAChR antagonist. Abeta(25-35)-injected mice, compared with saline-injected mice, could not discriminate between new and familiar objects in the novel object recognition test and exhibited less freezing response in the fear-conditioning tasks, suggesting Abeta(25-35) induced cognitive impairment. Galantamine improved the Abeta(25-35)-induced cognitive impairment in the novel object recognition and fear-conditioning tasks. These improving effects of galantamine were blocked by the treatment with mecamylamine, SCH-23390, a dopamine-D1 receptor antagonist, and sulpiride, a dopamine-D2 receptor antagonist, but not by scopolamine, a muscarinic acetylcholine receptor antagonist. This study provides the first in vivo evidence that galantamine augments dopaminergic neurotransmission within the hippocampus through the allosteric potentiation of nAChRs. The improving-effects of galantamine on the Abeta(25-35)-induced cognitive impairment may be mediated through the activation of, at least in part, dopaminergic systems, and the enhancement of dopamine release may be one of multiple mechanisms underlying the therapeutic benefit of galantamine.
Collapse
Affiliation(s)
- Dayong Wang
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2:15. [PMID: 16674804 PMCID: PMC1483829 DOI: 10.1186/1744-9081-2-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/04/2006] [Indexed: 12/15/2022] Open
Abstract
Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may have potential value in prevention and treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kampus Kesihatan, 16150, Kubang kerian, Kelantan, Malaysia
| | - SR Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 – 5Avenue, New York, NY 10029, USA
| | - DP Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - B Poeggeler
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| | - R Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| |
Collapse
|
10
|
Montiel T, Quiroz-Baez R, Massieu L, Arias C. Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol 2006; 200:496-508. [PMID: 16626708 DOI: 10.1016/j.expneurol.2006.02.126] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/30/2006] [Accepted: 02/07/2006] [Indexed: 11/18/2022]
Abstract
Age-associated oxidative stress has been implicated in neuronal damage linked with Alzheimer's disease (AD). In addition to the role of beta-amyloid peptide (Abeta) in the pathogenesis of AD, reduced glucose oxidative metabolism and decreased mitochondrial activity have been suggested as associated factors. However, the relationship between Abeta toxicity, metabolic impairment, and oxidative stress is far from being understood. In vivo neurotoxicity of Abeta25-35 peptide has been conflicting. However, in previous studies, we have shown that Abeta25-35 consistently induces synaptic toxicity and neuronal death in the hippocampus in vivo, when administered during moderate glycolytic or mitochondrial inhibition. In the present study, we have investigated whether enhancement of Abeta neurotoxicity during these conditions involves oxidative stress. Results show increased lipoperoxidation (LPO) when Abeta is administered in the hippocampus of rats previously treated with the glycolysis inhibitor, iodoacetate. Neuronal damage and LPO are efficiently prevented by vitamin E, while the spin trapper, alpha-phenyl-N-tert-butyl nitrone, shows partial protection. Abeta stimulates LPO in synaptosomes, but toxicity is only observed in the presence of metabolic inhibitors. Damage and LPO are efficiently prevented by vitamin E. The present results suggest an interaction between oxidative stress and metabolic impairment in the Abeta neurotoxic cascade.
Collapse
Affiliation(s)
- Teresa Montiel
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México AP 70-253, México DF 04510, México
| | | | | | | |
Collapse
|
11
|
Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJS. Thiol reducing compounds prevent human amylin-evoked cytotoxicity. FEBS J 2005; 272:4949-59. [PMID: 16176268 DOI: 10.1111/j.1742-4658.2005.04903.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human amylin (hA) is a small fibrillogenic protein that is the major constituent of pancreatic islet amyloid, which occurs in most subjects with type-2 diabetes mellitus (T2Dm). There is growing evidence that hA toxicity towards islet beta-cells is responsible for their gradual loss of function in T2Dm. Preventing hA-mediated cytotoxicity has been proposed as a route to halt the progression of this disease, although this has not yet been demonstrated in vivo. The aim of our studies, in which we show that a small number of hA-treated cells exhibit intracellular accumulation of reactive oxygen species (ROS), was to evaluate the role of oxidative stress in the mechanism of hA-mediated cytotoxicity. Here we report that catalase and n-propyl gallate, antioxidants that are thought to act mainly as free radical scavengers, afford RINm5F cells only limited protection against hA-mediated toxicity. By contrast, the thiol antioxidants, N-acetyl-L-cysteine (NAC), GSH and dithiothreitol, which not only react with ROS, but also modulate the cellular redox potential by increasing intracellular levels of GSH and/or by acting as thiol reducing agents, afford almost complete protection and inhibit the progression of hA-evoked apoptosis. We also show that hA treatment is not associated with changes in intracellular GSH levels and that inhibition of GSH biosynthesis has no effect on either hA-mediated cytotoxicity or NAC-mediated protection. These results indicate that, in addition to the induction of oxidative stress, hA appears to mediate cytotoxicity through signalling pathways that are sensitive to the actions of thiol antioxidants.
Collapse
|
12
|
Quintanilla RA, Muñoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA, Inestrosa NC. Trolox and 17β-Estradiol Protect against Amyloid β-Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. J Biol Chem 2005; 280:11615-25. [PMID: 15659394 DOI: 10.1074/jbc.m411936200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is a key mechanism in amyloid beta-peptide (A beta)-mediated neurotoxicity; therefore, the protective roles of 17beta-estradiol (E2) and antioxidants (Trolox and vitamin C) were assayed on hippocampal neurons. Our results show the following: 1) E2 and Trolox attenuated the neurotoxicity mediated by A beta and H2O2 as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assays, quantification of apoptotic cells, and morphological studies of the integrity of the neurite network. 2) Vitamin C failed to protect neurons from A beta toxicity. 3) A beta-mediated endoperoxide production, reported to induce cell damage, was decreased in the presence of E2 and Trolox. 4) Two key Wnt signaling components were affected by E2 and Trolox; in fact, the enzyme glycogen synthase kinase 3beta was inhibited by both E2 and Trolox, and both compounds were able to stabilize cytoplasmic beta-catenin. 5) E2 activated the expression of the Wnt-5a and Wnt-7a ligands, and at the same time, E2, through the alpha-estrogen receptor, was able to prevent the excitotoxic A beta-induced rise in bulk-free Ca2+ as an alternative pathway to increase cell viability. 6) Finally, the Wnt-7a ligand protected against cytoplasmic calcium disturbances induced by A beta treatment. Our results suggest that control of oxidative stress, regulation of cytoplasmic calcium, and activation of Wnt signaling may prevent A beta neurotoxicity.
Collapse
Affiliation(s)
- Rodrigo A Quintanilla
- Centro de Regulación Celular y Patología Joaquín V. Luco, Millennium Institute of Fundamental and Applied Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
13
|
Muñoz FJ, Solé M, Coma M. The protective role of vitamin E in vascular amyloid beta-mediated damage. Subcell Biochem 2005; 38:147-65. [PMID: 15709477 DOI: 10.1007/0-387-23226-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Amyloid beta peptide (Abeta) accumulation produces the senile plaques in the brain parenchyma characteristic of Alzheimer's Disease (AD) and the vascular deposits of Cerebral Amyloid Angiopathy (CAA). Oxidative stress is directly involved in Abeta-mediated cytotoxicity and antioxidants have been reported as cytoprotective in AD and CAA. Vitamin E has antioxidant and hydrophobic properties that render this molecule as the main antioxidant present in biological membranes, preventing lipid peroxidation, carbonyl formation and inducing intracellular modulation of cell signalling pathways. Accordingly, vascular damage produced by Abeta and prooxidant agents can be decreased or prevented by vitamin E. The protective effect of vitamin E against Abeta cytotoxicity in vascular cells in comparison to the neuronal system is reviewed in this chapter.
Collapse
Affiliation(s)
- Francisco José Muñoz
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | | | | |
Collapse
|
14
|
Lebeau A, Terro F, Rostene W, Pelaprat D. Blockade of 12-lipoxygenase expression protects cortical neurons from apoptosis induced by β-amyloid peptide. Cell Death Differ 2004; 11:875-84. [PMID: 15105833 DOI: 10.1038/sj.cdd.4401395] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The cyclo-oxygenase (COX) and lipoxygenase (LOX) pathways belong to the eicosanoid synthesis pathway, a major component of the chronic inflammatory process occurring in Alzheimer's disease (AD). Clinical studies reported beneficial effects of COX inhibitors, but little is known about the involvement of LOXs in AD pathogenesis. beta-amyloid peptide (A beta) accumulation contributes to neurodegeneration in AD, but mechanisms underlying A beta toxicity have not been fully elucidated yet. Here, using an antisense oligonucleotide-based strategy, we show that blockade of 12-LOX expression prevents both A beta-induced apoptosis and overexpression of c-Jun, a factor required for the apoptotic process, in cortical neurons. Conversely, the 12-LOX metabolite, 12(S)-HETE (12(S)-hydroxy-(5Z, 8Z, 10E, 14Z)-eicosatetraenoic acid), promoted c-Jun-dependent apoptosis. Specificity of the 12-LOX involvement was further supported by the observed lack of contribution of 5-LOX in this process. These data indicate that blockade of 12-LOX expression disrupts a c-Jun-dependent apoptosis pathway, and suggest that 12-LOX may represent a new target for the treatment of AD.
Collapse
Affiliation(s)
- A Lebeau
- Unité 339 INSERM-UPMC, Hôpital Saint-Antoine, 75571 Paris Cedex 12, France
| | | | | | | |
Collapse
|
15
|
Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G. Oxidative stress signalling in Alzheimer's disease. Brain Res 2004; 1000:32-9. [PMID: 15053949 DOI: 10.1016/j.brainres.2004.01.012] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2004] [Indexed: 11/15/2022]
Abstract
Multiple lines of evidence demonstrate that oxidative stress is an early event in Alzheimer's disease (AD), occurring prior to cytopathology, and therefore may play a key pathogenic role in the disease. Indeed, that oxidative mechanisms are involved in the cell loss and other neuropathology associated with AD is evidenced by the large number of metabolic signs of oxidative stress as well as by markers of oxidative damage. However, what is intriguing is that oxidative damage decreases with disease progression, such that levels of markers of rapidly formed oxidative damage, which are initially elevated, decrease as the disease progresses to advanced AD. This finding, along with the compensatory upregulation of antioxidant enzymes found in vulnerable neurons in AD, indicates that reactive oxygen species (ROS) not only cause damage to cellular structures but also provoke cellular responses. Mammalian cells respond to extracellular stimuli by transmitting intracellular instructions by signal transduction cascades to coordinate appropriate responses. Therefore, not surprisingly stress-activated protein kinase (SAPK) pathways, pathways that are activated by oxidative stress, are extensively activated during AD. In this paper, we review the evidence of oxidative stress and compensatory responses that occur in AD with a particular focus on the roles and mechanism of activation of SAPK pathways.
Collapse
Affiliation(s)
- Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ioudina M, Uemura E. A three amino acid peptide, Gly-Pro-Arg, protects and rescues cell death induced by amyloid β-peptide. Exp Neurol 2003; 184:923-9. [PMID: 14769384 DOI: 10.1016/s0014-4886(03)00314-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 06/13/2003] [Accepted: 06/17/2003] [Indexed: 11/18/2022]
Abstract
Amyloid beta-peptide (Abeta) contributes to the pathogenesis of Alzheimer's disease (AD), causing neuronal death through apoptosis. In this study, the neuroprotective role of small peptides, Gly-Pro-Glu (GPE), Gly-Glu (GE), Gly-Pro-Asp (GPD), and Gly-Pro-Arg (GPR) were examined against Abeta-induced toxicity in cultured rat hippocampal neurons. We report here that GPR (10-100 microM) prevented Abeta-mediated increase in lactate dehydrogenase (LDH) release and Abeta inhibition of MTT reduction, even in neurons that were pre-exposed to Abeta for 24 or 48 h. Since GPR prevented Abeta inhibition of MTT reduction, the anti-apoptotic effect of GPR was studied by examining activation of caspase-3 and expression of p53 protein. Caspase-3 was significantly activated by 20 microM Abeta25-35 and 5 microM Abeta1-40, but GPR effectively prevented the Abeta-mediated activation of caspase-3. Similarly, Abeta increased numbers of p53-positive cells, but GPR prevented this Abeta effect. Our findings suggest that GPR can rescue cultured rat hippocampal neurons from Abeta-induced neuronal death by inhibiting caspase-3/p53-dependent apoptosis.
Collapse
Affiliation(s)
- Marina Ioudina
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
17
|
Sung YJ, Cheng CL, Chen CS, Huang HB, Huang FL, Wu PC, Shiao MS, Tsay HJ. Distinct mechanisms account for beta-amyloid toxicity in PC12 and differentiated PC12 neuronal cells. J Biomed Sci 2003; 10:379-88. [PMID: 12824697 DOI: 10.1007/bf02256429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 03/24/2003] [Indexed: 11/26/2022] Open
Abstract
Whether reactive oxygen species (ROS) mediate beta-amyloid (A beta) neurotoxicity remains controversial. Naive PC12 cells (PC12) and nerve growth factor-differentiated PC12 cells (dPC12) were used to study the role of ROS in cell death induced by A beta(25-35). The viability of PC12 and dPC12 cells decreased by 30-40% after a 48-hour exposure to 20 microM A beta(25-35). Microscopic examination showed that A beta(25-35) induced necrosis in PC12 cells and apoptosis in dPC12 cells. Vitamin E (100 microM) and other antioxidants protected PC12 cells, but not dPC12 cells, against the cytotoxic effect of A beta(25-35). Since H(2)O(2) has been proposed to be involved in A beta toxicity, the effects of H(2)O(2) on PC12 and dPC12 cells were studied. Differentiated PC12 cells appeared to be significantly more resistant to H(2)O(2) than naive PC12 cells. These data suggest that ROS may mediate A beta(25-35) toxicity in PC12 cells but not in dPC12 cells. Because the intracellular levels of ROS were elevated during the differentiation of PC12 cells, the baseline levels of ROS in these two model cell types may determine the intracellular mediators for A beta(25-35) toxicity. Therefore, the protective effects of antioxidants against A beta may depend upon the redox state of the cells.
Collapse
Affiliation(s)
- Yen-Jen Sung
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bond JP, Deverin SP, Inouye H, el-Agnaf OMA, Teeter MM, Kirschner DA. Assemblies of Alzheimer's peptides A beta 25-35 and A beta 31-35: reverse-turn conformation and side-chain interactions revealed by X-ray diffraction. J Struct Biol 2003; 141:156-70. [PMID: 12615542 DOI: 10.1016/s1047-8477(02)00625-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's beta amyloid protein (A beta) is a 39 to 43 amino acid peptide that is a major component in the neuritic plaques of Alzheimer's disease (AD). The assemblies constituted from residues 25-35 (A beta 25-35), which is a sequence homologous to the tachykinin or neurokinin class of neuropeptides, are neurotoxic. We used X-ray diffraction and electron microscopy to investigate the structure of the assemblies formed by A beta 25-35 peptides and of various length sequences therein, and of tachykinin-like analogues. Most solubilized peptides after subsequent drying produced diffraction patterns characteristic of beta-sheet structure. Moreover, the peptides A beta 31-35 (Ile-Ile-Gly-Leu-Met) and tachykinin analogue A beta(Phe(31))31-35 (Phe-Ile-Gly-Leu-Met) gave powder diffraction patterns to 2.8A Bragg spacing. The observed reflections were indexed by an orthogonal unit cell having dimensions of a=9.36 A, b=15.83 A, and c=20.10 A for the native A beta 31-35 peptide, and a=9.46 A, b=16.22 A, and c=11.06 A for the peptide having the Ile31Phe substitution. The initial model was a beta strand where the hydrogen bonding, chain, and intersheet directions were placed along the a, b, and c axes. An atomic model was fit to the electron density distribution, and subsequent refinement resulted in R factors of 0.27 and 0.26, respectively. Both peptides showed a reverse turn at Gly33 which results in intramolecular hydrogen bonding between the antiparallel chains. Based on previous reports that antagonists for the tachykinin substance P require a reverse turn, and that A beta is cytotoxic when it is oligomeric or fibrillar, we propose that the tachykinin-like A beta 31-35 domain is a turn exposed at the A beta oligomer surface where it could interact with the ligand-binding site of the tachykinin G-protein-coupled receptor.
Collapse
Affiliation(s)
- Jeremy P Bond
- Department of Biology, Higgins Hall, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | |
Collapse
|
19
|
Pillay R, Maharaj DS, Daniel S, Daya S. Acetylcholine reduces cyanide-induced superoxide anion generation and lipid peroxidation in rat brain homogenates. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:61-4. [PMID: 12551727 DOI: 10.1016/s0278-5846(02)00316-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is known to be characterised by a decrease in several brain neurotransmitters. However, the neurotransmitter, which decreases most markedly in this disorder, is acetylcholine (Ach). In addition, the biosynthetic enzyme for Ach, viz. choline acetyltransferase, is also decreased significantly. The ultimate loss of cholinergic neurons and subsequent neurodegeneration in this disorder is thought to be due to free radicals. Presently, there are no reports on the neuroprotective effects of Ach. If Ach has neuroprotective effects, its decline could leave the brain exposed to insults such as free radical damage. Thus, in the present study, the authors determined the ability of Ach to scavenge free radicals using the nitroblue tetrazolium (NBT) assay and also examined its ability to inhibit KCN-induced lipid peroxidation in rat brain homogenates. The results show that Ach inhibits the KCN-induced rise in free radicals and lipid peroxidation. Thus, Ach appears to have neuroprotective properties and this could thus be one reason for the acceleration in neurodegeneration once the levels of this neurotransmitter decline in AD.
Collapse
Affiliation(s)
- Ravi Pillay
- Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| | | | | | | |
Collapse
|
20
|
Prasad KN, Cole WC, Prasad KC. Risk factors for Alzheimer's disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr 2002; 21:506-22. [PMID: 12480796 DOI: 10.1080/07315724.2002.10719249] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The etiology of Alzheimer's disease (AD) is not well understood. Etiologic factors, chronic inflammatory reactions, oxidative and nitrosylative stresses and high cholesterol levels are thought to be important for initiating and promoting neurodegenerative changes commonly found in AD brains. Even in familial AD, oxidative stress plays an important role in the early onset of the disease. Mitochondrial damage and proteasome inhibition represent early events in the pathogenesis of AD, whereas increased processing of amyloid precursor protein (APP) to beta-amyloid (Abeta) fragments (Abeta(40) and Abeta(42)) and formation of senile plaques and neurofibrillary tangles (NFTs) represent late events. We propose a hypothesis that in idiopathic AD, epigenetic components of neurons such as mitochondria, proteasomes and post-translation protein modifications (processing of amyloid precursor protein to beta-amyloid and hyperphosphorylation of tau), rather than nuclear genes, are the primary targets for the action of diverse groups of neurotoxins. Based on epidemiologic, laboratory and limited clinical studies, we propose that a combination of non steroidal anti-inflammatory drugs (NSAIDs) and appropriate levels and types of multiple micronutrients, including antioxidants, may be more effective than the individual agents in the prevention, and they, in combination with a cholinergic agent, may be more effective in the treatment of AD than the individual agents alone. In addition, agents, which can prevent formation of plaques or dissolve these plaques may further enhance the efficacy of our proposed treatment strategy.
Collapse
Affiliation(s)
- Kedar N Prasad
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
21
|
Rensink AAM, Verbeek MM, Otte-Höller I, ten Donkelaar HT, de Waal RMW, Kremer B. Inhibition of amyloid-beta-induced cell death in human brain pericytes in vitro. Brain Res 2002; 952:111-21. [PMID: 12363410 DOI: 10.1016/s0006-8993(02)03218-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cultured human brain pericytes. In this study, we aimed to identify inhibitors of A beta-induced toxicity in human brain pericytes. The toxic effect of HCHWA-D A beta(1-40) on human brain pericytes was inhibited by co-incubation with catalase, but not with superoxide dismutase, glutathione or vitamin E analogue Trolox. Catalase interacts with A beta, both in cell cultures and in cell-free assays, and has a prominent effect on the amount and conformational state of A beta binding to the cell surface of human brain pericytes. This activity of catalase is likely based on its ability to bind and slowly degrade A beta and not by its usual capacity to convert hydrogen peroxide. Our data confirm that assembly of A beta at the cell surface of human brain pericytes is a crucial step in A beta-induced cellular degeneration of human brain pericytes. Inhibition of fibril formation at the cell surface could be an important factor in therapy aimed at reducing cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Annemieke A M Rensink
- Department of Neurology, University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Abeta25-35, a fragment of the neurotoxic amyloid beta protein Abeta1-42 found in the brain of Alzheimer patients, possesses amyloidogenic, neurotoxins and channel forming abilities similar to that of Abeta1-42. We have previously reported that Abeta25-35 formed voltage-dependent, relatively nonselective, ion-permeable channels in planar lipid bilayers. Here, we show that Abeta25-35 formed channels in both solvent-containing and solvent-free bilayers. We also report that for Abeta25-35, channel forming activity was dependent on ionic strength, membrane lipid composition, and peptide concentration, but not on pH. Lower ionic strength and negatively charged lipids increased channel formation activity, while cholesterol decreased activity. The nonlinear function relating [Abeta25-35] and membrane activity suggests that aggregation of at least three monomers is required for channel formation.
Collapse
Affiliation(s)
- Meng-chin Allison Lin
- Neuroscience Interdepartmental Program, Brain Research Institute of UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Vitamin E but not 17beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J Neurosci 2002. [PMID: 11943811 DOI: 10.1523/jneurosci.22-08-03081.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amyloid beta-peptide (Abeta) fibril deposition on cerebral vessels produces cerebral amyloid angiopathy that appears in the majority of Alzheimer's disease patients. An early onset of a cerebral amyloid angiopathy variant called hereditary cerebral hemorrhage with amyloidosis of the Dutch type is caused by a point mutation in Abeta yielding Abeta(Glu22-->Gln). The present study addresses the effect of amyloid fibrils from both wild-type and mutated Abeta on vascular cells, as well as the putative protective role of antioxidants on amyloid angiopathy. For this purpose, we studied the cytotoxicity induced by Abeta(1-40 Glu22-->Gln) and Abeta(1-40 wild-type) fibrils on human venule endothelial cells and rat aorta smooth muscle cells. We observed that Abeta(Glu22-->Gln) fibrils are more toxic for vascular cells than the wild-type fibrils. We also evaluated the cytotoxicity of Abeta fibrils bound with acetylcholinesterase (AChE), a common component of amyloid deposits. Abeta(1-40 wild-type)-AChE fibrillar complexes, similar to neuronal cells, resulted in an increased toxicity on vascular cells. Previous reports showing that antioxidants are able to reduce the toxicity of Abeta fibrils on neuronal cells prompted us to test the effect of vitamin E, vitamin C, and 17beta-estradiol on vascular damage induced by Abeta(wild-type) and Abeta(Glu22-->Gln). Our data indicate that vitamin E attenuated significantly the Abeta-mediated cytotoxicity on vascular cells, although 17beta-estradiol and vitamin C failed to inhibit the cytotoxicity induced by Abeta fibrils.
Collapse
|
24
|
Lebeau A, Esclaire F, Rostène W, Pélaprat D. Baicalein protects cortical neurons from beta-amyloid (25-35) induced toxicity. Neuroreport 2001; 12:2199-202. [PMID: 11447334 DOI: 10.1097/00001756-200107200-00031] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulation of amyloid beta peptide (Abeta) has been suggested to contribute to neurodegeneration in Alzheimer's disease (AD). Since chronic inflammation occurs in AD pathogenesis and lipoxygenases are important mediators of inflammatory processes, we evaluated the effect of lipoxygenase inhibitors on apoptosis induced by Abeta on rat cortical cells. The 12-lipoxygenase inhibitor baicalein attenuated both neuronal apoptosis and c-jun protein over-expression induced by Abeta(25- 35), whereas no protection was found with the broad spectrum lipoxygenase inhibitor nordihydroguaiaretic acid or the 5-lipoxygenase inhibitor caffeic acid. These results suggest that 12-lipoxygenase participates in a c-jun-dependent apoptosis pathway triggered by Abeta(25-35), and that specific 12-lipoxygenase inhibitors might be of interest in AD.
Collapse
Affiliation(s)
- A Lebeau
- INSERM U 339, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine 75571 Paris Cedex 12, France
| | | | | | | |
Collapse
|
25
|
Lupo G, Anfuso CD, Assero G, Strosznajder RP, Walski M, Pluta R, Alberghina M. Amyloid beta(1-42) and its beta(25-35) fragment induce in vitro phosphatidylcholine hydrolysis in bovine retina capillary pericytes. Neurosci Lett 2001; 303:185-8. [PMID: 11323116 DOI: 10.1016/s0304-3940(01)01749-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the inhibitory effect of full-length Abeta(1-42) and Abeta(25-35) fragment of amyloid-beta peptide on phosphatidylcholine (PtdCho) metabolism in bovine retina capillary pericytes. Cell cultures were incubated with Abetas for 24 h. Peroxidation indices (malondialdehyde and lactate dehydrogenase release) significantly increased after 20-50 microM Abeta(1-42) or Abeta(25-35) treatment. In addition, [Me-3H]choline incorporation into PtdCho strongly decreased while either 3H-choline or 14C-arachidonic acid release from prelabeled cells increased, indicating PtdCho hydrolysis. The effect was very likely due to prooxidant action of both Abeta peptides. Reversed-sequence Abeta(35-25) peptide did not depress 3H-choline incorporation nor stimulate PtdCho breakdown. With addition of Abetas at low concentrations (2-20 microM) to pericytes, marked ultrastructural changes, well connected to metabolic alterations, emerged including shrinkage of cell bodies, retraction of processes, disruption of the intracellular actin network. Cells treated with higher concentrations (50-200 microM) displayed characteristics of necrotic cell death. The data suggest that: (a) Abeta(1-42) and Abeta(25-35) peptides may modulate phospholipid turnover in microvessel pericytes; (b) together with endothelial cells, pericytes could be the target of vascular damage during processes involving amyloid accumulation.
Collapse
Affiliation(s)
- G Lupo
- Department of Biochemistry, Faculty of Medicine, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Sudo H, Hashimoto Y, Niikura T, Shao Z, Yasukawa T, Ito Y, Yamada M, Hata M, Hiraki T, Kawasumi M, Kouyama K, Nishimoto I. Secreted Abeta does not mediate neurotoxicity by antibody-stimulated amyloid precursor protein. Biochem Biophys Res Commun 2001; 282:548-56. [PMID: 11401495 DOI: 10.1006/bbrc.2001.4604] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies against APP, a precursor of Abeta deposited in Alzheimer's disease brain, have been shown to cause neuronal death. Therefore, it is important to determine whether Abeta mediates antibody-induced neurotoxicity. When primary neurons were treated with anti-APP antibodies, Abeta40 and Abeta42 in the cultured media were undetectable by an assay capable of detecting 100 nM Abeta peptides. However, exogenously treated Abeta1-42 or Abeta1-43 required >3 microM to exert neurotoxicity, and 25 microM Abeta1-40 was not neurotoxic. Glutathione-ethyl-ester inhibited neuronal death by anti-APP antibody, but not death by Abeta1-42, whereas serum attenuated toxicity by Abeta1-42, but not by anti-APP antibody. Using immortalized neuronal cells, we specified the domain responsible for toxicity to be cytoplasmic His(657)-Lys(676), but not the Abeta1-42 region, of APP. This indicates that neuronal cell death by anti-APP antibody is not mediated by secreted Abeta.
Collapse
Affiliation(s)
- H Sudo
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Brain aging, Alzheimer disease and stroke share common elements of deficits in calcium regulation, declines in mitochondrial function, increases in generation of reactive oxygen species (ROS), accumulated damage from ROS and immune system dysfunction. The problem is to distinguish less significant side reactions, such as gray hair, from aspects of aging that contribute to disease. Toward establishing cause and effect relationships, a neuron cell culture system is described that allows comparisons with age under uniform environmental conditions. This neuron culture model indicates that susceptibility to death by apoptosis and consequences of the inflammatory response from beta-amyloid are age-related and an inherent characteristic of the neurons. Further mechanistic investigations are possible. New therapeutic approaches are suggested that combine inhibition of calcium overloads (calcium channel blockers), reduced ROS damage (melatonin, N-acetyl-cysteine), and bolstered mitochondrial function and energy generation (creatine). Together with newly demonstrated capabilities for adult and aged neuron regeneration and multiplication, i.e. plasticity, these approaches offer new hope toward reversing age-related decrements and damage from neurodegenerative disease.
Collapse
Affiliation(s)
- G J Brewer
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794-9626, USA.
| |
Collapse
|
28
|
Hashimoto Y, Niikura T, Ito Y, Nishimoto I. Multiple mechanisms underlie neurotoxicity by different types of Alzheimer's disease mutations of amyloid precursor protein. J Biol Chem 2000; 275:34541-51. [PMID: 10934205 DOI: 10.1074/jbc.m005332200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined a neuronal cell system in which single-cell expression of either familial Alzheimer's disease (FAD) gene V642I-APP or K595N/M596L-APP (NL-APP) in an inducible plasmid was controlled without affecting transfection efficiency. This system revealed that (i) low expression of both mutants exerted toxicity sensitive to both Ac-DEVD-CHO (DEVD) and glutathione ethyl ester (GEE), whereas wild-type APP (wtAPP) only at higher expression levels caused GEE/DEVD-resistant death to lesser degrees; (ii) toxicity by the V642I mutation was entirely GEE/DEVD sensitive; and (iii) toxicity by higher expression of NL-APP was GEE/DEVD resistant. The GEE/DEVD-sensitive death was sensitive to pertussis toxin and was due to G(o)-interacting His(657)-Lys(676) domain. The GEE/DEVD-resistant death was due to C-terminal Met(677)-Asn(695). APP mutants lacking either domain unraveled elaborate intracellular cross-talk between these domains. E618Q-APP, responsible for non-AD type of a human disease, only exerted GEE/DEVD-resistant death at higher expression. Therefore, (i) different FAD mutations in APP cause neuronal cell death through different cytoplasmic domains via different sets of mechanisms; (ii) expression levels of FAD genes are critical in activating specific death mechanisms; and (iii) toxicity by low expression of both mutants most likely reflects the pathogenetic mechanism of FAD.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Shinanomachi, Tokyo 160, Japan
| | | | | | | |
Collapse
|
29
|
Barkats M, Millecamps S, Abrioux P, Geoffroy MC, Mallet J. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to Abeta-mediated neurotoxicity. J Neurochem 2000; 75:1438-46. [PMID: 10987823 DOI: 10.1046/j.1471-4159.2000.0751438.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Senile plaques are neuropathological manifestations in Alzheimer's disease (AD) and are composed mainly of extracellular deposits of amyloid beta-peptide (Abeta). Various data suggest that the accumulation of Abeta may contribute to neuronal degeneration and that Abeta neurotoxicity could be mediated by oxygen free radicals. Removal of free radicals by antioxidant scavengers or enzymes was found to protect neuronal cells in culture from Abeta toxicity. However, the nature of the free radicals involved is still unclear. In this study, we investigated whether the neuronal overexpression of glutathione peroxidase (GPx), the major hydrogen peroxide (H2O2)-de-grading enzyme in neurons, could increase their survival in a cellular model of Abeta-induced neurotoxicity. We infected pheochromocytoma (PC12) cells and rat embryonic cultured cortical neurons with an adenoviral vector encoding GPx (Ad-GPx) prior to exposure to toxic concentrations of Abeta(25-35) or (1-40). Both PC12 and cortical Ad-GPx-infected cells were significantly more resistant to Abeta-induced injury. These data strengthen the hypothesis of a role of H2O2 in the mechanism of Abeta toxicity and highlight the potential of Ad-GPx to reduce Abeta-induced damage to neurons. These findings may have applications in gene therapy for AD.
Collapse
Affiliation(s)
- M Barkats
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, CNRS UMR C9923, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Brera B, Serrano A, de Ceballos ML. beta-amyloid peptides are cytotoxic to astrocytes in culture: a role for oxidative stress. Neurobiol Dis 2000; 7:395-405. [PMID: 10964610 DOI: 10.1006/nbdi.2000.0313] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Amyloid is cytotoxic to neurons in culture by increasing hydrogen peroxide and altering calcium homeostasis. We have evaluated the cytotoxicty of beta-amyloid peptides (betaA(25-35) and betaA(1-40)) and generation of hydrogen peroxide on cortical cultured astrocytes. Twenty-four hours after a single addition of either betaA(25-35) or betaA(1-40) there was a concentration-dependent decrease in viability. This toxicity never exceeded 50% of the population independently of exposure time and concentrations. The subpopulation of astrocytes resistant to betaA(25-35) effects were also insensitive to peroxide. Catalase or vitamin E showed no protective effect against betaA(25-35) toxicity. Dithiothreitol (DTT), N-acetylcysteine (NAC), and cyclosporine A significantly prevented the toxic effects of both betaA(25-35) and peroxide. Inhibition of peroxide detoxifying enzymes increased betaA(25-35) and peroxide toxicity. Exposure to betaA(25-35) or betaA(1-40) increased peroxide production at 2 and 24 h, which was prevented by DTT and NAC, but not vitamin E. Despite the inability of added catalase to reduce betaA toxicity, these results suggest that betaA-induced cytotoxicity to astrocytes in culture is, as in neurons, mediated by generation of hydrogen peroxide.
Collapse
Affiliation(s)
- B Brera
- Neurodegeneration Group, Cajal Institute, CSIC, Doctor Arce, 37, Madrid, 28002, Spain
| | | | | |
Collapse
|
31
|
Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:139-44. [PMID: 10899439 DOI: 10.1016/s0925-4439(00)00040-5] [Citation(s) in RCA: 523] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidative balance is emerging as an important issue in understanding the pathogenesis of Alzheimer's disease. Examination of Alzheimer's disease brain has demonstrated a great deal of oxidative damage, associated with both hallmark pathologies (senile plaques and neurofibrillary tangles) as well as in normal appearing pyramidal neurons. While this suggests that oxidative stress is a proximal event in Alzheimer's disease pathogenesis, the mechanisms by which redox balance is altered in the disease remains elusive. Determining which of the proposed sources of free radicals, which include mitochondrial dysfunction, amyloid-beta-mediated processes, transition metal accumulation and genetic factors like apolipoprotein E and presenilins, is responsible for redox imbalance will lead to a better understanding of Alzheimer's disease pathogenesis and novel therapeutic approaches.
Collapse
Affiliation(s)
- M A Smith
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
32
|
Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130:184-208. [PMID: 10940225 DOI: 10.1006/jsbi.2000.4274] [Citation(s) in RCA: 554] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.
Collapse
Affiliation(s)
- S Varadarajan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506-0055, USA
| | | | | | | |
Collapse
|
33
|
Bhatia R, Lin H, Lal R. Fresh and globular amyloid beta protein (1-42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. FASEB J 2000; 14:1233-43. [PMID: 10834945 DOI: 10.1096/fasebj.14.9.1233] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid beta peptides (AbetaP) deposit as plaques in vascular and parenchymal areas of Alzheimer's disease (AD) tissues and Down's syndrome patients. Although neuronal toxicity is a feature of late stages of AD, vascular pathology appears to be a feature of all stages of AD. Globular and nonfibrillar AbetaPs are continuously released during normal cellular metabolism, form calcium-permeable channels, and alter cellular calcium level. We used atomic force microscopy, laser confocal microscopy, and calcium imaging to examine the real-time and acute effects of fresh and globular AbetaP(1-42), AbetaP(1-40), and AbetaP(25-35) on cultured endothelial cells. AbetaPs induced morphological changes that were observed within minutes after AbetaP treatment and led to eventual cellular degeneration. Cellular morphological changes were most sensitive to AbetaP(1-42). AbetaP(1-42)-induced morphological changes were observed at nanomolar concentrations and were accompanied by an elevated cellular calcium level. Morphological changes were prevented by anti-AbetaP antibody, AbetaP-channel antagonist zinc, and the removal of extracellular calcium, but not by tachykinin neuropeptide, voltage-sensitive calcium channel blocker cadmium, or antioxidants DTT and Trolox. Thus, nanomolar fresh and globular AbetaP(1-42) induces rapid cellular degeneration by elevating intracellular calcium, most likely via calcium-permeable AbetaP channels and not by its interaction with membrane receptors or by activating oxidative pathways. Such rapid degeneration also suggests that the plaques, and especially fibrillar AbetaPs, may not have a direct causative role in AD pathogenic cascades.
Collapse
Affiliation(s)
- R Bhatia
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA.
| | | | | |
Collapse
|
34
|
Prasad KN, Hovland AR, Cole WC, Prasad KC, Nahreini P, Edwards-Prasad J, Andreatta CP. Multiple antioxidants in the prevention and treatment of Alzheimer disease: analysis of biologic rationale. Clin Neuropharmacol 2000; 23:2-13. [PMID: 10682224 DOI: 10.1097/00002826-200001000-00002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The etiology of Alzheimer disease (AD) is not well understood; therefore, neither prevention strategies nor long-term effective treatment modalities are available for this disease. Based on laboratory and clinical studies, it appears that reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated extracellularly and intracellularly by various mechanisms are among the major intermediary risk factors that initiate and promote neurodegeneration in idiopathic AD. Therefore, multiple antioxidant supplements could be useful in the prevention of AD, and as an adjunct to standard therapy in the treatment of AD. The products of inflammatory reactions such as prostaglandins (PGs; PGE1 and PGA1), free radicals, cytokines, and complement proteins are neurotoxic. Nonsteroidal antiinflammatory drugs (NSAIDs), which inhibit the synthesis of PGs, reduce the rate of deterioration of cognitive functions in patients with advanced AD. Cholinergic drugs are routinely used in the treatment of AD to improve cognitive functions. Therefore, we propose that a combination of multiple antioxidants and NSAIDs may be more beneficial in the prevention of AD, and that this combination taken together with cholinergic drugs may be more effective in the treatment of AD than the individual agents alone. We also hypothesize that, in idiopathic AD, epigenetic components of neurons such as mitochondria, membranes, other membranous structures, and protein modifications--rather than the genes of neurons--are the primary targets for the action of neurotoxins including free radicals. In some familial AD, mutations in amyloid precursor protein and presenilins are associated with the risk of early onset of this disease; however, their mechanisms of action are not fully understood.
Collapse
Affiliation(s)
- K N Prasad
- Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Anfuso CD, Lupo G, Alberghina M. Amyloid beta but not bradykinin induces phosphatidylcholine hydrolysis in immortalized rat brain endothelial cells. Neurosci Lett 1999; 271:151-4. [PMID: 10507691 DOI: 10.1016/s0304-3940(99)00560-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the inhibitory effect of A beta (25-35) fragment of amyloid-beta peptide and bradykinin (BK) on phosphatidylcholine (PtdCho) metabolism in immortalized rat brain GP8.39 endothelial cells (EC). Cultures were incubated either with A beta for 24-48 h, or with BK for 30 min-4 h. The peroxidation indices (malondialdehyde, conjugated dienes) and lactate dehydrogenase (LDH) release significantly increased after A beta peptide (10-50 microM) treatment. The BK (10 microM) stimulation of cells brought about an increase in conjugated dienes and LDH release only after 4 h. Following 24 h treatment with 50 microM A beta peptide, the [Me-3H]choline incorporation into PtdCho strongly decreased while the [3H]choline release increased, indicating PtdCho hydrolysis. The effect was most likely due to peptide prooxidant effect. After 4 h preincubation with BK, the [Me-3H]choline incorporation into PtdCho strongly decreased, but no significant [3H]choline release was found. Following long-term treatment, the action of 50 microM A beta on [3H]choline release was not enhanced by 10 microM BK. Cell exposure to alpha-tocopherol (1 mM) prior to the addition of both agents did not abolish stimulated PtdCho breakdown. The data suggest that: (a) A beta peptide and BK may modulate phospholipid turnover in microvessel cells; (b) they could not synergistically interact in vascular EC damage during processes involving amyloid accumulation and inflammatory response.
Collapse
Affiliation(s)
- C D Anfuso
- Institute of Biochemistry, Faculty of Medicine, University of Catania, Italy
| | | | | |
Collapse
|
36
|
Canevari L, Clark JB, Bates TE. beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 1999; 457:131-4. [PMID: 10486579 DOI: 10.1016/s0014-5793(99)01028-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defects in mitochondrial oxidative metabolism, in particular decreased activity of cytochrome c oxidase, have been demonstrated in Alzheimer's disease, and after the expression of the amyloid precursor protein (APP) in cultured cells, suggesting that mitochondria might be involved in beta-amyloid toxicity. Recent evidence suggests that the proteolysis of APP to generate beta-amyloid is at least in part intracellular, preceding the deposition of extracellular fibrils. We have therefore investigated the effect of incubation of isolated rat brain mitochondria with the beta-amyloid fragment 25-35 (100 microM) on the activities of the mitochondrial respiratory chain complexes I, II-III, IV (cytochrome c oxidase) and citrate synthase. The peptide caused a rapid, dose-dependent decrease in the activity of complex IV, white it had no effect on the activities on any of the other enzymes tested. The reverse sequence peptide (35-25) had no effect on any of the activities measured. We conclude that inhibition of mitochondrial complex IV might be a contributing factor to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- L Canevari
- Department of Neurochemistry, Institute of Neurology, London, UK.
| | | | | |
Collapse
|
37
|
Harkany T, Mulder J, Sasvári M, Abrahám I, Kónya C, Zarándi M, Penke B, Luiten PG, Nyakas C. N-Methyl-D-aspartate receptor antagonist MK-801 and radical scavengers protect cholinergic nucleus basalis neurons against beta-amyloid neurotoxicity. Neurobiol Dis 1999; 6:109-21. [PMID: 10343326 DOI: 10.1006/nbdi.1998.0230] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous experimental data indicate the involvement of Ca(2+)-related excitotoxic processes, possibly mediated by N-Methyl-D-Aspartate (NMDA) receptors, in beta-amyloid (beta A) neurotoxicity. On the other hand, other lines of evidence support the view that free radical generation is a critical step in the beta A-induced neurodegenerative cascade. In the present study, therefore, a neuroprotective strategy was applied to explore the contributions of each of these pathways in beta A toxicity. beta A(1-42) was injected into the magnocellular nucleus basalis of rats, while neuroprotection was achieved by either single or combined administration of the NMDA receptor antagonist MK-801 (2.5 mg/kg) and/or a vitamin E and C complex (150 mg/kg). The degree of neurodegeneration was determined by testing the animals in consecutive series of behavioral tasks, including elevated plus maze, passive avoidance learning, small open-field and open-field paradigms, followed by acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), and superoxide dismutase (SOD) biochemistry. beta A injected in the nucleus basalis elicited significant anxiety in the elevated plus maze, derangement of passive avoidance learning, and altered spontaneous behaviors in both open-field tasks. A significant decrease in both AChE and ChAT accompanied by a similar decrement of MnSOD, but not of Cu/ZnSOD provided neurochemical substrates for the behavioral changes. Each of the single drug administrations protected against the neurotoxic events, whereas the combined treatment failed to ameliorate beta A toxicity.
Collapse
Affiliation(s)
- T Harkany
- Central Research Division, Haynal Imre University of Health Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yatin SM, Aksenov M, Butterfield DA. The antioxidant vitamin E modulates amyloid beta-peptide-induced creatine kinase activity inhibition and increased protein oxidation: implications for the free radical hypothesis of Alzheimer's disease. Neurochem Res 1999; 24:427-35. [PMID: 10215518 DOI: 10.1023/a:1020997903147] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid beta-peptide (Abeta), the main constituent of senile plaques in Alzheimer's disease (AD) brain, is hypothesized to be a key factor in the neurodegeneration seen in AD. Recently it has been shown by us and others that the neurotoxicity of Abeta occurs in conjunction with free radical oxidative stress associated with the peptide. Abeta(1-40) and several other fragments of the Abeta sequence are associated with free radicals in solution that are detectable using electron paramagnetic resonance spectroscopy. These free radicals were shown to attack brain cell membranes, initiate lipid peroxidation, increase Ca2+ influx and damage membrane and cytosolic proteins. In AD brain obtained under rapid autopsy protocol, the activity of the oxidatively-sensitive enzyme creatine kinase was shown to be significantly reduced. We reasoned that Abeta-associated free radical-induced modification of creatine kinase activity and other markers of cellular damage might be modulated by free radical scavengers. Accordingly, this study demonstrates that vitamin E can modulate Abeta(25-35)-induced oxidative damage to creatine kinase and cellular proteins in cultured embryonic hippocampal neurons. These results, consistent with the hypothesis of free radical-mediated Abeta toxicity in AD, are discussed with deference to potential free radical scavengers as therapeutic agents for slowing the progression of AD.
Collapse
Affiliation(s)
- S M Yatin
- Department of Chemistry and Center of Membrane Sciences, University of Kentucky Lexington, 40506-0055, USA
| | | | | |
Collapse
|
39
|
Flynn BL, Ranno AE. Pharmacologic management of Alzheimer disease, Part II: Antioxidants, antihypertensives, and ergoloid derivatives. Ann Pharmacother 1999; 33:188-97. [PMID: 10084415 DOI: 10.1345/aph.17172] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To provide information about research evaluating antioxidants in Alzheimer disease (AD) and to discuss the potential role of beta-blockers, angiotensin-converting enzyme inhibitors, clonidine, guanfacine, nimodipine, and ergoloid derivatives in AD therapy. DATA SOURCES Studies, review articles, and editorials identified from MEDLINE searches (from 1989 to 1997) and bibliographies of identified articles. STUDY SELECTION Studies and review articles addressing antioxidant, antihypertensive, and ergoloid derivative pharmacotherapy research. DATA EXTRACTION Pertinent information was selected and the data synthesized into a review format. DATA SYNTHESIS AD is a progressive neuropsychiatric disorder of unknown etiology. Studies evaluating the possible association between a free radical mechanism in AD and the potential role of antioxidants are reviewed. Additionally, the role of beta-blockers, angiotensin-converting enzyme inhibitors, clonidine, guanfacine, nimodipine, and ergoloid derivatives in AD management are discussed. CONCLUSIONS Preliminary evidence suggests that antioxidants may have a protective effect against the development of AD. Additional prospective, double-blind, placebo-controlled studies are needed to determine the role of antioxidants in the prevention and management of AD. Understanding the role of antioxidants in AD may suggest alternative agents that have similar pharmacologic activity. Beta-blockers may be an option to control agitation in AD patients for whom anxiolytics or antipsychotics are ineffective or are contraindicated because of their adverse effect profiles. Other agents that may have a role in AD therapy include angiotensin-converting enzyme inhibitors, nimodipine, and ergoloid derivatives. Clonidine and guanfacine have thus far shown little promise in improving cognitive function in AD. Further prospective, double-blind, placebo-controlled trials will be necessary to elucidate the role of these agents in AD management.
Collapse
Affiliation(s)
- B L Flynn
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy and Allied Health Professions, Creighton University, St. Joseph Villa Nursing Center, Omaha, NE 68178, USA
| | | |
Collapse
|
40
|
Smith MA, Hirai K, Nunomura A, Perry G. Mitochondrial abnormalities: A primary basis for oxidative damage in Alzheimer's disease. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199901)46:1<26::aid-ddr5>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Abstract
Oxidative insults, whether over-excitation, excessive release of glutamate or ATP caused by stroke, ischemia or inflammation, exposure to ionizing radiation, heavy-metal ions or oxidized lipoproteins may initiate various signaling cascades leading to apoptotic cell death and neurodegenerative disorders. Among the various reactive oxygen species (ROS) generated in the living organism, hydroxyl and peroxynitrite are the most potent and can damage proteins, lipids and nucleic acids. It appears that some natural antioxidants (tocopherol, ascorbic acid and glutathione) and defense enzyme systems (superoxide dismutase, catalase and glutathione peroxidase) may provide some protection against oxidative damage. Recent findings indicate several polyphenols and antioxidant drugs (probucol, seligilline) are effective in protecting the cells from ROS attack. Further development of these antioxidant molecules may be of value in preventing the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- A Y Sun
- Department of Pharmacology, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
42
|
Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer's amyloid-beta toxicity and oxidative stress. J Neurosci 1998. [PMID: 9698314 DOI: 10.1523/jneurosci.18-16-06207.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on the amyloid precursor protein (APP) have suggested that it may be neuroprotective against amyloid-beta (Abeta) toxicity and oxidative stress. However, these findings have been obtained from either transfection of cell lines and mice that overexpress human APP isoforms or pretreatment of APP-expressing primary neurons with exogenous soluble APP. The neuroprotective role of endogenously expressed APP in neurons exposed to Abeta or oxidative stress has not been determined. This was investigated using primary cortical and cerebellar neuronal cultures established from APP knock-out (APP-/-) and wild-type (APP+/+) mice. Differences in susceptibility to Abeta toxicity or oxidative stress were not found between APP-/- and APP+/+ neurons. This observation may reflect the expression of the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2) molecules and supports the theory that APP and the APLPs may have similar functional activities. Increased expression of cell-associated APLP2, but not APLP1, was detected in Abeta-treated APP-/- and APP+/+ cultures but not in H2O2-treated cultures. This suggests that the Abeta toxicity pathway differs from other general forms of oxidative stress. These findings show that Abeta toxicity does not require an interaction of the Abeta peptide with the parental molecule (APP) and is therefore distinct from prion protein neurotoxicity that is dependent on the expression of the parental cellular prion protein.
Collapse
|
43
|
Hölscher C. Possible causes of Alzheimer's disease: amyloid fragments, free radicals, and calcium homeostasis. Neurobiol Dis 1998; 5:129-41. [PMID: 9848086 DOI: 10.1006/nbdi.1998.0193] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a form of dementia in which patients develop neurodegeneration and complete loss of cognitive abilities and die prematurely. No treatment is known for this condition. Evidence points toward beta-amyloid as one of the main causes for cytotoxic processes. The cascade of biochemical events that lead to neuronal death appears to be interference with intracellular calcium homeostasis via activation of calcium channels, intracellular calcium stores, and subsequent production of free radicals by calcium-sensitive enzymes. The glutamatergic system seems to be implicated in mediating the toxic processes. Several strategies promise amelioration of neurodegenerative developments as judging from in vitro experiments. Glutamate receptor-selective drugs, antioxidants, inhibitors of nitric oxide synthase, calcium channel antagonists, receptor or enzyme inhibitors, and growth factors promise help. Especially combinations of drugs that act at different levels might prolong patients' health.
Collapse
Affiliation(s)
- C Hölscher
- Department of Human Anatomy and Physiology, University College Dublin, Ireland
| |
Collapse
|
44
|
Fowler CJ, Ando Y, Tiger G. Comparison of the effects of hydrogen peroxide, 4-hydroxy-2-nonenal and beta-amyloid (25-35) upon calcium signalling. Neurochem Int 1998; 33:161-72. [PMID: 9761460 DOI: 10.1016/s0197-0186(98)00013-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neurotoxic beta-amyloid (Abeta) peptide fragment Abeta(25-35) has been suggested to exert its deleterious effects on cells via production of hydrogen peroxide. In human platelets and in the presence of DMSO to prevent production of hydroxyl radicals from hydrogen peroxide, both Abeta(25-35) and hydrogen peroxide were found to increase intracellular calcium levels. Hydrogen peroxide in addition reduced the calcium response to thrombin, whereas this was not seen with Abeta(25-35). A similar pattern of effects to those seen with hydrogen peroxide were also seen with the neurotoxic aldehyde lipid peroxidation product 4-hydroxy-2-nonenal (HNE). The initial increase in calcium produced by hydrogen peroxide was not affected by EGTA, but was partially prevented by dithiothreitol. The calcium response to Abeta(25-35) [which was also seen with Abeta(1-40) and Abeta(1-42) but not with the inactive peptide Abeta(40-1)] consisted of an EGTA-sensitive and an EGTA-resistant component, of which the latter was also sensitive to DTT. Hydrogen peroxide increased basal phosphoinositide breakdown in rat brain miniprisms and decreased the responses to noradrenaline, carbachol and veratrine. The specific binding of [3H]inositol-1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) to its receptor recognition site in human platelet membranes was increased by Abeta(25-35) but remained unchanged following hydrogen peroxide treatment. It is concluded that under conditions where production of hydroxyl radicals from hydrogen peroxide is blocked, hydrogen peroxide and Abeta(25-35) produce their effects on calcium by affecting the mobilisation of intracellular calcium. The qualitative differences in the calcium responses of these two agents can be explained (a) by an additional effect of Abeta(25-35) upon calcium entry and (b) by differences in their effects upon the Ins(1,4,5)P3 receptor.
Collapse
Affiliation(s)
- C J Fowler
- Department of Pharmacology, Umeå University, Sweden.
| | | | | |
Collapse
|
45
|
Bondy SC, Guo-Ross SX, Truong AT. Promotion of transition metal-induced reactive oxygen species formation by beta-amyloid. Brain Res 1998; 799:91-6. [PMID: 9666089 DOI: 10.1016/s0006-8993(98)00461-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
beta-amyloid protein appears to be involved in the neural degeneration associated with Alzheimer's disease. However, its mechanism of action is poorly understood. The ability of the neurotoxic peptide fragment (25-35) derived from beta-amyloid, to promote the generation of reactive oxygen species (ROS) by a postmitochondrial fraction (P2) derived from rat cerebrocortex, has been examined. The peptide fragment, when incubated together with P2, did not cause excess ROS formation. However, 10 microM FeSO4 or 10 microM CuSO4 were able to enhance ROS production in the P2 fraction and this was increased further in the concurrent presence of the 25-35 fragment. The corresponding inverse sequence non-neurotoxic peptide (35-25) had no parallel ability to augment iron-stimulated ROS production suggesting a degree of specificity for the observed effect. There was no formation of excess ROS when the 25-35 peptide and 0.5 mM Al2(SO4)3 were incubated with the P2 fraction. However in the presence of both aluminum and iron salts together with the 25-35 peptide, ROS production was augmented to a level significantly higher than that in the absence of aluminum. Polyglutamate, a peptide reported to mitigate aluminum toxicity had no effect on iron-related ROS generation but completely prevented its further potentiation by aluminum. The results indicate that beta-amyloid is able to potentiate the free-radical promoting capacity of metal ions such as iron, copper and aluminum. Such potentiation may be a relevant mechanism underlying beta-amyloid-induced degeneration of nerve cells.
Collapse
Affiliation(s)
- S C Bondy
- Center for Occupational and Environmental Health, Department of Community and Environmental Medicine, University of California Irvine, Irvine, CA 92697-1820, USA
| | | | | |
Collapse
|
46
|
Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM. The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 57:63-72. [PMID: 9630519 DOI: 10.1016/s0169-328x(98)00066-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The beta-amyloid peptide (Abeta) is deposited in neuritic plaques which are characteristic features of Alzheimer's disease (AD). Prominent neurodegeneration and glial activation occurs around these plaques leading to the hypothesis that Abeta may play a causative role in the neuronal loss and the inflammatory response associated with AD. Here we show that Abeta-induced toxicity of cultured fetal rat cortical neurons is associated with internucleosomal DNA fragmentation beginning just 6 h after neurons are exposed to Abeta. Additionally, constitutive NF-kappaB activity readily measured in fetal rat cortical neurons decreases in a concentration- and time-dependent fashion following exposure to Abeta, but there is no corresponding decrease in NF-kappaB mRNA or protein (p65). An upregulation of both IkappaB alpha protein and mRNA which occurs in cortical neurons exposed to Abeta may be responsible for retaining NF-kappaB in the cytoplasm accounting for the observed decrease in activated NF-kappaB. The latter is supported by the observation that pretreatment of cortical cultures with an antisense oligonucleotide to IkappaBalpha mRNA is neuroprotective. In contrast to cortical neurons, exposure of rat primary astroglial cultures to Abeta results in a concentration- and time-dependent activation of NF-kappaB with subsequent upregulation of IL-1beta and IL-6. Our data suggest that Abeta-induced neurotoxicity as well as astrocyte activation may be medicated by the NF-kappaB/Rel family of proteins, and thus alterations in NF-kappaB-directed gene expression may contribute to both the neurodegeneration and inflammatory response which occur in AD.
Collapse
Affiliation(s)
- K R Bales
- Neuroscience Discovery Research, Eli Lilly, Indianapolis, IN 46285, USA
| | | | | | | | | | | |
Collapse
|
47
|
Molina JA, Jiménez-Jiménez FJ, Ortí-Pareja M, Navarro JA. The role of nitric oxide in neurodegeneration. Potential for pharmacological intervention. Drugs Aging 1998; 12:251-9. [PMID: 9571390 DOI: 10.2165/00002512-199812040-00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is involved in important physiological functions of the CNS, including neurotransmission, memory and synaptic plasticity. Depending on the redox state of NO, it can act as a neurotoxin or it can have a neuroprotective action. Data suggest that NO may have a role in the pathogenesis of neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease. Additionally, these data indicate that inhibitors of the NO-synthesising enzyme, NO synthase, may be useful as neuroprotective agents in these diseases. In animal models, NOS inhibitors have been shown to prevent the neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and other dopaminergic toxins. However, the clinical effects of NOS inhibitors remain unknown.
Collapse
Affiliation(s)
- J A Molina
- Department of Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Inestrosa NC, Marzolo MP, Bonnefont AB. Cellular and molecular basis of estrogen's neuroprotection. Potential relevance for Alzheimer's disease. Mol Neurobiol 1998; 17:73-86. [PMID: 9887447 DOI: 10.1007/bf02802025] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia among the aged population, with a higher prevalence in women. The reason for this latter observation remained unsolved for years, but recent studies have provided evidence that a lack of circulating estrogen in postmenopausal women could be a relevant factor. Moreover, follow-up studies among postmenopausal women who had received estrogen-replacement therapy (ERT), suggested that they had a markedly reduced risk of developing AD. In addition, studies among older women who already had AD indeed confirmed that a decrease in estrogen levels was likely to be an important factor in triggering the pathogenesis of the disease. In this review article, we will discuss the evidence suggesting that estrogen may have a protective role against AD, mainly through its action as: a trophic factor for cholinergic neurons, a modulator for the expression of apolipoprotein E (ApoE) in the brain, an antioxidant compound decreasing the neuronal damage caused by oxidative stress, and a promoter of the physiological nonamyloidogenic processing of the amyloid precursor protein (APP), decreasing the production of the amyloid-beta-peptide (A beta), a key factor in the pathogenesis of AD.
Collapse
Affiliation(s)
- N C Inestrosa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile
| | | | | |
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the brain characterized by the presence of neuritic amyloid plaques and neurofibrillary tangles. Although it most frequently occurs in the elderly, this disorder also afflicts younger patients. The majority of AD cases are late in onset, lack an obvious genetic etiology and are characterized as sporadic, whereas a small percentage of cases are early in onset and segregate strongly within families (FAD), suggesting a genetic etiology. During the past decade it has become evident that the clinical and histopathological phenotypes of this disease are caused by heterogeneous genetic, and probably environmental, factors. Indeed, several genes have been identified that together appear to cause most of the familial forms of the disease, whereas the epsilon4 allele of the apolipoprotein E (apoE) gene has been shown to be a significant risk factor for the late onset forms of AD. Despite this evidence of heterogeneity, it has been suggested that all of these factors work through a common pathway by triggering the deposition of amyloid in the brain, which is ultimately responsible for the neuronal degeneration of AD. This is a controversial theory, however, primarily because there is a poor correlation between the concentrations and distribution of amyloid depositions in the brain and several parameters of AD pathology, including degree of dementia, loss of synapses, loss of neurons and abnormalities of the cytoskeleton.
Collapse
Affiliation(s)
- R L Neve
- Dept of Genetics, Harvard Medical School, McLean Hospital, Belmont, MA 02178, USA
| | | |
Collapse
|
50
|
Lucca E, Angeretti N, Forloni G. Influence of cell culture conditions on the protective effect of antioxidants against beta-amyloid toxicity: studies with lazaroids. Brain Res 1997; 764:293-8. [PMID: 9295228 DOI: 10.1016/s0006-8993(97)00660-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanisms of cell death of rat cortical neurons chronically exposed to the beta-amyloid (betaA) biologically active fragment beta-(25-35) involve oxidative stress. We examined the influence of culture conditions on the neuroprotective activity of antioxidants against beta-(25-35) toxicity. Common radical scavengers such as N-acetylcysteine (250 microM) and N-t-butyl-phenylnitrone (500 microM) only protected cortical cells cultured in the presence of fetal calf serum (FCS) from betaA insult. The neuroprotective effect of lazaroids (U74389G and U83836E), 21-aminosteroids with antioxidant activity, was tested in cells grown with or without FCS. U74389G did not interfere with beta-(25-35) toxicity in either condition, while U83836E at a very low concentration (15 nM) protected cortical cells exposed to the beta peptide only when the neurons were cultured in the presence of FCS. These data show that a lazaroid can prevent beta-(25-35) toxicity and that the antioxidants exerted their protective effect in certain conditions.
Collapse
Affiliation(s)
- E Lucca
- Biology of Neurodegenerative Disorders Laboratory, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | |
Collapse
|