1
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Schelker C, Revaclier L, Borchard G, Nowak-Sliwinska P. Liposomal Tubacin: Strategies for the Formulation of a Highly Hydrophobic Anticancer Drug. Pharmaceutics 2025; 17:491. [PMID: 40284485 PMCID: PMC12030124 DOI: 10.3390/pharmaceutics17040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Clear-cell renal cell carcinoma (ccRCC) is the most prevalent form of kidney cancer, accounting for over 75% of cases worldwide. Histone deacetylase inhibitors (HDACIs) have emerged as promising agents for ccRCC treatment, particularly in combination with immunotherapy or targeted therapies. Tubacin, a potent HDAC6 inhibitor, has demonstrated potent anticancer activity but faces therapeutic limitations due to its hydrophobic nature and poor solubility, which hinder its effective drug delivery. This study explores liposomal encapsulation as a strategy to improve tubacin delivery; Methods: Liposomes were prepared using the ethanol injection method followed by size-exclusion chromatography. Using the Plackett-Burman Design, we identified a promising liposomal formulation and evaluated its biological activity in vitro; Results: However, initial formulations reduced the mitochondrial activity to 30% in healthy renal cell lines. To mitigate this, we optimized the formulation by reducing tocopheryl polyethylene glycol succinate (TPGS) content and incorporating Kolliphor® as an additional surfactant. This optimized formulation significantly reduced toxicity in noncancerous cells, with up to 80% of mitochondrial activity conserved while retaining key properties for therapeutic application; Conclusions: Our findings demonstrate that liposomal encapsulation enhances the safety and delivery of hydrophobic drugs like tubacin. This approach offers a promising strategy for improving the efficacy of HDACIs in ccRCC treatment, potentially overcoming drug delivery challenges associated with hydrophobic molecules.
Collapse
Affiliation(s)
- Cindy Schelker
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Léa Revaclier
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland; (C.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Zhao Y, Wang X, Yang X, Li J, Han B. Insights into the history and trends of nanotechnology for the treatment of hepatocellular carcinoma: a bibliometric-based visual analysis. Discov Oncol 2025; 16:484. [PMID: 40192866 PMCID: PMC11977073 DOI: 10.1007/s12672-025-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Nanotechnology has great potential and advantages in the treatment of hepatocellular carcinoma (HCC), but the research trends and future directions are not yet clear. OBJECTIVES Analyze the development trajectory, research hotspots, and future trends of nanotechnology and HCC research globally in the past 20 years, providing a more comprehensive and intuitive reference for researchers in this field. METHODS Retrieve relevant literature on nanotechnology and HCC research in the Web of Science (WOS) Core Collection database, and conduct bibliometric analysis using software such as CiteSpace, VOSviewer, and SCImago Graphica. RESULTS A total of 852 English publications meeting the criteria were retrieved from the WOS database, with an overall increasing trend in the number of publications and citation frequency over the years. China leads in the number of publications and international collaborations, followed by the USA and India. The most influential research institution is the Chinese Academy of Sciences, the most influential scholar/team is the Rahman, Mahfoozur team, and the journal with the most publications is the International Journal of Nanomedicine. A comprehensive analysis reveals that the current main research directions include new types of nanoparticles, targeted drug delivery systems, photothermal/photodynamic therapy, gene delivery systems, diagnostics, and imaging. It is anticipated that further collaboration among scholars, institutions, and countries will accelerate the development of nanotechnology in the field of HCC research. CONCLUSION This study provides an in-depth analysis of the research status and development trends of nanotechnology in treating HCC from a bibliometric perspective, offering possible guidance for researchers to explore hot topics and frontiers, select suitable journals, and partners in this field.
Collapse
Affiliation(s)
- Yulei Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Jiaheng Li
- College of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
4
|
Hua Q, Wang Q, Wang X, Jiang X, Gong M, Li J, Li T, Wang X, Cao X, Yu J, Toreniyazov E, Zong B, Xu X, Shi F, Adu-Frimpong M. Preparation of PEG-modified isoquercitrin liposomes and anti-chronic kidney disease research. J Liposome Res 2025:1-15. [PMID: 40125927 DOI: 10.1080/08982104.2025.2480782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
The clinical application of Isoquercitrin (IQ) is limited by its low water solubility and short retention time in the body, despite its diverse pharmacological effects. To address these issues, we prepared polyethylene glycol (PEG)-modified IQ liposomes (IQ-L) using the thin film dispersion method and optimized the formulation through a combination of One Factor at a Time (OFAT) method and response surface experiments. Characterization of the IQ-L that was prepared using the optimal formulation revealed a particle size of 185.48 nm, a polydispersity index of 0.252, a zeta potential of -33.88 mV, and an impressive encapsulation efficiency of 97.84%. In vitro release studies showed a significantly higher cumulative release rate for IQ-L compared to free IQ. Pharmacokinetic evaluations in rats demonstrated a 4.54-fold increase in the area under the concentration-time curve, a 1.63-fold prolongation of the half-life, and a 2.07-fold increase in peak concentration for IQ-L compared to unmodified IQ. Moreover, assessments of renal function in a mouse model indicated promising therapeutic effects. In summary, the PEG-modified liposome system greatly improved the solubility and in vivo retention time of IQ, thus making it a potential clinical agent for the treatment of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xue Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Bin Zong
- Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK Ghana
| |
Collapse
|
5
|
Kubbara EA, Bolad A, Malibary H. Advances in Liposomal Interleukin and Liposomal Interleukin Gene Therapy for Cancer: A Comprehensive Review of Preclinical Studies. Pharmaceutics 2025; 17:383. [PMID: 40143046 PMCID: PMC11945541 DOI: 10.3390/pharmaceutics17030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Preclinical studies on liposomal interleukin (IL) therapy demonstrate considerable promise in cancer treatment. This review explores the achievements, challenges, and future potential of liposomal IL encapsulation, focusing on preclinical studies. METHODS A structured search was conducted using the PubMed and Web of Science databases with the following search terms and Boolean operators: ("liposomal interleukin" OR "liposome-encapsulated interleukin") AND ("gene therapy" OR "gene delivery") AND ("cancer" OR "tumor" OR "oncology") AND ("pre-clinical studies" OR "animal models" OR "in vitro studies". RESULTS Liposomal IL-2 formulations are notable for enhancing delivery and retention at tumor sites. Recombinant human interleukin (rhIL-2) adsorbed onto small liposomes (35-50 nm) substantially reduces metastases in murine models. Hepatic metastasis models demonstrate superior efficacy of liposomal IL-2 over free IL-2 by enhancing immune responses, particularly in the liver. Localized delivery strategies, including nebulized liposomal IL-2 in canine pulmonary metastases and intrathoracic administration in murine sarcoma models, reduce systemic toxicity while promoting immune activation and tumor regression. Liposomal IL gene therapy, delivering cytokine genes directly to tumor sites, represents a notable advancement. Combining IL-2 gene therapy with other cytokines, including IL-6 or double-stranded RNA adjuvants, synergistically enhances macrophage and T-cell activation. Liposomal IL-4, IL-6, and IL-21 therapies show potential across various tumor types. Pairing liposomal IL-2 with chemotherapy or immune agents improves remission and survival. Innovative strategies, including PEGylation and ligand-targeted systems, optimize delivery, release, and therapeutic outcomes. CONCLUSIONS Utilizing immune-stimulatory ILs through advanced liposomal delivery and gene therapy establishes a strong foundation for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Eman A. Kubbara
- Clinical Biochemistry Department, Faculty of Medicine, Rabigh Branch, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, Khartoum 11121, Sudan
| | - Ahmed Bolad
- Department of Microbiology and Unit of Immunology, Faculty of Medicine, Al-Neelain University, Khartoum 11121, Sudan
| | - Husam Malibary
- Department of Medicine, Faculty of Medicine, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| |
Collapse
|
6
|
Hou Y, Gao X, Gong J, Dong X, Hao Y, Zhai Z, Zhang H, Zhang M, Liu R, Wang R, Zhao L. Targeted Sodium Acetate Liposomes for Hepatocytes and Kupffer Cells: An Oral Dual-Targeted Therapeutic Approach for Non-Alcoholic Fatty Liver Disease Alleviation. Nutrients 2025; 17:930. [PMID: 40077800 PMCID: PMC11901740 DOI: 10.3390/nu17050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Sodium acetate (NaA) has demonstrated potential in improving non-alcoholic fatty liver disease (NAFLD) by targeting hepatocytes and Kupffer cells. However, its clinical application is hindered by low oral bioavailability and insufficient liver concentrations. Liposomes, with their capacity to encapsulate water-soluble drugs and be surface-modified, offer a promising solution for targeted oral drug delivery. Methods: We designed NaA-loaded liposomes modified with sodium cholate (SC) and mannose (MAN) (NaA@SC/MAN-LPs) to target hepatocytes and Kupffer cells. Results: The NaA@SC/MAN-LPs had a mean diameter of approximately 100 nm with a positive surface charge. Compared to free NaA, NaA@SC/MAN-LPs significantly extended the serum half-life from 2.85 h to 15.58 h, substantially improving in vivo bioavailability. In vivo distribution studies revealed that NaA@SC/MAN-LPs extended the acetate peak time in the liver from 15 min to 60 min and increased hepatic acetate accumulation to 3.75 times that of free NaA. In in vitro cell experiments, NaA@SC/MAN-LPs significantly reduced the lipid droplet, triglycerides (TG), and total cholesterol (TC) in a fatty acid-induced hepatocyte steatosis model and suppressed proinflammation in a lipopolysaccharide (LPS)-activated Kupffer cell inflammation model. Free NaA effectively improved hepatic lipid deposition in NAFLD mice. Furthermore, NaA@SC/MAN-LPs decreased hepatic TG, TC, and the relative area of lipid droplets by 30.44%, 15.26%, and 55.83%, compared to free NaA. Furthermore, the liposomes reduced macrophage infiltration and pro-inflammatory response. Conclusions: The NaA@SC/MAN-LPs demonstrated effective dual targeting effects on hepatocytes and Kupffer cells, significantly improving the pathogenesis of NAFLD, compared to free NaA. This study provides a new strategy for developing effective and safe oral drugs for NAFLD.
Collapse
Affiliation(s)
- Yichao Hou
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Xinrui Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Rong Liu
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
- Research Center for Probiotics, China Agricultural University, Beijing 101299, China
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (Y.H.); (X.G.); (Y.H.); (R.L.); (R.W.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (J.G.); (X.D.); (Z.Z.); (H.Z.)
- Research Center for Probiotics, China Agricultural University, Beijing 101299, China
| |
Collapse
|
7
|
Chen Y, Chen Z, Chen X, Zhang S, Zhang S, Kang Q, Sharafudeen K, Lian H, Saravanakumar S, Zhang X, Xu J, Zhu X, Zhang Q, Han G, Li Y. In Situ Slow-Release Hydrogen Sulfide Therapeutics for Advanced Disease Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410909. [PMID: 39838647 DOI: 10.1002/smll.202410909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Hydrogen sulfide (H2S) gas therapygarners significant attention for its potential to improve outcomes in various disease treatments. The quantitative control of H2S release is crucial for effective the rapeutic interventions; however, traditional researchon H2S therapy frequently utilizes static release models and neglects the dynamic nature of blood flow. In this study, we propose a novel slow-release in-situ H2S release model that leverages the dynamic hydrolysis of H2S donorswithin the bloodstream. Calcium sulfide nanoparticles (CaS NPs) withmicrosolubility characteristics exhibit continuous H2S release, surpassing 24 h at normal blood flow velocities. The extended-release profile demonstrates superior potential in aligning with the bell-shapedpharmacological effect of H2S, compared to NaHS. Moreover, we synthesisedrare earth-doped CaS NPs (CaS: Eu2+, Sm3+ NPs) tha texhibit persistent luminescence, enabling visualisation of the continuous H2S release in trials. Our results demonstrate that lowdose CaS: Eu2+, Sm3+ NPs significantly reduces seizureduration to 1.2 ± 0.7 minutes, while high dose effectively suppresses colontumor growth with a tumor inhibition rate of 54%. Remarkably, these findings closely resemble endogenous H2S levels in treating epilepsy and tumors. This innovative slow-release, in-situ H2S the rapeutic approach via hydrolysis rejuvenates the development of H2S-basedtherapeutics.
Collapse
Affiliation(s)
- Yiqing Chen
- Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhishan Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510006, China
| | - Xingzhong Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510006, China
| | - Shizhen Zhang
- Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shaoan Zhang
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| | - Qiyun Kang
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 510006, China
| | | | - Huiwang Lian
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Subramanian Saravanakumar
- Department of Physics, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnan Koil, Tamil Nadu, 626126, India
| | - Xinyue Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jialong Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510006, China
| | - Xiaoqin Zhu
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 510006, China
| | - Qingbin Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510006, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Yang Li
- Department of Neurosurgery, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510006, China
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Xu Y, Li P, Sun S, Chen Y, Feng L, Jiang D, Wan C, Li J, Cai X. Glycyrrhizinate Monoammonium Cysteine-Loaded Lipid Nanoparticles Allow for Improved Acute Liver Injury Therapy. Pharmaceutics 2025; 17:90. [PMID: 39861738 PMCID: PMC11769283 DOI: 10.3390/pharmaceutics17010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. Methods: We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization. The characterization and safety of the LNPs were measured using electrophoretic light scattering (ELS), transmission electron microscopy (TEM), dynamic light scattering (DLS), cytotoxicity assays, and hemolysis tests. The distribution of LNPs in mice was explored using fluorescence labeling methods. The encapsulation efficiency of LNP-GMC was detected using High-Performance Liquid Chromatography (HPLC), and its slow-release effect on GMC was assessed through dialysis. The therapeutic effects of LNP-GMC and pure GMC on the ALI model were evaluated using fibroblast activation protein inhibitor (FAPI) PET imaging, blood biochemical indicators, and liver pathology slices. Results: The encapsulation of GMC in LNPs enhances drug stability and prolongs its hepatic retention, significantly improving its bioavailability and sustained release within the liver. This study also explores the expression of fibroblast activation protein (FAP) in ALI, employing 68Ga-FAPI PET/CT imaging for effective differentiation and assessment of liver injury. Conclusions: Our results suggest that LNPs offer an enhanced therapeutic approach for ALI treatment, reducing the required drug dosage, and 68Ga-FAPI PET/CT imaging provides a novel method for diagnosis and treatment assessment. This study contributes valuable insights into the utilization of LNPs in liver disease treatment, presenting a promising direction for future clinical applications.
Collapse
Affiliation(s)
- Yunjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Pinghui Li
- The School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot 010050, China;
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Yulin Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Lixia Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| | - Jianbo Li
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.X.)
| |
Collapse
|
10
|
Tang H, Li X, Jin L, Dong J, Yang L, Li C, Zhang L, Cheng F. Applications and latest research progress of liposomes in the treatment of ocular diseases. Biointerphases 2025; 20:010801. [PMID: 39785116 DOI: 10.1116/6.0004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The special structure of eyes and the existence of various physiological barriers make ocular drug delivery one of the most difficult problems in the pharmaceutical field. Considering the problems of patient compliance, local administration remains the preferred method of drug administration in the anterior part of eyes. However, local administration suffers from poor bioavailability, need for frequent administration, and systemic toxicity. Administration in the posterior part of the eye is more difficult, and intravitreal injection is often used. But intravitreal injection faces the problems of poor patient compliance and likely side effects after multiple injections. The development of nanocarrier technology provides an effective way to solve these problems. Among them, liposomes, as the most widely used carrier in clinical application, have the characteristics of amphiphilic nanostructure, easy surface modification, extended release time, good biocompatibility, etc. The liposomes are expected to overcome obstacles and effectively deliver drugs to the target site to improve ocular drug bioavailability. This review summarized the various controllable properties of liposomes for ocular delivery as well as the application and research progress of liposomes in various ocular diseases. In addition, we summarized the physiological barriers and routes of administration contained in eyes, as well as the prospects of liposomes in the treatment of ocular diseases.
Collapse
Affiliation(s)
- Huan Tang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Xinnan Li
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Lin Jin
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Jicheng Dong
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Li Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
| | - Chunmei Li
- Tsinghua International School Daoxiang Lake, Beijing 100194, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116081, China
- Department of Ophthalmology, The Third People's Hospital of Dalian, Dalian, Liaoning 116091, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116081, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315032, China
| |
Collapse
|
11
|
Kendre PN, Kayande DR, Pote AK, Kanthale SB, Prajapati BG, Kendre Y, Jain S. Emerging Lipid-based Carriers for Systematic Utilization in the Pharmaceutical and Biomedical Sciences: A Review. Pharm Nanotechnol 2025; 13:2-21. [PMID: 38284709 DOI: 10.2174/0122117385268268231204061938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 01/30/2024]
Abstract
Emerging lipid-based carriers are revolutionizing drug delivery in the pharmaceutical and biomedical sciences. These innovative carriers harness the unique properties of lipids to improve the solubility, stability, and targeted delivery of therapeutic agents, ushering in a new era of precision medicine. Lipid- based carriers, such as liposomes, lipid nanoparticles, and solid lipid nanoparticles, offer several advantages. They can encapsulate both hydrophilic and hydrophobic drugs, enabling the delivery of a wide range of compounds. Additionally, lipids are biocompatible and biodegradable, minimizing the risk of toxicity. Their ability to mimic cell membranes allows for enhanced cellular uptake and controlled release, optimizing drug efficacy while minimizing side effects. Furthermore, lipid-based carriers are ideal for delivering drugs to specific sites within the body. By modifying the lipid composition, surface charge, and size, researchers can tailor these carriers to target tumours, inflamed tissues, or specific cells, improving therapeutic outcomes and reducing systemic toxicity. In summary, emerging lipid-based carriers are poised to transform pharmaceutical and biomedical sciences by addressing critical challenges in drug delivery. These carriers enhance drug stability, bioavailability, and targeted delivery, offering the potential to revolutionize the treatment of various diseases and improve patient outcomes. As research in this field continues to advance, we can expect even more sophisticated lipid-based carrier systems to emerge, further expanding the possibilities for precision medicine. This review focuses on the contribution of lipid carriers in the pharmaceutical and biomedical sciences.
Collapse
Affiliation(s)
- Prakash N Kendre
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| | - Dhiraj R Kayande
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| | - Ajinkya K Pote
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Khamgaon-Botha Road, Malvihir, Buldhana, 443001, India
| | | | - Bhupendra G Prajapati
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidya Nagar, Mehsana, 384012, Gujrat, India
| | - Yuvraj Kendre
- Podar International School, Buldhana, 443001, Maharashtra, India
| | - Shirish Jain
- Rajarshi Shahu College of Pharmacy, Buldhana, 443001, Maharashtra, India
| |
Collapse
|
12
|
Ricci A, Stefanuto L, Gasperi T, Bruni F, Tofani D. Lipid Nanovesicles for Antioxidant Delivery in Skin: Liposomes, Ufasomes, Ethosomes, and Niosomes. Antioxidants (Basel) 2024; 13:1516. [PMID: 39765844 PMCID: PMC11727561 DOI: 10.3390/antiox13121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The skin, being the largest organ of the human body, serves as the primary barrier against external insults, including UV radiation, pollutants, and microbial pathogens. However, prolonged exposure to these environmental stressors can lead to the generation of reactive oxygen species (ROS), causing oxidative stress, inflammation, and ultimately, skin aging and diseases. Antioxidants play a crucial role in neutralizing ROS and preserving skin health by preventing oxidative damage. In recent years, nanotechnology has emerged as a powerful tool for enhancing the delivery of antioxidants onto the skin. In particular, liposomal formulations have offered unique advantages such as improved stability, controlled release, and enhanced penetration through the skin barrier. This has led to a surge in research focused on developing liposomal-based antioxidant delivery systems tailored for skin health applications. Through a comprehensive analysis of the literature from the 2019-2024 period, this review provides an overview of emerging trends in the use of liposomal delivery systems developed for antioxidants aimed at improving skin health. It explores the latest advancements in liposomal formulation strategies, vesicle characterization, and their applications in delivering antioxidants to combat oxidative stress-induced skin damage and other associated skin pathologies. A comparison of various delivery systems is conducted for the most common antioxidants. Finally, a brief analysis of lipid nanovesicles used in the cosmeceutical industry is provided.
Collapse
Affiliation(s)
- Agnese Ricci
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Luca Stefanuto
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Tecla Gasperi
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| | - Fabio Bruni
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 84, 00146 Rome, Italy;
| | - Daniela Tofani
- Department of Science, Section of Nanoscience and Nanotechnologies, “Roma Tre” University, Via della Vasca Navale 79, 00146 Rome, Italy; (A.R.); (L.S.); (T.G.)
| |
Collapse
|
13
|
Kaur P, Muskan, Kriplani P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int J Pharm 2024; 666:124747. [PMID: 39326474 DOI: 10.1016/j.ijpharm.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Niosomes are essentially multilamellar or unilamellar vesicles based on non-ionic surfactants. They consist of surfactant macromolecules arranged in a bilayer, which surrounds an aqueous solute solution. Amphiphilic, biodegradable, biocompatible, and environmentally friendly materials are utilized for encapsulating the drugs in vesicles that enhance the bioavailability, therapeutic efficacy, penetration of drug via the skin, and drug release in a controlled or sustained manner, and are employed to target the anticipated area via modifying composition that acts to minimize undesirable effects. With cholesterol as the lipid, Tween 20, Span 60, and Tween 60 are mostly employed as surfactants. Many medications, including Glibenclamide for diabetic kidney disease and anti-cancer medications including gemcitabine, cisplatin, and nintedanib, have been effectively encapsulated into niosomes. The traditional approach for creating niosomes at the lab scale is a thin film hydration process. The ideal ratio between primary components as well as critical manufacturing process parameters is key component in creating the best niosomal formulations with substantial drug loading and nanometric form. Utilizing the Design of Experiments (DoE) and Response Surface Methodology (RSM) in conjunction with Quality by design (QbD) is essential for comprehending how these variables interact both during lab preparation and during the scale-up process. Research on the development of anti-aging cosmetics is being done by Loreal. Niosomal preparations like Lancome are sold in stores. An overview of niosomes, penetration mechanisms, and quality by design from laboratory to industrial scale is provided in this article.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Muskan
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India.
| |
Collapse
|
14
|
Vaiphei KK, Prabakaran A, Snigdha S, Murkute SL, Mohapatra P, Sahoo RK, Batheja S, Gupta U, Puri A, Roy U, Alexander A. Impact of PEGylated liposomes on cytotoxicity of tamoxifen and piperine on MCF-7 human breast carcinoma cells. J Drug Deliv Sci Technol 2024; 102:106331. [PMID: 40092050 PMCID: PMC11905287 DOI: 10.1016/j.jddst.2024.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tamoxifen (TMF) is an anticancer agent used for managing estrogen receptor-positive breast cancer. It has limited therapeutic efficacy against breast cancer, which could be enhanced by the coadministration of herbal drugs like piperine (PIP). However, the hydrophobic nature of TMF and PIP restricts their therapeutic application. Therefore, the present study focuses on the impact of the anticancer activity of TMF in combination with PIP and after entrapping them into liposomes (TMF-PIP-LPs and TMF-PIP-PEG-LPs). The liposomes were prepared using the thin film hydration method. In addition, the morphology of the prepared liposomes was found spherical after SEM and TEM analyses. Further, the in vitro cytotoxicity (IC50) study of pure PIP and TMF was found to be 90.3 ± 10.2 μg/mL and 40.9 ± 5.9 μg/mL, respectively. Interestingly, an improved cytotoxicity (IC50) was observed when the TMF and PIP were loaded into liposomes (TMF-PIP-LPs: 21 ± 1.6 μg/mL and TMF-PIP-PEG-LPs: 10 ± 0.5 μg/mL). Also, the PEGylated liposomes showed improvement in cellular uptake as compared to liposomes without PEGylation in MCF-7 human breast carcinoma cells. Thus, the enhanced cellular uptake and improved cytotoxicity of PEGylated liposomes can be a suitable strategy for delivering TMF with PIP for breast cancer treatment.
Collapse
Affiliation(s)
- Klaudi K. Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| | - A Prabakaran
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| | - Singh Snigdha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| | - Purusottam Mohapatra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| | - Rakesh Kumar Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Sanya Batheja
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Ajmer, Rajasthan 305817, India
| | - Anu Puri
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, National Institutes of Health, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, The University of Texas Rio Grande Valley (UTRGV), One West University Blvd., Brownsville, Texas 78520, USA
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Kamrup, Assam, 781101, India
| |
Collapse
|
15
|
Peng F, Wang Z, Qiu Z, Zhang W, Zhao Y, Li C, Shi B. Nanomedicine in cardiology: Precision drug delivery for enhanced patient outcomes. Life Sci 2024; 358:123199. [PMID: 39488265 DOI: 10.1016/j.lfs.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cardiovascular diseases as a primary driver of global morbidity and mortality. Despite the array of therapeutic avenues in clinical practice, predominantly pharmaceutical and surgical interventions, they often fall short of fully addressing the clinical exigencies of cardiovascular patients. In recent years, nanocarriers have shown great potential in the treatment and diagnose of cardiovascular diseases. They can enhance drug targeting and bioavailability while reducing side effects. Additionally, by improving imaging and detection technologies, they enhance early diagnosis and disease monitoring capabilities. These advancements in technology offer new solutions for precision medicine in cardiovascular diseases, advancing treatment efficacy and disease management. Crafted from biomaterials, metals, or their amalgamations, these nanocarriers approximate the dimensions of biologically active molecules like proteins and DNA. Cardiovascular nanomedicine, in its infancy, has only recently burgeoned. Yet, with continual refinement in nanocarrier architecture, drug delivery mechanisms, and therapeutic outcomes, the potential of nanomedical technologies in clinical contexts becomes increasingly evident. This review aims to consolidate the strides made in nanocarrier research concerning the treatment and diagnose of cardiovascular diseases.
Collapse
Affiliation(s)
- Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zimu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Chaofu Li
- Department of cardiology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), College of Bioengineering, Chongqing University, Chongqing, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Bi J, Zeng J, Liu X, Mo C, Yao M, Zhang J, Yuan P, Jia B, Xu S. Drug delivery for age-related bone diseases: From therapeutic targets to common and emerging therapeutic strategies. Saudi Pharm J 2024; 32:102209. [PMID: 39697472 PMCID: PMC11653637 DOI: 10.1016/j.jsps.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
With the accumulation of knowledge on aging, people have gradually realized that among the many factors that cause individual aging, the accumulation of aging cells is an essential cause of organ degeneration and, ultimately, age-related diseases. Most cells present in the bone microenvironment gradually age over time, leading to an imbalance of osteogenesis, osteoclastogenesis, adipogenesis, and chondrogenesis. This imbalance contributes to age-related bone loss and the development of age-related bone diseases, such as osteoporosis. Bone aging can prolong the lifespan and delay the development of age-related diseases. Nanoparticles have controllable and stable physical and chemical properties and can precisely target different tissues and organs. By preparing multiple easily modified and biocompatible nanoparticles as different drug delivery carriers, specifically targeting various diseased tissues for controlled-release and sustained-release administration, the delivery efficiency of drugs can be significantly improved, and the toxicity and side effects of drugs can be substantially reduced, thereby improving the therapeutic effect of age-related bone diseases. In addition, other novel anti-aging strategies (such as stem cell exosomes) also have significant scientific and practical significance in anti-aging research on age-related bone diseases. This article reviews the research progress of various nano-drug-loaded particles and emerging anti-aging methods for treating age-related bone diseases, offering new insights and directions for precise targeted clinical therapies.
Collapse
Affiliation(s)
- Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zeng
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohao Liu
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Jing Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China
| | - Peiyan Yuan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Buya AB, Mahlangu P, Witika BA. From lab to industrial development of lipid nanocarriers using quality by design approach. Int J Pharm X 2024; 8:100266. [PMID: 39050378 PMCID: PMC11268122 DOI: 10.1016/j.ijpx.2024.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Lipid nanocarriers have attracted a great deal of interest in the delivery of therapeutic molecules. Despite their many advantages, compliance with quality standards and reproducibility requirements still constrain their industrial production. The relatively high failure rate in lipid nanocarrier research and development can be attributed to immature bottom-up manufacturing practices, leading to suboptimal control of quality attributes. Recently, the pharmaceutical industry has moved toward quality-driven manufacturing, emphasizing the integration of product and process development through the principles of quality by design. Quality by design in the pharmaceutical industry involves a thorough understanding of the quality profile of the target product and involves an assessment of potential risks during the design and development phases of pharmaceutical dosage forms. By identifying essential quality characteristics, such as the active ingredients, excipients and manufacturing processes used during research and development, it becomes possible to effectively control these aspects throughout the life cycle of the drug. Successful commercialization of lipid nanocarriers can be achieved if large-scale challenges are addressed using the QbD approach. QbD has become an essential tool because of its advantages in improving processes and product quality. The application of the QbD approach to the development of lipid nanocarriers can provide comprehensive and remarkable knowledge enabling the manufacture of high-quality products with a high degree of regulatory flexibility. This article reviews the basic considerations of QbD and its application in the laboratory and large-scale development of lipid nanocarriers. Furthermore, it provides forward-looking guidance for the industrial production of lipid nanocarriers using the QbD approach.
Collapse
Affiliation(s)
- Aristote B. Buya
- Centre de Recherche en Sciences Humaines (CRESH), Ministère de la Recherche Scientifique et Innovation Technologique, Kinshasa XI, B.P. 212, Democratic Republic of the Congo
- University of Kinshasa, Faculty of Pharmaceutical Sciences, BP 212 Kinshasa XI, Democratic Republic of the Congo
| | - Phindile Mahlangu
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Bwalya A. Witika
- Department of Pharmaceutical Science, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| |
Collapse
|
18
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
19
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Ngo AN, Chatman KK, Douglas D, Mosley-Kellum KM, Wu K, Vadgama J. Engineering of layer-by-layer acetate-coated paclitaxel loaded poly(lactide-co-glycolide) acid nanoparticles for prostate cancer therapy- in vitro. J Pharm Sci 2024; 113:3375-3383. [PMID: 39313154 DOI: 10.1016/j.xphs.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
It is hypothesized that layer-by-layer acetate-coated Paclitaxel-loaded PLGA nanoparticles (F2) can be engineered to potentiate the effectiveness of Paclitaxel (PTX) on LNCaP, a human prostate cancer cell line. The core of the layer-by-layer NPs is formed by nanoprecipitation, and the shell of the NPs is engineered using the sodium acetate's unique coating mechanism and surface-active properties. The resulting nanoformulation physicochemical properties are characterized by Fourier Transform Infra-Red (FTIR), Differential Scanning Calorimetry (DSC) Transmission Electron Microscopy (TEM), NanoSight NS300, spectrophotometry, Korsmeyer-Peppas model, respectively. The NP's cytotoxicity on LNCaP is assessed by MTS assay. The DSC and the FTIR confirm SA's coating of the NPs. The particle's mean diameters (PMD) are 89.4±2.3- to 114.4±7.6 nm. The TEM shows a unique multilayer and spherical nanoparticle. The encapsulation efficiency of commonly PTX-loaded PLGA NPs (F1) and F2 are 84.37±2.71% and 86.74±2.22, respectively. The drug transport mechanism of F1 and F2 is anomalous transport and case II, respectively. F2 follows a zero-order release mechanism. The cell viability is 45.08±2.18% and 60.17±4.72% when LNCaP is treated with 10 µg/mL of F2 and F1, respectively, after 48 hours of exposure. F2 and F1 cell growth inhibition are dose-dependent. This unique process of engineering the layer-by-layer NPs will provide new horizons for developing future innovative nanoparticles for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States.
| | - Kierston K Chatman
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Dezirae Douglas
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Keb M Mosley-Kellum
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Division of Pharmaceutical Sciences, Tallahassee, FL 32307, United States
| | - Ke Wu
- Charles R. Drew University of Medicine and Science, United States
| | - Jaydutt Vadgama
- Charles R. Drew University of Medicine and Science, United States
| |
Collapse
|
21
|
Park SA, Hwang D, Kim JH, Lee SY, Lee J, Kim HS, Kim KA, Lim B, Lee JE, Jeon YH, Oh TJ, Lee J, An S. Formulation of lipid nanoparticles containing ginsenoside Rg2 and protopanaxadiol for highly efficient delivery of mRNA. Biomater Sci 2024. [PMID: 39480551 DOI: 10.1039/d4bm01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Lipid nanoparticles (LNPs) are widely recognized as crucial carriers of mRNA in therapeutic and vaccine development. The typical lipid composition of mRNA-LNP systems includes an ionizable lipid, a helper lipid, a polyethylene glycol (PEG)-lipid, and cholesterol. Concerns arise regarding cholesterol's susceptibility to oxidation, potentially leading to undesired immunological responses and toxicity. In this study, we formulated novel LNPs by replacing cholesterol with phytochemical-derived compounds, specifically ginsenoside Rg2 and its derivative phytosterol protopanaxadiol (PPD), and validated their efficacy as mRNA delivery systems. The mRNA-LNP complexes were manually prepared through a simple mixing process. The biocompatibility of these Rg2-based LNPs (Rg2-LNP) and PPD-based LNPs (PPD-LNP) was assessed through cell viability assays, while the protective function of LNPs for mRNA was demonstrated by RNase treatment. Enhanced green fluorescent protein (EGFP) mRNA delivery and expression in A549 and HeLa cells were analyzed using optical microscopy and flow cytometry. The expression efficiency of Rg2-LNP and PPD-LNP was compared with that of commercially available LNPs, with both novel formulations demonstrating superior transfection and EGFP expression. Furthermore, in vivo tests following intramuscular (I.M.) injection in hairless mice demonstrated efficient luciferase (Luc) mRNA delivery and effective Luc expression using Rg2-LNP and PPD-LNP compared to commercial LNPs. Results indicated that the efficiency of EGFP and Luc expression in Rg2-LNP and PPD-LNP surpassed that of the cholesterol-based LNP formulation. These findings suggest that Rg2-LNP and PPD-LNP are promising candidates for future drug and gene delivery systems.
Collapse
Affiliation(s)
- Sin A Park
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Dajeong Hwang
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jae Hoon Kim
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Seung-Yeul Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bumhee Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Yong Hyun Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Tae Jeong Oh
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaewook Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Sungwhan An
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| |
Collapse
|
22
|
Sivadasan D, Madkhali OA. The Design Features, Quality by Design Approach, Characterization, Therapeutic Applications, and Clinical Considerations of Transdermal Drug Delivery Systems-A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:1346. [PMID: 39458987 PMCID: PMC11510585 DOI: 10.3390/ph17101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Transdermal drug delivery systems (TDDSs) are designed to administer a consistent and effective dose of an active pharmaceutical ingredient (API) through the patient's skin. These pharmaceutical preparations are self-contained, discrete dosage forms designed to be placed topically on intact skin to release the active component at a controlled rate by penetrating the skin barriers. The API provides the continuous and prolonged administration of a substance at a consistent rate. TDDSs, or transdermal drug delivery systems, have gained significant attention as a non-invasive method of administering APIs to vulnerable patient populations, such as pediatric and geriatric patients. This approach is considered easy to administer and helps overcome the bioavailability issues associated with conventional drug delivery, which can be hindered by poor absorption and metabolism. A TDDS has various advantages compared to conventional methods of drug administration. It is less intrusive, more patient-friendly, and can circumvent first pass metabolism, as well as the corrosive acidic environment of the stomach, that happens when drugs are taken orally. Various approaches have been developed to enhance the transdermal permeability of different medicinal compounds. Recent improvements in TDDSs have enabled the accurate administration of APIs to their target sites by enhancing their penetration through the stratum corneum (SC), hence boosting the bioavailability of drugs throughout the body. Popular physical penetration augmentation methods covered in this review article include thermophoresis, iontophoresis, magnetophoresis, sonophoresis, needle-free injections, and microneedles. This review seeks to provide a concise overview of several methods employed in the production of TDDSs, as well as their evaluation, therapeutic uses, clinical considerations, and the current advancements intended to enhance the transdermal administration of drugs. These advancements have resulted in the development of intelligent, biodegradable, and highly efficient TDDSs.
Collapse
Affiliation(s)
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
23
|
Patel D, Solanki J, Kher MM, Azagury A. A Review: Surface Engineering of Lipid-Based Drug Delivery Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401990. [PMID: 39004869 DOI: 10.1002/smll.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/19/2024] [Indexed: 07/16/2024]
Abstract
This review explores the evolution of lipid-based nanoparticles (LBNPs) for drug delivery (DD). Herein, LBNPs are classified into liposomes and cell membrane-based nanoparticles (CMNPs), each with unique advantages and challenges. Conventional LBNPs possess drawbacks such as poor targeting, quick clearance, and limited biocompatibility. One of the possible alternatives to overcome these challenges is surface modification of nanoparticles (NPs) with materials such as polyethylene glycol (PEG), aptamers, antibody fragments, peptides, CD44, hyaluronic acid, folic acid, palmitic acid, and lactoferrin. Thus, the main focus of this review will be on the different surface modifications that enable LBNPs to have beneficial properties for DD, such as enhancing mass transport properties, immune evasion, improved stability, and targeting. Moreover, various CMNPs are explored used for DD derived from cells such as red blood cells (RBCs), platelets, leukocytes, cancer cells, and stem cells, highlighting their unique natural properties (e.g., biocompatibility and ability to evade the immune system). This discussion extends to the biomimicking of hybrid NPs accomplished through the surface coating of synthetic (mainly polymeric) NPs with different cell membranes. This review aims to provide a comprehensive resource for researchers on recent advances in the field of surface modification of LBNPs and CMNPs. Overall, this review provides valuable insights into the dynamic field of lipid-based DD systems.
Collapse
Affiliation(s)
- Dhaval Patel
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Jyoti Solanki
- Post Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388120, India
| | - Mafatlal M Kher
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| | - Aharon Azagury
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel, 4070000, Israel
| |
Collapse
|
24
|
Sharma H, Gupta N, Garg N, Dhankhar S, Chauhan S, Beniwal S, Saini D. Herbal Medicinal Nanoformulations for Psoriasis Treatment: Current State of Knowledge and Future Directions. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155273976231126141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2024]
Abstract
Background:Psoriasis is a persistent immune system disorder that influences the skin, leading to red, flaky patches that can be painful and irritated.Objective:Traditional treatments for psoriasis, such as topical creams and oral medications, may be effective but also have potential side effects. Herbal remedies have been used for centuries to treat skin conditions, and advancements in nanotechnology have led to the development of herbal nanoformulations that offer several advantages over traditional herbal remedies, such as efficacy, safety, and targeted delivery.Methods:The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar).Results:Several herbal nanoformulations, including those containing curcumin, aloe vera, and neem, have been shown to exhibit anti-inflammatory and immunomodulatory impacts, which will be useful within the treatment of psoriasis. However, more study is required to decide the efficacy and safety of these details, as well as the optimal dosing, duration of treatment, and potential side effects.Conclusion:Overall, herbal nanoformulations represent a promising area of research for the treatment of psoriasis, and may offer a safe and effective alternative or adjunct therapy to conventional treatments. This review article summarizes the present state of information for the herbal nanoformulations role in the treatment of psoriasis and their future perspectives.
Collapse
Affiliation(s)
- Himanshu Sharma
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Neha Gupta
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Suresh Beniwal
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamuna Nagar, Haryana, India
| | - Deepak Saini
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| |
Collapse
|
25
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
26
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
27
|
Nijhawan HP, Shyamsundar P, Prabhakar B, Yadav KS. PEGylated pH-Responsive Liposomes for Enhancing the Intracellular Uptake and Cytotoxicity of Paclitaxel in MCF-7 Breast Cancer Cells. AAPS PharmSciTech 2024; 25:216. [PMID: 39289249 DOI: 10.1208/s12249-024-02930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to develop paclitaxel (PTX)-loaded PEGylated (PEG)-pH-sensitive (SpH) liposomes to enhance drug delivery efficiency and cytotoxicity against MCF-7 breast cancer cells. PTX-loaded PEG-SpH liposomes were prepared using the thin film hydration method. ATR-FTIR compatibility studies revealed no significant interactions among liposome formulation components. TEM images confirmed spherical morphology, stability, and an ideal size range (180-200 nm) for improved blood circulation. At pH 5.5, liposomes exhibited increased size and positive zeta potential, indicating pH-sensitive properties due to CHEMS response to the acidic tumor microenvironment. Conversely, at pH 7.4, liposomes showed a slightly larger size (199.25 ± 1.64 nm) and a more negative zeta potential (-36.94 ± 0.32 mV), suggesting successful PEG-SpH surface modification, enhancing stability, and reducing aggregation. PTX-loaded PEG-SpH liposomes demonstrated high encapsulation efficiency (84.57 ± 0.92% w/w) and drug loading capacity (4.12 ± 0.26% w/w). In-vitro drug release studies revealed accelerated first-order PTX release at pH 5.5 and a controlled zero-order release at pH 7.4. Cellular uptake studies on MCF-7 cells demonstrated enhanced PTX uptake, attributed to mPEG-PCL incorporation prolonging circulation time and CHEMS facilitating PTX release in the tumor microenvironment. Furthermore, PTX-loaded PEG-SpH liposomes exhibited significantly improved cytotoxicity with an IC50 value of 1.107 µM after 72-h incubation, approximately 90% lower than plain PTX solution. Stability studies confirmed the robustness of the liposomal formulation under various storage conditions. These findings highlight the potential of PEGylated pH-responsive liposomes as effective nanocarriers for enhancing PTX therapy against breast cancer.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Pooja Shyamsundar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India.
| |
Collapse
|
28
|
Weiss AM, Lopez MA, Rosenberger MG, Kim JY, Shen J, Chen Q, Ung T, Ibeh UM, Knight HR, Rutledge NS, Studnitzer B, Rowan SJ, Esser-Kahn AP. Identification of CDK4/6 Inhibitors as Small Molecule NLRP3 Inflammasome Activators that Facilitate IL-1β Secretion and T Cell Adjuvanticity. J Med Chem 2024; 67:14974-14985. [PMID: 39162654 PMCID: PMC11736968 DOI: 10.1021/acs.jmedchem.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1β release. Identifying small molecules that induce IL-1β release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1β release. We find that ribociclib induces IL-1β release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Marcos A. Lopez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew G. Rosenberger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeremiah Y. Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jingjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Udoka M. Ibeh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Hannah Riley Knight
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Bradley Studnitzer
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States; Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
29
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
30
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
31
|
Arghidash F, Javid-Naderi MJ, Gheybi F, Gholamhosseinian H, Kesharwani P, Sahebkar A. Exploring the multifaceted effects of silymarin on melanoma: Focusing on the role of lipid-based nanocarriers. J Drug Deliv Sci Technol 2024; 99:105950. [DOI: 10.1016/j.jddst.2024.105950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
33
|
Henser‐Brownhill T, Martin L, Samangouei P, Ladak A, Apostolidou M, Nagel B, Kwok A. In Silico Screening Accelerates Nanocarrier Design for Efficient mRNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401935. [PMID: 38837626 PMCID: PMC11321627 DOI: 10.1002/advs.202401935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Lipidic nanocarriers are a broad class of lipid-based vectors with proven potential for packaging and delivering emerging nucleic acid therapeutics. An important early step in the clinical development cycle is large-scale screening of diverse formulation libraries to assess particle quality and payload delivery efficiency. Due to the size of the screening space, this process can be both costly and time-consuming. To address this, computational models capable of predicting clinically relevant physio-chemical properties of dendrimer-lipid nanocarriers, along with their mRNA payload delivery efficiency in human cells are developed. The models are then deployed on a large theoretical nanocarrier pool consisting of over 4.5 million formulations. Top predictions are synthesised for validation using cell-based assays, leading to the discovery of a high quality, high performing, candidate. The methods reported here enable rapid, high-throughput, in silico pre-screening for high-quality candidates, and have great potential to reduce the cost and time required to bring mRNA therapies to the clinic.
Collapse
|
34
|
Han S, Zhang X, Li Z, Cui G, Xue B, Yu Y, Guo J, Zhang H, Yang J, Teng L. A ginsenoside G-Rg3 PEGylated long-circulating liposome for hyperglycemia and insulin resistance therapy in streptozotocin-induced type 2 diabetes mice. Eur J Pharm Biopharm 2024; 201:114350. [PMID: 38848783 DOI: 10.1016/j.ejpb.2024.114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Ginsenoside (GS), one of the main active components in ginseng, can enhance insulin sensitivity, improve the function of islet β cells, and reduce cell apoptosis in the treatment of diabetes. However, the drawbacks of high lipid solubility, poor water solubility, and low oral availability in Ginsenoside Rg3 (G-Rg3) seriously limit further application of GS. In this work, a G-Rg3 PEGylated long-circulating liposome (PEG-L-Rg3) is designed and developed to improve symptoms in type 2 diabetic mice. The as-prepared PEG-L-Rg3 with a spherical structure shows a particle size of ∼ 140.5 ± 1.4 nm, the zeta potential of -0.10 ± 0.05 mV, and a high encapsulation rate of 99.8 %. Notably, in vivo experimental results demonstrate that PEG-L-Rg3 exhibits efficient ability to improve body weight and food intake in streptozotocin-induced type 2 diabetic mice. Moreover, PEG-L-Rg3 also enhances fasting insulin (FINS) and insulin sensitivity index (ISI). In addition, the glucose tolerance of mice is significantly improved after the treatment of PEG-L-Rg3, indicating that PEG-L-Rg3 can be a potential drug for the treatment of type 2 diabetes, which provides a new way for the treatment of type 2 diabetes using ginsenosides.
Collapse
Affiliation(s)
- Songren Han
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ziwei Li
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guilin Cui
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Beilin Xue
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yang Yu
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiaqing Guo
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Huan Zhang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| |
Collapse
|
35
|
Mansour HM, Muralidharan P, Hayes D. Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery. J Aerosol Med Pulm Drug Deliv 2024; 37:202-218. [PMID: 39172256 PMCID: PMC11465844 DOI: 10.1089/jamp.2024.29117.mk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/15/2024] [Indexed: 08/23/2024] Open
Abstract
An increasing growth in nanotechnology is evident from the growing number of products approved in the past decade. Nanotechnology can be used in the effective treatment of several pulmonary diseases by developing therapies that are delivered in a targeted manner to select lung regions based on the disease state. Acute or chronic pulmonary disorders can benefit from this type of therapy, including respiratory distress syndrome (RDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary infections (e.g. tuberculosis, Yersinia pestis infection, fungal infections, bacterial infections, and viral infections), lung cancer, cystic fibrosis (CF), pulmonary fibrosis, and pulmonary arterial hypertension. Modification of size and surface property renders nanoparticles to be targeted to specific sites, which can serve a vital role in innovative pulmonary drug delivery. The nanocarrier type chosen depends on the intended purpose of the formulation and intended physiological target. Liquid nanocarriers and solid-state nanocarriers can carry hydrophilic and hydrophobic drugs (e.g. small molecular weight drug molecules, large molecular weight drugs, peptide drugs, and macromolecular biological drugs), while surface modification with polymer can provide cellular targeting, controlled drug release, and/or evasion of phagocytosis by immune cells, depending on the polymer type. Polymeric nanocarriers have versatile architectures, such as linear, branched, and dendritic forms. In addition to the colloidal dispersion liquid state, the various types of nanoparticles can be formulated into the solid state, offering important unique advantages in formulation versatility and enhanced stability of the final product. This chapter describes the different types of nanocarriers, types of inhalation aerosol device platforms, liquid aerosols, respirable powders, and particle engineering design technologies for inhalation aerosols.
Collapse
Affiliation(s)
- Heidi M. Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
- The BIO5 Research Institute, The University of Arizona, Tucson, Arizona, USA
- Institute of the Environment, The University of Arizona, Tucson, Arizona, USA
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
36
|
Losada-Barreiro S, Celik S, Sezgin-Bayindir Z, Bravo-Fernández S, Bravo-Díaz C. Carrier Systems for Advanced Drug Delivery: Improving Drug Solubility/Bioavailability and Administration Routes. Pharmaceutics 2024; 16:852. [PMID: 39065549 PMCID: PMC11279846 DOI: 10.3390/pharmaceutics16070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The disadvantages of some conventional drugs, including their low bioavailability, poor targeting efficiency, and important side effects, have led to the rational design of drug delivery systems. In particular, the introduction of drug delivery systems is a potential approach to enhance the uptake of therapeutic agents and deliver them at the right time and in the right amount of concentration at the required site, as well as open new strategies for effective illness treatment. In this review, we provide a basic understanding of drug delivery systems with an emphasis on the use of cyclodextrin-, polymer- and surfactant-based delivery systems. These systems are very attractive because they are biocompatible and biodegradable nanomaterials with multifunctional components. We also provide some details on their design considerations and their use in a variety of medical applications by employing several routes of administration.
Collapse
Affiliation(s)
- Sonia Losada-Barreiro
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey (Z.S.-B.)
| | - Sofía Bravo-Fernández
- Dentistry Department, Primary Health Unit, Galician Health Service (SERGAS), Calle Mourin s/n, 15330 Ortigueira, A Coruña, Spain;
| | - Carlos Bravo-Díaz
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Pontevedra, Spain;
| |
Collapse
|
37
|
Sameer Khan M, Gupta G, Alsayari A, Wahab S, Sahebkar A, Kesharwani P. Advancements in liposomal formulations: A comprehensive exploration of industrial production techniques. Int J Pharm 2024; 658:124212. [PMID: 38723730 DOI: 10.1016/j.ijpharm.2024.124212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Liposomes are nanosized, spherical vesicles consisting of an aqueous core encircled by one or more phospholipid bilayer shells. Liposomes have found extensive use in numerous biomedicine and nanomedicine applications due to their excellent biocompatibility, adaptable chemical composition, ease of preparation, and diverse structural characteristics. These applications include nanocarriers for drug delivery, immunoassays, nutraceuticals, tissue engineering, clinical diagnostics, and theranostics formulations. These applications stimulated significant efforts toward scaling up formation processes in anticipation of appropriate industrial advancement. Despite the advancements in conventional methods and the emergence of new approaches for liposome production, their inherent susceptibility to chemical and mechanical influences contributes to critical challenges, including limited colloidal stability and decreased efficiency in encapsulating cargo molecules. With this context, the current review provides brief insights into liposomes conventional and novel industrial production techniques. With a special focus on the structural parameters, and pivotal elements influencing the synthesis of an appropriate and stable formulation, followed by the various regulatory aspects of industrial production.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun 248002, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
38
|
Perazzolo S, Shen DD, Scott AM, Ho RJY. Physiologically based Pharmacokinetic Model Validated to Enable Predictions Of Multiple Drugs in a Long-acting Drug-combination Nano-Particles (DcNP): Confirmation with 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products. J Pharm Sci 2024; 113:1653-1663. [PMID: 38382809 PMCID: PMC11102316 DOI: 10.1016/j.xphs.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Drug-Combination Nanoparticles (DcNP) are a novel drug delivery system designed for synchronized delivery of multiple drugs in a single, long-acting, and targeted dose. Unlike depot formulations, slowly releasing drug at the injection site into the blood, DcNP allows multiple-drug-in-combination to collectively distribute from the injection site into the lymphatic system. Two distinct classes of long-acting injectables products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site. Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access as a part of the PBPK model validation. For clinical development, Class II long-acting drug-combination products, we leverage data from 3 nonhuman primate studies consisting of nine PK datasets: Study 1, varying fixed-dose ratios; Study 2, short multiple dosing with kinetic tails; Study 3, long multiple dosing (chronic). PBPK validation criteria were established to validate each scenario for all drugs. The models passed validation in 8 of 9 cases, specifically to predict Study 1 and 2, including PK tails, with ritonavir and tenofovir, fully passing Study 3 as well. PBPK model for lopinavir in Study 3 did not pass the validation due to an observable time-varying and delayed drug accumulation, which likely was due to ritonavir's CYP3A inhibitory effect building up during multiple dosing that triggered a mechanism-based drug-drug interaction (DDI). Subsequently, the final model enables us to account for this DDI scenario.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA.
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Ariel M Scott
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195-7610, USA; Bioengineering, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
39
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
40
|
Li C, Du M, Meng L, Adu-Frimpong M, Gong C, Zheng S, Shi W, Wang Q, Toreniyazov E, Ji H, Cao X, Yu J, Xu X. Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes. J Microencapsul 2024; 41:269-283. [PMID: 38618699 DOI: 10.1080/02652048.2024.2337461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
AIMS Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 μg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lingzhi Meng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Caizhi Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sile Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wentao Shi
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province211300, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Karakalpakstan, Uzbekistan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
41
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
42
|
Köksal Karayildirim Ç. Preparation, Characterization, and Antiangiogenic Evaluation of a Novel 5-Fluorouracil Derivative Solid Lipid Nanoparticle with a Hen's Egg Chorioallantoic Membrane Assay and Wound Healing Response in HaCaT Keratinocytes. ACS OMEGA 2024; 9:16640-16647. [PMID: 38617689 PMCID: PMC11007769 DOI: 10.1021/acsomega.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
5-Fluorouracil is a heterocyclic aromatic organic compound, and it is commonly used as a chemotherapeutic agent in many cancers. The present goal is to analyze and characterize the physicochemical and biological properties of a new therapeutic formulation of 5-FUD-Gal under simulated chronic wound and oxidative stress conditions. After synthesis of a new 5-fluorouracil derivative, preparation and characterization of the formulation were carried out. The antiangiogenic effect, wound healing, and oxidative stress responses were conducted with a HET-CAM assay and in vitro cell culture technique. The results initially demonstrated that 5-FUD-Gal synthesized by a series of reactions and the SLN formulation were prepared successfully. A strong cell protective effect above 98% cell viability was detected at 20 μM at 48 h. The wound closure of the HaCaT scratch assay was calculated to be 90.12 and 98.98% at 10 and 20 μM concentrations, respectively, at 48 h. Moreover, the strongest effect of 5-FUD-Gal-F was observed at 20 μM concentration on chicken embryos. This study provides novel insights that a new derivative of semisynthetic 5-FUD-Gal-F can be further evaluated as a therapeutic chemical compound in cancer disease.
Collapse
|
43
|
Mišík O, Kejíková J, Cejpek O, Malý M, Jugl A, Bělka M, Mravec F, Lízal F. Nebulization and In Vitro Upper Airway Deposition of Liposomal Carrier Systems. Mol Pharm 2024; 21:1848-1860. [PMID: 38466817 PMCID: PMC10988550 DOI: 10.1021/acs.molpharmaceut.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Liposomal carrier systems have emerged as a promising technology for pulmonary drug delivery. This study focuses on two selected liposomal systems, namely, dipalmitoylphosphatidylcholine stabilized by phosphatidic acid and cholesterol (DPPC-PA-Chol) and dipalmitoylphosphatidylcholine stabilized by polyethylene glycol and cholesterol (DPPC-PEG-Chol). First, the research investigates the stability of these liposomal systems during the atomization process using different kinds of nebulizers (air-jet, vibrating mesh, and ultrasonic). The study further explores the aerodynamic particle size distribution of the aerosol generated by the nebulizers. The nebulizer that demonstrated optimal stability and particle size was selected for more detailed investigation, including Andersen cascade impactor measurements, an assessment of the influence of flow rate and breathing profiles on aerosol particle size, and an in vitro deposition study on a realistic replica of the upper airways. The most suitable combination of a nebulizer and liposomal system was DPPC-PA-Chol nebulized by a Pari LC Sprint Star in terms of stability and particle size. The influence of the inspiration flow rate on the particle size was not very strong but was not negligible either (decrease of Dv50 by 1.34 μm with the flow rate increase from 8 to 60 L/min). A similar effect was observed for realistic transient inhalation. According to the in vitro deposition measurement, approximately 90% and 70% of the aerosol penetrated downstream of the trachea using the stationary flow rate and the realistic breathing profile, respectively. These data provide an image of the potential applicability of liposomal carrier systems for nebulizer therapy. Regional lung drug deposition is patient-specific; therefore, deposition results might vary for different airway geometries. However, deposition measurement with realistic boundary conditions (airway geometry, breathing profile) brings a more realistic image of the drug delivery by the selected technology. Our results show how much data from cascade impactor testing or estimates from the fine fraction concept differ from those of a more realistic case.
Collapse
Affiliation(s)
- Ondrej Mišík
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Jana Kejíková
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Ondřej Cejpek
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Milan Malý
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Adam Jugl
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - Miloslav Bělka
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| | - Filip Mravec
- Institute
of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, Královo Pole, 612 00 Brno, Czech Republic
| | - František Lízal
- Department
of Thermodynamics and Environmental Engineering, Faculty of Mechanical
Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
44
|
Soong WJ, Wang CH, Chen C, Lee GB. Nanoscale sorting of extracellular vesicles via optically-induced dielectrophoresis on an integrated microfluidic system. LAB ON A CHIP 2024; 24:1965-1976. [PMID: 38357980 DOI: 10.1039/d3lc01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We reported a microfluidic system for sorting of extracellular vesicles (EVs), which can house DNAs, RNAs, lipids, proteins, and metabolites that are important in intercellular communication. Their presence within bodily fluids has demonstrated potential in both clinical diagnostic and therapeutic applications. Furthermore, EVs exhibit distinct subtypes categorized by their sizes, each endowed with unique biophysical properties. Despite several existing techniques for EV isolation and purification, diminished purity and prolonged processing times still hamper clinical utility; comprehensive capture of EVs remains an ongoing pursuit. To address these challenges, we devised an innovative method for automated sorting of nano-scale EVs employing optically-induced dielectrophoresis on an integrated microfluidic chip. With this approach, EVs of three distinct size categories (small: 100-150 nm, medium-sized: 150-225 nm, and large: 225-350 nm) could be isolated at a purity of 86%. This new method has substantial potential in expediting EV research and diagnostics.
Collapse
Affiliation(s)
- Wei-Jen Soong
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chihchen Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
45
|
Wang R, Rao C, Liu Q, Liu X. Optimization of Conditions of Zanthoxylum Alkylamides Liposomes by Response Surface Methodology and the Absorption Characteristics of Liposomes in the Caco-2 Cell Monolayer Model. ACS OMEGA 2024; 9:10992-11004. [PMID: 38463333 PMCID: PMC10918836 DOI: 10.1021/acsomega.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2024] [Indexed: 03/12/2024]
Abstract
Zanthoxylum alkylamides, as a numbing substance in Zanthoxylum bungeanum has many physiological effects. However, the numbing taste and unstable properties limited its application. This study aimed to optimize the preparation process of Zanthoxylum alkylamides liposomes by response surface methodology (RSM) and to investigate the in vitro absorption characteristics of the liposomes through the Caco-2 cell monolayer model. The process parameters of liposomes were as follows: Zanthoxylum alkylamides was 15 mg, phospholipid-feedstock ratio was 6.14, phospholipid-cholesterol ratio was 8.51, sodium cholate was 33.80 mg, isopropyl myristate was 29.49 mg, and the theoretical encapsulation efficiency of the prepared liposomes could reach 90.23%. Further, the particle size of the liposomes was 155.47 ± 3.16 nm, and the ζ-potential was -34.11 ± 4.34 mV. Meanwhile, the liposomes could be preserved for 14 days under the condition that the content of Zanthoxylum alkylamides was less than 2 mg/mL and the preservation temperature was lower than 25 °C. Moreover, the uptake characteristics of the Zanthoxylum alkylamides liposomes in the Caco-2 cell monolayer model were also investigated. The results showed that the Zanthoxylum alkylamides liposomes could be taken up and absorbed by Caco-2 cells. Also, the Zanthoxylum alkylamides liposomes had a better uptake performance than the unembedded Zanthoxylum alkylamides and conformed to the passive uptake.
Collapse
Affiliation(s)
- Rui Wang
- College
of Food Science, Southwest University, Chongqing 400715, China
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Collaborative
Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, China
| | - Chaolong Rao
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiuyan Liu
- State
Key Laboratory of Southwestern Chinese Medicine Resources, School
of Public Health, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiong Liu
- College
of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
46
|
Izumi K, Ji J, Koiwai K, Kawano R. Long-Term Stable Liposome Modified by PEG-Lipid in Natural Seawater. ACS OMEGA 2024; 9:10958-10966. [PMID: 38463291 PMCID: PMC10918668 DOI: 10.1021/acsomega.3c10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024]
Abstract
This paper describes the stabilization of liposomes using a PEGylated lipid, N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (DSPE-PEGs), and the evaluation of the survival rate in natural seawater for future environmental applications. Liposomes in natural seawater were first monitored by confocal microscopy, and the stability was compared among different lengths and the introduction ratio of DSPE-PEGs. The survival rate increased with an increase in the PEG ratio. In addition, the survival rate in different cationic solutions (Na+, K+, Mg2+, and Ca2+ solutions) was studied to estimate the effects of the DSPE-PEG introduction. We propose that these variations in liposome stability are due to the cations, specifically the interaction between the poly(ethylene glycol) (PEG) chains and divalent ions, which contribute to making it difficult for cations to access the lipid membrane. Our studies provide insights into the use of PEG lipids and may offer a promising approach to the fabrication of liposomal molecular robots using different natural environments.
Collapse
Affiliation(s)
- Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Jiajue Ji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Keiichiro Koiwai
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
47
|
Zhao Y, Yang Y, Cui Y, Zhao Z, Chen X. Liposomes modified with a multivalent glutamic hexapeptide: A novel and effective way to promote bone targeting. Arch Pharm (Weinheim) 2024; 357:e2300620. [PMID: 38133558 DOI: 10.1002/ardp.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
It is well known that bone-related diseases are difficult to treat due to the relatively low blood flow. Therefore, targeting the delivery of drugs to bone may not only improve the therapeutic effect but also reduce the dose. To prepare liposomes, a series of novel multivalent glutamic hexapeptide derivatives were designed and synthesized as liposome ligands, which can effectively deliver paclitaxel (PTX) to bone. The liposomes were prepared and their encapsulation efficiency, particle size, stability, zeta potential, hemolysis, and release behavior were characterized. The results indicated that the coated liposomes, PTX-Glu61 -Lip, PTX-Glu62 -Lip, PTX-Glu63 -Lip, and PTX-Glu65 -Lip, showed remarkable bone-targeting activity. Compared with the other coated liposomes, PTX-Glu65 -Lip showed prominent targeting ability and anti-bone metastasis activity on the basis of in vitro and in vivo evaluations. Our study may contribute to the field of design of bone-targeting drugs.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yamin Cui
- Zhengzhou Immuno Bio-Tech Co., Ltd, Zhengzhou, China
| | - Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Choi TH, Yoo RJ, Park JY, Kim JY, Ann YC, Park J, Kim JS, Kim K, Shin YJ, Lee YJ, Lee KC, Park J, Chung H, Seok SH, Im HJ, Lee YS. Development of finely tuned liposome nanoplatform for macrophage depletion. J Nanobiotechnology 2024; 22:83. [PMID: 38424578 PMCID: PMC10903058 DOI: 10.1186/s12951-024-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Immunotherapy with clodronate-encapsulated liposomes, which induce macrophage depletion, has been studied extensively. However, previously reported liposomal formulation-based drugs (Clodrosome® and m-Clodrosome®) are limited by their inconsistent size and therapeutic efficacy. Thus, we aimed to achieve consistent therapeutic effects by effectively depleting macrophages with uniform-sized liposomes. RESULTS We developed four types of click chemistry-based liposome nanoplatforms that were uniformly sized and encapsulated with clodronate, for effective macrophage depletion, followed by conjugation with Man-N3 and radiolabeling. Functionalization with Man-N3 improves the specific targeting of M2 macrophages, and radioisotope labeling enables in vivo imaging of the liposome nanoplatforms. The functionalized liposome nanoplatforms are stable under physiological conditions. The difference in the biodistribution of the four liposome nanoplatforms in vivo were recorded using positron emission tomography imaging. Among the four platforms, the clodronate-encapsulated mannosylated liposome effectively depleted M2 macrophages in the normal liver and tumor microenvironment ex vivo compared to that by Clodrosome® and m-Clodrosome®. CONCLUSION The newly-developed liposome nanoplatform, with finely tuned size control, high in vivo stability, and excellent ex vivo M2 macrophage targeting and depletion effects, is a promising macrophage-depleting agent.
Collapse
Affiliation(s)
- Tae Hyeon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Ran Ji Yoo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, South Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Ji Yong Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Yoon Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Chan Ann
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Jin Sil Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyuwan Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu Jin Shin
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, South Korea
| | - Jisu Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyewon Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Hyeok Seok
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung-Jun Im
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, South Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
49
|
Fu N, Li A, Zhang J, Zhang P, Zhang H, Yang S, Zhang J. Liposome-camouflaged iodinated mesoporous silica nanoparticles with high loading capacity, high hemodynamic stability, high biocompatibility and high radiopacity. Int J Pharm 2024; 650:123700. [PMID: 38086493 DOI: 10.1016/j.ijpharm.2023.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Due to their low osmolality and high tolerability, the highly water-soluble nonionic iodinated contrast agents, such as Ioversol (IV), are widely used as clinical agents for CT imaging. However, their clinical applications still are severely limited by the rapid renal excretion, serious adverse effects especially contrast-induced nephropathy and inefficient targetability. Various nanocarriers have demonstrated tremendous potential for achieving high imaging efficiency and low side effects. However, few nanoparticulate contrast agents can simultaneously integrate the desirable functions for imaging, including high loading capacity of iodine, high structure stability for systemic circulation, high biocompatibility and high radiopacity. Herein, we designed and prepared a kind of new radiopaque liposome-camouflaged iodinated mesoporous silica nanoparticles (OIV-MSNs@Liposomes) as contrast agents in CT imaging. Their composition, structure, morphology, biocompatibility and physicochemical properties as well as in vitro radiopacity were investigated in detail. The results indicated that OIV-MSNs@Liposomes can integrate their individual advantages of liposomes and MSNs, thus exhibiting great potential for use in the CT imaging. Considering the simple preparation process and readily available starting materials as well as enhanced biosafety and high performance in X-ray attenuation, the strategy reported here offers a versatile route to efficiently deliver highly water-soluble nonionic iodinated contrast agents for enhanced CT imaging, which are unattainable by traditional means.
Collapse
Affiliation(s)
- Naikuan Fu
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Ao Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jing Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Peng Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Hong Zhang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Shicheng Yang
- Department of Cardiology, Chest Hospital, Tianjin University, Tianjin 300222, China; Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin Municipal Science and Technology Bureau, Tianjin Chest Hospital, Tianjin University, Tianjin 300222, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
50
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|