1
|
Hara Y, Tan PH, Foschini MP, Yano H, Sawada S, Hayashi H, Isomoto I, Yamaguchi R. Polymorphous adenocarcinoma-like tumor of the breast: the first case report from Japan. Breast Cancer 2025:10.1007/s12282-025-01708-4. [PMID: 40319220 DOI: 10.1007/s12282-025-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Polymorphous adenocarcinoma-like (PmA-like) tumor of the breast is a rare salivary gland-like neoplasm, with few cases reported globally. We present the first case of a PmA-like tumor with a fibrous pseudocapsule from Japan, including radiological findings. A 40-year-old premenopausal woman presented with a painful mass in the right breast. Mammography revealed a high-density oval mass with predominantly circumscribed margins, while ultrasonography showed a hypoechoic oval mass with heterogeneous internal echoes and vascularity. Both imaging modalities suggested malignancy, prompting a vacuum-assisted biopsy. Histopathological evaluation demonstrated diverse growth patterns and positivity for cytokeratin (CK) 7 and Bcl-2. Initially diagnosed as an unusual ductal proliferation, malignancy could not be excluded, leading to lumpectomy. The resected tumor measured 26 mm, exhibited a fibrous pseudocapsule with focal disruption, and showed varied histological patterns, including solid, cribriform, glandular, and cord-like structures. Immunohistochemistry revealed expression of CK7, S100, vimentin, CK5/6, E-cadherin, Bcl-2, p63, and smooth muscle actin (SMA), with no expression of p40, estrogen receptor, progesterone receptor, HER2, c-Kit, or androgen receptor. These findings, including penetration beyond the capsule, supported the diagnosis of an invasive PmA-like tumor of the breast. Following surgery, the patient underwent additional resection and sentinel lymph node biopsy due to a positive margin. No residual tumor or nodal metastases were found. The patient declined adjuvant therapy and remains recurrence-free after 26 months of follow-up. PmA-like tumors of the breast present diagnostic challenges due to their rarity and diverse histopathological features. Further studies are necessary to characterize their clinical behavior and guide management strategies.
Collapse
Affiliation(s)
- Yuki Hara
- Department of Breast Surgery, Sasebo City General Hospital, 9-3 Hirase-Cho, Sasebo, Nagasaki, 857-8511, Japan.
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Department of Breast Center/Diagnostic Pathology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Puay Hoon Tan
- Luma Medical Centre, Royal Square Medical Centre, Singapore, Singapore
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Unit of Pathology Bellaria Hospital, Bologna, Italy
| | - Hiroshi Yano
- Department of Breast Surgery, Sasebo City General Hospital, 9-3 Hirase-Cho, Sasebo, Nagasaki, 857-8511, Japan
| | - Saki Sawada
- School of Medical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hiroko Hayashi
- Department of Pathology, Sasebo City General Hospital, 9-3 Hirase-Cho, Sasebo, Nagasaki, 857-8511, Japan
| | - Ichiro Isomoto
- Department of Radiology, St. Francis Hospital, 9-20 Komine-Machi, Nagasaki, 852-8125, Japan
| | - Rin Yamaguchi
- Department of Breast Center/Diagnostic Pathology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Department of Pathology, Sasebo City General Hospital, 9-3 Hirase-Cho, Sasebo, Nagasaki, 857-8511, Japan
| |
Collapse
|
2
|
Lima CR, Antunes D, Caffarena E, Carels N. Structural Characterization of Heat Shock Protein 90β and Molecular Interactions with Geldanamycin and Ritonavir: A Computational Study. Int J Mol Sci 2024; 25:8782. [PMID: 39201468 PMCID: PMC11354266 DOI: 10.3390/ijms25168782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Drug repositioning is an important therapeutic strategy for treating breast cancer. Hsp90β chaperone is an attractive target for inhibiting cell progression. Its structure has a disordered and flexible linker region between the N-terminal and central domains. Geldanamycin was the first Hsp90β inhibitor to interact specifically at the N-terminal site. Owing to the toxicity of geldanamycin, we investigated the repositioning of ritonavir as an Hsp90β inhibitor, taking advantage of its proven efficacy against cancer. In this study, we used molecular modeling techniques to analyze the contribution of the Hsp90β linker region to the flexibility and interaction between the ligands geldanamycin, ritonavir, and Hsp90β. Our findings indicate that the linker region is responsible for the fluctuation and overall protein motion without disturbing the interaction between the inhibitors and the N-terminus. We also found that ritonavir established similar interactions with the substrate ATP triphosphate, filling the same pharmacophore zone.
Collapse
Affiliation(s)
- Carlyle Ribeiro Lima
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Deborah Antunes
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
| | - Nicolas Carels
- Laboratory of Biological System Modeling, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
3
|
Li S, Zhu J, Jiang N, Guo Y, Hou M, Liu X, Yang J, Yang X. Recurrent mucinous carcinoma with sarcomatoid and sarcomatous mural nodules: a case report and literature review. Front Oncol 2024; 14:1387700. [PMID: 38903727 PMCID: PMC11187075 DOI: 10.3389/fonc.2024.1387700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Ovarian mucinous tumors with sarcomatous mural nodules are rare. Sarcomatous nodules have a bad prognosis. Its diagnosis and treatment are controversial.It is still controversial whether malignant mural nodules represent a dedifferentiated form of mucinous tumors or collisional tumors. This is a case report of a 32-year-old female diagnosed with ovarian mucinous tumor recurred as a mucinous carcinoma combined with sarcomatoid and undifferentiated sarcoma mural nodules after surgery and chemotherapy. The primary lesion did not have a sarcomatous component after comprehensive sampling and repeated review, while the recurrent lesion had a predominantly sarcomatous component. The patient received a second operation and postoperative chemotherapy plus Anlotinib with no progression at 16 months of follow-up. Primary mucinous carcinoma and sarcomatous mural nodules revealed the same K-RAS mutation(c.35G>T, pG12V), TP53 mutation (c.817C>T, p.R273C), MLL2 mutation(c.13450C>T, p.R4484) and NF1 mutation(c.7876A>G, p.S2626G). We present a comprehensive analysis on morphologic characteristics, molecular detection results, clinical management, and prognosis of ovarian mucinous tumors with mural nodules of sarcomatoid and undifferentiated sarcoma. Mutation sharing between primary mucinous carcinoma and recurrent sarcomatous nodules supports monoclonal origin of primary and recurrent tumors, suggesting a tendency for sarcomatous differentiation during the progression of epithelial tumors. Malignant mural nodules represent dedifferentiation in mucinous ovarian tumors rather than collision of two different tumor types. Therefore, it is imperative to conduct comprehensive sampling, rigorous clinical examination, and postoperative follow-up in order to thoroughly evaluate all mural nodules of ovarian mucinous tumors due to their potential for malignancy and sarcomatous differentiation.
Collapse
Affiliation(s)
- Simin Li
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jingyu Zhu
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Jiang
- Department of Pathology, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanping Guo
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Meng Hou
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xi Liu
- Department of Pathology, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jin Yang
- Department of Oncology, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Xi ‘an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Tzenaki N, Xenou L, Goulielmaki E, Tsapara A, Voudouri I, Antoniou A, Valianatos G, Tzardi M, De Bree E, Berdiaki A, Makrigiannakis A, Papakonstanti EA. A combined opposite targeting of p110δ PI3K and RhoA abrogates skin cancer. Commun Biol 2024; 7:26. [PMID: 38182748 PMCID: PMC10770346 DOI: 10.1038/s42003-023-05639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Malignant melanoma is the most aggressive and deadly skin cancer with an increasing incidence worldwide whereas SCC is the second most common non-melanoma human skin cancer with limited treatment options. Here we show that the development and metastasis of melanoma and SCC cancers can be blocked by a combined opposite targeting of RhoA and p110δ PI3K. We found that a targeted induction of RhoA activity into tumours by deletion of p190RhoGAP-a potent inhibitor of RhoA GTPase-in tumour cells together with adoptive macrophages transfer from δD910A/D910A mice in mice bearing tumours with active RhoA abrogated growth progression of melanoma and SCC tumours. Τhe efficacy of this combined treatment is the same in tumours lacking activating mutations in BRAF and in tumours harbouring the most frequent BRAF(V600E) mutation. Furthermore, the efficiency of this combined treatment is associated with decreased ATX expression in tumour cells and tumour stroma bypassing a positive feedback expression of ATX induced by direct ATX pharmacological inactivation. Together, our findings highlight the importance of targeting cancer cells and macrophages for skin cancer therapy, emerge a reverse link between ATX and RhoA and illustrate the benefit of p110δ PI3K inhibition as a combinatorial regimen for the treatment of skin cancers.
Collapse
Affiliation(s)
- Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Lydia Xenou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Tsapara
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Voudouri
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Angelika Antoniou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - George Valianatos
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Eelco De Bree
- Department of Surgical Oncology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Aikaterini Berdiaki
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | - Antonios Makrigiannakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Crete, University Hospital, Heraklion, Greece
| | | |
Collapse
|
5
|
Arrindell J, Desnues B. Vimentin: from a cytoskeletal protein to a critical modulator of immune response and a target for infection. Front Immunol 2023; 14:1224352. [PMID: 37475865 PMCID: PMC10354447 DOI: 10.3389/fimmu.2023.1224352] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Vimentin is an intermediate filament protein that plays a role in cell processes, including cell migration, cell shape and plasticity, or organelle anchorage. However, studies from over the last quarter-century revealed that vimentin can be expressed at the cell surface and even secreted and that its implications in cell physiology largely exceed structural and cytoskeletal functions. Consequently, vimentin contributes to several pathophysiological conditions such as cancer, autoimmune and inflammatory diseases, or infection. In this review, we aimed at covering these various roles and highlighting vimentin implications in the immune response. We also provide an overview of how some microbes including bacteria and viruses have acquired the ability to circumvent vimentin functions in order to interfere with host responses and promote their uptake, persistence, and egress from host cells. Lastly, we discuss the therapeutic approaches associated with vimentin targeting, leading to several beneficial effects such as preventing infection, limiting inflammatory responses, or the progression of cancerous events.
Collapse
Affiliation(s)
- Jeffrey Arrindell
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
6
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
7
|
Mammary Fibroadenoma in Cats: A Matter of Classification. Vet Sci 2022; 9:vetsci9060253. [PMID: 35737305 PMCID: PMC9231207 DOI: 10.3390/vetsci9060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Benign mammary lesions are infrequent in cats. Among these, the most common is feline fibroadenomatous change, a hyperplastic/dysplastic change associated with hormonal imbalances. Although never thoroughly described in scientific literature, feline fibroadenomas, which share some morphological features with fibroadenomatous change, have been variably included in classification systems. The aim of this study was to characterise feline mammary fibroadenomas from a histological and immunophenotypical point of view in order to allow the standardisation of classification. Nine cases were retrospectively collected from eight female and one male cat with no history of hormonal stimulation. Diagnostic inclusion criteria were defined and immunohistochemistry was performed. Histologically, nodules were composed of neoplastic epithelial cells arranged in arborizing lobular-like structures surrounded by abundant proliferating stroma. In all analysed cases, epithelial elements showed immunolabelling for pancytokeratin, cytokeratin19, and β-catenin. Interestingly, five cases showed multifocal epithelial vimentin positivity. Epithelial nuclear oestrogen receptor positivity was observed in three of the nine samples. In all cases, myoepithelial cells did not extend into the interstitium. Stromal cells expressed vimentin, calponin, and mild β-catenin. The median Ki67 scores were 18% and 8.3% in the epithelial and stromal components, respectively. This study describes, for the first time, the morphological and immunophenotypical features of feline mammary fibroadenoma, highlighting its existence as a separate entity from fibroadenomatous change.
Collapse
|
8
|
Oliveira FD, Cavaco M, Figueira TN, Valle J, Neves V, Andreu D, Gaspar D, Castanho MARB. The antimetastatic breast cancer activity of the viral protein-derived peptide vCPP2319 as revealed by cellular biomechanics. FEBS J 2022; 289:1603-1624. [PMID: 34679257 PMCID: PMC9298314 DOI: 10.1111/febs.16247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/15/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022]
Abstract
The incidence of metastatic breast cancer (MBC) is increasing and the therapeutic arsenal available to fight it is insufficient. Brain metastases, in particular, represent a major challenge for chemotherapy as the impermeable nature of the blood-brain barrier (BBB) prevents most drugs from targeting cells in the brain. For their ability to transpose biological membranes and transport a broad spectrum of bioactive cargoes, cell-penetrating peptides (CPPs) have been hailed as ideal candidates to deliver drugs across biological barriers. A more ambitious approach is to have the CPP as a drug itself, capable of both killing cancer cells and interacting with the blood/brain interface, therefore blocking the onset of brain metastases. vCPP2319, a viral protein-derived CPP, has both properties as it: (a) is selective toward human breast cancer cells (MDA-MB-231) and increases cell stiffness compared to breast epithelial cells (MCF 10A) hindering the progression of metastases; and (b) adsorbs at the surface of human brain endothelial cells potentially counteracting metastatic cells from reaching the brain. Overall, the results reveal the selective anticancer activity of the peptide vCPP2319, which is also able to reside at the blood-brain interface, therefore counteracting brain penetration by metastatic cancer cells.
Collapse
Affiliation(s)
- Filipa D. Oliveira
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Marco Cavaco
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Tiago N. Figueira
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - Javier Valle
- Department of Experimental and Health SciencesBarcelona Biomedical Research ParkPompeu Fabra UniversityBarcelonaSpain
| | - Vera Neves
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | - David Andreu
- Department of Experimental and Health SciencesBarcelona Biomedical Research ParkPompeu Fabra UniversityBarcelonaSpain
| | - Diana Gaspar
- Instituto de Medicina MolecularFaculdade de Medicina da Universidade de LisboaPortugal
| | | |
Collapse
|
9
|
Guo Y, Sun P, Guo W, Dong Z. Long Non-coding RNA LINC01503 Promotes Gastric Cardia Adenocarcinoma Progression via miR-133a-5p/VIM Axis and EMT Process. Dig Dis Sci 2021; 66:3391-3403. [PMID: 33200343 DOI: 10.1007/s10620-020-06690-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND LINC01503 has been reported to act as a candidate oncogenic lncRNA in several types of human cancer. However, the functions and underlying mechanisms of LINC01503 in gastric cardia adenocarcinoma (GCA) remain unclear. AIMS To investigate the roles and underlying mechanisms of LINC01503 in GCA progression. MATERIALS AND METHODS Gene expressions were detected by quantitative real-time PCR (qRT-PCR). Gain-of-function assays were performed to evaluate the function of LINC01503 in gastric cancer cells. Bioinformatics analysis, luciferase reporter assay, and RIP assay were performed to identify associations among LINC01503, miR-133a-5p, and VIM. RESULTS The expression level of LINC01503 was significantly elevated in GCA tissues and cell lines. High expression of LINC01503 was correlated with lymph node metastasis, TNM stage, and poor prognosis of GCA patients. Knockdown of LINC01503 significantly reduced proliferation, migration, and invasion ability in GC cells. LINC01503 might function as a competing endogenous RNA (ceRNA) via sponging miR-133a-5p to upregulate the expression of VIM. Furthermore, overexpression of LINC01503 promoted the progression of epithelial mesenchymal transition (EMT) in vitro. CONCLUSION LINC01503 serves as an oncogenic lncRNA to promote GCA progression via affecting LINC01503/miR-133a-5p/VIM axis and EMT process. LINC01503 not only has a critical role in GCA progression but also provide a novel potential biomarker in predicting prognosis for GCA patients.
Collapse
Affiliation(s)
- Yanli Guo
- Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Pingping Sun
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Zhiming Dong
- Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, No.12, Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
10
|
Casadonte R, Kriegsmann M, Kriegsmann K, Hauk I, Meliß RR, Müller CSL, Kriegsmann J. Imaging Mass Spectrometry-Based Proteomic Analysis to Differentiate Melanocytic Nevi and Malignant Melanoma. Cancers (Basel) 2021; 13:3197. [PMID: 34206844 PMCID: PMC8267712 DOI: 10.3390/cancers13133197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort (n = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus (n = 113) with an overall accuracy of >98%. The prediction model was tested in an independent set (n = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio (m/z) peaks which varied significantly (Area under the receiver operating characteristic curve > 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.
Collapse
Affiliation(s)
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Katharina Kriegsmann
- Department of Hematology Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Isabella Hauk
- Faculty of Medicine/Dentistry, Danube Private University, 3500 Krems-Stein, Austria;
| | - Rolf R. Meliß
- Institute für Dermatopathologie, 30519 Hannover, Germany;
| | - Cornelia S. L. Müller
- MVZ für Histologie, Zytologie und Molekulare Diagnostik Trier, 54296 Trier, Germany;
| | - Jörg Kriegsmann
- Proteopath GmbH, 54926 Trier, Germany; or
- Faculty of Medicine/Dentistry, Danube Private University, 3500 Krems-Stein, Austria;
- MVZ für Histologie, Zytologie und Molekulare Diagnostik Trier, 54296 Trier, Germany;
| |
Collapse
|
11
|
Cheng M, Ye X, Dai J, Sun F. SOS1 promotes epithelial-mesenchymal transition of Epithelial Ovarian Cancer(EOC) cells through AKT independent NF-κB signaling pathway. Transl Oncol 2021; 14:101160. [PMID: 34175715 PMCID: PMC8242062 DOI: 10.1016/j.tranon.2021.101160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
We aimed to explore the role and mechanism of SOS1 (Son of sevenless homolog 1) in malignant behaviors of epithelial ovarian cancer (EOC) cells Hey with high metastatic potential. Firstly, compared with Hey-WT (wild type) and Hey-NT (none targeted) cells, Hey-SOS1i cells showed decreased polarities, disorders in cytoskeleton arrangement. Numbers of transwell migrated, invaded, intravasation cells and extravasated cells were decreased significantly. Hey-NT cells and Hey-SOS1i cells were employed to establish a peritoneal dissemination model in nude mice. Hey-SOS1i cells formed less implantation metastatic foci in the abdominal cavity than Hey-NT cells, especially on the intestine and diaphragm in the 5th week after the tumor cells were injected intraperitoneally. SOS1 knockdown in Hey cells resulted in increased E-cadherin and decreased Vimentin, N-cadherin, MMP2, and MMP9, together with reduced Snail and activation of NF-κB pathway. Together, these results suggest SOS1 might induce EMT through activating AKT independent NF-κB pathway and the transcriptive activity of Snail, and subsequently regulate the cytoskeleton reprogramming and cell motility of Hey, one of EOC cells with high metastatic potential. This may provide some new targets for the treatment of ovarian cancer with high metastatic potential.
Collapse
Affiliation(s)
- Min Cheng
- Department of Reproductive Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, P.R. China
| | - Xiaolin Ye
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jiemin Dai
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Feiji Sun
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, P.R. China.
| |
Collapse
|
12
|
Garbicz D, Pilžys T, Wiśniowski I, Grzesiuk M, Cylke R, Kosieradzki M, Grzesiuk E, Piwowarski J, Marcinkowski M, Lisik W. Replacing centrifugation with mixing in urine analysis enriches protein pool in the urine samples. Anal Biochem 2021; 628:114284. [PMID: 34111418 DOI: 10.1016/j.ab.2021.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Urine is the basic diagnostic material, easy to collect, not requiring invasive approach. During standard procedure the urine samples are centrifuged and the supernatant analysed physically, biochemically, and microscopically. The centrifugation step removes proteins including those forming aggregates especially in the state of illness and after transplantation. Here, we analysed the effect of urine centrifuging on specific protein content in urine samples obtained from cardiovascular patients (CVD) and after kidney or liver transplantation. We tested homogeneous whole urine samples, standardly centrifuge one, and the pellet after centrifuging. Protein content was examined using Western blot analysis and mass spectrometry (MS) of samples from CVD patients or the one after transplantation. The average of 21% proteins from non-centrifuged samples were found in the pellet removed after standard centrifugation. MS analysis confirmed that diagnostically important proteins were located there in. In 90% of cases whole urine samples contained more proteins than standard supernatant, among them e.g. proteins involved in immunological response like immunoglobulins and complement compounds secreted by leucocytes. Replacing centrifuging with intensive mixing of urine samples provides a method of enriching the samples with proteins removed during standard procedure, thus increasing possibility of finding new biomarkers for diseases undiagnosable with classic urine analysis.
Collapse
Affiliation(s)
- Damian Garbicz
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Iga Wiśniowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Grzesiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland; Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Poland
| | - Radosław Cylke
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Kosieradzki
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Jan Piwowarski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Michał Marcinkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland.
| | - Wojciech Lisik
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
14
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
15
|
Ruud KF, Hiscox WC, Yu I, Chen RK, Li W. Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Res 2020; 22:82. [PMID: 32736579 PMCID: PMC7395363 DOI: 10.1186/s13058-020-01321-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Breast cancer cells invading the connective tissues outside the mammary lobule or duct immerse in a reservoir of extracellular matrix (ECM) that is structurally and biochemically distinct from that of their site of origin. The ECM is a spatial network of matrix proteins, which not only provide physical support but also serve as bioactive ligands to the cells. It becomes evident that the dimensional, mechanical, structural, and biochemical properties of ECM are all essential mediators of many cellular functions. To better understand breast cancer development and cancer cell biology in native tissue environment, various tissue-mimicking culture models such as hydrogel have been developed. Collagen I (Col I) and Matrigel are the most common hydrogels used in cancer research and have opened opportunities for addressing biological questions beyond the two-dimensional (2D) cell cultures. Yet, it remains unclear whether these broadly used hydrogels can recapitulate the environmental properties of tissue ECM, and whether breast cancer cells grown on CoI I or Matrigel display similar phenotypes as they would on their native ECM. METHODS We investigated mammary epithelial cell phenotypes and metabolic profiles on animal breast ECM-derived tissue matrix gel (TMG), Col I, and Matrigel. Atomic force microscopy (AFM), fluorescence microscopy, acini formation assay, differentiation experiments, spatial migration/invasion assays, proliferation assay, and nuclear magnetic resonance (NMR) spectroscopy were used to examine biological phenotypes and metabolic changes. Student's t test was applied for statistical analyses. RESULTS Our data showed that under a similar physiological stiffness, the three types of hydrogels exhibited distinct microstructures. Breast cancer cells grown on TMG displayed quite different morphologies, surface receptor expression, differentiation status, migration and invasion, and metabolic profiles compared to those cultured on Col I and Matrigel. Depleting lactate produced by glycolytic metabolism of cancer cells abolished the cell proliferation promoted by the non-tissue-specific hydrogel. CONCLUSION The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.
Collapse
Affiliation(s)
- Kelsey F Ruud
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - William C Hiscox
- Center for NMR Spectroscopy, Washington State University, Pullman, WA, 99164, USA
| | - Ilhan Yu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Roland K Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
16
|
Fhaikrue I, Srisawat W, Nambooppha B, Pringproa K, Thongtharb A, Prachasilchai W, Sthitmatee N. Identification of potential canine mammary tumour cell biomarkers using proteomic approach: Differences in protein profiles among tumour and normal mammary epithelial cells by two-dimensional electrophoresis-based mass spectrometry. Vet Comp Oncol 2020; 18:787-795. [PMID: 32421920 DOI: 10.1111/vco.12610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022]
Abstract
Canine mammary tumours (CMTs) are regarded as invasive with a high rate of recurrent and metastasis in intact female dogs. Tumour diagnosis, therefore, is an important step in predicting and monitoring tumour progression. This study was designed to identify protein expression on CMTs by employing a proteomic approach. The primary cell culture from benign mixed tumour, simple carcinoma, complex carcinoma and normal mammary gland were established, and two-dimensional electrophoresis (2DE) was subsequently performed. The different spots on each sample type were collected for identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicated that cytokeratin 5 (CK5) and transketolase (TKT) were identified in benign mixed tumour cells and complex carcinoma cells. In contrast, cytokeratin 18 (CK18) and pyruvate kinase PKM were identified in simple carcinoma cells. Moreover, alpha-2-HS-glycoprotein tumour antigen was identified specifically in complex carcinoma cells. In addition, ATP-dependent 6-phosphofructokinase platelet type and elongation factor 2 proteins were observed in benign cells. In conclusion, all expressed proteins in this study have been recognized for acting as their expression that differs from healthy mammary epithelial cells. Expectantly, this study identified the expressed proteins that might be useful in further diagnostic biomarker studies on CMTs.
Collapse
Affiliation(s)
- Itsarapan Fhaikrue
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwisa Srisawat
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Atigan Thongtharb
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Small Animal Hospital, Chiang Mai University Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Worapat Prachasilchai
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattawooti Sthitmatee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
17
|
Bacterial type III effector protein HopQ inhibits melanoma motility through autophagic degradation of vimentin. Cell Death Dis 2020; 11:231. [PMID: 32286254 PMCID: PMC7156461 DOI: 10.1038/s41419-020-2427-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector protein HopQ into the plant cytosol via a type III secretion machinery and suppresses the host immunity. Intriguingly, host plant proteins regulated by HopQ are conserved even in humans and conferred in tumor metastasis. Nevertheless, the potential for HopQ to regulate human cancer metastasis was unknown. In this study, we addressed the suitability of HopQ as a possible drug against melanoma metastasis. In melanoma cells, overexpressed HopQ is phosphorylated and bound to 14-3-3 through its N-terminal domain, resulting in stronger interaction between HopQ and vimentin. The binding of HopQ to vimentin allowed for degradation of vimentin via p62-dependent selective autophagy. Attenuation of vimentin expression by HopQ inhibited melanoma motility and in vivo metastasis. These findings demonstrated that HopQ directly degraded vimentin in melanoma cells and could be applied to an inhibitor of melanoma metastasis.
Collapse
|
18
|
Mohebi M, Ghafouri-Fard S, Modarressi MH, Dashti S, Zekri A, Kholghi-Oskooei V, Taheri M. Expression analysis of vimentin and the related lncRNA network in breast cancer. Exp Mol Pathol 2020; 115:104439. [PMID: 32283061 DOI: 10.1016/j.yexmp.2020.104439] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/24/2022]
Abstract
Vimentin (VIM) is a mesenchymal marker which is expressed in some cancer types including breast cancer. A long non-coding RNA (lncRNA) has been identified to be transcribed from VIM gene locus and positively regulate expression of VIM. This lncRNA has been named as VIM-antisense 1 (VIM-AS1). Expression of VIM is also regulated by another lncRNA namely AGAP2-antisense RNA 1 (AGAP2-AS1). In the current study, we aimed at identification of the expression pattern of VIM, VIM-AS1, AGAP2 and AGAP2-AS1 in 78 breast cancer samples and their paired adjacent non-cancerous tissues (ANCTs) by means of real time PCR. All mentioned genes were significantly down-regulated in tumoral tissues compared with ANCTs (P values less than 0.000). Relative expression of VIM-AS1 in tumoral tissues versus ANCTs was associated with menopause age (P = .02) in a way that this gene was down-regulated in most of patients whose menopause age was between 40 and 50 years. Moreover, AGAP2-AS1 relative expression was associated with patients' body mass index (P = .03). There were trends toward association between VIM relative expression and tumor size (P = .07) and association between VIM-AS1 relative expression and obesity (P = .06). Expression of VIM was significantly higher in tumoral tissues of patients who had history of hormone replacement therapy compared with those without such history (P = .03). Moreover, expression levels of both VIM and AGAP2-AS1 were lower in patients whose menarche age was between 10 and 12 years old compared with those whose menarche age was between 13 and 15 years old (P values = .01 and 0.04, respectively). Transcript quantities of VIM, VIM-AS1, AGAP2 and AGAP2-AS1 were correlated with each other both in tumoral tissues and in ANCTs. Among four assessed genes, AGAP2 had the best diagnostic power for discrimination of tumoral tissues from ANCTs (AUC value = 0.87). Combination of four genes led to enhancement of AUC value to 0.94. The current study shows the importance of VIM and its associated lncRNAs in breast cancer and potentiates these genes as biomarkers for this malignancy. Moreover, these lncRNAs might be regarded as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Mehdi Mohebi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Kholghi-Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Is vimentin a potential prognostic factor for patients with triple-negative breast cancer? J Cancer Res Clin Oncol 2020; 146:2109-2116. [PMID: 32266539 DOI: 10.1007/s00432-020-03210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the prognostic potential of vimentin, p53, EGFR, CK5/6, CK 14, and CK 17 in patients with triple-negative breast cancer (TNBC). MATERIAL AND METHODS Tumor specimens of 60 patients with histologically confirmed TNBC were retrospectively analyzed. Formalin-fixed paraffin-embedded blocks of the tumor tissue were used to prepare tissue microarrays (TMAs). After immune-histochemical staining, protein expression of vimentin, p53, EGFR, CK5/6, CK 14, and CK 17 was determined and the immunoreactive score (IRS) was calculated. The protein expression was correlated to overall (OS) and disease-free survival (DFS). RESULTS Ninety percent of patients suffered from an invasive ductal carcinoma T1 or T2, 66.7% were N0, and 70% had a G3 tumor with Ki67 of > 14%. Vimentin expression was found in 28/60 patients (46.7%), p53 expression in 30/60 patients (50%), and EGFR expression in 3/60 patients (5%). CK5/6, CK14, and CK17 expression was found in 60.0%, 63.3%, and 66.7%, respectively. Vimentin expression vs no expression was associated with significantly higher mean Ki67 values (52.5% vs. 31.1%; p = 0.0013) and significantly higher p53 expression (67.9% vs. 34.4%; p = 0.0097). No significant association between vimentin expression and OS (p = 0.7710) or DFS (p = 0.5558) was found during a mean follow-up of 92 months. CONCLUSION None of the six proteins proved to be suitable prognostic factors for OS and DSF in patients with TNBC.
Collapse
|
20
|
Sultana R, Kataki AC, Barthakur BB, Sarma A, Bose S. Clinicopathological and immunohistochemical characteristics of breast cancer patients from Northeast India with special reference to triple negative breast cancer: A prospective study. Curr Probl Cancer 2020; 44:100556. [PMID: 32044043 DOI: 10.1016/j.currproblcancer.2020.100556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/17/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Molecular pathogenesis of Triple-negative breast cancer (TNBC) is inconclusively documented from resource limited countries and hence there is a lack of available targeted therapy for clinical interventions. Compared to other breast cancer subtypes, TNBC is more aggressive, higher recurrence rate, and higher prevalence in younger premenopausal women. Sporadic literature indicates predominance of TNBC in all reported breast cancer cases from Northeast India. AIM This study was conducted to evaluate the candidature of panel of key molecular markers involved in the development and progression of TNBC for prognosis and futuristic tailored targeted therapy. MATERIALS AND METHODS We analyzed the clinicopathological characterized and immunohistochemically screened the differential expression of key molecular markers involved in the development and progression of in TNBC cases vis-a-vis non-TNBC and autopsy-based control samples. RESULTS TNBC tends to display at an early reproductive age and is more aggressive in nature. Further, the differential expression of 2 specific markers viz., epidermal growth factor receptor (EGFR) and FolR1 was higher in TNBC cases compared to controls and non-TNBC (both in terms of susceptibility and specificity), clinical staging in TNBC cases (severity) and mortality (outcome). Although Ki67 and vascular endothelial growth factor expression also correlated with severity and outcome of the disease but their differences in non-TNBC cases were not significantly differentiable compared to TNBC. CONCLUSIONS The study indicates that EGFR and FolR1 could serve as useful biomarkers to determine TNBC prognosis. Further studies will be needed to evaluate EGFR and Folate pathways in order to screen out the molecular targets which may be meaningfully used for clinical stratification, intervention, and treatment.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Lobular/epidemiology
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Carcinoma, Lobular/surgery
- ErbB Receptors/metabolism
- Female
- Folate Receptor 1/metabolism
- Follow-Up Studies
- Humans
- India/epidemiology
- Middle Aged
- Prognosis
- Prospective Studies
- Survival Rate
- Triple Negative Breast Neoplasms/epidemiology
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Triple Negative Breast Neoplasms/surgery
Collapse
Affiliation(s)
- Rizwana Sultana
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India; Multidisciplinary Research Unit, Department of Health Research, ICMR, Fakhruddin Ali Ahmed Medical College, Barpeta, Assam, India
| | - Amal Ch Kataki
- Department of Gynecologic Oncology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | | | - Anupam Sarma
- Department of Pathology, Dr B. Borooah Cancer Institute, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India.
| |
Collapse
|
21
|
Zhan R, Guo W, Gao X, Liu X, Xu K, Tang B. Reconstruction of nano-flares based on Au–Se bonds for high-fidelity detection of RNA in living cells. Chem Commun (Camb) 2020; 56:5178-5181. [DOI: 10.1039/d0cc01213k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have, for the first time, developed a Au–Se–DNA nanoprobe by upgrading the conventional Au–S bonds of nano-flares to more stable Au–Se bonds for high-fidelity imaging of target RNAs in living cells.
Collapse
Affiliation(s)
- Renhui Zhan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wenfei Guo
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaonan Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaojun Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Kehua Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
22
|
Liu S, Huang J, Zhang Y, Liu Y, Zuo S, Li R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019; 11:10697-10710. [PMID: 31761784 PMCID: PMC6914392 DOI: 10.18632/aging.102485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) is a member of the mitogen-activated protein kinase (MAPK) activator family. MAPK signaling plays a significant role in cell proliferation, differentiation, transcriptional regulation, and development. However, specific function and mechanism of MAP2K4 in breast cancer have not been clarified. According to our study, overexpressed MAP2K4 in breast cancer cells increased proliferation, migration, and invasion in vivo and in vitro, while MAP2K4 knockdown restored the effects. Subsequent mechanistic analyses demonstrated that MAP2K4 promoted cell proliferation, migration, and invasion by activating phosphoinositide-3-kinase (PI3K)/AKT signaling, the downstream proteins, c-JUN, the G1/S cell cycle, and the epithelial-to-mesenchymal transition (EMT). Meanwhile, MAP2K4 interacted with Vimentin and further propagated the malignant phenotype. Furthermore, patients with high MAP2K4 and Vimentin expression levels had poorer overall survival rates than those with low expression levels of both proteins. Our studies demonstrated that MAP2K4 has the potential to serve as an oncogene in breast cancer and it activates the phosphorylated PI3K/AKT signaling pathway to activate downstream cycle-associated proteins and EMT signals while interacting with Vimentin to promote breast cancer cells proliferation, migration, and invasion. In our study, MAP2K4 and Vimentin co-expression is confirmed to be an unfavorable factor in breast cancer.
Collapse
Affiliation(s)
- Shu Liu
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China.,Guizhou Maternity and Child Health Hospital, Guiyang 550003, Guizhou, P. R. China
| | - Juan Huang
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| | - Yewei Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, P. R. China
| | - Shi Zuo
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Rong Li
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
23
|
Makol A, Kaur H, Sharma S, Kanthaje S, Kaur R, Chakraborti A. Vimentin as a potential therapeutic target in sorafenib resistant HepG2, a HCC model cell line. Clin Mol Hepatol 2019; 26:45-53. [PMID: 31564085 PMCID: PMC6940489 DOI: 10.3350/cmh.2019.0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality rate in patients suffering from liver diseases. The drug of choice used in advanced-stage of HCC is sorafenib. However, adaptive resistance has been observed in HCC patients undergoing long-term sorafenib treatment, lowering its effectiveness. Hence, it is important to overcome drug resistance to improve overall management of HCC. Here, we have identified a candidate biomarker for sorafenib resistance in a HCC model cell line, HepG2.
Methods Initially, comparative proteomic profiling of parental HepG2 [HepG2 (P)] and sorafenib-resistant HepG2 [HepG2 (R)] cells was performed via MALDI (matrix-assisted laser desorption/ionization) which revealed the deregulation of vimentin in HepG2 (R) cells. Gene and protein level expression of vimentin was also observed through quantitative real-time polymerase chain reaction (qRT PCR) and fluorescence-activated cell sorting (FACS), respectively. Furthermore, withaferin A was used to study regulation of vimentin expression and its significance in sorafenib resistance.
Results Both gene and protein level of vimentin expression was found to be downregulated in HepG2 (R) in comparison to HepG2 (P). Interestingly, the study demonstrated that withaferin A further lowered the expression of vimentin in HepG2 (R) cells in a dose-dependent manner. Also, inhibition of vimentin lowered ABCG2 expression and decreased cell viability in parental as well as sorafenib resistant HepG2 cells.
Conclusions Hence, our study for the first time highlighted the probable therapeutic potential of vimentin in sorafenib resistant HepG2, a HCC model cell line.
Collapse
Affiliation(s)
- Ankita Makol
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Harpreet Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Sakshi Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shruthi Kanthaje
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ramanpreet Kaur
- Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
24
|
Kanaji N, Kadota K, Tadokoro A, Inoue T, Watanabe N, Haba R, Kadowaki N, Ishii T. Serum CYFRA 21-1 but not Vimentin is Associated with Poor Prognosis in Advanced Lung Cancer Patients. Open Respir Med J 2019; 13:31-37. [PMID: 31908686 PMCID: PMC6918537 DOI: 10.2174/1874306401913010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 11/22/2022] Open
Abstract
Background Cytokeratins and Vimentin are intermediate filament proteins. Vimentin expression in tissue samples has been reported to be associated with a poor prognosis in non-small cell lung cancer patients who underwent surgery. CYFRA 21-1 (Cytokeratin 19 Fragment) is a well known tumor marker. Objective This study aimed to investigate the usefulness of serum vimentin as a tumor marker and significance of CYFRA 21-1 and vimentin expression on prognosis of advanced lung cancer patients. Methods One hundred and four advanced lung cancer patients and 19 non-lung cancer patients were included. A total of 157 clinical samples obtained from 113 patients was used for immunostaining of vimentin and measurements of CYFRA 21-1 and vimentin concentrations. Results Compared to low concentration, high concentration of serum CYFRA 21-1 was associated with shorter overall survival in lung cancer patients. However, there was no difference in the serum vimentin concentration between the patients with lung cancer and those with non-lung cancer. No difference in vimentin concentration was observed between the malignant and non-malignant pleural effusions. Immunostaining revealed that of the 43 tumor samples, 21 were positive and 22 were negative for vimentin. No significant difference was found in overall survival between patients with positive and negative for vimentin. Conclusion An elevated serum CYFRA 21-1 concentration was associated with shorter overall survival in advanced lung cancer patients. However, serum vimentin was not as useful as a tumor marker of lung cancer. The vimentin positivity in tumor samples might not predict patients' prognosis in patients with advanced lung cancer.
Collapse
Affiliation(s)
- Nobuhiro Kanaji
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kyuichi Kadota
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Tadokoro
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takuya Inoue
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Watanabe
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tomoya Ishii
- Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
25
|
Ghaderi F, Mehdipour F, Hosseini A, Talei A, Ghaderi A. Establishment and Characterization of a New Triple Negative Breast Cancer Cell Line from an Iranian Breast Cancer Tissue. Asian Pac J Cancer Prev 2019; 20:1683-1689. [PMID: 31244288 PMCID: PMC7021626 DOI: 10.31557/apjcp.2019.20.6.1683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer-related death among women worldwide. The underlying mechanisms for breast cancer development, especially in young women, are not completely understood. Although there are several experimental models to understand the biology of breast cancer such as immortalized cell lines, many of these cell lines have been in culture for decades and most of them have been derived from Caucasians or African-Americans. So, it is required to establish a new cell line derived from primary tumors and Asian women. In this study Pari-Institute for Cancer Research (Pari-ICR) was derived from the primary breast tumor of a 36-years old patient with invasive ductal carcinoma. We characterized the cell line by examining morphology, expression of different markers, and functional profile. Immunocytochemistry showed that this cell line does not express estrogen and progesterone receptors as well as human epidermal growth factor receptor 2 (HER2). Pari-ICR cell line expresses high levels of Vimentin, Ezrin, and S100 but does not express EpCAM, Cytokeratin19, Pan-cytokeratin, Nestin, and Desmin. Its doubling time of Pari-ICR was about 22h and was able to grow as colonies in soft agar. It displayed a higher ability of migration and invasion in comparison with MCF-7 cell line. This breast cancer cell line can serve as a model for understanding the molecular mechanisms of breast carcinogenesis. Moreover, it can be used as an appropriate resource to find novel biomarkers or assess new drugs.
Collapse
Affiliation(s)
- Farzaneh Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolrasoul Talei
- Department of Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Khillare CD, Sinai Khandeparkar SG, Joshi AR, Kulkarni MM, Gogate BP, Battin S. Immunohistochemical Expression of Vimentin in Invasive Breast Carcinoma and Its Correlation with Clinicopathological Parameters. Niger Med J 2019; 60:17-21. [PMID: 31413430 PMCID: PMC6677002 DOI: 10.4103/nmj.nmj_7_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Breast carcinoma (BCa) is one of the most common cancers among women globally. Increased vimentin expression has been reported in various epithelial cancers. Aim This study examines the expression of vimentin in BCa and its correlation with various prognostic factors such as tumor size, histological grade, lymph node status, estrogen receptor (ER), progesterone receptor (PR), HER2/neu, and Ki67 status. Materials and Methods Seventy cases of BCa diagnosed between 2014 and 2015 were included in the study. A technique of manual tissue microarray was employed for the analysis of expression of immunohistochemical (IHC) markers such as vimentin, ER, PR, HER2/neu, and Ki67. Results were subjected to statistical analysis. Results Vimentin was found positive in 53 (75.7%) cases of BCa, of which 18 cases (25.7%) were triple-negative BCa (TNBC). Positivity for ER, PR, Her2, and Ki67 was 32.8%, 31.4%, 60%, and 99%, respectively. Vimentin expression was significantly associated with ER negativity. All 53 cases expressing vimentin showed positive Ki67 labeling index; however, this was not statistically significant. Maximum vimentin expression was observed in the age group >50 years, postmenopausal women, BCa cases showing lymphovascular invasion (LVI), axillary lymph node metastasis, higher stage and higher grade of tumor, negative PR expression, and positive HER2/neu expression. However, this was not statistically significant. In TNBC, vimentin expression was significantly associated with histological grade and LVI. Conclusion Vimentin expression was associated with well-established poor prognostic factors of BCa. Vimentin expression if routinely included in histopathology report would aid in better understanding of tumor behavior.
Collapse
Affiliation(s)
- Chaitnya D Khillare
- Department of Pathology, Smt. Kashibai Navale Medical College and General Hospital, Pune, Maharashtra, India
| | | | - Avinash R Joshi
- Department of Pathology, Smt. Kashibai Navale Medical College and General Hospital, Pune, Maharashtra, India
| | - Maithili M Kulkarni
- Department of Pathology, Smt. Kashibai Navale Medical College and General Hospital, Pune, Maharashtra, India
| | - Bageshri P Gogate
- Department of Pathology, Smt. Kashibai Navale Medical College and General Hospital, Pune, Maharashtra, India
| | - Shivani Battin
- Department of Pathology, Smt. Kashibai Navale Medical College and General Hospital, Pune, Maharashtra, India
| |
Collapse
|
27
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
28
|
TiHo-0906: a new feline mammary cancer cell line with molecular, morphological, and immunocytological characteristics of epithelial to mesenchymal transition. Sci Rep 2018; 8:13231. [PMID: 30185896 PMCID: PMC6125410 DOI: 10.1038/s41598-018-31682-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Feline mammary carcinomas (FMCs) with anaplastic and malignant spindle cells histologically resemble the human metaplastic breast carcinoma (hMBC), spindle-cell subtype. hMBCs display epithelial-to-mesenchymal transition (EMT) characteristics. Herein we report the establishment and characterization of a cell line (TiHoCMglAdcar0906; TiHo-0906) exhibiting EMT-like properties derived from an FMC with anaplastic and malignant spindle cells. Copy-number variations (CNVs) by next-generation sequencing and immunohistochemical characteristics of the cell line and the tumour were compared. The absolute qPCR expression of EMT-related markers HMGA2 and CD44 was determined. The growth, migration, and sensitivity to doxorubicin were assessed. TiHo-0906 CNVs affect several genomic regions harbouring known EMT-, breast cancer-, and hMBCs-associated genes as AKT1, GATA3, CCND2, CDK4, ZEB1, KRAS, HMGA2, ESRP1, MTDH, YWHAZ, and MYC. Most of them were located in amplified regions of feline chromosomes (FCAs) B4 and F2. TiHo-0906 cells displayed an epithelial/mesenchymal phenotype, and high HMGA2 and CD44 expression. Growth and migration remained comparable during subculturing. Low-passaged cells were two-fold more resistant to doxorubicin than high-passaged cells (IC50: 99.97 nM, and 41.22 nM, respectively). The TiHo-0906 cell line was derived from a poorly differentiated cellular subpopulation of the tumour consistently displaying EMT traits. The cell line presents excellent opportunities for studying EMT on FMCs.
Collapse
|
29
|
Goulielmaki E, Bermudez-Brito M, Andreou M, Tzenaki N, Tzardi M, de Bree E, Tsentelierou E, Makrigiannakis A, Papakonstanti EA. Pharmacological inactivation of the PI3K p110δ prevents breast tumour progression by targeting cancer cells and macrophages. Cell Death Dis 2018; 9:678. [PMID: 29880805 PMCID: PMC5992183 DOI: 10.1038/s41419-018-0717-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/01/2018] [Accepted: 04/20/2018] [Indexed: 01/12/2023]
Abstract
Patient selection for PI3K-targeted solid cancer treatment was based on the PIK3CA/PTEN mutational status. However, it is increasingly clear that this is not a good predictor of the response of breast cancer cells to the anti-proliferative effect of PI3K inhibitors, indicating that isoform(s) other than p110α may modulate cancer cells sensitivity to PI3K inhibition. Surprisingly, we found that although no mutations in the p110δ subunit have been detected thus far in breast cancer, the expression of p110δ becomes gradually elevated during human breast cancer progression from grade I to grade III. Moreover, pharmacological inactivation of p110δ in mice abrogated the formation of tumours and the recruitment of macrophages to tumour sites and strongly affected the survival, proliferation and apoptosis of grafted tumour cells. Pharmacological inactivation of p110δ in mice with defective macrophages or in mice with normal macrophages but grafted with p110δ-lacking tumours suppressed only partly tumour growth, indicating a requisite role of p110δ in both macrophages and cancer cells in tumour progression. Adoptive transfer of δD910A/D910A macrophages into mice with defected macrophages suppressed tumour growth, eliminated the recruitment of macrophages to tumour sites and prevented metastasis compared with mice that received WT macrophages further establishing that inactivation of p110δ in macrophage prevents tumour progression. Our work provides the first in vivo evidence for a critical role of p110δ in cancer cells and macrophages during solid tumour growth and may pave the way for the use of p110δ inhibitors in breast cancer treatment.
Collapse
Affiliation(s)
- Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Miriam Bermudez-Brito
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Margarita Andreou
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Niki Tzenaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria Tzardi
- Department of Pathology, University Hospital, School of Medicine, University of Crete, Heraklion, Greece
| | - Eelco de Bree
- Department of Surgical Oncology, University Hospital, School of Medicine, University of Crete, Heraklion, Greece
| | - Eleftheria Tsentelierou
- Department of Obstetrics and Gynaecology, University Hospital, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynaecology, University Hospital, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
30
|
Lee J, Guan W, Han S, Hong D, Kim L, Kim H. MicroRNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Sci 2018; 109:1404-1413. [PMID: 29575368 PMCID: PMC5980212 DOI: 10.1111/cas.13588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis and chemoresistance remain major challenges in the clinical treatment of breast cancer. Recent studies show that dysregulated microRNAs (miRNAs) play an important role in metastasis and chemoresistance development in breast cancer. Herein, we identified downregulated expression of miR-708-3p in breast cancers. In particular, miR-708-3p expression was significantly decreased in specimens from breast cancer patients with metastasis compared to that in specimens from patients with no metastasis. Consistent with clinical data, our in vitro data show that miR-708-3p was more significantly decreased in invasive breast cancer cell lines. In addition, our data show that inhibition of miR-708-3p significantly stimulated breast cancer cell metastasis and induced chemoresistance both in vitro and in vivo. In contrast, overexpression of miR-708-3p dramatically inhibited breast cancer cell metastasis and enhanced the sensitivity of breast cancer cells to chemotherapy both in vitro and in vivo. Furthermore, we identified that miR-708-3p inhibits breast cancer cell epithelial-to-mesenchymal transition (EMT) by directly targeting EMT activators, including ZEB1, CDH2 and vimentin. Taken together, our findings suggest that miR-708-3p acts as a cancer suppressor miRNA and carries out its anticancer function by inhibiting EMT in breast cancer. In addition, our findings suggest that restoration of miR-708-3p may be a novel strategy for inhibiting breast cancer metastasis and overcoming the chemoresistance of breast cancer cells.
Collapse
Affiliation(s)
- Jin‐Won Lee
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Wei Guan
- Cancer CenterDaping Hospital and Research Institute of SurgeryThird Military Medical UniversityChongqingChina
| | - Sanghak Han
- Department of PathologyChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Deok‐Ki Hong
- Department of BiochemistryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Lee‐Su Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| | - Haesung Kim
- Department of SurgeryChuncheon Sacred Heart HospitalCollege of MedicineHallym UniversityChuncheonSouth Korea
| |
Collapse
|
31
|
Tilli TM, Carels N, Tuszynski JA, Pasdar M. Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an in vitro model for inhibition of tumor development. Oncotarget 2018; 7:63189-63203. [PMID: 27527857 PMCID: PMC5325356 DOI: 10.18632/oncotarget.11055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/10/2016] [Indexed: 12/14/2022] Open
Abstract
Network-based strategies provided by systems biology are attractive tools for cancer therapy. Modulation of cancer networks by anticancer drugs may alter the response of malignant cells and/or drive network re-organization into the inhibition of cancer progression. Previously, using systems biology approach and cancer signaling networks, we identified top-5 highly expressed and connected proteins (HSP90AB1, CSNK2B, TK1, YWHAB and VIM) in the invasive MDA-MB-231 breast cancer cell line. Here, we have knocked down the expression of these proteins, individually or together using siRNAs. The transfected cell lines were assessed for in vitro cell growth, colony formation, migration and invasion relative to control transfected MDA-MB-231, the non-invasive MCF-7 breast carcinoma cell line and the non-tumoral mammary epithelial cell line MCF-10A. The knockdown of the top-5 upregulated connectivity hubs successfully inhibited the in vitro proliferation, colony formation, anchorage independence, migration and invasion in MDA-MB-231 cells; with minimal effects in the control transfected MDA-MB-231 cells or MCF-7 and MCF-10A cells. The in vitro validation of bioinformatics predictions regarding optimized multi-target selection for therapy suggests that protein expression levels together with protein-protein interaction network analysis may provide an optimized combinatorial target selection for a highly effective anti-metastatic precision therapy in triple-negative breast cancer. This approach increases the ability to identify not only druggable hubs as essential targets for cancer survival, but also interactions most susceptible to synergistic drug action. The data provided in this report constitute a preliminary step toward the personalized clinical application of our strategy to optimize the therapeutic use of anti-cancer drugs.
Collapse
Affiliation(s)
- Tatiana M Tilli
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratory of Biological System Modeling, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Caccuri F, Ronca R, Laimbacher AS, Berenzi A, Steimberg N, Campilongo F, Mazzuca P, Giacomini A, Mazzoleni G, Benetti A, Caselli E, Presta M, Di Luca D, Fraefel C, Caruso A. U94 of human herpesvirus 6 down-modulates Src, promotes a partial mesenchymal-to-epithelial transition and inhibits tumor cell growth, invasion and metastasis. Oncotarget 2018; 8:44533-44549. [PMID: 28562350 PMCID: PMC5546500 DOI: 10.18632/oncotarget.17817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/21/2017] [Indexed: 12/31/2022] Open
Abstract
U94, the latency gene of human herpesvirus 6, was found to inhibit migration, invasion and proliferation of vascular endothelial cells (ECs). Because of its potent anti-migratory activity on ECs, we tested the capability of U94 to interfere with the individual steps of the metastatic cascade. We examined the U94 biological activity on the human breast cancer cell line MDA-MB 231, as a model of highly aggressive cancer cell. Here we show that the expression of U94 delivered by an HSV-1-based amplicon promoted down-modulation of Src and downstream molecules linked to cell motility and proliferation. Indeed, U94 expression strongly inhibited cell migration, invasiveness and clonogenicity. We investigated the effects of U94 in a three-dimensional rotary cell-culture system and observed the ability of U94 to modify tumor cell morphology by inducing a partial mesenchymal-to-epithelial transition. In fact, despite U94 did not induce any expression of the epithelial marker E-cadherin, it down-modulated different mesenchymal markers as β-catenin, Vimentin, TWIST, Snail1, and MMP2. In vivo data on the tumorigenicity of MDA-MB 231 displayed the capability of U94 to control tumor growth, invasiveness and metastasis, as well as tumor-driven angiogenesis. The antitumor U94 activity was also confirmed on the human cervical cancer cell line HeLa. The ability of U94 to inhibit cell growth, invasion and metastasis opens the way to a promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.
Collapse
Affiliation(s)
- Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Angiola Berenzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Nathalie Steimberg
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Federica Campilongo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pietro Mazzuca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanna Mazzoleni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Anna Benetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
33
|
Peuhu E, Virtakoivu R, Mai A, Wärri A, Ivaska J. Epithelial vimentin plays a functional role in mammary gland development. Development 2017; 144:4103-4113. [PMID: 28947532 DOI: 10.1242/dev.154229] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
In the mammary gland, vimentin intermediate filaments are expressed in stromal cells and in basal epithelial cell populations, including gland-reconstituting mammary stem cells, with largely undefined functions. Here, we have studied how vimentin deficiency affects mouse mammary gland development. We find that, in adult vimentin knockout mice (Vim-/- ), mammary ductal outgrowth is delayed. The adult Vim-/- glands display dilated ducts and a reduced basal-to-luminal mouse mammary epithelial cell (MMEC) ratio indicative of altered progenitor cell activity. Accordingly, isolated Vim-/- MMECs form fewer mammospheres and basal-like organoids in vitro than their wild-type counterparts. Importantly, reduced basal MMEC number translates into defects in Vim-/- mammary gland regeneration in vivo Global gene expression profiling of basal MMECs reveals that lack of vimentin alters multiple pathways, including adhesion, cancer and Wnt signalling. Furthermore, vimentin contributes to stem-like cell properties in MDA-MB-231 breast cancer cells, wherein vimentin depletion reduces tumoursphere formation and attenuates expression of breast cancer stem cell-associated surface markers. Together, our findings identify vimentin as a positive regulator of stemness in the developing mouse mammary gland and in breast cancer cells.
Collapse
Affiliation(s)
- Emilia Peuhu
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | - Anja Mai
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Anni Wärri
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
34
|
Gutiérrez Diez PJ, Su Y, Russo J. Immunocytochemical stem cell markers can predict clinical stage of breast cancer. Oncol Rep 2017; 38:1507-1516. [PMID: 28714035 DOI: 10.3892/or.2017.5820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
We present a computational-statistical algorithm that, from data on the staining degree of immunocytochemical markers: i) evaluates the ability of the considered immuno-panel in predicting the breast cancer stage; ii) makes the accurate identification of breast cancer stage possible; iii) provides the best stage prognosis compatible with the considered sample; and iv) does so through the use of the minimum number of markers minimizing time and resource costs. After running the algorithm on two data sets [triple-negative breast cancer, (TNBC), and estrogen receptor-negative breast cancer, (ERNBC)], we conclude that EpCAM and β1 integrin are enough to accurately predict TNBC stage, being ALDH1, CD24, CD61, and CK5 the necessary markers to exactly predict ERNBC stage.
Collapse
Affiliation(s)
- Pedro J Gutiérrez Diez
- Department of Economic Theory, University of Valladolid, School of Economics, Valladolid, Spain
| | - Yanrong Su
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Jose Russo
- The Irma H. Russo, MD - Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| |
Collapse
|
35
|
Tudor Domain Containing Protein 3 Promotes Tumorigenesis and Invasive Capacity of Breast Cancer Cells. Sci Rep 2017; 7:5153. [PMID: 28698590 PMCID: PMC5506013 DOI: 10.1038/s41598-017-04955-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Tudor domain containing protein 3 (TDRD3) is a modular protein identified based on its ability to recognize methylated arginine motifs through its Tudor domain. We have previously shown that TDRD3 localizes to cytoplasmic stress granules, a structure shown to promote survival upon treatment with chemotherapeutic drugs in cancer cells. Here, we report TDRD3 as a novel regulator of cell proliferation and invasion in breast cancer cells. Our study also demonstrates that TDRD3 depletion inhibits tumor formation and metastasis to the lung in vivo. Furthermore, we show that TDRD3 regulates the expression of a number of key genes associated with promotion of breast cancer tumorigenesis and disease progression. Strikingly, we report that TDRD3 regulates some of these key targets at the level of translation. These findings provide the first experimental demonstration of a functional role for TDRD3 in promoting breast cancer development and progression, and identify TDRD3 as a potential new therapeutic target for breast cancer.
Collapse
|
36
|
Brilliant YM, Brilliant AA, Sazonov SV. [Epithelial cadherins and associated molecules in invasive lobular breast cancer]. Arkh Patol 2017; 79:12-18. [PMID: 28295003 DOI: 10.17116/patol201779112-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM to estimate the expression of cell adhesion molecules E- and P-cadherin, as well as that of cadherin-catenin complexes in invasive lobular breast cancer (BC) cells. MATERIAL AND METHODS 250 cases of postoperative material from patients diagnosed with invasive lobular BC were studied. The expressions of cell adhesion molecules E-cadherin, P-cadherin, β-catenin, p120 catenin, and vimentin were determined by immunohistochemical assay in all cases. The examined cases were divided into molecular biological subtypes, based on the evaluation of estrogen receptors (ER), progesterone receptors (PR), HER-2/neu, and Ki-67 proliferative index. RESULTS The membrane expression of E-cadherin on the tumor cells was found to be preserved in 93%; the cytoplasmic expression of β-catenin and p120-catenin appeared in 60 and 72% of cases, respectively. The expression of P-cadherin was detected in 82% of cases. The coexpression of E- and P-cadherin was noted in 90% of all the examined cases. There was a correlation between the expression of E- and P-cadherins (V=0.34; p<0.05). CONCLUSION The BC cells showed the coexpression of E- and P-cadherins, as well as release of the molecules β- and p120-catenins into the cytoplasm of tumor cells, which leads to the activation of intracellular mechanisms for changing the structure of the cytoskeleton and the level of proliferation. The above-mentioned mechanisms are accompanied by the activation of epithelial-mesenchymal transition. The intracellular mechanisms resulted in progressive cancer and its metastasis.
Collapse
Affiliation(s)
- Yu M Brilliant
- Institute for Medical Cell Technologies, Ministry of Health of the Sverdlovsk Region, Yekaterinburg, Russia; Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia
| | - A A Brilliant
- Institute for Medical Cell Technologies, Ministry of Health of the Sverdlovsk Region, Yekaterinburg, Russia
| | - S V Sazonov
- Institute for Medical Cell Technologies, Ministry of Health of the Sverdlovsk Region, Yekaterinburg, Russia; Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia
| |
Collapse
|
37
|
Arko-Boham B, Lomotey JT, Tetteh EN, Tagoe EA, Aryee NA, Owusu EA, Okai I, Blay RM, Clegg-Lamptey JN. Higher serum concentrations of vimentin and DAKP1 are associated with aggressive breast tumour phenotypes in Ghanaian women. Biomark Res 2017; 5:21. [PMID: 28616237 PMCID: PMC5466752 DOI: 10.1186/s40364-017-0100-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer, the most commonly diagnosed cancer among women and leading cause of cancer-related deaths worldwide, exhibits aggressive behavior in indigenous African women evidenced by high histologic grade tumours with low hormone receptor positivity. Aggressive breast cancers grow quickly, easily metastasize and recur and often have unfavourable outcomes. The current study investigated candidate genes that may regulate tumour aggression in Ghanaian women. We hypothesize that increased expression and function of certain genes other than the widely-held view attributing breast cancer aggression in African populations to their younger population age may be responsible for the aggressive nature of tumours. METHODS Employing ELISA, we assayed for vimentin and death-associated protein kinase 1 (DAPK1) from thawed archived (stored at -80 °C) serum samples obtained from 40 clinically confirmed Ghanaian breast cancer patients and 40 apparently healthy controls. Patients' clinical records and tumour parameters matching the samples were retrieved from the database of the hospital. ANOVA was used to compare means of serum protein concentration among groups while Chi-square analysis was used for the categorical data sets with p-value ≤0.05 considered significant. Multiple logistic regression analysis was conducted to determine the association between protein concentration and tumour parameters. RESULTS Of the 80 samples, 27 (33.8%) and 53 (66.2%) were from young (<35 years) and old (≥35 years), respectively. Vimentin and DAPK1 concentration were higher in patients than controls with higher levels in "young" age group than "old" age group. Vimentin concentration was highest in grade 3 tumours followed by grade 2 and 1 but that for DAPK1 was not significant. For vimentin, tumour area strongly correlated with tumour grade (r = 0.696, p < 0.05) but weakly correlated with tumour stage (r = 0.420, p < 0.05). Patient's age correlated with DAPK1 concentration (r = 0.393, p < 0.05). DAPK1 serum levels weakly correlated with cancer duration (r = 0.098, p = 0.27) and tumour size (r = 0.40, p < 0.05). CONCLUSION Serum concentration of Vimentin and DAPK1 are elevated in Ghanaian breast cancer patients. This may be partly responsible for aggressive nature of the disease among the population. Vimentin and DAPK1 should be explored further as potential breast cancer biomarkers in Africans.
Collapse
Affiliation(s)
- Benjamin Arko-Boham
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Justice Tanihu Lomotey
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Nomo Tetteh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ewurama Ampadu Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Isaac Okai
- Department of Anatomy, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Richard Michael Blay
- Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Joe-Nat Clegg-Lamptey
- Department of Surgery, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
| |
Collapse
|
38
|
Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell Tissue Res 2017; 369:353-368. [DOI: 10.1007/s00441-017-2603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/24/2017] [Indexed: 01/08/2023]
|
39
|
Showler K, Nishimura M, Daino K, Imaoka T, Nishimura Y, Morioka T, Blyth BJ, Kokubo T, Takabatake M, Fukuda M, Moriyama H, Kakinuma S, Fukushi M, Shimada Y. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas. JOURNAL OF RADIATION RESEARCH 2017; 58:183-194. [PMID: 27738081 PMCID: PMC5571612 DOI: 10.1093/jrr/rrw097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 08/30/2016] [Indexed: 05/31/2023]
Abstract
The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis.
Collapse
Affiliation(s)
- Kaye Showler
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Benjamin J. Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiaki Kokubo
- Department of Engineering and Safety, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Maki Fukuda
- Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Hitomi Moriyama
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masahiro Fukushi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Faculty of Health Sciences, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
40
|
Stacy AJ, Craig MP, Sakaram S, Kadakia M. ΔNp63α and microRNAs: leveraging the epithelial-mesenchymal transition. Oncotarget 2017; 8:2114-2129. [PMID: 27924063 PMCID: PMC5356785 DOI: 10.18632/oncotarget.13797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a cellular reprogramming mechanism that is an underlying cause of cancer metastasis. Recent investigations have uncovered an intricate network of regulation involving the TGFβ, Wnt, and Notch signaling pathways and small regulatory RNA species called microRNAs (miRNAs). The activity of a transcription factor vital to the maintenance of epithelial stemness, ΔNp63α, has been shown to modulate the activity of these EMT pathways to either repress or promote EMT. Furthermore, ΔNp63α is a known regulator of miRNA, including those directly involved in EMT. This review discusses the evidence of ΔNp63α as a master regulator of EMT components and miRNA, highlighting the need for a deeper understanding of its role in EMT. This expanded knowledge may provide a basis for new developments in the diagnosis and treatment of metastatic cancer.
Collapse
Affiliation(s)
- Andrew J. Stacy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael P. Craig
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Suraj Sakaram
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Madhavi Kadakia
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
41
|
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. Biotechniques 2016; 61:249-259. [PMID: 27839510 DOI: 10.2144/000114473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5´dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes.
Collapse
|
42
|
S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland. PLoS One 2016; 11:e0163981. [PMID: 27695124 PMCID: PMC5047643 DOI: 10.1371/journal.pone.0163981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/16/2016] [Indexed: 01/15/2023] Open
Abstract
The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.
Collapse
|
43
|
Tachtsidis A, McInnes LM, Jacobsen N, Thompson EW, Saunders CM. Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clin Exp Metastasis 2016; 33:521-50. [PMID: 27189371 PMCID: PMC4947105 DOI: 10.1007/s10585-016-9796-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/22/2016] [Indexed: 12/11/2022]
Abstract
Within the field of cancer research, focus on the study of minimal residual disease (MRD) in the context of carcinoma has grown exponentially over the past several years. MRD encompasses circulating tumour cells (CTCs)—cancer cells on the move via the circulatory or lymphatic system, disseminated tumour cells (DTCs)—cancer cells which have escaped into a distant site (most studies have focused on bone marrow), and resistant cancer cells surviving therapy—be they local or distant, all of which may ultimately give rise to local relapse or overt metastasis. Initial studies simply recorded the presence and number of CTCs and DTCs; however recent advances are allowing assessment of the relationship between their persistence, patient prognosis and the biological properties of MRD, leading to a better understanding of the metastatic process. Technological developments for the isolation and analysis of circulating and disseminated tumour cells continue to emerge, creating new opportunities to monitor disease progression and perhaps alter disease outcome. This review outlines our knowledge to date on both measurement and categorisation of MRD in the form of CTCs and DTCs with respect to how this relates to cancer outcomes, and the hurdles and future of research into both CTCs and DTCs.
Collapse
Affiliation(s)
- A Tachtsidis
- St. Vincent's Institute, Melbourne, VIC, Australia
- University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - L M McInnes
- School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - N Jacobsen
- School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - E W Thompson
- University of Melbourne, Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - C M Saunders
- School of Surgery, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
44
|
The ErbB2ΔEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment. Oncogene 2016; 35:6053-6064. [PMID: 27157621 PMCID: PMC5102823 DOI: 10.1038/onc.2016.129] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/04/2016] [Accepted: 03/11/2016] [Indexed: 01/09/2023]
Abstract
Amplification and over expression of erbB2/neu proto-oncogene is observed in 20–30% human breast cancer and is inversely correlated with the survival of the patient. Despite this, somatic activating mutations within erbB2 in human breast cancers are rare. However, we have previously reported that a splice isoform of erbB2, containing an in-frame deletion of exon 16 (herein referred to as ErbB2ΔEx16), results in oncogenic activation of erbB2 due to constitutive dimerization of the ErbB2 receptor. Here, we demonstrate that the ErbB2ΔEx16 is a major oncogenic driver in breast cancer that constitutively signals from the cell surface. We further show that inducible expression of the ErbB2Ex16 variant in mammary gland of transgenic mice results in the rapid development of metastatic multifocal mammary tumors. Genetic and biochemical characterization of the ErbB2ΔEx16 derived mammary tumors exhibit several unique features that distinguish it from the conventional ErbB2 models expressing the erbB2 proto-oncogene in mammary epithelium. Unlike the wild-type ErbB2 derived tumors that express luminal keratins, ErbB2ΔEx16 derived tumors exhibit high degree of intra-tumoral heterogeneity co-expressing both basal and luminal keratins. Consistent with these distinct pathological features, the ErbB2ΔEx16 tumors exhibited distinct signaling and gene expression profiles that correlated with activation of number of key transcription factors implicated in breast cancer metastasis and cancer stem cell renewal.
Collapse
|
45
|
Zaleska J, Skorka K, Zajac M, Karczmarczyk A, Karp M, Tomczak W, Hus M, Wlasiuk P, Giannopoulos K. Specific cytotoxic T-cell immune responses against autoantigens recognized by chronic lymphocytic leukaemia cells. Br J Haematol 2016; 174:582-90. [PMID: 27097566 DOI: 10.1111/bjh.14098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests that autoreactivity and inflammatory processes are involved in the pathogenesis of chronic lymphocytic leukaemia (CLL). Cytoskeletal proteins, including non-muscle myosin heavy chain IIA (MYHIIA), vimentin (VIM) and cofilin-1 (CFL1), exposed on the surface of apoptotic cells have been identified as autoantigens that are recognized by the specific B-cell receptors of the CLL cells. In 212 CLL patients analysed with quantitative reverse transcriptase-polymerase chain reaction we found CFL1 overexpression and low expression of MYH9 in comparison with healthy volunteers. We detected specific cytotoxic immune responses for peptides derived from MYHIIA in 66·7%, VIM in 87·5% and CFL1 in 62·5% CLL patients in an Enzyme-Linked ImmunoSpot assay. Low frequencies of autoreactive peptide-specific T cells were detected against MYHIIA, VIM and CFL1 in CLL patients ex vivo; most of the detected cells had an effector-memory phenotype. Our findings support the existence of cytotoxic immune responses against three autoantigens that have been identified as targets of CLL clonotypic B-cell receptors. The presence of autoreactive CD8(+) T cells against MYHIIA, VIM and CFL1 in CLL patients indicates the involvement of antigen-specific autoreactive T cells in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Joanna Zaleska
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Skorka
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Malgorzata Zajac
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Karczmarczyk
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Marta Karp
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Waldemar Tomczak
- Department of Haemato-oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Department of Haemato-oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Paulina Wlasiuk
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland.,Department of Haematology, St. John's Cancer Centre, Lublin, Poland
| |
Collapse
|
46
|
Proteomic Analysis of Stage-II Breast Cancer from Formalin-Fixed Paraffin-Embedded Tissues. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3071013. [PMID: 27110560 PMCID: PMC4823502 DOI: 10.1155/2016/3071013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 01/25/2023]
Abstract
Breast cancer is the most frequently occurring disease among women worldwide. The early stage of breast cancer identification is the key challenge in cancer control and prevention procedures. Although gene expression profiling helps to understand the molecular mechanism of diseases or disorder in the living system, gene expression pattern alone is not sufficient to predict the exact mechanisms. Current proteomics tools hold great application for analysis of cancerous conditions. Hence, the generation of differential protein expression profiles has been optimized for breast cancer and normal tissue samples in our organization. Normal and tumor tissues were collected from 20 people from a local hospital. Proteins from the diseased and normal tissues have been investigated by 2D gel electrophoresis and MALDI-TOF-MS. The peptide mass fingerprint data were fed into various public domains like Mascot, MS-Fit, and Pept-ident against Swiss-Prot protein database and the proteins of interest were identified. Some of the differentially expressed proteins identified were human annexin, glutathione S-transferase, vimentin, enolase-1, dihydrolipoamide dehydrogenase, glutamate dehydrogenase, Cyclin A1, hormone sensitive lipase, beta catenin, and so forth. Many types of proteins were identified as fundamental steps for developing molecular markers for diagnosis of human breast cancer as well as making a new proteomic database for future research.
Collapse
|
47
|
Weigand A, Boos AM, Tasbihi K, Beier JP, Dalton PD, Schrauder M, Horch RE, Beckmann MW, Strissel PL, Strick R. Selective isolation and characterization of primary cells from normal breast and tumors reveal plasticity of adipose derived stem cells. Breast Cancer Res 2016; 18:32. [PMID: 26968831 PMCID: PMC4788819 DOI: 10.1186/s13058-016-0688-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 02/19/2016] [Indexed: 02/08/2023] Open
Abstract
Background There is a need to establish more cell lines from breast tumors in contrast to immortalized cell lines from metastatic effusions in order to represent the primary tumor and not principally metastatic biology of breast cancer. This investigation describes the simultaneous isolation, characterization, growth and function of primary mammary epithelial cells (MEC), mesenchymal cells (MES) and adipose derived stem cells (ADSC) from four normal breasts, one inflammatory and one triple-negative ductal breast tumors. Methods A total of 17 cell lines were established and gene expression was analyzed for MEC and MES (n = 42) and ADSC (n = 48) and MUC1, pan-KRT, CD90 and GATA-3 by immunofluorescence. DNA fingerprinting to track cell line identity was performed between original primary tissues and isolates. Functional studies included ADSC differentiation, tumor MES and MEC invasion co-cultured with ADSC-conditioned media (CM) and MES adhesion and growth on 3D-printed scaffolds. Results Comparative analysis showed higher gene expression of EPCAM, CD49f, CDH1 and KRTs for normal MEC lines; MES lines e.g. Vimentin, CD10, ACTA2 and MMP9; and ADSC lines e.g. CD105, CD90, CDH2 and CDH11. Compared to the mean of all four normal breast cell lines, both breast tumor cell lines demonstrated significantly lower ADSC marker gene expression, but higher expression of mesenchymal and invasion gene markers like SNAI1 and MMP2. When compared with four normal ADSC differentiated lineages, both tumor ADSC showed impaired osteogenic and chondrogenic but enhanced adipogenic differentiation and endothelial-like structures, possibly due to high PDGFRB and CD34. Addressing a functional role for overproduction of adipocytes, we initiated 3D-invasion studies including different cell types from the same patient. CM from ADSC differentiating into adipocytes induced tumor MEC 3D-invasion via EMT and amoeboid phenotypes. Normal MES breast cells adhered and proliferated on 3D-printed scaffolds containing 20 fibers, but not on 2.5D-printed scaffolds with single fiber layers, important for tissue engineering. Conclusion Expression analyses confirmed successful simultaneous cell isolations of three different phenotypes from normal and tumor primary breast tissues. Our cell culture studies support that breast-tumor environment differentially regulates tumor ADSC plasticity as well as cell invasion and demonstrates applications for regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0688-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, Erlangen, D-91054, Germany.
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, Erlangen, D-91054, Germany
| | - Kereshmeh Tasbihi
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, Erlangen, D-91054, Germany
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, Erlangen, D-91054, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg, Germany
| | - Michael Schrauder
- Department of Obstetrics and Gynecology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstr. 12, Erlangen, D-91054, Germany
| | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pamela L Strissel
- Department of Obstetrics and Gynecology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Strick
- Department of Obstetrics and Gynecology, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
48
|
Mandal M, Ghosh B, Anura A, Mitra P, Pathak T, Chatterjee J. Modeling continuum of epithelial mesenchymal transition plasticity. Integr Biol (Camb) 2016; 8:167-76. [PMID: 26762753 DOI: 10.1039/c5ib00219b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum.
Collapse
Affiliation(s)
- Mousumi Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | | | | | | | | | | |
Collapse
|
49
|
Taliaferro-Smith L, Oberlick E, Liu T, McGlothen T, Alcaide T, Tobin R, Donnelly S, Commander R, Kline E, Nagaraju GP, Havel L, Marcus A, Nahta R, O'Regan R. FAK activation is required for IGF1R-mediated regulation of EMT, migration, and invasion in mesenchymal triple negative breast cancer cells. Oncotarget 2016; 6:4757-72. [PMID: 25749031 PMCID: PMC4467113 DOI: 10.18632/oncotarget.3023] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/31/2014] [Indexed: 11/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic disease that currently lacks effective prevention and treatment strategies. The insulin-like growth factor 1 receptor (IGF1R) and focal adhesion kinase (FAK) signaling pathways function in numerous developmental processes, and alterations in both are linked with a number of common pathological diseases. Overexpression of IGF1R and FAK are closely associated with metastatic breast tumors. The present study investigated the interrelationship between IGF1R and FAK signaling in regulating the malignant properties of TNBC cells. Using small hairpin RNA (shRNA)-mediated IGF1R silencing methods, we showed that IGF1R is essential for sustaining mesenchymal morphologies of TNBC cells and modulates the expression of EMT-related markers. We further showed that IGF1R overexpression promotes migratory and invasive behaviors of TNBC cell lines. Most importantly, IGF1R-driven migration and invasion is predominantly mediated by FAK activation and can be suppressed using pharmacological inhibitors of FAK. Our findings in TNBC cells demonstrate a novel role of the IGF1R/FAK signaling pathway in regulating critical processes involved in the metastatic cascade. These results may improve the current understanding of the basic molecular mechanisms of TNBC metastasis and provide a strong rationale for co-targeting of IGF1R and FAK as therapy for mesenchymal TNBCs.
Collapse
Affiliation(s)
- LaTonia Taliaferro-Smith
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Elaine Oberlick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115 USA
| | - Tongrui Liu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Tanisha McGlothen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Tiffanie Alcaide
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Rachel Tobin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Siobhan Donnelly
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Rachel Commander
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Erik Kline
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Lauren Havel
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Adam Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Rita Nahta
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Ruth O'Regan
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Georgia Cancer Center for Excellence at Grady Memorial Hospital, Atlanta, GA, 30303 USA
| |
Collapse
|
50
|
The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro. Arch Biochem Biophys 2015; 591:98-110. [PMID: 26682631 DOI: 10.1016/j.abb.2015.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/09/2015] [Accepted: 12/02/2015] [Indexed: 01/18/2023]
Abstract
Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 μM) in MDA-MB-231 cells. DS (5.76 μM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 μM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer.
Collapse
|