1
|
Bege M, Leiner K, Lovas M, Pető R, Bereczki I, Hodek J, Weber J, Kuczmog A, Borbás A. Synthesis of 3'-modified xylofuranosyl nucleosides bearing 5'-silyl or -butyryl groups and their antiviral effect against RNA viruses. Eur J Pharm Sci 2025; 209:107107. [PMID: 40268255 DOI: 10.1016/j.ejps.2025.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
D-xylofuranosyl nucleoside analogues bearing alkylthio and glucosylthio substituents at the C3'-position were prepared by photoinitiated radical-mediated hydrothiolation reactions from the corresponding 2',5'-di-O-silyl-3'-exomethylene uridine. Sequential desilylation and 5'-O-butyrylation of the 3'-thiosubstituted molecules produced a 24-membered nucleoside series with diverse substitution patterns, and the compounds were evaluated for their in vitro antiviral activity against three dangerous human RNA viruses, SARS-CoV-2, SINV and CHIKV. Eight compounds exhibited SARS-CoV-2 activity with low micromolar EC50 values in Vero E6 cells, and two of them also inhibited virus growth in human Calu cells. The best anti-SARS-CoV-2 activity was exhibited by 2',5'-di-O-silylated 3'-C-alkylthio nucleosides. Twelve compounds showed in vitro antiviral activity against CHIKV and fourteen against SINV with low micromolar EC50 values, with the 5'-butyryl-2'-silyl-3'-alkylthio substitution pattern being the most favorable against both viruses. In the case of the tested nucleosides, removal of the 2'-O-silyl group completely abolished the antiviral activity of the compounds against all three viruses. Overall, the most potent antiviral agent was the disilylated 3'-glucosylthio xylonucleoside, which showed excellent and specific antiviral activity against SINV with an EC50 value of 3 μM and no toxic effect at the highest tested concentration of 120 μM.
Collapse
Affiliation(s)
- Miklós Bege
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary
| | - Krisztina Leiner
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pecs 7624, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs 7624, Hungary
| | - Miklós Lovas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary
| | - Réka Pető
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary; National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pecs 7624, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Anett Kuczmog
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pecs 7624, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs 7624, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, Debrecen 4032, Hungary; National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pecs 7624, Hungary.
| |
Collapse
|
2
|
Gutiérrez-López R, Ruiz-López MJ, Ledesma J, Magallanes S, Nieto C, Ruiz S, Sanchez-Peña C, Ameyugo U, Camacho J, Varona S, Cuesta I, Jado-García I, Sanchez-Seco MP, Figuerola J, Vázquez A. First isolation of the Sindbis virus in mosquitoes from southwestern Spain reveals a new recent introduction from Africa. One Health 2025; 20:100947. [PMID: 39760017 PMCID: PMC11699435 DOI: 10.1016/j.onehlt.2024.100947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Sindbis virus (SINV), is an Alphavirus of the family Togaviridae. This zoonotic arbovirus is transmitted by mosquitoes, primarily from the Culex genus, with bird species acting as amplifying vertebrate hosts. Occasionally it can also affect humans that are accidental hosts. SINV genotype I (SINV-I) has been isolated in mosquitoes and birds in South Africa and Northern Europe, producing fever outbreaks. In the last decades, there were several detections of SINV in Europe. In 2022, during the West Nile virus (WNV) mosquito surveillance program in Andalucía (Spain) implemented by the regional health administration, we detected the presence of both SINV and WNV in a Culex perexiguus pool, representing the first detection of SINV in Spain. After this finding, we screened 1149 mosquito pools to determine the status of SINV circulation in western Andalucía. We identified for the first time the presence of SINV in five different mosquito species. Culex perexiguus presented the highest infection rate by SINV. In addition, SINV was geographically widespread and distributed in four out of the five Andalucía's provinces studied, with Cadiz presenting the highest infection rate. All SINV genomes from Southwestern Spain characterised in this study belonged to SINV-I, previously detected in Europe and Africa. These isolated SINV-I strains presented low molecular variation among them and in the phylogenomic analyses they formed a monophyletic group that clustered with strains from Algeria and Kenya. These results suggest that, around 2017, a single new SINV introduction into the European continent occurred, probably from Northern (Algeria) or Central Africa.
Collapse
Affiliation(s)
- Rafael Gutiérrez-López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - María José Ruiz-López
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Juan Ledesma
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Sergio Magallanes
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Cristina Nieto
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Santiago Ruiz
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain
| | - Carolina Sanchez-Peña
- Junta de Andalucía, Consejería de Salud y Familias, Dirección General de Salud Pública y Ordenación Farmaceútica, Subdirección de Protección de la Salud, 41020 Sevilla, Spain
| | - Ulises Ameyugo
- Junta de Andalucía, Consejería de Salud y Familias, Dirección General de Salud Pública y Ordenación Farmaceútica, Subdirección de Protección de la Salud, 41020 Sevilla, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Sarai Varona
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832 Madrid, Spain
| | - Isabel Cuesta
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Isabel Jado-García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - María Paz Sanchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Jordi Figuerola
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
3
|
Ostermann PN, Madden VJ, Kemp HI, Ciampi de Andrade D. Relevance of chronic pain related to infection for the ICD-11. Pain 2025:00006396-990000000-00849. [PMID: 40387220 DOI: 10.1097/j.pain.0000000000003596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 05/20/2025]
Affiliation(s)
- Philipp Niklas Ostermann
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Victoria J Madden
- African Pain Research Initiative, Department of Anaesthesia and Perioperative Medicine, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- HIV Mental Health Research Unit, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Harriet I Kemp
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
de Souza WM, Lecuit M, Weaver SC. Chikungunya virus and other emerging arthritogenic alphaviruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01177-8. [PMID: 40335675 DOI: 10.1038/s41579-025-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/09/2025]
Abstract
Arthritogenic alphaviruses are arboviruses (arthropod-borne viruses) that are genetically and serologically related positive-strand RNA viruses and cause epidemics on a global scale. They are transmitted by mosquitoes and cause diseases in humans that are mainly characterized by fever and often debilitating, sometimes chronic polyarthralgia. At present, approved treatments or vaccines are not available for most arthritogenic alphaviruses, and recently licensed vaccines against chikungunya virus are awaiting implementation in endemic areas. Most arthritogenic alphaviruses are currently limited to specific geographic areas due to vector distributions and availability of amplifying hosts, but they pose a substantial risk of emergence in other regions. The exception is chikungunya virus, which has emerged repeatedly from Africa, established sustained and efficient transmission in urban areas (including in temperate climates) and has caused major epidemics across the world. In this Review, we highlight recent advances in our understanding of the transmission cycles of arthritogenic alphaviruses, their vectors, epidemiology, transmission dynamics, evolution, pathophysiology and immune responses. We also outline strategies and countermeasures to anticipate and mitigate the impact of arthritogenic alphaviruses on human health.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Streng K, Holicki CM, Hesson JC, Graham H, Chandler F, Krol L, Blom R, Münger E, van der Linden A, Koenraadt CJ, Schrama M, de Saint Lary CDB, Visser LG, Munnink BO, Lundkvist Å, Koopmans MP, van der Jeugd HP, van der Poel WH, Sikkema RS. Local Circulation of Sindbis Virus in Wild Birds and Horses, the Netherlands, 2021-2022. Emerg Infect Dis 2025; 31:863-866. [PMID: 40133068 PMCID: PMC11950264 DOI: 10.3201/eid3104.241503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
We report Sindbis virus circulation in the Netherlands based on serologic evidence found in 6 resident wild birds and 3 horses (2021-2022). Tested mosquitoes were molecularly negative, and humans were serologically negative. Veterinarians and health practitioners in the Netherlands should be aware of the importance of surveillance for Sindbis virus.
Collapse
Affiliation(s)
| | | | - Jenny C. Hesson
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Heather Graham
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Felicity Chandler
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Louie Krol
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | | | - Emmanuelle Münger
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Anne van der Linden
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Constantianus J.M. Koenraadt
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Maarten Schrama
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Chiara de Bellegarde de Saint Lary
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Leo G. Visser
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Bas Oude Munnink
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Åke Lundkvist
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Marion P.G. Koopmans
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | - Henk P. van der Jeugd
- Wageningen University & Research, Wageningen, the Netherlands (K. Streng, R. Blom, C.J.M. Koenraadt, W.H.M. van der Poel); Erasmus Medical Center, Rotterdam, the Netherlands (C.M. Holicki, F. Chandler, E. Münger, A. van der Linden, B. Oude Munnink, M.P.G. Koopmans, R.S. Sikkema); Nedre Dalälvens Utvecklings AB, Gysinge, Sweden (J.C. Hesson); Uppsala University, Uppsala, Sweden (J.C. Hesson, Å. Lundkvist); Wageningen Bioveterinary Research, Lelystad, the Netherlands (H. Graham, W.H.M. van der Poel); Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands (L. Krol, M. Schrama); Julius Centre for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands (C. de Bellegarde de Saint Lary); Leiden University Medical Center, Leiden University Center for Infectious Diseases, Leiden (C. de Bellegarde de Saint Lary, L.G. Visser); Vogeltrekstation—Dutch Centre for Avian Migration and Demography, Netherlands Institute of Ecology, Wageningen (H.P. van der Jeugd)
| | | | | |
Collapse
|
6
|
Thiruvaiyaru A, Mattila S, Sadeghi M, Naumenko K, Merits A, Varjosalo M, Ahola T. Proximity interactome of alphavirus replicase component nsP3 includes proviral host factors eIF4G and AHNAK. PLoS Pathog 2025; 21:e1013050. [PMID: 40193402 PMCID: PMC12005498 DOI: 10.1371/journal.ppat.1013050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/17/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
All positive-strand RNA viruses replicate their genomes in association with modified intracellular membranes, inducing either membrane invaginations termed spherules, or double-membrane vesicles. Alphaviruses encode four non-structural proteins nsP1-nsP4, all of which are essential for RNA replication and spherule formation. To understand the host factors associated with the replication complex, we fused the efficient biotin ligase miniTurbo with Semliki Forest virus (SFV) nsP3, which is located on the cytoplasmic surface of the spherules. We characterized the proximal proteome of nsP3 in three cell lines, including cells unable to form stress granules, and identified >300 host proteins constituting the microenvironment of nsP3. These included all the nsPs, as well as several previously characterized nsP3 binding proteins. However, the majority of the identified interactors had no previously identified roles in alphavirus replication, including 39 of the top 50 interacting proteins. The most prominent biological processes involving the proximal proteins were nucleic acid metabolism, translational regulation, cytoskeletal rearrangement and membrane remodeling. siRNA silencing confirmed six novel proviral factors, USP10, AHNAK, eIF4G1, SH3GL1, XAB2 and ANKRD17, which are associated with distinct cellular functions. All of these except SH3GL1 were also important for the replication of chikungunya virus. We discovered that the small molecule 4E1RCat, which inhibits the interaction between the canonical translation initiation factors eIF4G and eIF4E, exhibits antiviral activity against SFV. Since the same molecule was previously found to inhibit coronaviruses, this suggest the possibility that translation initiation factors could be considered as targets for broadly acting antivirals.
Collapse
Affiliation(s)
- Aditya Thiruvaiyaru
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Sari Mattila
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mohammadreza Sadeghi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Karki D, LaPointe AT, Isom C, Thomas M, Sokoloski KJ. Mechanistic insights into Sindbis virus infection: noncapped genomic RNAs enhance the translation of capped genomic RNAs to promote viral infectivity. Nucleic Acids Res 2025; 53:gkae1230. [PMID: 39660624 PMCID: PMC11724270 DOI: 10.1093/nar/gkae1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Alphaviruses are globally distributed, vector-borne RNA viruses with high outbreak potential and no clinical interventions, posing a significant global health threat. Previously, the production and packaging of both viral capped and noncapped genomic RNAs (cgRNA and ncgRNA) during infection was reported. Studies have linked ncgRNA production to viral infectivity and pathogenesis, but its precise role remains unclear. To define the benefits of ncgRNAs, pure populations of capped and noncapped Sindbis virus (SINV) gRNAs were synthesized and transfected into host cells. The data showed that mixtures of cgRNAs and ncgRNAs had higher infectivity compared to pure cgRNAs, with mixtures containing low cgRNA proportions exceeding linear infectivity expectations. This enhancement depended on co-delivery of cgRNAs and ncgRNAs to the same cell and required the noncapped RNAs to be viral in origin. Contrary to the initial hypothesis that the ncgRNAs serve as replication templates, the cgRNAs were preferentially replicated. Further analysis revealed that viral gene expression, viral RNA (vRNA) synthesis and particle production were enhanced in the presence of ncgRNAs, which function to promote cgRNA translation early in infection. Our findings highlight the importance of ncgRNAs in alphaviral infection, showing they enhance cgRNA functions and significantly contribute to viral infectivity.
Collapse
Affiliation(s)
- Deepa Karki
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Autumn T LaPointe
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Cierra Isom
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Landers VD, Thomas M, Isom CM, Karki D, Sokoloski KJ. Capsid protein mediated evasion of IRAK1-dependent signalling is essential to Sindbis virus neuroinvasion and virulence in mice. Emerg Microbes Infect 2024; 13:2300452. [PMID: 38164715 PMCID: PMC10773654 DOI: 10.1080/22221751.2023.2300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
ABSTRACTAlphaviruses are arthropod-borne, single-stranded positive-sense RNA viruses that are recognized as rapidly emerging pathogens. Despite being exquisitely sensitive to the effects of the innate immune response alphaviruses can readily replicate, disseminate, and induce pathogenesis in immunologically competent hosts. Nonetheless, how alphaviruses evade the induction of an innate immune response prior to viral gene expression, or in non-permissive infections, is unknown. Previously we reported the identification of a novel host/pathogen interaction between the viral Capsid (CP) protein and the host IRAK1 protein. The CP/IRAK1 interaction was determined to negatively impact IRAK1-dependent PAMP detection in vitro, however, the precise importance of the CP/IRAK1 interaction to alphaviral infection remained unknown. Here we detail the identification of the CP/IRAK1 interaction determinants of the Sindbis virus (SINV) CP protein and examine the importance of the interaction to alphaviral infection and pathogenesis in vivo using an interaction deficient mutant of the model neurotropic strain of SINV. Importantly, these interaction determinants are highly conserved across multiple Old-World alphaviruses, including Ross River virus (RRV), Mayaro virus (MAYV), Chikungunya virus (CHIKV), and Semliki Forest virus (SFV). In the absence of a functional CP/IRAK1 interaction, SINV replication is significantly restricted and fails to disseminate from the primary site of inoculation due to the induction of a robust type-I Interferon response. Altogether these data indicate that the evasion of IRAK1-dependent signalling is critical to overcoming the host innate immune response and the in vivo data presented here demonstrate the importance of the CP/IRAK1 interaction to neurovirulence and pathogenesis.
Collapse
Affiliation(s)
- V Douglas Landers
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Hu R, Li M, Chen S, Wang M, Tao X, Zhu Y, Yan H, Liu Y. Sniffer restricts arboviral brain infections by regulating ROS levels and protecting blood-brain barrier integrity in Drosophila and mosquitoes. PLoS Pathog 2024; 20:e1012797. [PMID: 39680616 PMCID: PMC11684763 DOI: 10.1371/journal.ppat.1012797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Arthropod-borne viruses (arboviruses) are transmitted to humans by arthropod vectors and pose a serious threat to global public health. Neurotropic arboviruses including Sindbis virus (SINV) persistently infect the central nervous system (CNS) of vector insects without causing notable pathological changes or affecting their behavior or lifespan. However, the mechanisms by which vector insects evade these viral infections in the brains are poorly understood. In this study, we found that loss of the carbonyl reductase Sniffer (Sni) led to a significant increase in SINV infection in the Drosophila brain. Sni regulates reactive oxygen species (ROS) levels, and its depletion leads to elevated ROS, which in turn disrupts the septate junctions (SJs) between subperineurial glia (SPG) cells, compromising the integrity and barrier function of the blood-brain barrier (BBB). Genetic and pharmacological reduction of ROS restored BBB integrity and reduced viral load in the brains of Sni-depleted flies. Additionally, we identified Sni homologs and revealed that the antiviral function of Sni is highly conserved in mosquitoes, where it regulates ROS and protects BBB integrity. Our results revealed an evolutionarily conserved antiviral mechanism in which Sni acts as an antioxidant that protects BBB integrity and restricts viral infection in the vector insect brain.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengzhu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shulin Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xinjun Tao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yihan Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Boubidi SC, Mousson L, Kernif T, Khardine F, Hachid A, Beck C, Lecollinet S, Moraes RA, Moutailler S, Dauga C, Failloux AB. First evidence of circulation of multiple arboviruses in Algeria. PLoS Negl Trop Dis 2024; 18:e0012651. [PMID: 39509466 PMCID: PMC11575824 DOI: 10.1371/journal.pntd.0012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Algeria like other North African countries is experiencing recurrent episodes of West Nile Virus (WNV) emergences and new health threats associated with the introduction of Aedes albopictus in 2010 are to be feared. To improve the surveillance of mosquito-borne pathogens, we performed a study using innovative tools based on multiplex molecular methods. METHODS We combined two approaches: a high-throughput chip based on the BioMark Dynamic array system to detect arboviruses in mosquitoes, and a set of immunologic methods (ELISA, microsphere immunoassays (MIA) and virus microneutralization tests (MNT)) for serological surveys in animal hosts. We investigated two distinct regions: a first zone located in the coastal humid region and a second one in the Saharan desert region. PRINCIPAL FINDINGS We collected a total of 1,658 mosquitoes belonging to nine different species and found predominantly Culex pipienss. l. (56.5%) and Cx. perexiguus (27.5%). From 180 pools of 10 mosquitoes, we detected four arboviruses: Banna virus (BAV), chikungunya virus (CHIKV), Sindbis virus (SINV), and Usutu virus (USUV). Moreover, we examined 389 blood samples from equids and poultry and found that 52.4% were positive for flavivirus antibodies in ELISA, while 30.8% were positive for WNV and two chickens and two equids were positive for USUV by MNT and MIA respectively. CONCLUSIONS To our knowledge, this is the first report of five arboviruses circulating in Algeria, with three reported for the first time (CHIKV, BAV, and USUV). Our study brings evidence that reinforcing surveillance using more discriminant tools may help in anticipating future emergences and propose adapted control measures.
Collapse
Affiliation(s)
- Saïd C Boubidi
- Institut Pasteur d'Alger, Eco-Epidémiologie Parasitaire et Génétique des Populations, Alger, Algeria
| | - Laurence Mousson
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| | - Tahar Kernif
- Institut Pasteur d'Alger, Eco-Epidémiologie Parasitaire et Génétique des Populations, Alger, Algeria
| | - Fayez Khardine
- Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Algiers, Algeria
| | - Aïssam Hachid
- Laboratoire des Arbovirus et Virus Emergents, Institut Pasteur d'Algérie, Algiers, Algeria
- Faculté de Pharmacie, Université d'Alger1, Algiers, Algeria
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Rayane A Moraes
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Catherine Dauga
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| | - Anna Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and InsectVectors, Paris, France
| |
Collapse
|
11
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
12
|
Li H, Liu H, Zhu D, Dou C, Gang B, Zhang M, Wan Z. Biological function molecular pathways and druggability of DNMT2/TRDMT1. Pharmacol Res 2024; 205:107222. [PMID: 38782147 DOI: 10.1016/j.phrs.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.
Collapse
Affiliation(s)
- Huari Li
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China; College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China.
| | - Huiru Liu
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Daiyun Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei Province 430070, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chengli Dou
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, College of Laboratory Medicine, Anhui Province Key Laboratory of Cancer Translational Medicine, and The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, No.2600 Donghai Avenue, Bengbu, Anhui Province 233030, PR China
| |
Collapse
|
13
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
14
|
Graff SL, Eibner GJ, Ochieng JR, Jones TC, Nsubuga AM, Lutwama JJ, Rwego IB, Junglen S. Detection of two alphaviruses: Middelburg virus and Sindbis virus from enzootic amplification cycles in southwestern Uganda. Front Microbiol 2024; 15:1394661. [PMID: 38863760 PMCID: PMC11165182 DOI: 10.3389/fmicb.2024.1394661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Our knowledge of alphavirus genetic diversity is mainly based on viruses isolated from anthropophilic mosquito species, humans, and livestock during outbreaks. Studies on alphaviruses from sylvatic amplification cycles in sub-Saharan Africa have been conducted less often than from epizootic environments. To gain insight into alphavirus diversity in enzootic transmission cycles, we collected over 23,000 mosquitoes in lowland rainforest and savannah gallery forest in southwestern Uganda and tested them for alphavirus infections. We detected Sindbis virus (SINV) in a Culex Culex sp. mosquito and Middelburg virus (MIDV) in Eretmapodites intermedius and Mansonia africana. MIDV is a mosquito-borne alphavirus that causes febrile illness in sheep, goats, and horses and was previously not known to occur in Uganda. SINV, also a mosquito-borne alphavirus, causes mild infections in humans. Full genomes of SINV and MIDV were sequenced, showing a nucleotide identity of 99% to related strains. Both isolates replicated to high titres in a wide variety of vertebrate cells. Our data suggest endemic circulation of SINV and MIDV in Uganda.
Collapse
Affiliation(s)
- Selina Laura Graff
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Georg Joachim Eibner
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - James Robert Ochieng
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Terry C. Jones
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- German Centre for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Mutebi Nsubuga
- Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | | | - Innocent Bidason Rwego
- Department of Biosecurity, Ecosystems and Veterinary Public Health, Makerere University, Kampala, Uganda
| | - Sandra Junglen
- Institute of Virology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
15
|
Nurmukanova V, Matsvay A, Gordukova M, Shipulin G. Square the Circle: Diversity of Viral Pathogens Causing Neuro-Infectious Diseases. Viruses 2024; 16:787. [PMID: 38793668 PMCID: PMC11126052 DOI: 10.3390/v16050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.
Collapse
Affiliation(s)
- Varvara Nurmukanova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Maria Gordukova
- G. Speransky Children’s Hospital No. 9, 123317 Moscow, Russia
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia
| |
Collapse
|
16
|
Wang Y, Xu Z, Zhang H, Zhou Y, Cao J, Zhang Y, Wang Z, Zhou J. Towards modelling tick-virus interactions using the weakly pathogenic Sindbis virus: Evidence that ticks are competent vectors. Front Cell Infect Microbiol 2024; 14:1334351. [PMID: 38567020 PMCID: PMC10985168 DOI: 10.3389/fcimb.2024.1334351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Most tick-borne viruses (TBVs) are highly pathogenic and require high biosecurity, which severely limits their study. We found that Sindbis virus (SINV), predominantly transmitted by mosquitoes, can replicate in ticks and be subsequently transmitted, with the potential to serve as a model for studying tick-virus interactions. We found that both larval and nymphal stages of Rhipicephalus haemaphysaloides can be infected with SINV-wild-type (WT) when feeding on infected mice. SINV replicated in two species of ticks (R. haemaphysaloides and Hyalomma asiaticum) after infecting them by microinjection. Injection of ticks with SINV expressing enhanced Green Fluorescent Protein (eGFP) revealed that SINV-eGFP specifically aggregated in the tick midguts for replication. During blood-feeding, SINV-eGFP migrated from the midguts to the salivary glands and was transmitted to a new host. SINV infection caused changes in expression levels of tick genes related to immune responses, substance transport and metabolism, cell growth and death. SINV mainly induced autophagy during the early stage of infection; with increasing time of infection, the level of autophagy decreased, while the level of apoptosis increased. During the early stages of infection, the transcript levels of immune-related genes were significantly upregulated, and then decreased. In addition, SINV induced changes in the transcription levels of some functional genes that play important roles in the interactions between ticks and tick-borne pathogens. These results confirm that the SINV-based transmission model between ticks, viruses, and mammals can be widely used to unravel the interactions between ticks and viruses.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuqiang Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zedong Wang
- Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Jilin, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
17
|
Anestino TA, Queiroz-Junior CM, Cruz AMF, Souza DG, Madeira MFM. The impact of arthritogenic viruses in oral tissues. J Appl Microbiol 2024; 135:lxae029. [PMID: 38323434 DOI: 10.1093/jambio/lxae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
Arthritis and periodontitis are inflammatory diseases that share several immunopathogenic features. The expansion in the study of virus-induced arthritis has shed light on how this condition could impact other parts of the human body, including the mouth. Viral arthritis is an inflammatory joint disease caused by several viruses, most notably the alphaviruses Chikungunya virus (CHIKV), Sindbis virus (SINV), Ross River virus (RRV), Mayaro virus (MAYV), and O'nyong'nyong virus (ONNV). These viruses can induce an upsurge of matrix metalloproteinases and immune-inflammatory mediators such as Interleukin-6 (IL6), IL-1β, tumor necrosis factor, chemokine ligand 2, and receptor activator of nuclear factor kappa-B ligand in the joint and serum of infected individuals. This can lead to the influx of inflammatory cells to the joints and associated muscles as well as osteoclast activation and differentiation, culminating in clinical signs of swelling, pain, and bone resorption. Moreover, several data indicate that these viral infections can affect other sites of the body, including the mouth. The human oral cavity is a rich and diverse microbial ecosystem, and viral infection can disrupt the balance of microbial species, causing local dysbiosis. Such events can result in oral mucosal damage and gingival bleeding, which are indicative of periodontitis. Additionally, infection by RRV, CHIKV, SINV, MAYV, or ONNV can trigger the formation of osteoclasts and upregulate pro-osteoclastogenic inflammatory mediators, interfering with osteoclast activation. As a result, these viruses may be linked to systemic conditions, including oral manifestations. Therefore, this review focuses on the involvement of alphavirus infections in joint and oral health, acting as potential agents associated with oral mucosal inflammation and alveolar bone loss. The findings of this review demonstrate how alphavirus infections could be linked to the comorbidity between arthritis and periodontitis and may provide a better understanding of potential therapeutic management for both conditions.
Collapse
Affiliation(s)
- Thales Augusto Anestino
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Amanda Medeiros Frota Cruz
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
| | - Mila Fernandes Moreira Madeira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, CEP: 31270-901, Brazil
- Department of Oral Biology, Biomedical Research Institute, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
18
|
Dang Y, Li J, Li Y, Wang Y, Zhao Y, Zhao N, Li W, Zhang H, Ye C, Ma H, Zhang L, Liu H, Dong Y, Yao M, Lei Y, Xu Z, Zhang F, Ye W. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol 2024; 98:e0135023. [PMID: 38169284 PMCID: PMC10805074 DOI: 10.1128/jvi.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Wang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yajing Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Ningbo Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
19
|
Michie A, Ernst T, Pyke AT, Nicholson J, Mackenzie JS, Smith DW, Imrie A. Genomic Analysis of Sindbis Virus Reveals Uncharacterized Diversity within the Australasian Region, and Support for Revised SINV Taxonomy. Viruses 2023; 16:7. [PMID: 38275942 PMCID: PMC10820390 DOI: 10.3390/v16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.
Collapse
Affiliation(s)
- Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Timo Ernst
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| | - Alyssa T. Pyke
- Department of Health, Public Health Virology Laboratory, Forensic and Scientific Services, Queensland Government, Coopers Plains, QLD 4108, Australia;
| | - Jay Nicholson
- Environmental Health Directorate, Department of Health, Perth, WA 6000, Australia;
| | - John S. Mackenzie
- PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia; (J.S.M.); (D.W.S.)
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - David W. Smith
- PathWest Laboratory Medicine Western Australia, Nedlands, WA 6009, Australia; (J.S.M.); (D.W.S.)
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia; (A.M.); (T.E.)
| |
Collapse
|
20
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
21
|
Rau J, Köchling K, Schäfer M, Tews BA, Wylezich C, Schaub GA, Werner D, Kampen H. Viral RNA in Mosquitoes (Diptera: Culicidae) Collected between 2019 and 2021 in Germany. Viruses 2023; 15:2298. [PMID: 38140539 PMCID: PMC10746995 DOI: 10.3390/v15122298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.
Collapse
Affiliation(s)
- Janine Rau
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Katharina Köchling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Mandy Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Birke A. Tews
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| | - Günter A. Schaub
- Zoology/Parasitology Department, Ruhr-University, Universitätsstr. 150, 44801 Bochum, Germany;
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, 15374 Müncheberg, Germany;
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Germany; (M.S.); (B.A.T.); (C.W.); (H.K.)
| |
Collapse
|
22
|
Troisi EM, Nguyen BH, Baxter VK, Griffin DE. Interferon regulatory factor 7 modulates virus clearance and immune responses to alphavirus encephalomyelitis. J Virol 2023; 97:e0095923. [PMID: 37772825 PMCID: PMC10617562 DOI: 10.1128/jvi.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Viral encephalomyelitis outcome is dependent on host responses to neuronal infection. Interferon (IFN) is an important component of the innate response, and IFN regulatory factor (IRF) 7 is an inducible transcription factor for the synthesis of IFN-α. IRF7-deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7 -/- mice produce low levels of IFN-α but high levels of IFN-β with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7 -/- mice developed inflammation earlier but failed to clear virus from motor neuron-rich regions of the brainstem and spinal cord. Levels of IFN-γ and virus-specific antibody were comparable, indicating that IRF7 deficiency does not impair expression of these known viral clearance factors. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance.
Collapse
Affiliation(s)
- Elizabeth M. Troisi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Benjamin H. Nguyen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victoria K. Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Sun K, Shi X, Li L, Nie X, Xu L, Jia F, Xu F. Oncolytic Viral Therapy for Glioma by Recombinant Sindbis Virus. Cancers (Basel) 2023; 15:4738. [PMID: 37835433 PMCID: PMC10571546 DOI: 10.3390/cancers15194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The characteristics of glioblastoma, such as drug resistance during treatment, short patient survival, and high recurrence rates, have made patients with glioblastoma more likely to benefit from oncolytic therapy. METHODS In this study, we investigated the safety of the sindbis virus by injecting virus intravenously and intracranially in mice and evaluated the therapeutic effect of the virus carrying different combinations of IL-12, IL-7, and GM-CSF on glioma in a glioma-bearing mouse model. RESULTS SINV was autologously eliminated from the serum and organs as well as from neural networks after entering mice. Furthermore, SINV was restricted to the injection site in the tree shrew brain and did not spread throughout the whole brain. In addition, we found that SINV-induced apoptosis in conjunction with the stimulation of the immune system by tumor-killing cytokines substantially suppressed tumor development. It is worth mentioning that SINV carrying IL-7 and IL-12 had the most notable glioma-killing effect. Furthermore, in an intracranial glioma model, SINV containing IL-7 and IL-12 effectively prolonged the survival time of mice and inhibited glioma progression. CONCLUSIONS These results suggest that SINV has a significant safety profile as an oncolytic virus and that combining SINV with cytokines is an efficient treatment option for malignant gliomas.
Collapse
Affiliation(s)
- Kangyixin Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangwei Shi
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
| | - Xiupeng Nie
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (X.N.); (L.X.)
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; (X.N.); (L.X.)
| | - Fan Jia
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (X.S.); (L.L.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
24
|
Wells EW, Parker MT. Chimeric Viruses Containing Select Agents: The Biology Behind Their Creation, Attenuation, and Exclusion From Regulation. Health Secur 2023; 21:384-391. [PMID: 37703546 DOI: 10.1089/hs.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The US Centers for Disease Control and Prevention (CDC), as part of the Federal Select Agent Program, and under the purview of 42 CFR §73.3, has the ability to regulate chimeric viruses that contain portions of pathogens that are part of the select agents and toxins list. In addition, the CDC is responsible for excluding pathogens from regulation, including chimeric viruses, that are sufficiently attenuated. Since 2003, the CDC has excluded over 20 chimeric viruses that contain portions of select agents. But in late 2021, the CDC proposed a regulatory first-the addition of a chimeric virus to the select agents and toxins list. To better understand the importance and applicability of this action, we surveyed the landscape of previous exclusions from select agent regulation. First, we reviewed the exclusion criteria used by the Intragovernmental Select Agents and Toxins Technical Advisory Committee in their advisement of the Federal Select Agent Program. We then reviewed the literature on chimeric viruses that contain portions of select agents and that have been excluded from regulation due to sufficient attenuation, focusing on chimeric alphaviruses and chimeric avian influenza viruses. By analyzing biological commonalities and patterns in the structure and methodology of the development of previously excluded chimeric viruses, we provide insight into how the CDC has used exclusion criteria in the past to regulate chimeric viruses. We conclude by contrasting previous exclusions with the recent addition of SARS-CoV-1/SARS-CoV-2 chimeric viruses to the select agents and toxins list, demonstrating that this addition strays from established, effective regulatory processes, and is thus a regulatory misstep.
Collapse
Affiliation(s)
- Elizabeth W Wells
- Elizabeth W. Wells is a Student, Department of Biology, Georgetown College of Arts & Sciences, Georgetown University, Washington, DC
| | - Michael T Parker
- Michael T. Parker, PhD, is Assistant Dean, Georgetown College of Arts & Sciences, Georgetown University, Washington, DC
| |
Collapse
|
25
|
Lata K, Charles S, Mangala Prasad V. Advances in computational approaches to structure determination of alphaviruses and flaviviruses using cryo-electron microscopy. J Struct Biol 2023; 215:107993. [PMID: 37414374 DOI: 10.1016/j.jsb.2023.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Advancements in the field of cryo-electron microscopy (cryo-EM) have greatly contributed to our current understanding of virus structures and life cycles. In this review, we discuss the application of single particle cryo-electron microscopy (EM) for the structure elucidation of small enveloped icosahedral viruses, namely, alpha- and flaviviruses. We focus on technical advances in cryo-EM data collection, image processing, three-dimensional reconstruction, and refinement strategies for obtaining high-resolution structures of these viruses. Each of these developments enabled new insights into the alpha- and flavivirus architecture, leading to a better understanding of their biology, pathogenesis, immune response, immunogen design, and therapeutic development.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sylvia Charles
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
26
|
Sousa-Pimenta M, Martins Â, Machado V. Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:189-219. [PMID: 37541724 DOI: 10.1016/bs.ircmb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The increased tropism for malignant cells of some viruses has been highlighted in recent studies, prompting their use as a strategy to modify the transcriptional profile of those cells, while sparing the healthy ones. Likewise, they have been recognized as players modulating microenvironmental immunity, namely through an increase in antigen-presenting, natural-killer, and T CD8+ cytotoxic cells by a cross-priming mechanism elicited by tumor-associated antigens. The immunomodulatory role of the oncolytic virus seems relevant in hematological malignancies, which may relapse as a result of a proliferative burst elicited by an external stimulus in progenitor or neoplastic stem cells. By reprogramming the host cells and the surrounding environment, the potential of virotherapy ranges from the promise to eradicate the minimal measurable disease (in acute leukemia, for example), to the ex vivo purging of malignant progenitor cells in the setting of autologous bone marrow transplantation. In this review, we analyze the recent advances in virotherapy in hematological malignancies, either when administered alone or together with chemotherapeutic agents or other immunomodulators.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Biomedicina, Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | - Ângelo Martins
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Vera Machado
- Grupo de Oncologia Molecular e Patologia Viral, Centro de investigação do IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Instituto português de Oncologia do Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), LAB2, Rua Dr António Bernardino de Almeida, Porto, Portugal
| |
Collapse
|
27
|
M’ghirbi Y, Mousson L, Moutailler S, Lecollinet S, Amaral R, Beck C, Aounallah H, Amara M, Chabchoub A, Rhim A, Failloux AB, Bouattour A. West Nile, Sindbis and Usutu Viruses: Evidence of Circulation in Mosquitoes and Horses in Tunisia. Pathogens 2023; 12:pathogens12030360. [PMID: 36986282 PMCID: PMC10056592 DOI: 10.3390/pathogens12030360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mosquito-borne diseases have a significant impact on humans and animals and this impact is exacerbated by environmental changes. However, in Tunisia, surveillance of the West Nile virus (WNV) is based solely on the surveillance of human neuroinvasive infections and no study has reported mosquito-borne viruses (MBVs), nor has there been any thorough serological investigation of anti-MBV antibodies in horses. This study therefore sought to investigate the presence of MBVs in Tunisia. Among tested mosquito pools, infections by WNV, Usutu virus (USUV), and Sindbis virus (SINV) were identified in Cx. perexiguus. The serosurvey showed that 146 of 369 surveyed horses were positive for flavivirus antibodies using the cELISA test. The microsphere immunoassay (MIA) showed that 74 of 104 flavivirus cELISA-positive horses were positive for WNV, 8 were positive for USUV, 7 were positive for undetermined flaviviruses, and 2 were positive for tick-borne encephalitis virus (TBEV). Virus neutralization tests and MIA results correlated well. This study is the first to report the detection of WNV, USUV and SINV in Cx. perexiguus in Tunisia. Besides, it has shown that there is a significant circulation of WNV and USUV among horses, which is likely to cause future sporadic outbreaks. An integrated arbovirus surveillance system that includes entomological surveillance as an early alert system is of major epidemiological importance.
Collapse
Affiliation(s)
- Youmna M’ghirbi
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- Correspondence: or
| | - Laurence Mousson
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94704 Maisons-Alfort, France
| | - Sylvie Lecollinet
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Rayane Amaral
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Cécile Beck
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Hajer Aounallah
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Meriem Amara
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
| | - Adel Rhim
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| | - Anna-Bella Failloux
- Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, 25-28 Rue du Docteur Roux, 75724 Paris, France
| | - Ali Bouattour
- Laboratoire Des Virus, Vecteurs et Hôtes (LR20IPT02), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
28
|
Jansen S, Heitmann A, Uusitalo R, Korhonen EM, Lühken R, Kliemke K, Lange U, Helms M, Kirjalainen L, Nykänen R, Gregow H, Pirinen P, Rossini G, Vapalahti O, Schmidt-Chanasit J, Huhtamo E. Vector Competence of Northern European Culex pipiens Biotype pipiens and Culex torrentium to West Nile Virus and Sindbis Virus. Viruses 2023; 15:v15030592. [PMID: 36992301 PMCID: PMC10056470 DOI: 10.3390/v15030592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The West Nile Virus (WNV) and Sindbis virus (SINV) are avian-hosted mosquito-borne zoonotic viruses that co-circulate in some geographical areas and share vector species such as Culex pipiens and Culex torrentium. These are widespread in Europe, including northern parts and Finland, where SINV is endemic, but WNV is currently not. As WNV is spreading northwards in Europe, we wanted to assess the experimental vector competence of Finnish Culex pipiens and Culex torrentium mosquitoes to WNV and SINV in different temperature profiles. Both mosquito species were found susceptible to both viruses and got infected via infectious blood meal at a mean temperature of 18 °C. WNV-positive saliva was detected at a mean temperature of 24 °C, whereas SINV-positive saliva was detected already at a mean temperature of 18 °C. Cx. torrentium was found to be a more efficient vector for WNV and SINV over Cx. pipiens. Overall, the results were in line with the previous studies performed with more southern vector populations. The current climate does not seem optimal for WNV circulation in Finland, but temporary summertime transmission could occur in the future if all other essential factors are in place. More field data would be needed for monitoring and understanding the northward spreading of WNV in Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Ruut Uusitalo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00100 Helsinki, Finland
| | - Essi M. Korhonen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Lauri Kirjalainen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Roope Nykänen
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
| | - Hilppa Gregow
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Pentti Pirinen
- Finnish Meteorological Institute, 00101 Helsinki, Finland
| | - Giada Rossini
- Unit of Microbiology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Virology and Immunology, Diagnostic Center, Helsinki University Hospital (HUSLAB), 00290 Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, 20146 Hamburg, Germany
| | - Eili Huhtamo
- Department of Virology, Medicum, University of Helsinki, 00100 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00100 Helsinki, Finland
- Correspondence:
| |
Collapse
|
29
|
CRIVEI LA, MOUTAILLER S, GONZALEZ G, LOWENSKI S, CRIVEI IC, POREA D, ANITA DC, RATOI IA, ZIENTARA S, OSLOBANU LE, TOMAZATOS A, SAVUTA G, LECOLLINET S. Detection of West Nile Virus Lineage 2 in Eastern Romania and First Identification of Sindbis Virus RNA in Mosquitoes Analyzed using High-Throughput Microfluidic Real-Time PCR. Viruses 2023; 15:186. [PMID: 36680227 PMCID: PMC9860827 DOI: 10.3390/v15010186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The impact of mosquito-borne diseases on human and veterinary health is being exacerbated by rapid environmental changes caused mainly by changing climatic patterns and globalization. To gain insight into mosquito-borne virus circulation from two counties in eastern and southeastern Romania, we have used a combination of sampling methods in natural, urban and peri-urban sites. The presence of 37 mosquito-borne viruses in 16,827 pooled mosquitoes was analyzed using a high-throughput microfluidic real-time PCR assay. West Nile virus (WNV) was detected in 10/365 pools of Culex pipiens (n = 8), Culex modestus (n = 1) and Aedes vexans (n = 1) from both studied counties. We also report the first molecular detection of Sindbis virus (SINV) RNA in the country in one pool of Culex modestus. WNV infection was confirmed by real-time RT-PCR (10/10) and virus isolation on Vero or C6/36 cells (four samples). For the SINV-positive pool, no cytopathic effectwas observed after infection of Vero or C6/36 cells, but no amplification was obtained in conventional SINV RT-PCR. Phylogenetic analysis of WNV partial NS5 sequences revealed that WNV lineage 2 of theCentral-Southeast European clade, has a wider circulation in Romania than previously known.
Collapse
Affiliation(s)
- Luciana Alexandra CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sara MOUTAILLER
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Gaëlle GONZALEZ
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Steeve LOWENSKI
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ioana Cristina CRIVEI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Daniela POREA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Dragoș Constantin ANITA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Ioana Alexandra RATOI
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Stéphan ZIENTARA
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Luanda Elena OSLOBANU
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Alexandru TOMAZATOS
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Gheorghe SAVUTA
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety, Iași University of Life Sciences, 700490 Iași, Romania
| | - Sylvie LECOLLINET
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
30
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
31
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
32
|
Vector Competence of Mosquitoes from Germany for Sindbis Virus. Viruses 2022; 14:v14122644. [PMID: 36560650 PMCID: PMC9785343 DOI: 10.3390/v14122644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.
Collapse
|
33
|
Coroian M, Silaghi C, Tews BA, Baltag EȘ, Marinov M, Alexe V, Kalmár Z, Cintia H, Lupșe MS, Mihalca AD. Serological Survey of Mosquito-Borne Arboviruses in Wild Birds from Important Migratory Hotspots in Romania. Pathogens 2022; 11:1270. [PMID: 36365021 PMCID: PMC9699478 DOI: 10.3390/pathogens11111270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
In the context of climate change, globalization, and enhanced human traveling, arboviruses continue to represent a threat to public health. West Nile and Usutu viruses are mosquito-borne viruses belonging to the Flaviviridae family (Flavivirus genus) and members of the Japanese encephalitis virus serocomplex. Included in the Togaviridae family (Alphavirus genus), the Sindbis virus is also vectored by mosquitoes. In the present study, we aimed to analyze the presence of antibodies concerning the abovementioned viruses in migratory and resident birds in the South-Eastern region of Romania, as avian hosts represent the main reservoir for human infection. Blood samples were collected from wild birds between May 2018 and October 2019 in nine locations from three counties. All the samples were serologically tested by ELISA and a serum neutralization test. Overall, a seroprevalence of 8.72% was registered for the West Nile virus, 2.71% for the Usutu virus, and 0% for the Sindbis virus. To our best knowledge, this is the first large-scale comprehensive study to assess the West Nile virus seropositivity in wild birds and the first serological confirmation of the Usutu virus in wild birds in Romania. Moreover, this is the only follow-up study reviewing the current seroprevalence of the Sindbis virus in Romania since 1975.
Collapse
Affiliation(s)
- Mircea Coroian
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Department of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald, Germany
| | - Birke Andrea Tews
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald, Germany
| | - Emanuel Ștefan Baltag
- Marine Biological Stationof Agigea, University “Alexandru Ioan Cuza” of Iași, 907018 Iași, Romania
| | - Mihai Marinov
- Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania
| | - Vasile Alexe
- Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania
| | - Zsuzsa Kalmár
- Department of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
- Department of Microbiology, Immunology and Epidemiology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400337 Cluj-Napoca, Romania
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, 1078 Budapest, Hungary
| | - Horváth Cintia
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Mihaela Sorina Lupșe
- Department of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
- Clinical Hospital of Infectious Diseases, 400337 Cluj-Napoca, Romania
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Abstract
Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV, and VEEV. Accumulating evidence indicates that innate immunity plays an important role in response to alphaviruses infection. In parallel, alphaviruses have evolved many strategies to evade host antiviral innate immunity. In the current review, we focus on the underlying mechanisms employed by alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff, translational host shutoff, and RNAi. Dissecting the detailed antiviral immune evasion mechanisms by alphaviruses will enhance our understanding of the pathogenesis of alphaviruses and may provide more effective strategies to control alphaviruses infection.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Leiliang Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
35
|
Epidemiological and Genomic Characterisation of Middelburg and Sindbis Alphaviruses Identified in Horses with Febrile and Neurological Infections, South Africa (2014-2018). Viruses 2022; 14:v14092013. [PMID: 36146819 PMCID: PMC9501102 DOI: 10.3390/v14092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Although Old World alphaviruses, Middelburg- (MIDV) and Sindbis virus (SINV), have previously been detected in horses and wildlife with neurologic disease in South Africa, the pathogenesis and clinical presentation of MIDV and SINV infections in animals are not well documented. Clinical samples from horses across South Africa with acute or fatal neurologic and febrile infections submitted between 2014-2018 were investigated. In total, 69/1084 (6.36%) and 11/1084 (1.01%) horses tested positive for MIDV and SINV, respectively, by real-time reverse transcription (RT) PCR. Main signs/outcomes for MIDV (n = 69): 73.91% neurological, 75.36% fever, 28.99% icterus and anorexia, respectively, 8.70% fatalities; SINV (n = 11): 54.54% neurological, 72.73% fever, 36.36% anorexia and 18.18% fatalities. MIDV cases peaked in the late summer/autumn across most South African provinces while SINV cases did not show a clear seasonality and were detected in fewer South African provinces. MIDV could still be detected in blood samples via RT-PCR for up to 71,417 and 21 days after onset of signs in 4 horses respectively, suggesting prolonged replication relative to SINV which could only be detected in the initial sample. Phylogenetic analyses based on partial sequences of the nsP4 (MIDV n = 59 and SINV n = 7) and E1 (MIDV n = 45) genes, as well as full genome sequences (MIDV n = 6), clustered the MIDV and SINV strains from the present study with previously detected strains. MIDV infection appears to be more prevalent in horses than SINV infection based on RT-PCR results, however, prevalence estimates might be different when also considering serological surveillance data.
Collapse
|
36
|
Yuen KY, Henning J, Eng MD, Wang ASW, Lenz MF, Caldwell KM, Coyle MP, Bielefeldt-Ohmann H. Epidemiological Study of Multiple Zoonotic Mosquito-Borne Alphaviruses in Horses in Queensland, Australia (2018-2020). Viruses 2022; 14:v14091846. [PMID: 36146651 PMCID: PMC9504300 DOI: 10.3390/v14091846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
The increased frequency of extreme weather events due to climate change has complicated the epidemiological pattern of mosquito-borne diseases, as the host and vector dynamics shift to adapt. However, little is known about the seroprevalence of common mosquito-borne virus infections in horses in Australia. In this study, serological surveys for multiple alphaviruses were performed on samples taken from 622 horses across two horse populations (racehorses and horses residing on The University of Queensland (UQ) campus) in Queensland using the gold standard virus neutralization test. As is the case in humans across Australia, Ross River virus (RRV) is the most common arbovirus infection in horses, followed by Barmah Forest virus, with an overall apparent seroprevalence of 48.6% (302/622) and 4.3% (26/607), respectively. Horses aged over 6 years old (OR 1.86, p = 0.01) and residing at UQ (OR 5.8, p < 0.001) were significantly associated with seroconversion to RRV. A significant medium correlation (r = 0.626, p < 0.001) between RRV and Getah virus (GETV) neutralizing antibody titers was identified. Collectively, these results advance the current epidemiological knowledge of arbovirus exposure in a susceptible host in Australia. The potential use of horses as sentinels for arbovirus monitoring should be considered. Furthermore, since GETV is currently exotic to Australia, antibodies cross-reactivity between RRV and GETV should be further investigated for cross-protection, which may also help to inform vaccine developments.
Collapse
Affiliation(s)
- Ka Y. Yuen
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Joerg Henning
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Melodie D. Eng
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Althea S. W. Wang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Martin F. Lenz
- Queensland Racing Integrity Commission, Brisbane, QLD 4010, Australia
| | - Karen M. Caldwell
- Queensland Racing Integrity Commission, Brisbane, QLD 4010, Australia
| | - Mitchell P. Coyle
- Equine Unit, Office of the Director Gatton Campus, The University of Queensland, Gatton, QLD 4343, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence:
| |
Collapse
|
37
|
Martin NM, Griffin DE. Effect of IL-10 Deficiency on TGFβ Expression during Fatal Alphavirus Encephalomyelitis in C57Bl/6 Mice. Viruses 2022; 14:1791. [PMID: 36016413 PMCID: PMC9416572 DOI: 10.3390/v14081791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Sindbis virus (SINV) causes viral encephalitis in mice with strain-dependent virulence. Fatal encephalomyelitis in C57Bl/6 mice infected with a neuroadapted strain of SINV (NSV) is an immunopathogenic process that involves Th17 cells modulated by the regulatory cytokine IL-10. To further characterize the pathogenic immune response to NSV, we analyzed the regulation of transforming growth factor (TGF)-b in both wild-type (WT) and IL-10-deficient mice. NSV infection upregulated the expression of TGFb1 and TGFb3 in the central nervous system (CNS). In the absence of IL-10, levels of brain Tgfb1 mRNA and brain and spinal cord mature active TGFβ1 and TGFβ3 proteins were higher than in WT mice. Compared to WT mice, IL-10-deficient mice had more TGFβ1-expressing type 3 innate lymphoid cells (ILC3s) and CD4+ T cells infiltrating the CNS, but similar numbers in the cervical lymph nodes. Expression of glycoprotein A repetitions predominant protein (GARP) that binds pro-TGFb on the surface of regulatory T cells was decreased on CNS cells from IL-10-deficient mice. Higher CNS TGFb was accompanied by more expression of TGFbRII receptor, activation of SMAD transcription factors, increased PCKα mRNA, and more RORγt-positive and IL-17A-expressing cells. These results suggest a compensatory role for TGFβ in the absence of IL-10 that fosters Th17-related immunopathology and more rapid death after NSV infection.
Collapse
Affiliation(s)
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Suvanto MT, Uusitalo R, Otte Im Kampe E, Vuorinen T, Kurkela S, Vapalahti O, Dub T, Huhtamo E, Korhonen EM. Sindbis virus outbreak and evidence for geographical expansion in Finland, 2021. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35929430 PMCID: PMC9358406 DOI: 10.2807/1560-7917.es.2022.27.31.2200580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sindbis virus (SINV) caused a large outbreak in Finland in 2021 with 566 laboratory-confirmed human cases and a notable geographical expansion. Compared with the last large outbreak in 2002, incidence was higher in several hospital districts but lower in traditionally endemic locations in eastern parts of the country. A high incidence is also expected in 2022. Awareness of SINV should be raised in Finland to increase recognition of the disease and prevent transmission through the promotion of control measures.
Collapse
Affiliation(s)
- Maija T Suvanto
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Eveline Otte Im Kampe
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland.,ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Tytti Vuorinen
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Satu Kurkela
- HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.,HUS Diagnostic Center, HUSLAB, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timothée Dub
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Essi M Korhonen
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Fang Y, Khater EIM, Xue JB, Ghallab EHS, Li YY, Jiang TG, Li SZ. Epidemiology of Mosquito-Borne Viruses in Egypt: A Systematic Review. Viruses 2022; 14:v14071577. [PMID: 35891557 PMCID: PMC9322113 DOI: 10.3390/v14071577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
There are at least five common mosquito-borne viruses (MBVs) recorded in Egypt, including dengue virus (DENV), Rift Valley fever virus (RVFV), West Nile virus (WNV), Chikungunya virus, and Sindbis virus. Unexpected outbreaks caused by MBVs reflect the deficiencies of the MBV surveillance system in Egypt. This systematic review characterized the epidemiology of MBV prevalence in Egypt. Human, animal, and vector prevalence studies on MBVs in Egypt were retrieved from Web of Science, PubMed, and Bing Scholar, and 33 eligible studies were included for further analyses. The monophyletic characterization of the RVFV and WNV strains found in Egypt, which spans about half a century, suggests that both RVFV and WNV are widely transmitted in this nation. Moreover, the seropositive rates of DENV and WNV in hosts were on the rise in recent years, and spillover events of DENV and WNV to other countries from Egypt have been recorded. The common drawback for surveillance of MBVs in Egypt is the lack of seroprevalence studies on MBVs, especially in this century. It is necessary to evaluate endemic transmission risk, establish an early warning system for MBVs, and develop a sound joint system for medical care and public health for managing MBVs in Egypt.
Collapse
Affiliation(s)
- Yuan Fang
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Emad I. M. Khater
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Jing-Bo Xue
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Enas H. S. Ghallab
- Department of Entomology, Faculty of Science, Ain Shams University, Abbasiah, Cairo 11566, Egypt; (E.I.M.K.); (E.H.S.G.)
| | - Yuan-Yuan Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
| | - Tian-Ge Jiang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Shi-Zhu Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China; (Y.F.); (J.-B.X.); (Y.-Y.L.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
- Correspondence:
| |
Collapse
|
40
|
Westcott CE, Qazi S, Maiocco AM, Mukhopadhyay S, Sokoloski KJ. Binding of hnRNP I-vRNA Regulates Sindbis Virus Structural Protein Expression to Promote Particle Infectivity. Viruses 2022; 14:v14071423. [PMID: 35891402 PMCID: PMC9318202 DOI: 10.3390/v14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Shefah Qazi
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Anna M. Maiocco
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +1-(502)-852-1249
| |
Collapse
|
41
|
Masika MM, Korhonen EM, Smura T, Uusitalo R, Ogola J, Mwaengo D, Jääskeläinen AJ, Alburkat H, Gwon YD, Evander M, Anzala O, Vapalahti O, Huhtamo E. Serological Evidence of Exposure to Onyong-Nyong and Chikungunya Viruses in Febrile Patients of Rural Taita-Taveta County and Urban Kibera Informal Settlement in Nairobi, Kenya. Viruses 2022; 14:v14061286. [PMID: 35746757 PMCID: PMC9230508 DOI: 10.3390/v14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Several alphaviruses, such as chikungunya (CHIKV) and Onyong-nyong (ONNV), are endemic in Kenya and often cause outbreaks in different parts of the country. We assessed the seroprevalence of alphaviruses in patients with acute febrile illness in two geographically distant areas in Kenya with no previous record of alphavirus outbreaks. Blood samples were collected from febrile patients in health facilities located in the rural Taita-Taveta County in 2016 and urban Kibera informal settlement in Nairobi in 2017 and tested for CHIKV IgG and IgM antibodies using an in-house immunofluorescence assay (IFA) and a commercial ELISA test, respectively. A subset of CHIKV IgG or IgM antibody-positive samples were further analyzed using plaque reduction neutralization tests (PRNT) for CHIKV, ONNV, and Sindbis virus. Out of 537 patients, 4 (0.7%) and 28 (5.2%) had alphavirus IgM and IgG antibodies, respectively, confirmed on PRNT. We show evidence of previous and current exposure to alphaviruses based on serological testing in areas with no recorded history of outbreaks.
Collapse
Affiliation(s)
- Moses Muia Masika
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
- Correspondence: ; Tel.: +254-721770306
| | - Essi M. Korhonen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu Smura
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Ruut Uusitalo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, 00014 Helsinki, Finland
| | - Joseph Ogola
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Dufton Mwaengo
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Anne J. Jääskeläinen
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Hussein Alburkat
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
| | - Yong-Dae Gwon
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, 90185 SE Umeå, Sweden; (Y.-D.G.); (M.E.)
| | - Omu Anzala
- KAVI Institute of Clinical Research, University of Nairobi, POB 19676, Nairobi 00202, Kenya; (J.O.); (O.A.)
- Department of Medical Microbiology, University of Nairobi, POB 19676, Nairobi 00202, Kenya;
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- HUS Diagnostic Center, HUSLAB, Virology and Immunology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Eili Huhtamo
- Department of Virology, University of Helsinki, 00014 Helsinki, Finland; (E.M.K.); (T.S.); (R.U.); (A.J.J.); (H.A.); (O.V.); (E.H.)
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
42
|
Abstract
DNA viruses often persist in the body of their host, becoming latent and recurring many months or years later. By contrast, most RNA viruses cause acute infections that are cleared from the host as they lack the mechanisms to persist. However, it is becoming clear that viral RNA can persist after clinical recovery and elimination of detectable infectious virus. This persistence can either be asymptomatic or associated with late progressive disease or nonspecific lingering symptoms, such as may be the case following infection with Ebola or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Why does viral RNA sometimes persist after recovery from an acute infection? Where does the RNA come from? And what are the consequences?
Collapse
|
43
|
Detection and Isolation of Sindbis Virus from Field Collected Mosquitoes in Timimoun, Algeria. Viruses 2022; 14:v14050894. [PMID: 35632636 PMCID: PMC9144192 DOI: 10.3390/v14050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sindbis virus (SINV) is a zoonotic alphavirus (family Togaviridae, genus Alphavirus) that causes human diseases in Africa, Europe, Asia, and Australia. Occasionally, SINV outbreaks were reported in South Africa and northern Europe. Birds are the main amplifying hosts of SINV, while mosquitoes play the role of the primary vector. Culex mosquitoes were collected in Algeria and subsequently tested for SINV. SINV RNA was detected in 10 pools out of 40, from a total of 922 mosquitoes tested. A strain of SINV was isolated from a pool displaying high viral load. Whole-genome sequencing and phylogenetic analysis showed that the SINV Algeria isolate was most closely related to a Kenyan strain. This was the first record of SINV in Algeria and more broadly in northwestern Africa, which can be a potential risk for human health in the circulating area. Further studies are needed to measure the impact on public health through seroprevalence studies in Algeria.
Collapse
|
44
|
Klein RS. Encephalitic Arboviruses of Africa: Emergence, Clinical Presentation and Neuropathogenesis. Front Immunol 2022; 12:769942. [PMID: 35003087 PMCID: PMC8733932 DOI: 10.3389/fimmu.2021.769942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many mosquito-borne viruses (arboviruses) are endemic in Africa, contributing to systemic and neurological infections in various geographical locations on the continent. While most arboviral infections do not lead to neuroinvasive diseases of the central nervous system, neurologic diseases caused by arboviruses include flaccid paralysis, meningitis, encephalitis, myelitis, encephalomyelitis, neuritis, and post-infectious autoimmune or memory disorders. Here we review endemic members of the Flaviviridae and Togaviridae families that cause neurologic infections, their neuropathogenesis and host neuroimmunological responses in Africa. We also discuss the potential for neuroimmune responses to aide in the development of new diagnostics and therapeutics, and current knowledge gaps to be addressed by arbovirus research.
Collapse
Affiliation(s)
- Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Neuroscience, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
45
|
Meno K, Yah C, Mendes A, Venter M. Incidence of Sindbis Virus in Hospitalized Patients With Acute Fevers of Unknown Cause in South Africa, 2019-2020. Front Microbiol 2022; 12:798810. [PMID: 35197942 PMCID: PMC8860305 DOI: 10.3389/fmicb.2021.798810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sindbis virus (SINV) is a mosquito-borne alphavirus that is widely distributed worldwide. Little is known about the febrile and neurological disease burden due to SINV in South Africa. PATIENTS AND METHODS Clinical samples of patients with acute febrile disease of unknown cause (AFDUC) were collected through the African Network for Improved Diagnostics, Epidemiology and Management of Common Infectious Agents at three sentinel hospital surveillance sites in South Africa. In total, 639 patients were screened using a PCR-based macroarray that can simultaneously detect nucleic acids of 30 pathogens, including SINV, from January 2019 to December 2020. Serum samples were randomly selected from the arbovirus season (January-June) and also screened with a commercial indirect immunofluorescence assay for anti-SINV IgM. In addition, 31 paired cerebrospinal fluid (CSF) specimens from the same patients were screened for IgM. Micro-neutralization assays were performed on all IgM-positive samples. RESULTS None of the specimens tested positive for SINV by molecular screening; however, 38/197 (19.0%) samples were positive for SINV-specific IgM. A total of 25/38 (65.8%) IgM-positive samples tested positive for SINV-neutralizing antibodies, giving an overall incidence of 12.7%. Furthermore, 2/31 (6.5%) CSF specimens tested positive for IgM but were negative for neutralizing antibodies. There was a higher incidence of SINV-positive cases in Mpumalanga (26.0%) than Gauteng province (15.0%). The most significant months for IgM-positive cases were April 2019 (OR = 2.9, p < 0.05), and May 2020 (OR = 7.7, p < 0.05). CONCLUSION SINV or a closely related virus contributed to 12.7% of AFDUC cases in hospitalized patients during the late summer and autumn months in South Africa and was significantly associated with arthralgia, meningitis, and headaches.
Collapse
Affiliation(s)
| | | | | | - Marietjie Venter
- Zoonotic Arbo and Respiratory Virus Program, Department of Medical Virology, Centre for Viral Zoonoses, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
46
|
Selective estrogen receptor modulators limit alphavirus infection by targeting the viral capping enzyme nsP1. Antimicrob Agents Chemother 2022; 66:e0194321. [PMID: 35041501 DOI: 10.1128/aac.01943-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alphaviruses cause animal or human diseases that are characterized by febrile illness, debilitating arthralgia, or encephalitis. Selective estrogen receptor modulators (SERMs), a class of FDA-approved drugs, have been shown to possess antiviral activities against multiple viruses, including Hepatitis C virus, Ebola virus, dengue virus, and vesicular stomatitis virus. Here, we evaluated three SERM compounds, namely 4-hydroxytamoxifen, tamoxifen, and clomifene, for plausible antiviral properties against two medically important alphaviruses, chikungunya virus (CHIKV) and Sindbis virus (SINV). In cell culture settings, these SERMs displayed potent activity against CHIKV and SINV at non-toxic concentrations with EC50 values ranging between 400 nM and 3.9 μM. Further studies indicated that these compounds inhibit a post-entry step of the alphavirus life cycle, while enzymatic assays involving purified recombinant proteins confirmed that these SERMs target the enzymatic activity of non-structural protein 1 (nsP1), the capping enzyme of alphaviruses. Finally, tamoxifen treatment restrained CHIKV growth in the infected mice and diminished musculoskeletal pathologies. Combining biochemical, cell culture-based studies, and in vivo analyses, we strongly argue that SERM compounds, or their derivatives, may provide for attractive therapeutic options against alphaviruses.
Collapse
|
47
|
Investigation of Biological Factors Contributing to Individual Variation in Viral Titer after Oral Infection of Aedes aegypti Mosquitoes by Sindbis Virus. Viruses 2022; 14:v14010131. [PMID: 35062335 PMCID: PMC8780610 DOI: 10.3390/v14010131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.
Collapse
|
48
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
49
|
Emerging chikungunya virus variants at the E1-E1 inter-glycoprotein spike interface impact virus attachment and Inflammation. J Virol 2021; 96:e0158621. [PMID: 34935436 DOI: 10.1128/jvi.01586-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intra-host evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, co-occurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by anti-glycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The re-emerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has been only attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T to increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 inter-spike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further defines the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.
Collapse
|
50
|
Guerrero-Arguero I, Tellez-Freitas CM, Weber KS, Berges BK, Robison RA, Pickett BE. Alphaviruses: Host pathogenesis, immune response, and vaccine & treatment updates. J Gen Virol 2021; 102. [PMID: 34435944 DOI: 10.1099/jgv.0.001644] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human pathogens belonging to the Alphavirus genus, in the Togaviridae family, are transmitted primarily by mosquitoes. The signs and symptoms associated with these viruses include fever and polyarthralgia, defined as joint pain and inflammation, as well as encephalitis. In the last decade, our understanding of the interactions between members of the alphavirus genus and the human host has increased due to the re-appearance of the chikungunya virus (CHIKV) in Asia and Europe, as well as its emergence in the Americas. Alphaviruses affect host immunity through cytokines and the interferon response. Understanding alphavirus interactions with both the innate immune system as well as the various cells in the adaptive immune systems is critical to developing effective therapeutics. In this review, we summarize the latest research on alphavirus-host cell interactions, underlying infection mechanisms, and possible treatments.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Brett E Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| |
Collapse
|