1
|
Waki K, Tani H, Kawahara E, Saga Y, Shimada T, Yamazaki E, Koike S, Morinaga Y, Isobe M, Kurosawa N. Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein. eLife 2025; 12:RP88387. [PMID: 40338637 PMCID: PMC12061477 DOI: 10.7554/elife.88387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Intranasal vaccination is an attractive strategy for preventing COVID-19 disease as it stimulates the production of multimeric secretory immunoglobulin A (IgA), the predominant antibody isotype in the mucosal immune system, at the target site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. Currently, intranasal vaccine efficacy is evaluated based on the measurement of polyclonal antibody titers in nasal lavage fluid. However, how individual multimeric secretory IgA protects the mucosa from SARS-CoV-2 infection remains to be elucidated. To understand the precise contribution and molecular nature of multimeric secretory IgA induced by intranasal vaccines, we developed 99 monoclonal IgA clones from nasal mucosa and 114 monoclonal IgA or IgG clones from nonmucosal tissues of mice that were intranasally immunized with the SARS-CoV-2 spike protein. The nonmucosal IgA clones exhibited shared origins and common and unique somatic mutations with the related nasal IgA clones, indicating that the antigen-specific plasma cells in the nonmucosal tissues originated from B cells stimulated at the nasal mucosa. Comparing the spike protein binding reactivity, angiotensin-converting enzyme-2-blocking, and in vitro SARS-CoV-2 virus neutralization of monomeric and multimeric secretory IgA pairs recognizing different epitopes showed that even non-neutralizing monomeric IgAs, which represent 70% of the nasal IgA repertoire, can protect against SARS-CoV-2 infection when expressed as multimeric secretory IgAs. We also demonstrated that the intranasal administration of multimeric secretory IgA delivered as prophylaxis in the hamster model reduced infection-induced weight loss. Our investigation is the first to demonstrate the function of nasal IgA at the monoclonal level, showing that nasal immunization can provide effective immunity against SARS-CoV-2 by inducing multimeric secretory IgAs at the target site of the virus infection.
Collapse
Affiliation(s)
- Kentarou Waki
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Education, University of ToyamaToyamaJapan
| | - Hideki Tani
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Eigo Kawahara
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Yumiko Saga
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | | | - Emiko Yamazaki
- Department of Virology, Toyama Institute of HealthToyamaJapan
| | - Seiichi Koike
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Yoshitomo Morinaga
- Department of Microbiology, Toyama University Graduate School of Medicine and Pharmaceutical SciencesToyamaJapan
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
| | - Masaharu Isobe
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | - Nobuyuki Kurosawa
- Center for Advanced Antibody Drug Development, University of ToyamaToyamaJapan
- Laboratory of Molecular and Cellular Biology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| |
Collapse
|
2
|
Anthi AK, Kolderup A, Vaage EB, Bern M, Benjakul S, Tjärnhage E, Ruso-Julve F, Jensen KR, Lode HE, Vaysburd M, Nilsen J, Herigstad ML, Sakya SA, Tietze L, Pilati D, Nyquist-Andersen M, Dürkoop M, Gjølberg TT, Peng L, Foss S, Moe MC, Low BE, Wiles MV, Nemazee D, Jahnsen FL, Vaage JT, Howard KA, Sandlie I, James LC, Grødeland G, Lund-Johansen F, Andersen JT. An intranasal subunit vaccine induces protective systemic and mucosal antibody immunity against respiratory viruses in mouse models. Nat Commun 2025; 16:3999. [PMID: 40312392 PMCID: PMC12045997 DOI: 10.1038/s41467-025-59353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Although vaccines are usually given intramuscularly, the intranasal delivery route may lead to better mucosal protection and limit the spread of respiratory virus while easing administration and improving vaccine acceptance. The challenge, however, is to achieve delivery across the selective epithelial cell barrier. Here we report on a subunit vaccine platform, in which the antigen is genetically fused to albumin to facilitate FcRn-mediated transport across the mucosal barrier in the presence of adjuvant. Intranasal delivery in conventional and transgenic mouse models induces both systemic and mucosal antigen-specific antibody responses that protect against challenge with SARS-CoV-2 or influenza A. When benchmarked against an intramuscularly administered mRNA vaccine or an intranasally administered antigen fused to an alternative carrier of similar size, only the albumin-based intranasal vaccine yields robust mucosal IgA antibody responses. Our results thus suggest that this needle-free, albumin-based vaccine platform may be suited for vaccination against respiratory pathogens.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- Mice
- Immunity, Mucosal/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- SARS-CoV-2/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Humans
- Influenza A virus/immunology
- Disease Models, Animal
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Immunoglobulin A/immunology
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Mice, Transgenic
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Mice, Inbred C57BL
- Albumins/immunology
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Histocompatibility Antigens Class I
Collapse
Affiliation(s)
- Aina Karen Anthi
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Anette Kolderup
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Eline Benno Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Malin Bern
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Sopisa Benjakul
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Elias Tjärnhage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Kjell-Rune Jensen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Heidrun Elisabeth Lode
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jeannette Nilsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Marie Leangen Herigstad
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Siri Aastedatter Sakya
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Diego Pilati
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mari Nyquist-Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Mirjam Dürkoop
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stian Foss
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Morten C Moe
- Center of Eye Research, Department of Ophthalmology, Oslo University Hospital Ullevål and University of Oslo, 0450, Oslo, Norway
| | | | | | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Frode L Jahnsen
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - John Torgils Vaage
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Gunnveig Grødeland
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0372, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, 0372, Oslo, Norway.
| |
Collapse
|
3
|
Kim H, Lupoli TJ. Defined Glycan Ligands for Detecting Rare l-Sugar-Binding Proteins. J Am Chem Soc 2025; 147:11693-11699. [PMID: 40167164 PMCID: PMC11987014 DOI: 10.1021/jacs.5c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Most cells are decorated with distinct sugar sequences that can be recognized by carbohydrate-binding proteins (CBPs), such as antibodies and lectins. While humans utilize ten monosaccharide building blocks, bacteria biosynthesize hundreds of activated sugars to assemble diverse glycans. Monosaccharides absent in mammals are termed "rare" and are enriched in deoxy l-sugars beyond the "common" sugar l-fucose (l-Fuc) found across species. While immune proteins recognize microbial surfaces, there are limited probes to identify CBPs for the many rare sugars that may mediate these interactions. Here, we devise chemoenzymatic strategies to defined glycoconjugates containing l-Fuc and its structural analog l-colitose (l-Col), a bacterial dideoxysugar believed to bind immune proteins. We report a concise synthesis of l-Col and semisynthetic routes to several activated l-sugars. Incorporation of these sugars into glycans is evaluated using bacterial and mammalian glycosyltransferases (GTs) annotated to transfer l-Col or l-Fuc, respectively. We find that each GT can transfer both l-sugars, along with the rare hexose l-galactose (l-Gal), onto various glycan acceptors. Incorporation of these l-sugars into the resulting glycoconjugates is confirmed using known CBPs. Finally, these glycan ligands are employed to detect rare sugar-binding proteins in human serum. Overall, this work reveals similarities between bacterial and mammalian GTs that may be exploited for in vitro glycoconjugate construction to unveil novel mediators of host-pathogen interactions.
Collapse
Affiliation(s)
- Hanee Kim
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
4
|
Wang B, Singh H, Ellis M, Barisoni L, Howell DN. Hidden in the Absence: Clinicopathological Insights on Kidney Diseases Associated with Selective IgA Deficiency. J Transl Med 2025:104163. [PMID: 40199423 DOI: 10.1016/j.labinv.2025.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common type of primary immunodeficiency. The diagnosis of sIgAD has occasionally been suggested when a complete absence of background IgA immunofluorescent staining on renal biopsies was observed, but such findings have been described in only two patients to date. In this study, the clinical, demographic, and renal biopsy findings of 15 patients with suspected sIgAD, based on a total lack of immunofluorescence for IgA, were collected. In our cohort, most patients presented with acute kidney injury, with or without proteinuria, and had clinical histories consistent with sIgAD, including recurrent infections, autoimmune diseases, allergic disorders, and cancer. However, only one patient had a known history of sIgAD. Immunoglobulin testing was available in 10 out of 15 patients, nine of whom showed findings consistent with a diagnosis of sIgAD. Renal biopsies in most patients revealed immune-related glomerular diseases, with lupus nephritis being the most common diagnosis. Recognizing the total absence of IgA staining indicative of sIgAD is important, as it can be associated with recurrent infections, autoimmune diseases, allergic disorders, anaphylactic transfusion reactions, and rarely, malignancies.
Collapse
Affiliation(s)
- Bangchen Wang
- Department of Pathology, Duke University, Durham, NC
| | - Harpreet Singh
- Division of Nephrology, Department of Internal Medicine, Duke University, Durham, NC
| | - Matthew Ellis
- Division of Nephrology, Department of Internal Medicine, Duke University, Durham, NC
| | | | | |
Collapse
|
5
|
Zhang G, Huang P, Yuan H, Li E, Chi X, Sun H, Han J, Fang T, Dong Y, Li J, Wang Y, Li J, Chiu S, Yu C. Nasal delivery of secretory IgA confers enhanced neutralizing activity against Omicron variants compared to its IgG counterpart. Mol Ther 2025; 33:1687-1700. [PMID: 40025736 PMCID: PMC11997491 DOI: 10.1016/j.ymthe.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/28/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its multiple variants continue to spread worldwide, causing respiratory symptoms primarily through mucosal infection. The mucosa serves as the primary barrier against viral entry, in which secretory immunoglobulin A (sIgA) plays a critical role in preventing infection. Here, we engineered and characterized a neutralizing monoclonal antibody, ZW2G10, in IgG, monomeric, dimeric, secretory IgA1, and IgA2 formats. All seven forms of the ZW2G10 antibody showed similar thermal stability. sIgA, especially sIgA1, displayed enhanced neutralizing activity against Omicron-lineage BA.2.75, BA.2.76 and BA.4/5 pseudoviruses compared to IgG. Nasal administration of sIgA1 conferred robust protection against the BA.2.76 pseudovirus in ACE2 transgenic mice, and its protective efficacy was superior to that of IgG. The crystal structure of Omicron receptor binding domain (RBD) and ZW2G10 antibody fragment (Fab) complex revealed that ZW2G10 had no clashes with ACE2. Thus, nasal administration of sIgA may serve as a promising tool for the prevention and treatment of Omicron infection.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/chemistry
- Immunoglobulin A, Secretory/administration & dosage
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- COVID-19/prevention & control
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/chemistry
- Administration, Intranasal
- Antibodies, Viral/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Mice, Transgenic
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/administration & dosage
Collapse
Affiliation(s)
- Guanying Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ping Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hongyu Yuan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Entao Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Hancong Sun
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jin Han
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yunzhu Dong
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jie Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoxing Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China.
| | - Sandra Chiu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
6
|
Trevijano-Contador N, de Oliveira HC, Malacatus-Bravo C, Sarai V, Cuesta I, Rodrigues ML, Zaragoza Ó, Pirofski LA. Effects of human immunoglobulin A on Cryptococcus neoformans morphology and gene expression. Microbiol Spectr 2025; 13:e0200824. [PMID: 39982066 PMCID: PMC11960444 DOI: 10.1128/spectrum.02008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Human IgM was previously shown to inhibit Titan-like cell formation of Cryptococcus neoformans, whereas IgG did not. Here, we conducted an in-depth analysis of the effect of normal human IgA on C. neoformans biology (strain H99) and compared it to that of IgG and IgM. We found that like IgM, IgA affected H99 cell size and morphology. The total size of cells cultured with IgA was significantly smaller at 24 h than cells cultured with IgM and IgG and comparable to IgM but smaller than IgG at 72 h. We also examined extracellular vesicle (EV) production and found that it was significantly reduced in cells cultured with IgA than the control, but the EVs were larger. To further probe the effect of IgA on H99, we performed expression profiling by RNAseq of H99 cells cultured with each immunoglobulin isotype and compared the results with IgA to those with IgM, IgG, and a control (PBS). These comparisons showed that cells cultured with IgA overexpressed genes related to cell rescue, defense, virulence, energy conservation, adapation to stress with CNAG_00735 (aldehyde dehydrogenase family seven member A1) being the most overexpressed, and repressed some genes related to vesicular transport, including CNAG_04306 (vesicle transporter SFT2B) and CNG_00063 (histone H3). Collectively, our findings suggest that the effects of IgA on cryptococcal biology deserve further investigation, as they reveal new insights into human host-C. neoformans interaction, which suggest that antibody responses may affect gene expression in C. neoformans.IMPORTANCEProfound CD4 T cell deficiency is associated with the development of cryptococcosis in HIV-infected individuals. However, perturbations in antibody immunity, including reduced levels of plasma IgA and IgM, have also been associated with cryptococcal disease status. While IgM has been studied in some detail, IgA has not. Here, we evaluated the effect of normal human IgA on Cryptococcus neoformans biology and morphology to expand knowledge of the role that it may play in cryptococcal pathogenesis.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
| | | | - Claudia Malacatus-Bravo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Varona Sarai
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cuesta
- Bioinformatics Unit, Core Scientific and Technical Units, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcio L. Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Tian X, Ban C, Zhou D, Li H, Li J, Wang X, Lu Q. Effects of purple corn anthocyanin on slaughter performance, immune function, the caecal microbiota and the transcriptome in chickens. Poult Sci 2025; 104:105104. [PMID: 40187019 PMCID: PMC12002921 DOI: 10.1016/j.psj.2025.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Poultry are susceptible to oxidative stress, which decreases immune function and negatively affects production performance under highly intensive feeding conditions. Moreover, anthocyanins can alleviate oxidative stress and improve immune functions in chickens. This study aimed to elucidate the effects of purple corn anthocyanin extract (PCE) on slaughter performance, immune function, the caecal microbiota and the transcriptome in chickens. A total of 180 female chickens were randomly divided into two groups, with one receiving a basal diet (CON) and one receiving a treatment (PCE) supplemented with 360 mg/kg PCE according to a completely randomized design. The results indicated that the levels of plasma immunoglobulin A, immunoglobulin G, immunoglobulin M, complement 3, and complement 4 in the PCE treatment group were greater (P < 0.05) than those in the CON group. The slaughter performance and caecal short-chain fatty acid parameters did not differ (P > 0.05) between the PCE and CON groups. The inclusion of PCE significantly increased (P < 0.05) the bursa of Fabricius/live weight value compared with those of the CON. Chickens receiving PCE had significantly (P < 0.05) increased relative abundances of norank_f_Muribaculaceae, Anaerofilum, Shuttleworthia, Brachyspira, and Tuzzerella but significantly decreased (P < 0.05) relative abundances of unclassified_f__Rikenellaceae, Oscillospira, norank_f__Barnesiellaceae, norank_f__Christensenellaceae, and Candidatus_Soleaferrea. A total of 2,846 differentially expressed genes (DEGs; P < 0.05), which consisted of 1,140 upregulated genes and 1,706 downregulated genes, were identified. Among them, 201 genes were annotated to the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database for immune-related genes. Protein-protein interaction network analysis revealed that DEGs associated with the joining chain of multimeric IgA and IgM were significantly upregulated immune-related genes, and those associated with forkhead box P1, cathelicidin 1, cathelicidin 2, and cathelicidin 3 were significantly downregulated immune-related genes in chickens. The findings demonstrated that dietary supplementation with PCE has the potential to improve plasma immunoglobulin, immune organ, caecal potentially beneficial bacteria levels and immune-related gene expressions, which can increase the immune function of chickens.
Collapse
Affiliation(s)
- Xingzhou Tian
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Chao Ban
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Di Zhou
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, PR China
| | - Hui Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Jiaxuan Li
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Xu Wang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China
| | - Qi Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
8
|
Maltseva M, Galipeau Y, McCluskie P, Castonguay N, Cooper CL, Langlois MA. Systemic and Mucosal Antibody Responses to SARS-CoV-2 Variant-Specific Prime-and-Boost and Prime-and-Spike Vaccination: A Comparison of Intramuscular and Intranasal Bivalent Vaccine Administration in a Murine Model. Vaccines (Basel) 2025; 13:351. [PMID: 40333249 PMCID: PMC12031244 DOI: 10.3390/vaccines13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The rapid genetic evolution of SARS-CoV-2 has led to the emergence of immune-evading, highly transmissible variants of concern (VOCs). This prompts the need for next-generation vaccines that elicit robust mucosal immunity in the airways to directly curb viral infection. Objective: Here, we investigate the impact of heterologous variant prime-boost regimens on humoral responses, focusing on intramuscular (IM) and intranasal (IN) routes of administration. Using a murine model, we assessed the immunogenicity of unadjuvanted protein boosts with Wu-1, Omicron BA.4/5, or Wu-1 + BA.4/5 spike antigens following monovalent or bivalent IM priming with mRNA-LNP vaccines. Results: IM priming induced strong systemic total and neutralizing antibody responses that were further enhanced by IN boosts with BA.4/5. IN boosting achieved the broadest serum neutralization across all VOCs tested. Notably, bivalent mRNA-LNP IM priming induced robust, cross-variant serum neutralizing antibody production, independent of subsequent IN boost combinations. Conclusions: Our findings highlight the benefit of including distinct antigenic variants in the prime vaccination followed by a variant-tailored IN boost to elicit both systemic and mucosal variant-specific responses that are potentially capable of reducing SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pauline McCluskie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Curtis L. Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
9
|
Wang X, Wang Y, Feng M, Li J, Liu Z, Fu L, Zhang N, Zhang H, Qin J. Herbal formula alleviates heat stress by improving physiological and biochemical attributes and modulating the rumen microbiome in dairy cows. Front Vet Sci 2025; 12:1558856. [PMID: 40125321 PMCID: PMC11925914 DOI: 10.3389/fvets.2025.1558856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Heat stress significantly impacts dairy cow productivity, health, and welfare. This study evaluated a self-developed herbal formula as a dietary intervention to mitigate heat stress. A total of 198 lactating cows were divided into two groups: a Control group receiving standard total mixed rations and a Herbs group supplemented with herbal formula for 60 days. Various parameters were assessed, including milk yield and composition, antioxidant capacity, immune responses, stress-related gene expression, and rumen microbial composition. Compared to the Control group, cows in the Herbs group showed improved feed intake, milk yield and quality, rumination frequency, and enhanced antioxidant activity and immune response. Rumen microbiome analysis revealed a reduced relative abundance of Proteobacteria and Ochrobactrum in the Herbs group, along with an enrichment of beneficial genera such as Lachnospira. Functional predictions indicated that the Herbs group exhibited enhanced glycolysis/gluconeogenesis, pyruvate metabolism, and starch and sucrose metabolism, reflecting improved fermentation efficiency and energy utilization. In conclusion, the herbal formula improved physiological and biochemical attributes, boosted antioxidant and immune responses, and modulated the rumen microbiome, contributing to the alleviation of heat stress in dairy cows. These findings highlight its potential as a natural dietary strategy to support dairy cow health and productivity under heat stress conditions.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Yawen Wang
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Man Feng
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, China
| | - Jiefeng Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Ze Liu
- Beijing-Tianjin-Hebei Modern Agriculture Collaborative Innovation and Development Service Center, Baoding, China
| | - Le Fu
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Ning Zhang
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Huaying Zhang
- Institute of Animal Husbandry and Veterinary Medicine of Hebei, Baoding, China
| | - Jianhua Qin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
10
|
Su H, Wu Y, Chen B, Cui Y. STANCE: a unified statistical model to detect cell-type-specific spatially variable genes in spatial transcriptomics. Nat Commun 2025; 16:1793. [PMID: 39979358 PMCID: PMC11842841 DOI: 10.1038/s41467-025-57117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
One of the major challenges in spatial transcriptomics is to detect spatially variable genes (SVGs), whose expression patterns are non-random across tissue locations. Many SVGs correlate with cell type compositions, introducing the concept of cell type-specific SVGs (ctSVGs). Existing ctSVG detection methods treat cell type-specific spatial effects as fixed effects, leading to tissue spatial rotation-dependent results. Moreover, SVGs may exhibit random spatial patterns within cell types, meaning an SVG is not always a ctSVG, and vice versa, further complicating detection. We propose STANCE, a unified statistical model for both SVGs and ctSVGs detection under a linear mixed-effect model framework that integrates gene expression, spatial location, and cell type composition information. STANCE ensures tissue rotation-invariant results, with a two-stage approach: initial SVG/ctSVG detection followed by ctSVG-specific testing. We demonstrate its performance through extensive simulations and analyses of public datasets. Downstream analyses reveal STANCE's potential in spatial transcriptomics analysis.
Collapse
Affiliation(s)
- Haohao Su
- Department of Statistics and Probability, Michigan State University, East Lansing, 48824, MI, USA
| | - Yuesong Wu
- Department of Statistics and Probability, Michigan State University, East Lansing, 48824, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, 48824, MI, USA
- Department of Computer Science and Engineering, Michigan State University, East Lansing, 48824, MI, USA
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, 49503, MI, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, 48824, MI, USA.
| |
Collapse
|
11
|
Martins MM, da Silva TH, Palma ASV, de Noronha BL, Lemos ER, Guimarães ICSB, Cônsolo NRB, Netto AS. Effect of an Ultra-Diluted Complex on Health, Growth Performance, and Blood Parameters of Pre-Weaned Dairy Calves. Vet Sci 2025; 12:128. [PMID: 40005888 PMCID: PMC11860321 DOI: 10.3390/vetsci12020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to evaluate the effects of an ultra-diluted complex on the health status, growth performance, and blood parameters of dairy calves during the preweaning phase in a double-blind, placebo-controlled trial. During a 75-period trial, thirty-four Holstein newborn calves at the second day of life were completely randomized individually into two treatments: (1) control (CON), oral saline supplementation (5 mL/d); and (2) oral supplementation with 5 mL/d of a ultra-diluted complex (UD): Sulfur: 1060 + Viola tricolor: 1014 + Caladium seguinum: 1030 + Zincum oxydatum: 1030 + Phosphorus: 1060 + Cardus marianus: 1060 + Colibacillinum: 1030 + Podophyllum: 1030 + Vehicle: alcohol. Free access to water and a starter was ensured during the trial period. Feed intake and fecal and health scores were monitored daily. Calves were weighed and measured weekly. Blood samples were collected at enrollment on the first day and every 21 days until the 75th day, 2 h after morning milk feeding, and tested for hematology, blood urea nitrogen, aspartate aminotransferase, gamma-glutamyl transferase, total protein albumin, globulin, and creatinine. At 70 days of age, calves were disbudded following the standard management practices of the farm. The inflammatory profile, including Immunoglobulin A, Immunoglobulin G, ceruloplasmin, transferrin, albumin, and haptoglobin, was quantified in serum samples. The ultra-diluted complex was ineffective in reducing the incidence of diseases, starter feed intake, daily weight gain, and body measurements and inflammatory profile. Blood parameters were also not affected. Thus, the ultra-diluted complex was inefficient in reducing the incidence of diseases and did not affect the performance and metabolites of pre-weaned Holstein calves.
Collapse
Affiliation(s)
- Mellory M. Martins
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Thiago H. da Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Andre S. V. Palma
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Bruna L. de Noronha
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Emanuel R. Lemos
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Iuli C. S. B. Guimarães
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| | - Nara. R. B. Cônsolo
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Arlindo S. Netto
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (T.H.d.S.); (B.L.d.N.); (A.S.N.)
| |
Collapse
|
12
|
Mao T, Zhang P, Jiang S, Li D, Li J, Zhang Q, Wang H, Kong X, Duan Z. Oral Ad5 Vector-Based SARS-CoV-2 Vaccine Effectively Induces Mucosal and Systemic Immune Responses in BALB/c Mice. J Med Virol 2025; 97:e70236. [PMID: 39949193 DOI: 10.1002/jmv.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 05/09/2025]
Abstract
Mucosal immunity is essential for preventing viral infections through the mucosal route. The emerging SARS-CoV-2 variants have posed additional hurdles to the efficiency of existing vaccines. The rapid development of novel vaccines that generate broad mucosal and systemic immunity could be the most effective strategy to address this issue. In this study, we developed a recombinant and replication-deficient type-5 adenoviral vaccine with a built-in double-strand RNA adjuvant and the vaccine expresses the SARS-CoV-2 Omicron BA.1 spike (S) antigen (hereinafter referred to as "the oral vaccine"). We found that two doses of the oral vaccine in BALB/c mice generated long-lasting S-specific mucosal and systemic immune responses, as well as broad neutralizing antibodies and SIgA antibodies. In addition, we found that compared to an mRNA vaccine booster, using the oral vaccine as a booster could induce both effective mucosal and systemic immunity, addressing the limitation of mRNA vaccines in eliciting mucosal immunity. Prospective oral vaccines require further investigation into development and potential applications, particularly viral challenge experiments, before clinical trials.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Immunity, Mucosal
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/genetics
- Mice
- Administration, Oral
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Adenoviridae/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Humans
- Genetic Vectors
Collapse
Affiliation(s)
- Tongyao Mao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Surui Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dandi Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinsong Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangyu Kong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
Singh Kakan S, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and tear autoantibodies from NOD and NOR mice as potential diagnostic indicators of local and systemic inflammation in Sjögren's disease. Front Immunol 2025; 15:1516330. [PMID: 39936155 PMCID: PMC11810956 DOI: 10.3389/fimmu.2024.1516330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male non-obese diabetic (NOD) and male non-obese insulitis resistant (NOR) mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Sources of Ig in tears were investigated using scRNA-Seq of the LG (GSE132420). Data were analyzed by R package Limma and Seurat. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Igha and Ighg2b expressing cells were identified in the plasma cell cluster of NOD.H2b LG. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
Affiliation(s)
- Shruti Singh Kakan
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sara Abdelhamid
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Yaping Ju
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - J. Andrew MacKay
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Indu Raman
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chengsong Zhu
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pharmacology & Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Yurtsever N, Binns TC, Hendrickson JE, Tormey CA, Lee ES. Therapeutic plasma exchange for hyperviscosity syndrome in IgA multiple myeloma. Lab Med 2025; 56:85-88. [PMID: 39038224 DOI: 10.1093/labmed/lmae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Hyperviscosity syndrome (HVS) is defined as the symptomatic presentation of increased blood thickness due to various clinical conditions such as hypergammaglobulinemia. HVS secondary to immunoglobulin (Ig)A multiple myeloma has been infrequently reported. Although the efficiency of IgM or IgG removal by therapeutic plasma exchange (TPE) is well described, the efficiency of IgA removal by TPE is not as well known. Here, we describe a case of HVS due to IgA myeloma in a patient who received 2 TPE treatments, with subsequent symptomatic improvement as well as decrease in IgA and viscosity levels.
Collapse
Affiliation(s)
- Nalan Yurtsever
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, US
| | - Thomas C Binns
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, US
| | - Jeanne E Hendrickson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, US
| | | | - Edward S Lee
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, US
| |
Collapse
|
15
|
Nihei Y, Kitamura D. Pathogenesis of IgA nephropathy as a tissue-specific autoimmune disease. Int Immunol 2024; 37:75-81. [PMID: 39066568 DOI: 10.1093/intimm/dxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024] Open
Abstract
Glomerulonephritis (GN) is a group of heterogeneous immune-mediated kidney diseases that causes inflammation within the glomerulus. Autoantibodies (auto-Abs) are considered to be central effectors in the pathogenesis of several types of GN. Immunoglobulin A nephropathy (IgAN) is the most common GN worldwide and is characterized by the deposition of IgA in the glomerular mesangium of the kidneys, which is thought to be mediated by immune complexes containing non-specific IgA. However, we recently reported that IgA auto-Abs specific to mesangial cells (anti-mesangium IgA) were found in the sera of gddY mice, a spontaneous IgAN model, and patients with IgAN. We identified two autoantigens (β2-spectrin and CBX3) that are selectively expressed on the mesangial cell surface and targeted by anti-mesangial IgA. Our findings redefined IgAN as a tissue-specific autoimmune disease. Regarding the mechanisms of production of anti-mesangium IgA, studies using gddY mice have revealed that the production of anti-CBX3 IgA is induced by particular strains of commensal bacteria in the oral cavity, possibly through their molecular mimicry to CBX3. Here, we discuss a new concept of IgAN pathogenesis from the perspective of this disease as autoimmune GN caused by tissue-specific auto-Abs.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
16
|
Li X, Li C, Wu P, Zhang L, Zhou P, Ma X. Recent status and trends of innate immunity and the gut-kidney aixs in IgAN: A systematic review and bibliometric analysis. Int Immunopharmacol 2024; 143:113335. [PMID: 39423662 DOI: 10.1016/j.intimp.2024.113335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a significant global demand for precise diagnosis and effective treatment of IgA nephropathy (IgAN), with innate immunity, particularly the complement system, exerting a profound influence on its pathogenesis. Additionally, the gut-kidney axis pathway is vital in the emergence and development of IgAN. METHODS We conducted a comprehensive search in the Web of Science database, spanning from January 1, 2000 to December 18, 2023. The gathered literature underwent a visual examination through CiteSpace, VOSviewer, and Scimago Graphica to delve into authors, nations, organizations, key terms, and other pertinent elements. RESULT Between 2000 and 2023, a total of 720 publications were identified, out of which 436 publications underwent screening for highly relevant literature analysis. The average annual number of articles focusing on IgAN, innate immunity, and the gut-kidney axis is approximately 31, with an upward trend observed. In terms of research impact encompassing publication count and authorship, the United States emerged as the leading contributor. Prominent keywords included "complement", "activation", "microbe", "gut-kidney axis", "C4d deposition", "alternative pathway" and "B cells" along with other prospective hot topics. CONCLUSION The correlation between IgAN and innate immunity is a focal point in current scientific research. Recent literature underscores the significance of the gut-kidney axis, where intestinal microorganisms and metabolites may influence IgAN. The complement system, a key component of innate immunity, also has a crucial function.Advancements in prevention, diagnosis, and treatment hinge on unraveling this intricate relationship.
Collapse
Affiliation(s)
- Xun Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chengni Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Peiwen Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Lifang Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Ping Zhou
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Xin Ma
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China; Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
17
|
Pethig L, Behringer V, Kappeler PM, Fichtel C, Heistermann M. Establishment and Validation of Fecal Secretory Immunoglobulin A Measurement for Intestinal Mucosal Health Assessment in Wild Lemurs. Am J Primatol 2024; 86:e23694. [PMID: 39488843 DOI: 10.1002/ajp.23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
The measurement of biomarkers in blood and excreta can enable immune status assessment and provide prognostic information on individual health outcomes. In this respect, the fecal measurement of secretory immunoglobulin A (sIgA), the primary mammalian antibody for mucosal defense, has recently received increased interest in a few anthropoid primates, but a fecal sIgA assay for use in strepsirrhine primates has not yet been reported. Here, we develop and analytically validate a cost-effective in-house sandwich enzyme immunoassay for the extraction and measurement of sIgA in feces of redfronted lemurs (Eulemur rufifrons). We also tested a simple method for sIgA extraction that can be used under remote field conditions and undertook experiments to assess the robustness of sIgA concentrations to variation in processing and storage conditions of fecal extracts. Our analytical validation revealed that the assay recognizes immunoreactive sIgA in redfronted lemur feces, that sIgA can be measured accurately with no potential interference from the fecal matrix, and that assay reagents and performance are highly stable over time. The field-friendly extraction procedure produced sIgA results strongly correlated with those generated by a standard laboratory extraction method. Short-term storage at room temperature resulted in a slight decline in sIgA concentrations, whereas freezing extracts at -20°C kept sIgA levels stable for at least 3 months. Longer-term storage of >5 months, however, led to a significant decline of sIgA concentrations. Multiple freeze-thaw cycles did not affect sIgA levels. This study, therefore, provides the basis for measuring fecal sIgA in lemurs and possibly other strepsirrhines. When samples are processed properly and stored frozen, and when sIgA analysis can be performed within 3 months upon sample collection, fecal sIgA measurements can become a valuable tool for monitoring aspects of immunity and health in both zoo-housed and wild-living lemurs.
Collapse
Affiliation(s)
- Leonie Pethig
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
18
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
19
|
Qin Z, Zhao P, Chen L, Han Z, Zhang Y, Zhao J. Evaluation of the Effect of the Mycoplasma hyopneumoniae Live Vaccine (Strain 168) in Ningxiang Pigs. Vaccines (Basel) 2024; 12:1332. [PMID: 39771994 PMCID: PMC11679368 DOI: 10.3390/vaccines12121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
[Background/Objectives] Mycoplasma hyopneumoniae (M. hyopneumoniae) is widespread in the global swine industry, leading to significant economic losses, and is particularly severe in native Chinese pig breeds. The Ningxiang pig, a well-known native breed in China, is susceptible to M. hyopneumoniae, exhibiting high morbidity and mortality rates. This study was designed to evaluate the clinical effectiveness of the M. hyopneumoniae live vaccine (strain 168). [Methods] The vaccine was delivered to 7-day-old piglets in the farrowing room through intrapulmonary administration, and its efficacy was compared with that of the M. hyopneumoniae inactivated vaccine (strain J). Four experimental groups were designed: Group 1 (inactivated vaccine + inactivated vaccine), Group 2 (live vaccine + inactivated vaccine), Group 3 (live vaccine), and Group 4 (control), which was not vaccinated. The production performance of each group was measured, and the lung lesion scores and pneumonia lesion reduction rates were evaluated at slaughter. Nasal swabs and serum samples were collected on days 0, 14, 28, 56, 84, 112, and 140 to assess SIgA, IgG antibody levels, and the M. hyopneumoniae pathogen. [Results] The results showed that Group 3 had the best production performance and clinical outcomes, with the lowest average lung lesion score, of 4.43 ± 2.44, which was significantly different from the other groups (*** p < 0.001). [Conclusions] This study provided scientific evidence to support vaccination strategies for preventing and controlling the M. hyopneumoniae in native pig populations.
Collapse
Affiliation(s)
- Zhanguo Qin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (P.Z.); (L.C.); (Z.H.)
| | - Pengfei Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (P.Z.); (L.C.); (Z.H.)
| | - Lunyong Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (P.Z.); (L.C.); (Z.H.)
| | - Zhen Han
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (P.Z.); (L.C.); (Z.H.)
| | - Yuankui Zhang
- Zhaofenghua Group Beijing Research Institute, Beijing 102600, China;
| | - Junlong Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Z.Q.); (P.Z.); (L.C.); (Z.H.)
| |
Collapse
|
20
|
Jayamanna Mohottige MW, Gardner CE, Nye-Wood MG, Farquharson KA, Juhász A, Belov K, Hogg CJ, Peel E, Colgrave ML. Bioactive components in the marsupial pouch and milk. Nutr Res Rev 2024:1-12. [PMID: 39551618 DOI: 10.1017/s0954422424000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Marsupials give birth to immunologically naïve young after a relatively short gestation period compared with eutherians. Consequently, the joey relies significantly on maternal protection, which is the focus of the present review. The milk and the pouch environment are essential contributors to maternal protection for the healthy development of joeys. In this review, we discuss bioactive components found in the marsupial pouch and milk that form cornerstones of maternal protection. These bioactive components include immune cells, immunoglobulins, the S100 family of calcium-binding proteins, lysozymes, whey proteins, antimicrobial peptides and other immune proteins. Furthermore, we investigated the possibility of the presence of plurifunctional components in milk and pouches that are potentially bioactive. These compounds include caseins, vitamins and minerals, oligosaccharides, lipids and microRNAs. Where applicable, this review addresses variability in bioactive components during different phases of lactation, designed to fulfil the immunological needs of the growing pouch young. Yet, there are numerous additional research opportunities to pursue, including uncovering novel bioactive components and investigating their modes of action, dynamics, stability and ability to penetrate the gut epithelium to facilitate systemic effects.
Collapse
Affiliation(s)
- Manujaya W Jayamanna Mohottige
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Chloe E Gardner
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | | | - Katherine A Farquharson
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Angéla Juhász
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Katherine Belov
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Carolyn J Hogg
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Emma Peel
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Michelle L Colgrave
- School of Science, Edith Cowan University, Joondalup, WA, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Kim SJ, Lee HK, Kang KS, Lee MG, Shin MS. Korean Red Ginseng Polysaccharides Enhance Intestinal IgA Production and Barrier Function via Peyer's Patch Activation in Mice. Nutrients 2024; 16:3816. [PMID: 39599603 PMCID: PMC11597691 DOI: 10.3390/nu16223816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Natural products are gaining attention for their potential benefits in gastrointestinal health. Plant-derived polysaccharides are essential for boosting intestinal immunity and maintaining gut homeostasis. This study investigated the effects of Korean red ginseng polysaccharides (KRG-P) on intestinal homeostasis including IgA and SCFA production and mucosal barrier integrity. Methods: Mice were orally administered KRG-P at doses of 50 mg/kg or 200 mg/kg for 10 days. Fecal IgA levels were measured on days 3, 5, and 11 and IgA from cultured Peyer's patch cells from KRG-P-treated mice were analyzed. Additionally, mRNA and protein expression levels of α-defensin, lysozyme, and E-cadherin in the small intestine were examined. Short-chain fatty acids (SCFAs) content in the cecum was also assessed. Results: KRG-P-treated groups showed a significant increase in fecal IgA levels on days 5 and 11, with no notable change on day 3. Cultured Peyer's patch cells from mice demonstrated heightened IgA production. Additionally, KRG-P administration upregulated α-defensin and lysozyme mRNA expression, along with elevated protein expression of E-cadherin, α-defensin, and lysozyme, in the small intestine. KRG-P treatment also led to increased cecal SCFA levels, including acetate, butyrate, and propionate. Conclusions: KRG-P may promote intestinal homeostasis and host defense mechanisms by activating immune cells in Peyer's patches, stimulating IgA production, enhancing antimicrobial peptide expression, and modulating gut microbiota metabolism through increased SCFA production.
Collapse
Affiliation(s)
- Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Hae-Kyung Lee
- Avison Biomedical Research Center, Yonsei University, Seoul 03722, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Mi-Gi Lee
- Bio-Center, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| |
Collapse
|
22
|
Samiei-Abianeh H, Nazarian S, Kordbacheh E, Felegary A. Recombinant receptor-binding motif of spike COVID-19 vaccine candidate induces SARS-CoV-2 neutralizing antibody response. BIOIMPACTS : BI 2024; 15:30520. [PMID: 40256231 PMCID: PMC12008496 DOI: 10.34172/bi.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction The SARS-CoV-2 pandemic necessitates effective therapeutic solutions. The receptor-binding motif (RBM) is a subdomain of the spike protein's receptor-binding domain (RBD) and is critical for facilitating the binding of SARS-CoV-2 to the human ACE2 receptor. This study investigates the use of the receptor-binding motif (RBM) domain as an immunogen to produce potent neutralizing antibodies against SARS-CoV-2. Methods The RBM gene was codon-optimized and cloned into the pET17b vector for expression in E. coli BL21 (DE3) cells, induced with 1 mM IPTG. The recombinant RBM protein was purified using Ni-NTA affinity chromatography. After validating the recombinant RBM by Western blotting with anti-His tag antibodies, BALB/c mice were immunized with 20 µg of the purified RBM protein. Anti-RBM IgG was subsequently purified using protein G resin, and its neutralizing capacity was assessed using the Pishtaz Teb Zaman Neutralization Assay Kit. Results The recombinant RBM protein, with a molecular weight of 10 kDa, was expressed as inclusion bodies. the typical yield of purification was 27 mg/L of bacterial culture. The neutralization test demonstrated a concentration of 36 µg/mL of neutralizing antibodies in the immunized serum, preventing the spike protein from binding to ACE2. Conclusion Our study demonstrated that anti-RBM antibodies exhibited neutralization effects on SARS-CoV-2. These findings provide evidence for the development of a vaccine candidate through the induction of antibodies against the RBM, necessitating further studies with adjuvants suitable for human use to evaluate its potential for human vaccination.
Collapse
Affiliation(s)
- Hossein Samiei-Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Alireza Felegary
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
23
|
Gleeson PJ, Camara NOS, Launay P, Lehuen A, Monteiro RC. Immunoglobulin A Antibodies: From Protection to Harmful Roles. Immunol Rev 2024; 328:171-191. [PMID: 39578936 PMCID: PMC11659943 DOI: 10.1111/imr.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
Immunoglobulin A (IgA) is the most abundantly produced antibody in humans. IgA is a unique class of immunoglobulin due to its multiple molecular forms, and a defining difference between the two subclasses: IgA1 has a long hinge-region that is heavily O-glycosylated, whereas the IgA2 hinge-region is shorter but resistant to bacterial proteases prevalent at mucosal sites. IgA is essential for immune homeostasis and education. Mucosal IgA plays a crucial role in maintaining the integrity of the mucosal barrier by immune exclusion of pathobionts while facilitating colonization with certain commensals; a large part of the gut microbiota is coated with IgA. In the circulation, monomeric IgA that has not been engaged by antigen plays a discrete role in dampening inflammatory responses. Protective and harmful roles of IgA have been studied over several decades, but a new understanding of the complex role of this immunoglobulin in health and disease has been provided by recent studies. Here, we discuss the physiological and pathological roles of IgA with a special focus on the gut, kidneys, and autoimmunity. We also discuss new IgA-based therapeutic approaches.
Collapse
Affiliation(s)
- Patrick J. Gleeson
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
- Nephrology DepartmentBichat HospitalParisFrance
| | - Niels O. S. Camara
- Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Pierre Launay
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| | - Agnès Lehuen
- Inflamex Laboratory of ExcellenceParisFrance
- Cochin Institute, INSERM, CNRSParis Cité UniversityParisFrance
| | - Renato C. Monteiro
- Center for Research on InflammationParis Cité UniversityParisFrance
- INSERMParisFrance
- CNRSParisFrance
- Inflamex Laboratory of ExcellenceParisFrance
| |
Collapse
|
24
|
Kakan SS, Abdelhamid S, Ju Y, MacKay JA, Edman MC, Raman I, Zhu C, Raj P, Hamm-Alvarez SF. Serum and Tear Autoantibodies from NOD and NOR Mice as Potential Diagnostic Indicators of Local and Systemic Inflammation in Sjögren's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619993. [PMID: 39553935 PMCID: PMC11565729 DOI: 10.1101/2024.10.24.619993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Sjögren's Disease (SjD) is an autoimmune disease characterized by lymphocytic infiltration of salivary and lacrimal glands (LG). The LG produces the protein-rich aqueous component of tears, and SjD-associated autoimmune dacryoadenitis (AD) may thus alter tear autoantibody composition. Methods The presence of tertiary lymphoid structures (TLS) in LG from two murine models of SjD-associated AD, male NOD and male NOR mice, were evaluated using immunofluorescence. IgG and IgA reactivity in serum and tears from these models were probed in three studies against a panel of 80-120 autoantigens using autoantibody microarrays relative to serum and tears from healthy male BALB/c mice. Data were analyzed by R package Limma. Results Analysis of immunofluorescence in LG sections from both SjD models showed TLS. Only one autoantibody was significantly elevated in tears and serum in both SjD models across all studies. Three autoantibodies were significantly elevated in serum but not in tears in both SjD models across all studies. Conversely, six IgG and thirteen IgA autoantibodies (6 sharing the same autoantigen) were significantly elevated in tears but not serum in both SjD models. Conclusion NOD and NOR mice with SjD-associated AD have distinct autoantibody profiles in tears and serum. Tear IgA isotype autoantibodies showed a greater diversity than tear IgG autoantibodies. TLS observed in LG are a likely source of the tear autoantibodies.
Collapse
|
25
|
Li M, Jiang X, Gai X, Dai M, Li M, Wang Y, Wang H. CiteSpace-based visual analysis on transcutaneous electrical acupoint stimulation of clinical randomized controlled trial studies and its mechanism on perioperative disorders. Medicine (Baltimore) 2024; 103:e39893. [PMID: 39465871 PMCID: PMC11479488 DOI: 10.1097/md.0000000000039893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
To systematically present an overview of randomized controlled trials on transcutaneous electrical acupoint stimulation (TEAS) using bibliometric methods, and describe the role and mechanisms of TEAS in most prevalent diseases. Relevant literature was searched in China National Knowledge Infrastructure, Wanfang Data, VIP, SinoMed, PubMed, and Web of Science. The literature was imported and screened into NoteExpress, screened according to inclusion and exclusion criteria, and analyzed using Excel and CiteSpace 6.3R1 software. A total of 1296 documents were included. The number of publications increased annually after 2012. Junlu Wang was the most prolific author. The main research institutions were Peking University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Shuguang Hospital, and Tongde Hospital of Zhejiang Province. The research hotspots in this field include perioperative care, cancer, pain management, and stroke, primarily focusing on analgesia, immune enhancement, antihypertension, and reduction of gastrointestinal disorders. The main regulatory mechanisms of TEAS include the control of inflammation, oxidative stress, and regulation of the autonomic nervous system. TEAS is most widely used in the elderly, with PC6, ST36, and LI4 being the most frequently studied acupoints in clinical randomized controlled trials. The concept of accelerated rehabilitation is gradually being applied to TEAS, representing an emerging trend for future development. Clinical research on TEAS is rapidly developing, with a focus on applications in cancer and perioperative care. Future research should expand collaboration and conduct high-level clinical and mechanistic studies, which will contribute to the development of standardized protocols and clinical practice.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangmu Gai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyao Dai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
26
|
de Andrade ACMM, Oliveira NL, Nolasco E Silva AE, Vaz LG, Martins FRB, de Moura Lopes ME, Torres L, Queiroz CM, Russo RC, Dos Santos LM, Vieira LQ, Soriani FM. Oral administration of Lactobacillus delbrueckii UFV-H2b20 protects mice against Aspergillus fumigatus lung infection. Inflamm Res 2024; 73:1601-1614. [PMID: 39198294 DOI: 10.1007/s00011-024-01895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-β and IL-10 levels in lungs, and concomitant decreased IL-1β, IL-17 A, and CXCL1 production. CONCLUSION Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.
Collapse
Affiliation(s)
| | - Nathalia Luisa Oliveira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Elisa Nolasco E Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Gomes Vaz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Rayssa Braga Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mateus Eustáquio de Moura Lopes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo Castro Russo
- Departamento de Fisiologia e Biofisica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Liliane Martins Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Frederico Marianetti Soriani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
27
|
Novak J, King RG, Yother J, Renfrow MB, Green TJ. O-glycosylation of IgA1 and the pathogenesis of an autoimmune disease IgA nephropathy. Glycobiology 2024; 34:cwae060. [PMID: 39095059 PMCID: PMC11442006 DOI: 10.1093/glycob/cwae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024] Open
Abstract
IgA nephropathy is a kidney disease characterized by deposition of immune complexes containing abnormally O-glycosylated IgA1 in the glomeruli. Specifically, some O-glycans are missing galactose that is normally β1,3-linked to N-acetylgalactosamine of the core 1 glycans. These galactose-deficient IgA1 glycoforms are produced by IgA1-secreting cells due to a dysregulated expression and activity of several glycosyltransferases. Galactose-deficient IgA1 in the circulation of patients with IgA nephropathy is bound by IgG autoantibodies and the resultant immune complexes can contain additional proteins, such as complement C3. These complexes, if not removed from the circulation, can enter the glomerular mesangium, activate the resident mesangial cells, and induce glomerular injury. In this review, we briefly summarize clinical and pathological features of IgA nephropathy, review normal and aberrant IgA1 O-glycosylation pathways, and discuss the origins and potential significance of natural anti-glycan antibodies, namely those recognizing N-acetylgalactosamine. We also discuss the features of autoantibodies specific for galactose-deficient IgA1 and the characteristics of pathogenic immune complexes containing IgA1 and IgG. In IgA nephropathy, kidneys are injured by IgA1-containing immune complexes as innocent bystanders. Most patients with IgA nephropathy progress to kidney failure and require dialysis or transplantation. Moreover, most patients after transplantation experience a recurrent disease. Thus, a better understanding of the pathogenetic mechanisms is needed to develop new disease-specific treatments.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Janet Yother
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Birmingham, AL 35294, United States
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, United States
| |
Collapse
|
28
|
Okada N, Oshima K, Maruko A, Sekine M, Ito N, Wakasugi A, Mori E, Odaguchi H, Kobayashi Y. Intron retention as an excellent marker for diagnosing depression and for discovering new potential pathways for drug intervention. Front Psychiatry 2024; 15:1450708. [PMID: 39364384 PMCID: PMC11446786 DOI: 10.3389/fpsyt.2024.1450708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background Peripheral inflammation is often associated with depressive disorders, and immunological biomarkers of depression remain a focus of investigation. Methods We performed RNA-seq analysis of RNA transcripts of human peripheral blood mononuclear cells from a case-control study including subjects with self-reported depression in the pre-symptomatic state of major depressive disorder and analyzed differentially expressed genes (DEGs) and the frequency of intron retention (IR) using rMATS. Results Among the statistically significant DEGs identified, the 651 upregulated DEGs were particularly enriched in the term "bacterial infection and phagocytosis", whereas the 820 downregulated DEGs were enriched in the terms "antigen presentation" and "T-cell proliferation and maturation". We also analyzed 158 genes for which the IR was increased (IncIR) and 211 genes for which the IR was decreased (DecIR) in the depressed subjects. Although the Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and downregulated genes, respectively, IR genes appeared to be particularly enriched in genes with sensor functions, with a preponderance of the term "ciliary assembly and function". The observation that IR genes specifically interact with innate immunity genes suggests that immune-related genes, as well as cilia-related genes, may be excellent markers of depression. Re-analysis of previously published RNA-seq data from patients with MDD showed that common IR genes, particularly our predicted immune- and cilia-related genes, are commonly detected in populations with different levels of depression, providing validity for using IR to detect depression. Conclusion Depression was found to be associated with activation of the innate immune response and relative inactivation of T-cell signaling. The DEGs we identified reflect physiological demands that are controlled at the transcriptional level, whereas the IR results reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an alteration in IR, namely IncIR or DecIR, is a stress response, and intron-retained transcripts are sensors of the physiological state of the cytoplasm. The results demonstrate the potential of relative IR as a biomarker for the immunological stratification of depressed patients and the utility of IR for the discovery of novel pathways involved in recovery from depression.
Collapse
Affiliation(s)
- Norihiro Okada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Kenshiro Oshima
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akiko Maruko
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Mariko Sekine
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Naoki Ito
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Akino Wakasugi
- Kitasato University Kitasato Institute Hospital, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Eiko Mori
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- Oriental Medicine Research Center, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
29
|
Cowen D, Zhang R, Komorowski M. Infections in long-duration space missions. THE LANCET. MICROBE 2024; 5:100875. [PMID: 38861994 DOI: 10.1016/s2666-5247(24)00098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
As government space agencies and private companies announce plans for deep space exploration and colonisation, prioritisation of medical preparedness is becoming crucial. Among all medical conditions, infections pose one of the biggest threats to astronaut health and mission success. To gain a comprehensive understanding of these risks, we review the measured and estimated incidence of infections in space, effect of space environment on the human immune system and microbial behaviour, current preventive and management strategies for infections, and future perspectives for diagnosis and treatment. This information will enable space agencies to enhance their comprehension of the risk of infection in space, highlight gaps in knowledge, aid better crew preparation, and potentially contribute to sepsis management in terrestrial settings, including not only isolated or austere environments but also conventional clinical settings.
Collapse
Affiliation(s)
- Daniel Cowen
- School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Matthieu Komorowski
- Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
30
|
Alyaseen HA, Aldhaher ZA. The Effect of New Trend Electronic Cigarettes on Dental Caries in Relation to Glucosyltransferase B and Secretory Immunoglobulin A (A Case-control Study). Cell Biochem Biophys 2024; 82:2865-2871. [PMID: 39069604 DOI: 10.1007/s12013-024-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Electronic cigarettes (vapes) are actively used, and their use is growing globally, especially among young people. Its spread is rapid due to the presence of unproven rumors that it is used to treat smoking addiction as it aids in smoking cessation. However, E.C has a negative impact on dental health by affecting the oral microbiome and salivary components. The goal of this study was to evaluate the impact of electronic cigarettes on dental caries in relation to glucosyltransferase B and secretory immunoglobulin in the saliva of electronic cigarette users. Ninety active males were divided into two groups: 45 electronic-cigarette smokers in addition to 45 non-electronic-cigarette smokers as a control group. An oral examination was performed on the studied groups, and decayed missing filling tooth surfaces (DMFS) were documented. Additionally, unstimulated saliva was collected to evaluate salivary glucosyltransferase B and secretory immunoglobulin A by using a sandwich enzyme-linked immune-sorbent assay (ELISA). The obtained outcomes showed that decayed, missing, and filled Surfaces values(DMFS), salivary glucosyltransferase B, and salivary secretory immunoglobulin A were greater in the study group than in control group. Additionally, a correlation between glucosyltransferase B, secretory immunoglobulin A, and DMFS was positive and significant. It was concluded that e-cigarettes may have an effect on saliva components and dental caries.
Collapse
Affiliation(s)
- Haneen A Alyaseen
- Department of Basic Science, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Zainab A Aldhaher
- Department of Basic Science, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
31
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
32
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
33
|
Kroll KW, Hueber B, Balachandran H, Afifi A, Manickam C, Nettere D, Pollara J, Hudson A, Woolley G, Ndhlovu LC, Reeves RK. FcαRI (CD89) is upregulated on subsets of mucosal and circulating NK cells and regulates IgA-class specific signaling and functions. Mucosal Immunol 2024; 17:692-699. [PMID: 38677592 PMCID: PMC11323182 DOI: 10.1016/j.mucimm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Immunoglobulin A (IgA) is the predominant mucosal antibody class with both anti- and pro-inflammatory roles1-3. However, the specific role of the IgA receptor cluster of differentiation (CD)89, expressed by a subset of natural killer (NK) cells, is poorly explored. We found that CD89 protein expression on circulating NK cells is infrequent in humans and rhesus macaques, but transcriptomic analysis showed ubiquitous CD89 expression, suggesting an inducible phenotype. Interestingly, CD89+ NK cells were more frequent in cord blood and mucosae, indicating a putative IgA-mediated NK cell function in the mucosae and infant immune system. CD89+ NK cells signaled through upregulated CD3 zeta chain (CD3ζ), spleen tyrosine kinase (Syk), zeta chain-associated protein kinase 70 (ZAP70), and signaling lymphocytic activation molecule family 1 (SLAMF1), but also showed high expression of inhibitory receptors such as killer cell lectin-like receptor subfamily G (KLRG1) and reduced activating NKp46 and NKp30. CD89-based activation or antibody-mediated cellular cytotoxicity with monomeric IgA1 reduced NK cell functions, while antibody-mediated cellular cytotoxicity with combinations of IgG and IgA2 was enhanced compared to IgG alone. These data suggest that functional CD89+ NK cells survey mucosal sites, but CD89 likely serves as regulatory receptor which can be further modulated depending on IgA and IgG subclass. Although the full functional niche of CD89+ NK cells remains unexplored, these intriguing data suggest the CD89 axis could represent a novel immunotherapeutic target in the mucosae or early life.
Collapse
Affiliation(s)
- Kyle W Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Brady Hueber
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ameera Afifi
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Danielle Nettere
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Justin Pollara
- Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Andrew Hudson
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA; Duke University School of Medicine, Durham, North Carolina, USA; Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
34
|
Hernández-Urbán AJ, Drago-Serrano ME, Reséndiz-Albor AA, Sierra-Ramírez JA, Guzmán-Mejía F, Oros-Pantoja R, Godínez-Victoria M. Moderate Aerobic Exercise Induces Homeostatic IgA Generation in Senile Mice. Int J Mol Sci 2024; 25:8200. [PMID: 39125769 PMCID: PMC11311420 DOI: 10.3390/ijms25158200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
A T-cell-independent (TI) pathway activated by microbiota results in the generation of low-affinity homeostatic IgA with a critical role in intestinal homeostasis. Moderate aerobic exercise (MAE) provides a beneficial impact on intestinal immunity, but the action of MAE on TI-IgA generation under senescence conditions is unknown. This study aimed to determine the effects of long-term MAE on TI-IgA production in young (3 month old) BALB/c mice exercised until adulthood (6 months) or aging (24 months). Lamina propria (LP) from the small intestine was obtained to determine B cell and plasma cell sub-populations by flow cytometry and molecular factors related to class switch recombination [Thymic Stromal Lymphopoietin (TSLP), A Proliferation-Inducing Ligand (APRIL), B Cell Activating Factor (BAFF), inducible nitric oxide synthase (iNOS), and retinal dehydrogenase (RDH)] and the synthesis of IgA [α-chain, interleukin (IL)-6, IL-21, and Growth Factor-β (TGF-β)]; and epithelial cells evaluated IgA transitosis [polymeric immunoglobulin receptor (pIgR), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-4] by the RT-qPCR technique. The results were compared with data obtained from sedentary age-matched mice. Statistical analysis was computed with ANOVA, and p < 0.05 was considered to be a statistically significant difference. Under senescence conditions, MAE promoted the B cell and IgA+ B cells and APRIL, which may improve the intestinal response and ameliorate the inflammatory environment associated presumably with the downmodulation of pro-inflammatory mediators involved in the upmodulation of pIgR expression. Data suggested that MAE improved IgA and downmodulate the cytokine pro-inflammatory expression favoring homeostatic conditions in aging.
Collapse
Affiliation(s)
- Angel J. Hernández-Urbán
- Laboratorio de Citometría de Flujo, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Maria-Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (M.-E.D.-S.); (F.G.-M.)
| | - Aldo A. Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - José A. Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City 04960, Mexico; (M.-E.D.-S.); (F.G.-M.)
| | - Rigoberto Oros-Pantoja
- Laboratorio de Neuroinmunoendocrinología, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico;
| | - Marycarmen Godínez-Victoria
- Laboratorio de Citometría de Flujo, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| |
Collapse
|
35
|
Savšek TŠ, Avramovič MZ, Avčin T, Korva M, Avšič-Županc T, Toplak N. Serological response after COVID-19 infection compared to vaccination against COVID-19 in children with autoimmune rheumatic diseases. Pediatr Rheumatol Online J 2024; 22:68. [PMID: 39054538 PMCID: PMC11271209 DOI: 10.1186/s12969-024-01003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Paediatric patients with autoimmune rheumatic diseases (pARD) have a dysregulated immune system, so infections present a major threat to them. To prevent severe COVID-19 infections we aimed to vaccinate them as soon as possible. Studies have shown that the BNT162b2 vaccine is safe, effective, and immunogenic, however, in a short observation period, only. METHODS The main objective was to compare the serological response between three groups of pARD: after SARS-CoV-2 infection, after vaccination against COVID-19 with two doses of the BNT162b2 vaccine, and after experiencing both events. Data on demographics, diagnosis, therapy, and serology (anti-SARS-CoV-2 IgG/IgA) were collected from March 2020 to April 2022. For statistical analysis ANOVA, Mann-Whitney U test, Chi-square test and Fisher's exact test were applied. To compare adverse events (AE) after vaccination we included a control group of healthy adolescents. RESULTS We collected data from 115 pARD; from 92 after infection and 47 after vaccination. Twenty-four were included in both groups. Serological data were available for 47 pARD after infection, 25 after vaccination, and 21 after both events. Serological response was better after vaccination and after both events compared to after infection only. No effect of medication on the antibody levels was noted. The safety profile of the vaccine was good. Systemic AE after the first dose of the vaccine were more common in healthy adolescents compared to pARD. In the observation period of 41.3 weeks, 60% of vaccinated pARD did not experience a symptomatic COVID-19 infection. CONCLUSIONS IgG and IgA anti-SARS-CoV-2 levels were higher after vaccination and after both events compared to after infection only. Six months after vaccination we observed an increase in antibody levels, suggesting that pARD had been exposed to SARS-CoV-2 but remained asymptomatic. TRIAL REGISTRATION The study was approved by the Medical Ethics Committee of the Republic of Slovenia (document number: 0120-485/2021/6).
Collapse
Affiliation(s)
- Tjaša Šinkovec Savšek
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Mojca Zajc Avramovič
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Avčin
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Toplak
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Helmer L, van de Sand L, Wojtakowski T, Otte M, Witzke O, Sondermann W, Krawczyk A, Lindemann M. Antibody responses after sequential vaccination with PCV13 and PPSV23 in patients with moderate to severe plaque psoriasis under immunosuppressive therapy. mBio 2024; 15:e0048224. [PMID: 38832785 PMCID: PMC11253621 DOI: 10.1128/mbio.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
A crucial step in lowering the risk of invasive pneumococcal illness in high-risk populations, such as individuals with plaque psoriasis, is pneumococcal vaccination. The serologic response to the sequential vaccination with Prevenar 13 (PCV13) and Pneumovax 23 (PPSV23) in psoriasis patients under immunosuppressive therapy is still poorly characterized despite national recommendations suggesting vaccination for immunocompromised patients. In this prospective study, we investigated the serological response in 57 patients under active systemic treatment for moderate to severe plaque psoriasis who underwent sequential vaccination with PCV13 followed by PPSV23. Our analysis focused on global and serotype-specific anti-pneumococcal antibody responses over a 7-month period post-vaccination. Our findings reveal a robust serological response in patients with plaque psoriasis under systemic therapy. When comparing our results with a cohort of kidney transplant recipients who completed a similar sequential vaccination protocol, psoriasis patients showed higher antibody concentrations. In psoriasis patients, the mean levels of all global antibody classes tested (IgG, IgG2, IgA, IgM) increased more than 4-fold (P < 0.0001) and serotype-specific antibodies more than 1.9-fold (P < 0.01). In addition to providing strong evidence of the safety and effectiveness of sequential pneumococcal vaccination in individuals with plaque psoriasis, our work sheds light on the complex interactions that exist between immunosuppressive treatment, vaccination schedule, and antibody responses in various risk groups. IMPORTANCE To protect against severe courses of infection with Streptococcus pneumoniae, the national guidelines recommend sequential vaccination for these patients. However, there are only studies on the efficacy of a single administration of these vaccines in this particular risk group. The immunological responses to the vaccine were correlated with clinical patient data. In summary, our study shows for the first time that sequential vaccination is immunogenic in patients with moderate to severe plaque psoriasis.
Collapse
Affiliation(s)
- Lorena Helmer
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas van de Sand
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thea Wojtakowski
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mona Otte
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Sondermann
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
37
|
Cai X, Yi P, Chen X, Wu J, Lan G, Li S, Luo S, Huang F, Huang J, Shen P. Intake of compound probiotics accelerates the construction of immune function and gut microbiome in Holstein calves. Microbiol Spectr 2024; 12:e0190923. [PMID: 38651859 PMCID: PMC11237676 DOI: 10.1128/spectrum.01909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Acquired immunity is an important way to construct the intestinal immune barrier in mammals, which is almost dependent on suckling. To develop a new strategy for accelerating the construction of gut microbiome, newborn Holstein calves were continuously fed with 40 mL of compound probiotics (containing Lactobacillus plantarum T-14, Enterococcus faecium T-11, Saccharomyces cerevisiae T-209, and Bacillus licheniformis T-231) per day for 60 days. Through diarrhea rate monitoring, immune index testing, antioxidant capacity detection, and metagenome sequencing, the changes in diarrhea incidence, average daily gain, immune index, and gut microbiome of newborn calves within 60 days were investigated. Results indicated that feeding the compound probiotics reduced the average diarrhea rate of calves by 42.90%, increased the average daily gain by 43.40%, raised the antioxidant indexes of catalase, superoxide dismutase, total antioxidant capacity, and Glutathione peroxidase by 22.81%, 6.49%, 8.33%, and 13.67%, respectively, and increased the immune indexes of IgA, IgG, and IgM by 10.44%, 4.85%, and 6.12%, respectively. Moreover, metagenome sequencing data showed that feeding the compound probiotics increased the abundance of beneficial strains (e.g., Lactococcus lactis and Bacillus massionigeriensis) and decreased the abundance of some harmful strains (e.g., Escherichia sp. MOD1-EC5189 and Mycobacterium brisbane) in the gut microbiome of calves, thus contributing to accelerating the construction of healthy gut microbiome in newborn Holstein calves. IMPORTANCE The unstable gut microbiome and incomplete intestinal function of newborn calves are important factors for the high incidence of early diarrhea. This study presents an effective strategy to improve the overall immunity and gut microbiome in calves and provides new insights into the application of compound probiotics in mammals.
Collapse
Affiliation(s)
- Xinghua Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ping Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xuewen Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi UBIT Biotechnology Co., Ltd., Nanning, China
| | - Junhua Wu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shijian Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shasha Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Fengdie Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jinrong Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
38
|
Zhang S, Wang Q, Tan DEL, Sikka V, Ng CH, Xian Y, Li D, Muthiah M, Chew NWS, Storm G, Tong L, Wang J. Gut-liver axis: Potential mechanisms of action of food-derived extracellular vesicles. J Extracell Vesicles 2024; 13:e12466. [PMID: 38887165 PMCID: PMC11183959 DOI: 10.1002/jev2.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Food-derived extracellular vesicles (FEVs) are nanoscale membrane vesicles obtained from dietary materials such as breast milk, plants and probiotics. Distinct from other EVs, FEVs can survive the harsh degrading conditions in the gastrointestinal tract and reach the intestines. This unique feature allows FEVs to be promising prebiotics in health and oral nanomedicine for gut disorders, such as inflammatory bowel disease. Interestingly, therapeutic effects of FEVs have recently also been observed in non-gastrointestinal diseases. However, the mechanisms remain unclear or even mysterious. It is speculated that orally administered FEVs could enter the bloodstream, reach remote organs, and thus exert therapeutic effects therein. However, emerging evidence suggests that the amount of FEVs reaching organs beyond the gastrointestinal tract is marginal and may be insufficient to account for the significant therapeutic effects achieved regarding diseases involving remote organs such as the liver. Thus, we herein propose that FEVs primarily act locally in the intestine by modulating intestinal microenvironments such as barrier integrity and microbiota, thereby eliciting therapeutic impact remotely on the liver in non-gastrointestinal diseases via the gut-liver axis. Likewise, drugs delivered to the gastrointestinal system through FEVs may act via the gut-liver axis. As the liver is the main metabolic hub, the intestinal microenvironment may be implicated in other metabolic diseases. In fact, many patients with non-alcoholic fatty liver disease, obesity, diabetes and cardiovascular disease suffer from a leaky gut and dysbiosis. In this review, we provide an overview of the recent progress in FEVs and discuss their biomedical applications as therapeutic agents and drug delivery systems, highlighting the pivotal role of the gut-liver axis in the mechanisms of action of FEVs for the treatment of gut disorders and metabolic diseases.
Collapse
Affiliation(s)
- Sitong Zhang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qiyue Wang
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Daniel En Liang Tan
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vritika Sikka
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cheng Han Ng
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
| | - Yan Xian
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Dan Li
- Department of Food Science and Technology, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mark Muthiah
- Division of Gastroenterology and Hepatology, Department of MedicineNational University HospitalSingaporeSingapore
- National University Centre for Organ TransplantationNational University Health SystemSingaporeSingapore
| | - Nicholas W. S. Chew
- Department of CardiologyNational University Heart CentreNational University Health SystemSingaporeSingapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lingjun Tong
- Jinan Central HospitalShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jiong‐Wei Wang
- Department of Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Cardiovascular Research Institute (CVRI)National University Heart Centre Singapore (NUHCS)SingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
39
|
Sereme Y, Zarza SM, Medkour H, Mezouar S, Dotras L, Barciela A, Hernandez-Aguilar RA, Vitte J, Šmajs D, Louni M, Mulot B, Leclerc A, Guéry JP, Orain N, Diatta G, Sokhna C, Raoult D, Davoust B, Fenollar F, Mediannikov O. Treponematosis in critically endangered Western chimpanzees ( Pan troglodytes verus) in Senegal. One Health 2024; 18:100694. [PMID: 39010964 PMCID: PMC11247300 DOI: 10.1016/j.onehlt.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/10/2024] [Indexed: 07/17/2024] Open
Abstract
Treponematoses encompass a group of chronic and debilitating bacterial diseases transmitted sexually or by direct contact and attributed to Treponema pallidum. Despite being documented since as far back as 1963, the epidemiology of treponematoses in wild primates has remained an uninvestigated territory due to the inherent challenges associated with conducting examinations and obtaining invasive biological samples from wild animals. The primary aim of this study was to investigate the presence of treponemal infections in the critically endangered Western chimpanzees in Senegal, utilizing an innovative non-invasive stool serology method. We provide compelling evidence of the existence of anti-Treponema-specific antibodies in 13 out of 29 individual chimpanzees. Our study also underscores the significant potential of stool serology as a valuable non-invasive tool for monitoring and surveilling crucial emerging diseases in wild animals. We recognize two major implications: (1) the imperative need to assess the risks of treponematosis in Western chimpanzee populations and (2) the necessity to monitor and manage this disease following a holistic One Health approach.
Collapse
Affiliation(s)
- Youssouf Sereme
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades, Paris, France
| | - Sandra Madariaga Zarza
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Hacène Medkour
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Soraya Mezouar
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Amanda Barciela
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - R. Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
- Serra Hunter Programme, Generalitat de Catalunya, Spain
| | - Joana Vitte
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice, Czech Republic
| | - Meriem Louni
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | | | | | | | - Nicolas Orain
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Georges Diatta
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International UCAD-IRD, Dakar, Senegal
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard Davoust
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ., IRD, AP-HM, MEPHI, Marseille, France
| |
Collapse
|
40
|
Dubois C, Ducas É, Laforce-Lavoie A, Robidoux J, Delorme A, Live LS, Brouard D, Masson JF. A portable surface plasmon resonance (SPR) sensor for the detection of immunoglobulin A in plasma. Transfusion 2024; 64:881-892. [PMID: 38591151 DOI: 10.1111/trf.17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND A life-threatening anaphylactic shock can occur if a patient with undiagnosed immunoglobulin A (IgA) deficiency (i.e., IgA levels <500 ng/mL) receives IgA-containing blood, hence the need for a rapid, point-of-care (POC) method for IgA deficiency screening. Enzyme-linked immunosorbent assay (ELISA) is routinely used to detect IgA, but this method requires trained specialists and ≥24 h to obtain a result. We developed a surface plasmon resonance (SPR)-based protocol to identify IgA-deficient patients or donors within 1 h. MATERIALS AND METHODS The SPR sensor relies on the detection of IgAs captured by primary antibodies adsorbed on the SPR chip and quantified with secondary antibodies. The sensor was calibrated from 0 to 2000 ng/mL in buffer, IgA-depleted human serum, and plasma samples from IgA-deficient individuals. A critical concentration of 500 ng/mL was set for IgA deficiency. The optimized sensor was then tested on eight plasma samples with known IgA status (determined by ELISA), including five with IgA deficiency and three with normal IgA levels. RESULTS The limit of detection was estimated at 30 ng/mL in buffer and 400 ng/mL in diluted plasma. The results obtained fully agreed with ELISA among the eight plasma samples tested. The protocol distinguished IgA-deficient from normal samples, even for samples with an IgA concentration closer to critical concentration. DISCUSSION In conclusion, we developed a reliable POC assay for the quantification of IgA in plasma. This test may permit POC testing at blood drives and centralized centers to maintain reserves of IgA-deficient blood and in-hospital testing of blood recipients.
Collapse
Affiliation(s)
- Caroline Dubois
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | - Éric Ducas
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | | | - Jonathan Robidoux
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Alexandre Delorme
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | | | - Danny Brouard
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Jean-François Masson
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| |
Collapse
|
41
|
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, Park KY. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024; 16:1339. [PMID: 38732587 PMCID: PMC11085399 DOI: 10.3390/nu16091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Collapse
Affiliation(s)
- Geun-Hye Hong
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - So-Young Lee
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - In Ah Kim
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Jangmi Suk
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Sehee Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Ki Tae Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Min Gee Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Kun-Young Park
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| |
Collapse
|
42
|
Dai Y, Deng Q, Liu Q, Zhang L, Gan H, Pan X, Gu B, Tan L. Humoral immunosuppression of exposure to polycyclic aromatic hydrocarbons and the roles of oxidative stress and inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123741. [PMID: 38458516 DOI: 10.1016/j.envpol.2024.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.
Collapse
Affiliation(s)
- Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qianyun Deng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Qiaojuan Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huiquan Gan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
43
|
Zhang R, Wei M, Zhou J, Yang Z, Xiao M, Du L, Bao M, Ju J, Dong C, Zheng Y, Bao H. Effects of organic trace minerals chelated with oligosaccharides on growth performance, blood parameters, slaughter performance and meat quality in sheep. Front Vet Sci 2024; 11:1366314. [PMID: 38577544 PMCID: PMC10993154 DOI: 10.3389/fvets.2024.1366314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).
Collapse
Affiliation(s)
- Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Jianqun Zhou
- Nanning Zeweier Feed Limited Liability Company, Nanning, China
| | - Zaibin Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liu Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Meili Bao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ji Ju
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Chenyang Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hailin Bao
- Horqin Left Wing Rear Banner National Vocational and Technical School, Tongliao, China
| |
Collapse
|
44
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
45
|
Vaswani CM, Simone J, Pavelick JL, Wu X, Tan GW, Ektesabi AM, Gupta S, Tsoporis JN, Dos Santos CC. Tiny Guides, Big Impact: Focus on the Opportunities and Challenges of miR-Based Treatments for ARDS. Int J Mol Sci 2024; 25:2812. [PMID: 38474059 DOI: 10.3390/ijms25052812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is characterized by lung inflammation and increased membrane permeability, which represents the leading cause of mortality in ICUs. Mechanical ventilation strategies are at the forefront of supportive approaches for ARDS. Recently, an increasing understanding of RNA biology, function, and regulation, as well as the success of RNA vaccines, has spurred enthusiasm for the emergence of novel RNA-based therapeutics. The most common types of RNA seen in development are silencing (si)RNAs, antisense oligonucleotide therapy (ASO), and messenger (m)RNAs that collectively account for 80% of the RNA therapeutics pipeline. These three RNA platforms are the most mature, with approved products and demonstrated commercial success. Most recently, miRNAs have emerged as pivotal regulators of gene expression. Their dysregulation in various clinical conditions offers insights into ARDS pathogenesis and offers the innovative possibility of using microRNAs as targeted therapy. This review synthesizes the current state of the literature to contextualize the therapeutic potential of miRNA modulation. It considers the potential for miR-based therapeutics as a nuanced approach that incorporates the complexity of ARDS pathophysiology and the multifaceted nature of miRNA interactions.
Collapse
Affiliation(s)
- Chirag M Vaswani
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Julia Simone
- Department of Medicine, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Jacqueline L Pavelick
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao Wu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Greaton W Tan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- Faculty of Medicine, School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - James N Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Interdepartmental Division of Critical Care, St. Michael's Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
46
|
Aykur M, Malatyalı E, Demirel F, Cömert-Koçak B, Gentekaki E, Tsaousis AD, Dogruman-Al F. Blastocystis: A Mysterious Member of the Gut Microbiome. Microorganisms 2024; 12:461. [PMID: 38543512 PMCID: PMC10972062 DOI: 10.3390/microorganisms12030461] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 11/12/2024] Open
Abstract
Blastocystis is the most common gastrointestinal protist found in humans and animals. Although the clinical significance of Blastocystis remains unclear, the organism is increasingly being viewed as a commensal member of the gut microbiome. However, its impact on the microbiome is still being debated. It is unclear whether Blastocystis promotes a healthy gut and microbiome directly or whether it is more likely to colonize and persist in a healthy gut environment. In healthy people, Blastocystis is frequently associated with increased bacterial diversity and significant differences in the gut microbiome. Based on current knowledge, it is not possible to determine whether differences in the gut microbiome are the cause or result of Blastocystis colonization. Although it is possible that some aspects of this eukaryote's role in the intestinal microbiome remain unknown and that its effects vary, possibly due to subtype and intra-subtype variations and immune modulation, more research is needed to characterize these mechanisms in greater detail. This review covers recent findings on the effects of Blastocystis in the gut microbiome and immune modulation, its impact on the microbiome in autoimmune diseases, whether Blastocystis has a role like bacteria in the gut-brain axis, and its relationship with probiotics.
Collapse
Affiliation(s)
- Mehmet Aykur
- Department of Parasitology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat 60030, Türkiye
| | - Erdoğan Malatyalı
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Aydin 09010, Türkiye;
| | - Filiz Demirel
- Department of Medical Microbiology, Ankara City Hospital, Health Science University, Ankara 06500, Türkiye;
| | - Burçak Cömert-Koçak
- Department of Medical Microbiology, Karadeniz Ereğli State Hospital, Zonguldak 67300, Türkiye;
| | - Eleni Gentekaki
- Department of Veterinary Medicine, School of Veterinary Medicine, University of Nicosia, Nicosia 2414, Cyprus;
| | - Anastasios D. Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK;
| | - Funda Dogruman-Al
- Division of Medical Parasitology, Department of Medical Microbiology, Faculty of Medicine, Gazi University, Ankara 06560, Türkiye;
| |
Collapse
|
47
|
Sinsinbar G, Bindra AK, Liu S, Chia TW, Yoong Eng EC, Loo SY, Lam JH, Schultheis K, Nallani M. Amphiphilic Block Copolymer Nanostructures as a Tunable Delivery Platform: Perspective and Framework for the Future Drug Product Development. Biomacromolecules 2024; 25:541-563. [PMID: 38240244 DOI: 10.1021/acs.biomac.3c00858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Nanoformulation of active payloads or pharmaceutical ingredients (APIs) has always been an area of interest to achieve targeted, sustained, and efficacious delivery. Various delivery platforms have been explored, but loading and delivery of APIs have been challenging because of the chemical and structural properties of these molecules. Polymersomes made from amphiphilic block copolymers (ABCPs) have shown enormous promise as a tunable API delivery platform and confer multifold advantages over lipid-based systems. For example, a COVID booster vaccine comprising polymersomes encapsulating spike protein (ACM-001) has recently completed a Phase I clinical trial and provides a case for developing safe drug products based on ABCP delivery platforms. However, several limitations need to be resolved before they can reach their full potential. In this Perspective, we would like to highlight such aspects requiring further development for translating an ABCP-based delivery platform from a proof of concept to a viable commercial product.
Collapse
Affiliation(s)
- Gaurav Sinsinbar
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Anivind Kaur Bindra
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Shaoqiong Liu
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Teck Wan Chia
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Eunice Chia Yoong Eng
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Ser Yue Loo
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Jian Hang Lam
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Katherine Schultheis
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| | - Madhavan Nallani
- ACM Biolabs Pte Ltd., 71 Nanyang Drive, #02M-02, NTU Innovation Center, Singapore 638075, Singapore
| |
Collapse
|
48
|
Zagoory-Sharon O, Yirmiya K, Peleg I, Shimon-Raz O, Sanderlin R, Feldman R. Breast milk oxytocin and s-IgA modulate infant biomarkers and social engagement; The role of maternal anxiety. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 17:100219. [PMID: 38187086 PMCID: PMC10765300 DOI: 10.1016/j.cpnec.2023.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Breastfeeding has long been known to improve infants' health and mental development and to enhance the mother-infant bond, but much less research focused on the biological composition of breast milk and its associations with the infant's biomarkers and social development. In this exploratory study, we measured oxytocin (OT) and secretory immunoglobulin-A (s-IgA), the most abundant antibody in breast milk, and evaluated their associations with the same biomarkers in infant saliva and, consequently, with infant social engagement behavior. Fifty-five mother-infant dyads were home-visit and OT and s-IgA were assessed from breast milk and from infant saliva before and after a free-play interaction. Infant social behavior was coded offline using the Coding Interactive Behavior (CIB) and maternal anxiety self-reported. A path model revealed that mother's breast milk s-IgA impacted child social engagement via its links with child OT. In parallel, maternal breast milk OT was linked with infant social behavior through its association with the infant's immunity. This path was moderated by maternal anxiety; only in cases of high anxiety breast milk OT was positively connected to infant s-IgA. Our study, the first to measure OT and s-IgA in both breast milk and infant saliva in relation to observed social behavior, underscores the need for much further research on the dynamic interplay between breast milk composition, infant biomarkers, maternal mental health, and infant social outcomes. Results may suggest that biological systems in breast milk integrate to prepare infants to function in their social ecology through bio-behavioral feedback loops that signal the degree of stress in the environment.
Collapse
Affiliation(s)
| | | | - Itai Peleg
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Ortal Shimon-Raz
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Rachel Sanderlin
- Center for Developmental Social Neuroscience, Reichman University, Israel
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Israel
| |
Collapse
|
49
|
Dietary addition of Humulus scandens improved the intestinal barrier in rabbits. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2154215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Rodríguez I, Noda AA, Bosshard PP, Lienhard R. Anti-Treponema pallidum IgA response as a potential diagnostic marker of syphilis. Clin Microbiol Infect 2023; 29:1603.e1-1603.e4. [PMID: 37611864 DOI: 10.1016/j.cmi.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Serological tests for syphilis detect mainly total Ig, IgM or IgG antibodies. We aimed to evaluate the specific IgA response in syphilis patients according to disease stage. METHODS A serum IgA-enzyme immunoassay was developed using commercially available microplates coated with recombinant treponemal antigens and an anti-IgA-conjugate. To define a cut-off, we used 91 syphilis positive and 136 negative sera previously defined by the rapid plasma reagin and the Treponema pallidum particle agglutination results. Then we determined the intra- and inter-assay precisions, diagnostic sensitivity according to the clinical stage (in 66, 55 and 42 sera from primary, secondary and latent syphilis patients, respectively) and specificity (in 211 sera from people with conditions different to syphilis). IgA values were further measured in 71 sera from patients with previously treated syphilis. RESULTS The newly developed IgA-enzyme immunoassay showed a good discrimination between negative and positive samples with intra- and inter-assay variation coefficients <20%. The sensitivity was 80.3% (95% CI, 70.0-90.6), 100.0% (95% CI, 99.1-100.0) and 95.2% (95% CI, 87.6-100.0) in primary, secondary and latent syphilis, respectively, and the specificity was 98.1% (95% CI, 96.0-100.0). Further, IgA values were negative in 61.3% (38/62) of patients with previously treated syphilis. DISCUSSION Our findings suggest serum IgA as a sensitive and specific marker of syphilis and its detection could be used as a screening assay for active infection. Further evaluation is needed in prospective longitudinal field studies.
Collapse
Affiliation(s)
- Islay Rodríguez
- National Reference Laboratory of Treponemes and Special Pathogens, Tropical Medicine Institute "Pedro Kourí", Havana, Cuba.
| | - Angel A Noda
- National Reference Laboratory of Treponemes and Special Pathogens, Tropical Medicine Institute "Pedro Kourí", Havana, Cuba
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|