1
|
Ma J, Zhu P, Wang W, Zhang X, Wang P, Sultan Y, Li Y, Ding W, Li X. Environmental impacts of chlorpyrifos: Transgenerational toxic effects on aquatic organisms cannot be ignored. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167311. [PMID: 37742960 DOI: 10.1016/j.scitotenv.2023.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Chlorpyrifos (CPF) has been extensively used in the world and frequently found in natural environments, might cause a range of environmental issues and pose a health risk to aquatic species. However, investigation of its toxic effects on offspring after parental exposure has been neglected, especially for aquatic organisms such as fish. In the current study, the effects of chronic CPF exposure (3 and 60 μg/L) on adult zebrafish (F0) was investigated to determine its influence on adult reproductive capacity and offspring (F1 and F2). The results showed the existence of CPF both in F0 ovaries and F1 embryos and larvae, indicating that CPF could be transferred directly from the F0 adult fish to F1 offspring. After 90 d exposure, we observed that F0 female fish showed increased proportion of perinucleolar oocyte in the ovaries, decreased proportion of mature oocyte, and decreased egg production, but not in F1 adult. The transcriptomic analysis revealed that the disruption of metabolism during oocyte maturation in the CPF treatment zebrafish might interfere with F0 oocytes development and quality and ultimately influence offspring survival. For the larvae, the parental CPF exposure distinctly inhibited heart rate at 72 and 120 hpf and increased the mortality of F1 but not F2 larvae. The changes of biochemical indicators confirmed a disturbance in the oxidative balance, induced inflammatory reaction and apoptosis in F1 larvae. Furthermore, the changing profiles of mRNA revealed by RNA-seq confirmed an increased susceptibility in F1 larvae and figured out potential disruptions of ROS metabolism, immune system, apoptosis, and metabolism pathways. Taken together, these results show that chronic CPF treatment can induce reproductive toxicity, and parental transfer of CPF occurs in fish, resulting in transgenerational alters in F1 generation survival and transcription that raising concerns on the ecological risk of CPF in the natural environment.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Penglin Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenhua Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaodan Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Panliang Wang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yuanyuan Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Jie YK, Ma HL, Jiang JJ, Cheng CH, Deng YQ, Liu GX, Fan SG, Guo ZX. Glutaredoxin 2 in the mud crab Scylla paramamosain: Identification and functional characterization under hypoxia and pathogen challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104676. [PMID: 36889371 DOI: 10.1016/j.dci.2023.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that plays a key role in antioxidant defense. In this study, a novel Grx2 gene (SpGrx2) was identified from the mud crab Scylla paramamosain, which consists of a 196 bp 5' untranslated region, a 357 bp open reading frame, and a 964 bp 3' untranslated region. The putative SpGrx2 protein has a typical single Grx domain with the active center sequence C-P-Y-C. The expression analysis revealed that the SpGrx2 mRNA was most abundant in the gill, followed by the stomach and hemocytes. Both mud crab dicistrovirus-1 and Vibrioparahaemolyticus infection as well as hypoxia could differentially induce the expression of SpGrx2. Furthermore, silencing SpGrx2 in vivo affected the expression of a series of antioxidant-related genes after hypoxia treatment. Additionally, SpGrx2 overexpression significantly increased the total antioxidant capacity of Drosophila Schneider 2 cells after hypoxia, resulting in a reduction of reactive oxygen species and malondialdehyde content. The subcellular localization results indicated that SpGrx2 was localized in both the cytoplasm and the nucleus of Drosophila Schneider 2 cells. These results indicate that SpGrx2 plays a crucial role as an antioxidant enzyme in the defense system of mud crabs against hypoxia and pathogen challenge.
Collapse
Affiliation(s)
- Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
3
|
Hypoxia Affects the Antioxidant Activity of Glutaredoxin 3 in Scylla paramamosain through Hypoxia Response Elements. Antioxidants (Basel) 2022; 12:antiox12010076. [PMID: 36670937 PMCID: PMC9855028 DOI: 10.3390/antiox12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Hypoxia is a major environmental stressor that can damage the oxidation metabolism of crustaceans. Glutaredoxin (Grx) is a key member of the thioredoxin superfamily and plays an important role in the host's defense against oxidative stress. At present, the role of Grx in response to hypoxia in crustaceans remains unclear. In this study, the full-length cDNA of Grx3 (SpGrx3) was obtained from the mud crab Scylla paramamosain, which contains a 129-bp 5' untranslated region, a 981-bp open reading frame, and a 1,183-bp 3' untranslated region. The putative SpGrx3 protein contains an N-terminal thioredoxin domain and two C-terminal Grx domains. SpGrx3 was expressed in all tissues examined, with the highest expression in the anterior gills. After hypoxia, SpGrx3 expression was significantly up-regulated in the anterior gills of mud crabs. The expression of Grx2 and glutathione S-transferases was decreased, while the expression of glutathione peroxidases was increased following hypoxia when SpGrx3 was silenced in vivo. In addition, the total antioxidant capacity of SpGrx3-interfered mud crabs was significantly decreased, and the malondialdehyde content was significantly increased during hypoxia. The subcellular localization data indicated that SpGrx3 was predominantly localized in the nucleus when expressed in Drosophila Schneider 2 (S2) cells. Moreover, overexpression of SpGrx3 reduced the content of reactive oxygen species in S2 cells during hypoxia. To further investigate the transactivation mechanism of SpGrx3 during hypoxia, the promoter region of the SpGrx3 was obtained by Genome Walking and three hypoxia response elements (HREs) were predicted. Dual-luciferase reporter assay results demonstrated that SpGrx3 was likely involved in the hypoxia-inducible factor-1 (HIF-1) pathway during hypoxia, which could be mediated through HREs. The results indicated that SpGrx3 is involved in regulating the antioxidant system of mud crabs and plays a critical role in the response to hypoxia.
Collapse
|
4
|
Cai DM, Mei FB, Zhang CJ, An SC, Lv RB, Ren GH, Xiao CC, Long L, Huang TR, Deng W. The Abnormal Proliferation of Hepatocytes is Associated with MC-LR and C-Terminal Truncated HBX Synergistic Disturbance of the Redox Balance. J Hepatocell Carcinoma 2022; 9:1229-1246. [PMID: 36505941 PMCID: PMC9733568 DOI: 10.2147/jhc.s389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/11/2022] Open
Abstract
Background Microcystin-LR (MC-LR) and hepatitis B virus (HBV) are associated with hepatocellular carcinoma (HCC). However, the concentrations of MC-LR in drinking water and the synergistic effect of MC-LR and HBV on hepatocellular carcinogenesis through their disturbance of redox balance have not been fully elucidated. Methods We measured the MC-LR concentrations in 168 drinking water samples of areas with a high incidence of HCC. The relationships between MC-LR and both redox status and liver diseases in 177 local residents were analyzed. The hepatoma cell line HepG2 transfected with C-terminal truncated hepatitis B virus X gene (Ct-HBX) were treated with MC-LR. Reactive oxygen species (ROS), superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) were measured. Cell proliferation, migration, invasion, and apoptosis were assessed with cell activity assays, scratch and transwell assays, and flow cytometry, respectively. The mRNA and protein expression-related redox status genes were analyzed with qPCR and Western blotting. Results The average concentration of MC-LR in well water, river water and reservoir water were 57.55 ng/L, 76.74 ng/L and 132.86 ng/L respectively, and the differences were statistically significant (P < 0.05). The MC-LR levels in drinking water were correlated with liver health status, including hepatitis, clonorchiasis, glutamic pyruvic transaminase abnormalities and hepatitis B surface antigen carriage (all P values < 0.05). The serum MDA increased in subjects who drank reservoir water and were infected with HBV (P < 0.05). In the cell experiment, ROS increased when Ct-HBX-transfected HepG2 cells were treated with MC-LR, followed by a decrease in SOD and GSH and an increase in MDA. MC-LR combined with Ct-HBX promoted the proliferation, migration and invasion of HepG2 cells, upregulated the mRNA and protein expression of MAOA gene, and downregulated UCP2 and GPX1 genes. Conclusion MC-LR and HBV may synergistically affect redox status and play an important role in hepatocarcinoma genesis.
Collapse
Affiliation(s)
- Dong-Mei Cai
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Fan-Biao Mei
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chao-Jun Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - San-Chun An
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Rui-Bo Lv
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Guan-Hua Ren
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Chan-Chan Xiao
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Long Long
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Tian-Ren Huang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Deng
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China,Guangxi Cancer Molecular Medicine Engineering Research Center, Nanning, Guangxi, 530021, People’s Republic of China,Correspondence: Wei Deng; Tianren Huang, Department of Experimental Research, Guangxi Medical University Cancer Hospital, No. 71, Hedi Road, Nanning, Guangxi, 530021, People’s Republic of China, Email ;
| |
Collapse
|
5
|
Pan S, Yan X, Dong X, Li T, Suo X, Tan B, Zhang S, Li Z, Yang Y, Zhang H. The positive effects of dietary inositol on juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diets: Growthperformance, antioxidant capacity and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 126:84-95. [PMID: 35577318 DOI: 10.1016/j.fsi.2022.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present research was to assess the influence of inositol supplementation on growth performance, histological morphology of liver, immunity and expression of immune-related genes in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Hybrid grouper (initial weight 6.76 ± 0.34 g) were fed isonitrogenous and isolipidic diets (16%) with various inositol levels of 0.17 g/kg (J1, the control group), 0.62 g/kg (J2), 1.03 g/kg (J3), 1.78 g/kg (J4), 3.43 g/kg (J5), 6.59 g/kg (J6), respectively. The growth experiment lasted for 8 weeks. The results indicated that dietary inositol had a significant promoting effect on final mean body weight of the J5 and J6 groups and specific growth rate (SGR) of the J3, J4, J5 and J6 groups (P < 0.05). In the serum, superoxide dismutase (SOD) of the J4 group became significantly active compared with that of the control group (P < 0.05), while aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) activities in the inositol-treated groups showed distinctly decreased compared with those of the control group (P < 0.05). In the liver, dietary inositol could significantly increase the activities of SOD, catalase (CAT), lysozyme (LYZ) and the contents of total antioxidative capacity (T-AOC) and immunoglobulin M (IgM) (P < 0.05), and distinctly reduce the content of malondialdehyde (MDA) as well as reactive oxygen species (ROS) (P < 0.05). Compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal after an inositol increase (0.4-3.2 g/kg). In the liver, the remarkable up-regulation of SOD, CAT, glutathione peroxidase (GPX), heat shock protein70 (HSP70) and heat shock protein90 (HSP90) expression levels were stimulated by supply of inositol, while interleukin 6 (IL6), interleukin 8 (IL8) and transforming growth factor β (TGF-β) expression levels were down-regulated by supply of inositol. In head kidney, the mRNA of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interleukin 1β (IL1β) expression levels were significantly down-regulated (P < 0.05), which could further lead to remarkable down-regulation of IL6 and tumor necrosis factor α (TNF-α) expression (P < 0.05). These results indicated that high-lipid diets with supply of inositol promoted growth, increased the antioxidant capacity, and suppressed the inflammation of the liver and head kidney by inhibiting the expression of pro-inflammation factors (IL6, IL8, TGF-β and TNF-α). In conclusion, these results indicated that dietary inositol promoted growth, improved antioxidant capacity and immunity of hybrid grouper fed high-lipid diets. Based on SGR, broken-line regression analysis showed that 1.66 g/kg inositol supply was recommended in high-lipid diets of juvenile grouper.
Collapse
Affiliation(s)
- Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
6
|
Özdemir S, Arslan H. circRNA-based biomarker candidates for acute cypermethrin and chlorpyrifos toxication in the brain of Zebrafish (Danio rerio). CHEMOSPHERE 2022; 298:134330. [PMID: 35304207 DOI: 10.1016/j.chemosphere.2022.134330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Circular RNAs (circRNAs) are a new class of non-endogenous coding RNA and an area with a lot of research interest and activity. Cypermethrin and chlorpyrifos have been shown to cause serious toxicological damage in the brain of fish and other non-target organisms. However, circRNAs associated with acute brain toxicity caused by cypermethrin and chlorpyrifos have not been studied yet. In this study, circRNAs were identified and characterized using RNA-seq in Zebrafish brains exposed to acute cypermethrin and chlorpyrifos toxicity. A total of 10,375 circRNAs were detected. It was determined that 6 circRNAs were up-regulated, 10 circRNAs were down-regulated in CYP brain samples compared to controls. In addition, it was found that 57 circRNAs are up-regulated and 3 circRNAs down-regulated in CPF brain samples compared to controls. Moreover, 62 circRNAs were down-regulated in the CYP samples, when CYP and CPF samples were compared. However, up-regulated circRNA could not be detected. It was revealed that the detected circRNAs specifically regulated the MAPK signaling pathway, endocytosis mechanism, apoptosis, and p53 signaling pathway. This study, which was conducted for the first time in terms of the subject of the study, could bring a different perspective, especially to pesticide toxicity studies.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Atatürk University, Faculty of Veterinary Medicine, Department of Genetics, Erzurum, Turkey; Heinrich Heine University, Faculty of Medicine, Department of Gastroenterology, Hepatology, and Infection, Düsseldorf, Germany.
| | - Harun Arslan
- Atatürk University, Faculty of Fisheries, Department of Basic Science, Erzurum, Turkey
| |
Collapse
|
7
|
Ding W, Shangguan Y, Zhu Y, Sultan Y, Feng Y, Zhang B, Liu Y, Ma J, Li X. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut microbiota and microRNAs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117685. [PMID: 34438504 DOI: 10.1016/j.envpol.2021.117685] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L-1) and GLY (3.5 mg L-1), either alone or in combination was performed for 21 d. The results showed that MC-LR or/and GLY treatment reduced the mRNA levels of tight junction genes (claudin-5, occludin, and zonula occludens-1) and altered the levels of diamine oxidase and D-lactic, indicating increased intestinal permeability in zebrafish. Furthermore, MC-LR and/or GLY treatment remarkably increased the levels of intestinal IL-1β and IL-8 but decreased the levels of IL-10 and TGF-β, indicating that MC-LR and/or GLY exposure induced an inflammatory response in the fish gut. MC-LR and/or GLY exposure also activated superoxide dismutase and catalase, generally upregulated the levels of p53, bax, bcl-2, caspase-3, and caspase-9, downregulated the levels of caspase-8 and caused notable histological injury in the fish gut. Moreover, MC-LR and/or GLY exposure also significantly altered the microbial community in the zebrafish gut and the expression of miRNAs (miR-146a, miR-155, miR-16, miR-21, and miR-223). Chronic exposure to MC-LR and/or GLY can induce intestinal damage in zebrafish, and this study is the first to demonstrate an altered gut microbiome and miRNAs in the zebrafish gut after MC-LR and GLY exposure.
Collapse
Affiliation(s)
- Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yingying Shangguan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuqing Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Sharma R, Jindal R, Faggio C. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109113. [PMID: 34153505 DOI: 10.1016/j.cbpc.2021.109113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
Protective effects of Cassia fistula, in Catla catla exposed to synthetic pyrethroid cypermethrin were evaluated. Fish, after chronic exposure to environmentally relevant sub-lethal concentration 0.41 μg/l of the pesticide were assessed for antioxidant activity, histopathological and ultrastructural alterations. Significant (p < 0.05) decrease in the activities of antioxidants such as CAT, SOD, GST, GSH was registered, whereas LPO level got elevated. Histological damage depicted necrosis, epithelial hypertrophy, hyperplasia and fusion of secondary lamellae and changes in gill vasculature. Histopathological alteration index was employed for the semi quantitative evaluation of the degree of tissue change (DTC). Transmission electron microscopy displayed swollen and distorted mitochondria, damaged chloride cells and necrosis. Dietary supplementation of Cassia fistula bark extract significantly (p < 0.05) improved the antioxidant activity, reduced lipid peroxidation and prevented histopathological alterations. The findings suggest that sub-lethal concentration of cypermethrin is toxic to fish. The study also draws attention towards potential of plant derived antioxidants in mitigating pesticide induced toxic effects.
Collapse
Affiliation(s)
- Ritu Sharma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
9
|
Jie YK, Cheng CH, Wang LC, Ma HL, Deng YQ, Liu GX, Feng J, Guo ZX, Ye LT. Hypoxia-induced oxidative stress and transcriptome changes in the mud crab (Scylla paramamosain). Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109039. [PMID: 33785424 DOI: 10.1016/j.cbpc.2021.109039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023]
Abstract
Mud crab (Scylla paramamosain) is an economically important cultured species in China. Hypoxia is a major environmental stressor during mud crab culture. In the present study, we investigated the oxidative stress and transcriptome changes in the gills of mud crab after intermediate hypoxia stress with dissolved oxygen (DO) 3.0 ± 0.2 mg/L (named as "DO3") and acute hypoxia stress with DO 1.0 ± 0.2 mg/L (named as "DO1") for 0, 3, 6, 12 and 24 h. The superoxide dismutase (SOD) activity of DO1 increased significantly at 3, 6 and 24 h after hypoxia stress, while SOD activity of DO3 increased significantly at 6 and 24 h. The total antioxidant capacity (T-AOC) increased significantly at 6, 12 and 24 h after hypoxia stress. The malondialdehyde (MDA) concentration of DO1 increased significantly at 6, 12 and 24 h after hypoxia stress, while MDA concentration of DO3 only increased significantly at 6 h. The lactate dehydrogenase (LDH) activity of DO1 increased significantly at 3, 6, 12 and 24 h after hypoxia stress, while LDH activity of DO3 increased significantly at 12 and 24 h. Transcriptomic analysis was conducted at 24 h of gill tissues after hypoxia stress. A total of 1052 differentially expressed genes (DEGs) were obtained, including 394 DEGs between DO1 and DO3, 481 DEGs between DO1 and control group, 177 DEGs between DO3 and control group. DEGs were enriched in the pathways related to metabolism, immune functions, ion transport, and signal transduction. Transcriptional analysis showed that glycolysis and tricarboxylic acid cycle genes were the key factors in regulating the adaptation of mud crab to hypoxia stress.
Collapse
Affiliation(s)
- Yu-Kun Jie
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Li-Cang Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China.
| | - Ling-Tong Ye
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, China
| |
Collapse
|
10
|
Jiang X, Xing X, Zhang Y, Zhang C, Wu Y, Chen Y, Meng R, Jia H, Cheng Y, Zhang Y, Su J. Lead exposure activates the Nrf2/Keap1 pathway, aggravates oxidative stress, and induces reproductive damage in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111231. [PMID: 32916527 DOI: 10.1016/j.ecoenv.2020.111231] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Lead, a common metallic contaminant, is widespread in the living environment, and has deleterious effects on the reproductive systems of humans and animals. Although numerous toxic effects of lead have been reported, the effects and underlying mechanisms of the impacts of lead exposure on the female reproductive system, especially oocyte maturation and fertility, remain unknown. In this study, mice were treated by gavage for seven days to evaluate the reproductive damage and role of Nrf2-mediated defense responses during lead exposure. Lead exposure significantly reduced the maturation and fertilization of oocytes in vivo. Additionally, lead exposure triggered oxidative stress with a decreased glutathione level, increased amount of reactive oxygen species, and abnormal mitochondrial distribution. Moreover, lead exposure caused histopathological and ultrastructural changes in oocytes and ovaries, along with decreases in the activities of catalase, glutathione peroxidase, total superoxide dismutase, and glutathione-S transferase, and increases in the levels of malonaldehyde in mouse ovaries. Further experiments demonstrated that lead exposure activated the Nrf2 signaling pathway to protect oocytes against oxidative stress by enhancing the transcription levels of antioxidant enzymes. In conclusion, our study demonstrates that lead activates the Nrf2/Keap1 pathway and impairs oocyte maturation and fertilization by inducing oxidative stress, leading to a decrease in the fertility of female mice.
Collapse
Affiliation(s)
- Xianlei Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Chengtu Zhang
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Ying Wu
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Yongzhong Chen
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Ru Meng
- Xining Animal Husbandry and Veterinary Station, Xining, Qinghai Province, 810003, PR China
| | - Huiqun Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yuyao Cheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
11
|
Pala A, Serdar O, Mişe Yonar S, Yonar ME. Ameliorative effect of Fennel (Foeniculum vulgare) essential oil on chlorpyrifos toxicity in Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:890-897. [PMID: 32822009 DOI: 10.1007/s11356-020-10542-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphate pesticide that is frequently and widely used to control both agricultural and domestic pests worldwide. In this study, the protective effect of Fennel (Foeniculum vulgare) essential oil (FEO) was investigated in carp (Cyprinus carpio) exposed to CPF. The fish were divided into six groups that one control group (no treatment) and five experimental groups (FEO (3ml/100g diet) group, CPF1 (0.023 mg/l) group CPF2 (0.046 mg/l) group, CPF1 (0.023 mg/l) plus FEO (3ml/100g diet) group, CPF2 (0.046 mg/l) plus FEO (3ml/100g diet) group). Blood and tissue (liver, kidney, gill, and brain) samples were taken from the fish at the end of 14 days of application. Hemoglobin (Hb) level, nitoblue tetrazolium (NBT) activity, and total immunoglobulin (TI) level were measured in blood samples of fish. Acetylcholinesterase (AChE) activity was determined in brain tissue while malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase (CAT), and glutathione peroxidase (GPx) activity were determined in liver, kidney, and gill tissues. The results showed that there was a significant decrease in Hb level, NBT activity, and TI levels in CPF-treated fish compared to the control group. In addition, increased in MDA levels and significant decreases in GSH level, AChE, CAT, and GPx activities were observed in CPF-treated groups. However, FEO-treated was showed a significant improvement in all parameters except AChE activity compared to CPF groups. These study findings showed that FEO could improve CPF-induced toxicity in C. carpio, except inhibition of AChE activity.
Collapse
Affiliation(s)
- Ayşegül Pala
- Fisheries Faculty, Department of Aquaculture, Munzur University, Tunceli, Turkey.
| | - Osman Serdar
- Fisheries Faculty, Department of Aquaculture, Munzur University, Tunceli, Turkey
| | - Serpil Mişe Yonar
- Fisheries Faculty, Department of Aquaculture, Firat University, Elazig, Turkey
| | - Muhammet Enis Yonar
- Fisheries Faculty, Department of Aquaculture, Firat University, Elazig, Turkey
| |
Collapse
|
12
|
Nkoom M, Lu G, Liu J, Dong H. Biological uptake, depuration and biochemical effects of diclofenac and carbamazepine in Carassius carassius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111106. [PMID: 32818877 DOI: 10.1016/j.ecoenv.2020.111106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
The uptake and depuration kinetics of diclofenac and carbamazepine alone at an environmentally relevant nominal concentration of 2 μg/L and in combination at a concentration ratio of 1:1 with total concentration of 4 μg/L were evaluated in Carassius carassius after 7 d uptake and depuration. Also, the biochemical effects of both drugs alone at nominal concentrations of 2 and 10 μg/L as well as in combination with total concentrations of 4 and 20 μg/L were investigated in Carassius carassius after 7 d exposure followed by 10 d recovery. In the single treatments, steady-state BCFs measured after the 7 d exposure were 73.05, 49.71, 38.01 and 24.93 L/kg for diclofenac and 9.25, 8.99, 5.29 and 4.11 L/kg for carbamazepine in the liver, brain, gill and muscle of Carassius carassius, respectively. Comparatively lower BCFs were measured in the tissues of Carassius carassius for both drugs in the combined treatments. Acetylcholinesterase activity in the brain was significantly induced by diclofenac while carbamazepine and the mixtures significantly inhibited it during all the exposure days as well as after the 10 d recovery in all treatments. This indicates that Carassius carassius could not recover from the neurotoxic effects caused by carbamazepine unlike the inductive effect caused by diclofenac which was recoverable after 10 days. A significant increase in the activities of 7-ethoxyresorufin O-deethylase and glutathione s-transferase for individual and mixed pharmaceuticals suggest that metabolism and detoxification of both drugs took place in the liver of Carassius carassius. Also, a significant increase in the activities of superoxide dismutase, catalase, glutathione reductase and malondialdehyde contents in the individual and mixture treatments mean that the antioxidant defence system of Carassius carassius was triggered to fight against oxidative stress but lipid peroxidation still occurred. However, Carassius carassius recovered from all these increases (superoxide dismutase, catalase, glutathione reductase and malondialdehyde) after the 10 d recovery, suggesting that oxidative damage is reversible. Our results indicate that both drugs at environmentally relevant concentrations might cause adverse effects in Carassius carassius and other fish species.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110731. [PMID: 32450436 DOI: 10.1016/j.ecoenv.2020.110731] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 05/08/2023]
Abstract
Pesticides play an important role in promoting agricultural development, while their unreasonable use has led to environmental problems. Chlorpyrifos (CPF), a typical organophosphate pesticide, is used globally as an insecticide in agriculture. The extensive application of CPF has resulted in water contamination, and CPF has been detected in rivers, lakes, seawater, and even in rain. In the present review, CPF was selected due to its extensive use in agriculture and higher detection rate in surface waters. In this review we summarised the evidence related to CPF pollution and focused on discussing the ecotoxicity of CPF to aquatic systems and revealed the mechanism of action of CPF. The aim of this literature review was to summarise the knowledge of the toxicity to marine and freshwater organisms of CPF as well as try to select a series of sensitive biomarkers, which are suitable for ecotoxicological assessment and environmental monitoring in aquatic systems.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
14
|
Macirella R, Madeo G, Sesti S, Tripepi M, Bernabò I, Godbert N, La Russa D, Brunelli E. Exposure and post-exposure effects of chlorpyrifos on Carassius auratus gills: An ultrastructural and morphofunctional investigation. CHEMOSPHERE 2020; 251:126434. [PMID: 32169701 DOI: 10.1016/j.chemosphere.2020.126434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Widespread environmental contamination from chlorpyrifos (CPF) is well acknowledged and has led to the proposal to ban or limit its use in agricultural and domestic, within the regulatory context of both America and Europe. Furthermore, great concerns arise as to whether exposure to CPF represents a potential risk to human health. In the present study, by subjecting the goldfish model to three environmentally realistic concentrations of CPF (1, 4, and 8 μg/L) for 96 h, we demonstrated that this pesticide has the potential to induce severe morphological, ultrastructural and functional alterations in gills, even at very low concentrations. The degree of pathological effects was dose-dependent, and the main morphological alterations recorded were: regression of interlamellar cellular mass (ILCM), hypertrophy, and hyperplasia of epithelial cells, degeneration of both chloride cells and pillar cells. CPF exposure resulted in a decrease of Na+/K+-ATPase expression and the induction of iNOS, as revealed by immunohistochemical analysis. In order to determine the overall toxicity of CPF, we also investigated the recovery capability of goldfish gills following a period of 7 days in pesticide-free water. Our results clearly showed that there exists a threshold of CPF dose below which the effects on gills are reversible and beyond which the ability of gills to recover their typical features is completely lost. The information presented in this paper emphasises the importance of evaluating the recovery ability of organisms after chemical input and enhances our knowledge of the potential hazard of organophosphorus pesticides (OPs) on freshwater ecosystems.
Collapse
Affiliation(s)
- Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Giuseppe Madeo
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Manuela Tripepi
- Department of Biological and Chemical Sciences, East Falls Campus College of Life Sciences, Jefferson University, 4201 Henry Ave, Philadelphia, PA, 19144, USA
| | - Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy
| | - Nicolas Godbert
- MAT-INLAB Laboratory, Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci 14/C, Rende, Cosenza, 87036, Italy
| | - Daniele La Russa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Rende, Cosenza, 87036, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, Rende, Cosenza, 87036, Italy.
| |
Collapse
|
15
|
Yang X, Zhao H, Wang Y, Liu J, Guo M, Fei D, Mu M, Xing M. The Activation of Heat-Shock Protein After Copper(II) and/or Arsenic(III)-Induced Imbalance of Homeostasis, Inflammatory Response in Chicken Rectum. Biol Trace Elem Res 2020; 195:613-623. [PMID: 31473897 DOI: 10.1007/s12011-019-01871-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/18/2019] [Indexed: 11/24/2022]
Abstract
Arsenic and copper, two toxic pollutants, are powerful inducers of oxidative stress. Exposure to copper and arsenic can cause intestinal injury in cockerel. This study was carried out to investigate the effects of these two pollutants on the gastrointestinal tract of cockerels. Experimental results showed that the activity of antioxidant enzymes (catalase and glutathione peroxidase) was inhibited and the ionic balance was destroyed after exposure to copper sulfate (300 mg/kg) and/or arsenic trioxide (30 mg/kg). However, the expression of pro-inflammatory cytokines (nuclear factor kappa-B, cyclooxygenase-2, tumor necrosis factor-α, and prostaglandin E2 synthases) increased markedly. Damages to the biofilm structure and inflammatory cell infiltration were simultaneously observed during histological examination. Heat-shock proteins were also expressed in large quantities after exposure to the poisons. Collectively, exposure to arsenite and/or Cu2+ can cause rectal damage in cockerels, inducing inflammation and an imbalance in immune system responses. Sometimes, exposure to both pollutants can produce even more toxic effects. Heat-shock proteins can protect the tissue from the exotoxins but the specific mechanisms require exploration. After oral ingestion of toxins, the rectum can still be damaged, necessitating attention to the safety of poultry breeding, human food safety, and environmental protection.
Collapse
Affiliation(s)
- Xin Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Yuan L, Liu H, Liu X, Zhang X, Wu J, Wang Y, Du X, Wang R, Ma Y, Chen X, Petlulu P, Cheng X, Zhuang D, Guo H, Zhang H. Epigenetic modification of H3K4 and oxidative stress are involved in MC-LR-induced apoptosis in testicular cells of SD rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:277-291. [PMID: 31691492 DOI: 10.1002/tox.22865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide, produced by aquatic cyanobacteria such as microcystis, with strong reproductive toxicity which poses greater threat to the reproductive abilities of humans and animals. By exploring the role of trimethylation of histone H3 at lysine 4 (H3K4me3) and the role of oxidative stress in MC-LR-induced apoptosis in testicular Sertoli cells in Sprague-Dawley (SD) rats, this study indicated that MC-LR increased the expression levels of apoptosis-related genes by raising the levels of H3K4me3. 5'-Deoxy-5'-methylthioadenosine (MTA), the inhibitor of H3K4me3, reduced apoptosis, indicating for the first time that epigenetic modification is closely related to the testicular reproductive toxicity induced by MC-LR. MC-LR also induced oxidative stress by stimulating the generation of reactive oxygen species (ROS), and subsequently triggering mitochondria-mediated apoptotic pathway by decreasing mitochondrial membrane potential and increasing the levels of Bax, Bcl-2, Caspase-3, and so on. MC-LR-induced apoptosis of testicular cells could be decreased after pretreatment with oxidative stress inhibitor N-acetyl-cysteine (NAC). Furthermore, the pathological damage to mitochondria and testes were observed in SD rats. These results show that MC-LR can induce apoptosis by raising the levels of H3K4me3, and pretreatment with MTA can ameliorate the MC-LR-induced apoptosis of cocultured cells by lowering the levels of H3K4me3. Furthermore, NAC has a protective effect on MC-LR-induced apoptosis of testicular cells in SD rats by inhibiting the oxidative stress.
Collapse
Affiliation(s)
- Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas
| | | | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Liu Q, Yang J, Gong Y, Cai J, Zhang Z. Role of miR-731 and miR-2188-3p in mediating chlorpyrifos induced head kidney injury in common carp via targeting TLR and apoptosis pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105286. [PMID: 31479757 DOI: 10.1016/j.aquatox.2019.105286] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant with increasing importance due to its high toxicity to fish and aquatic animals. In the present study, we divided 120 common carp (Cyprinus carpio L.) into two groups including control group and CPF group, CPF group was exposed to 14.5 μg/L CPF for 30 d. 17 miRNAs were differentially expressed in CPF group head kidney tissues according to the results of miRNAome analysis. In addition, histopathological examination and electron microscopy proved that CPF exposure could lead to damage of head kidney and obvious apoptosis characteristics. The possible target genes of miRNA were predicted using online target gene prediction websites, miRNAome sequencing, GO and KEGG enrichment. miRNAome results showed that expression of miR-731 and miR-2188-3p in CPF group was 0.48 time and 0.45 time as control group, respectively. qRT-PCR results proved the reality of miRNAome. During CPF exposure, mRNA expression of TLR pathway genes and its downstream genes involved in autophagy and apoptosis pathway including TLR1, TLR2, TLR7, TLR9, MyD88, IRAK1, IRAK4, IRF7, PI3K, AKT, mTOR, Caspase3, Caspase8 and Bax were differentially increased under CPF exposure, along with ATG13 and Bcl2 decreased at the same time. Western blot results indicated that apoptosis related protein Caspase3 and Caspase8 were differentially up-regulated in the CPF group. In summary, CPF exposure could induce apoptosis while inhibited autophagy in head kidney of common carp via the regulation of miR-2188-3p and miR-731 by targeting TLR pathway. These results provide new insights for unveiling the biological effects of CPF and miRNAs in common carp.
Collapse
Affiliation(s)
- Qi Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jie Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yafan Gong
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Ma J, Zhu J, Wang W, Ruan P, Rajeshkumar S, Li X. Biochemical and molecular impacts of glyphosate-based herbicide on the gills of common carp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1288-1300. [PMID: 31252126 DOI: 10.1016/j.envpol.2019.06.040] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Glyphosate (GLY)-based herbicide, one of the most widely used herbicides, might cause a series of environmental problems and pose a toxicological risk to aquatic organisms. However, data on the potential hazard and toxicity mechanism of GLY to fish gills are relatively scarce. In this study, a subacute toxicity test of common carp (Cyprinus carpio L.) treated with commercial GLY at 52.08 and 104.15 mg L-1 for 7 d was conducted. The results revealed that GLY exposure significantly inhibited Na+/K+-ATPase and increased AST and ALT activities in the fish gills. The biochemical assays results revealed that GLY treatment remarkably altered the transcriptional levels of HSP70 and HSP90; inhibited the activities of SOD, CAT, GPx, GR, and T-AOC; reduced the contents of GSH, but remarkably promoted MDA and PC contents, suggesting that GLY exposure induced oxidative stress and lipids and proteins damage in the carp gills. Further research revealed that GLY exposure also promoted expression of NF-κB, iNOS, IL-1β, IL-6, IL-8, and TNF-α; altered the levels of IL-10 and TGF-β, indicating that GLY exposure induced inflammatory response in the fish gills. Additionally, we found that GLY exposure activated apaf-1 and bax and inhibited bcl-2, induced caspase-9 and caspase-3 expression and caused remarkable histological damage in the fish gills. These results may further enriches the toxicity mechanistic theory of GLY to fish gills, which may be useful for the risk assessment of GLY and aquatic organism protection.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jingyi Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Wanying Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panpan Ruan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Sivakumar Rajeshkumar
- Arts and Science College, Bharathiyar University Coimbatore, 641029, Tamil Nadu, India
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
19
|
Cardoso PG, Resende-de-Oliveira R, Rocha E. Combined effects of increased temperature and levonorgestrel exposure on zebrafish female liver, using stereology and immunohistochemistry against catalase, CYP1A, HSP90 and vitellogenin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1059-1067. [PMID: 31252103 DOI: 10.1016/j.envpol.2019.06.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Climate change and pharmaceuticals contamination constitute two of the most relevant stressors on the aquatic ecosystems, however, there is a huge lack of information regarding the interactive effects of both stressors. For that, a mesocosm experiment was implemented where adult zebrafish were exposed to combined temperature and the progestin levonorgestrel (LNG) for 21 days. Considering that the liver is one of the organs where there is a greater metabolization and accumulation of toxicants, the main objective of this work was to assess the effects of both stressors on the female zebrafish hepatocytes morphology and functioning, through stereological and immunohistochemical techniques. Our results revealed an increase of coefficient of variation of the number distribution of hepatocytes volume (CVN(υ)) for individuals exposed to LNG, which denotes an increase of the hepatocytes size variability and is suggestive of functional impacts. This was corroborated by the signs of increased glycogen content with the exposure to increased LNG concentrations and temperature, indicating modified hepatocyte glycogen metabolism. Such disturbances can be considered indicators that the fish had to deal with impacts caused by the stress factors. Regarding the immunoreactivity, from the four proteins selected (catalase, CYP1A, HSP90 and Vtg), just in two of them (catalase and Vtg) were observed some responses to both stressors. For catalase there was a hormetic response, in which exposure to lower LNG concentrations caused a significant higher positive immunostaining than under higher LNG concentrations. While, for Vtg, significant effects of temperature and LNG existed, in which a decline in Vtg immunostaining was observed with exposure to higher temperature and lower LNG concentrations. These results should be seen as a warning sign about fine impacts of multiple stressors, such as temperature and progestogens, on the structure and functioning of zebrafish liver and potentially in other aquatic organisms, and on their health implications.
Collapse
Affiliation(s)
- P G Cardoso
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.
| | - R Resende-de-Oliveira
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - E Rocha
- Group of Histomorphology, Physiopathology and Applied Toxicology, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal; Laboratory of Histology and Embryology, Department of Microscopy, Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Li Y, Ma J, Fang Q, Guo T, Li X. Protective effects of Nostoc sphaeroides Kütz against cyclophosphamide-induced immunosuppression and oxidative stress in mice. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1650067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Qian Fang
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Tingting Guo
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
21
|
Li Y, Ding W, Li X. Acute exposure of glyphosate-based herbicide induced damages on common carp organs via heat shock proteins-related immune response and oxidative stress. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1621903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
22
|
Zhao MW, Yang P, Zhao LL. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson's disease. ENVIRONMENTAL TOXICOLOGY 2019; 34:699-707. [PMID: 30835941 DOI: 10.1002/tox.22736] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The insecticide exposure has been linked to Parkinson's disease (PD). In the present study, we used a most widely used cell line in study of PD, the SH-SY5Y cells, to investigate mechanisms of chlorpyrifos (CPF) induced cell toxicity and the possible roles of cell pyroptosis and oxidative stress in SH-SY5Y cells, as well as role of miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in this process. METHODS SH-SY5Y cells were treated with different concentrations of CPF. Cell viability was measured using CCK-8 assay. Cell pyroptosis was determined by immunofluorescence of caspase-1 and TUNEL assay. The miR-181 (has-miR-181-5p) level was determined by qRT-PCR. Expression of SIRT1, PGC-1α, Nrf2, and pyroptosis related proteins NLRP3, caspase-1, IL-1β, and IL-18 was determined by both qRT-PCR and Western blotting. RESULTS Cell viability was found to be decreased with the increased CPF concentrations. The pyroptosis related proteins, ROS levels, as well as level of caspase-1 and the TUNEL positive cells were all significantly up-regulated by CPF. Meanwhile, expression of miR-181 and pyroptosis proteins was also enhanced, while the SIRT1/PGC-1α/Nrf2 signaling was inhibited by CPF. Knockdown of Nrf2 significantly up-regulated the expression of pyroptosis related proteins, ROS level, caspase-1, and the TUNEL positive cells, while over-expression of Nrf2 resulted in opposite results. The expression of PGC-1α and Nrf2 was significantly down-regulated when SIRT1 was inhibited, while over-expressed SIRT1 led to increased PGC-1α and Nrf2 levels. Besides, miR-181 promoted the CPF induced activation of pyroptosis and oxidative stress, as well as down-regulated SIRT1/PGC-1α/Nrf2 signaling, while inhibition of miR-181 led to opposite results. CONCLUSIONS Chlorpyrifos could inhibit cell proliferation, activate cell pyroptosis and increase susceptibility on oxidative stress-induced toxicity by elevating miR-181 through down-regulation of the SIRT1/PGC-1α/Nrf2 pathway in human neuroblastoma SH-SY5Y cells. This study might give deeper insights for mechanisms of CPF induced toxicity and might give some novel research targets for PD treatment.
Collapse
Affiliation(s)
- Meng-Wen Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pu Yang
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
23
|
Jiao W, Han Q, Xu Y, Jiang H, Xing H, Teng X. Impaired immune function and structural integrity in the gills of common carp (Cyprinus carpio L.) caused by chlorpyrifos exposure: Through oxidative stress and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:239-245. [PMID: 30176333 DOI: 10.1016/j.fsi.2018.08.060] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
As one of the mucosal lymphatic tissues, the gill is an important immune organ in fish. Water environmental pollutants enter fish body through the gill. Therefore, the gill is the initial site where pollutants produce toxic effects in water. Chlorpyrifos (CPF), a broad-spectrum organophosphate insecticide, is widely used for agricultural pests and causes river pollution. In the present study, we investigated histopathological effect, oxidative stress indexes (SOD, GSH, T-AOC, and MDA), and apoptosis-related genes (P53, PUMA, Bax, Bcl-2, Apaf-1, Caspase-9, and Caspase-3) in the gills of common carp exposed to CPF. The results indicated that CPF exposure decreased SOD, T-AOC, and GSH; increased MDA; decreased Bcl-2 mRNA expression; and increased P53, PUMA, Bax, Apaf-1, Caspase-9, and Caspase-3 mRNA expressions in common carp gills. Our results proved that CPF exposure caused oxidative stress and apoptosis in common carp gills; CPF exposure destroyed the structural integrity and affected the immune function through oxidative stress and apoptosis in common carp gills. These will provide evidence for the toxic effects of water environmental pollutants on immune function and structural integrity in fish gills.
Collapse
Affiliation(s)
- Wanying Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huijie Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
24
|
Nkoom M, Lu G, Liu J, Dong H, Yang H. Bioconcentration, behavioral, and biochemical effects of the non-steroidal anti-inflammatory drug diclofenac in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5704-5712. [PMID: 30612359 DOI: 10.1007/s11356-018-04072-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The non-steroidal anti-inflammatory drug (NSAID) diclofenac is one of the most frequently studied as well as controversially discussed pharmaceutically active drug on the subject of its relevance to the environment. This study was conducted to assess the bioconcentration potential of diclofenac and its behavioral and biochemical effects in Daphnia magna. The bioconcentration factors of diclofenac determined after 48 h of aqueous exposure in Daphnia magna were 70.94 and 8.02 for the nominal exposure concentrations of 5 and 100 μg/L, respectively. Diclofenac exposure obviously decreased the filtration and ingestion rates of the daphnids. A significant increase of the acetylcholinesterase activity that was observed in this study indicates that diclofenac might not have neurobehavioral toxicity in Daphnia magna. Significant induction of malondialdehyde content is an indication of overproduction of reactive oxygen species leading to oxidative damage in daphnids after diclofenac exposure. Moreover, significant inhibition of the superoxide dismutase, catalase, and glutathione reductase activities implies that the antioxidant defense system of Daphnia magna was overwhelmed. Also, significant inhibition of glutathione s-transferase activity might point to the fact that the enzyme was not capable to detoxify diclofenac in Daphnia magna. These findings indicate that diclofenac can accumulate and consequently stimulate behavioral and biochemical disturbances in Daphnia magna.
Collapse
Affiliation(s)
- Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
25
|
Ma J, Chen X, Xin G, Li X. Chronic exposure to the ionic liquid [C 8mim]Br induces inflammation in silver carp spleen: Involvement of oxidative stress-mediated p38MAPK/NF-κB signalling and microRNAs. FISH & SHELLFISH IMMUNOLOGY 2019; 84:627-638. [PMID: 30343007 DOI: 10.1016/j.fsi.2018.09.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to determine the chronic toxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the silver carp to further reveal the toxicological mechanisms of ionic liquids. Chronic exposure of silver carp to [C8mim]Br at concentrations of 1.095 and 4.380 mg/L for 60 d was conducted under laboratory conditions. The results revealed that chronic exposure to [C8mim]Br inhibited the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduced glutathione (GSH) levels while markedly increasing malondialdehyde (MDA) and protein carbonyl (PC) levels in fish spleen, indicating that [C8mim]Br treatment induced oxidative stress. Additionally, long-term exposure to [C8mim]Br markedly upregulated the expressions of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), IL-6, tumour necrosis factor-α (TNF-α), and interferon-γ (IFN-γ); altered the levels of transforming growth factor-β (TGF-β); and increased the mRNA levels of p38MAPK, c-fos, c-jun, and c-myc, suggesting that long-term exposure to [C8mim]Br might promote the inflammatory response in fish spleen and that p38MAPK/NF-κB signalling may potentially be involved in this process. Moreover, [C8mim]Br-exposure altered lysozyme activity and complement 3 (C3) and immunoglobulin M (IgM) content, indicating that chronic [C8mim]Br exposure also has immunotoxic effects on silver carp. Furthermore, we also found that [C8mim]Br exposure reduced miR-125b levels, altered miR-143 levels, and upregulated miR-155 and miR-21 levels, suggesting that these miRNAs may be involved in the [C8mim]Br-induced inflammatory response in fish spleen. In summary, the present study indicates that chronic exposure to [C8mim]Br induces inflammation in fish spleen and that oxidative stress-mediated p38MAPK/NF-κB signalling and miRNAs may play a key role in this process.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xi Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guangyuan Xin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
26
|
Ma J, Li X, Cui M, Li W, Li X. Negative impact of the imidazolium-based ionic liquid [C 8mim]Br on silver carp (Hypophthalmichthys molitrix): Long-term and low-level exposure. CHEMOSPHERE 2018; 213:358-367. [PMID: 30241080 DOI: 10.1016/j.chemosphere.2018.09.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to determine the chronic toxicity of the ionic liquid (IL) 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on silver carp to further study the toxicological mechanism of ILs. For this purpose, 60-d chronic exposure at concentrations of 1.09 or 4.38 mg L-1 [C8mim]Br in silver carp was conducted. The results of biochemical assays revealed that [C8mim]Br-treatment remarkably promoted serum lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), acid phosphatase (ACP), and alkaline phosphatase (AKP) activities, indicating that [C8mim]Br-exposure caused fish organ damage. Long-term exposure of [C8mim]Br also altered the activities of superoxide dismutase (SOD) and catalase (CAT) and the glutathione (GSH) level but increased malondialdehyde (MDA) levels in fish brain, gill, intestine, kidney, liver, and muscle, suggesting that [C8mim]Br-treatment may cause oxidative stress in fish organs. Further work revealed that [C8mim]Br-treatment increased the activities of erythromycin-N-demethylase (ERND) and glutathione S-transferases (GST), which may participate in the metabolism of [C8mim]Br in fish liver. Moreover, chronic [C8mim]Br-exposure remarkably promoted the expression of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and nuclear factor-κB (NF-κB) and altered the levels of transforming growth factor-β (TGF-β), suggesting that long-term exposure of [C8mim]Br might promote the inflammatory response in fish liver. Additionally, [C8mim]Br-exposure altered succinate dehydrogenase (SDH) activity and promoted caspase-9 and caspase-3 activities in fish liver, suggesting that chronic [C8mim]Br-exposure also induces hepatocellular apoptosis via the mitochondrial pathway. The results presented here may be helpful to illuminate the chronic toxicity mechanism of imidazolium-based ILs and safe use of ILs in the future.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinxin Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengke Cui
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiguo Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
27
|
Ma J, Li X. Insight into the negative impact of ionic liquid: A cytotoxicity mechanism of 1-methyl-3-octylimidazolium bromide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1337-1345. [PMID: 30125844 DOI: 10.1016/j.envpol.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) as a green replacement for volatile organic solvents are increasingly used in large-scale commercial applications. A good understanding of the toxic mechanisms and environmental impact of ILs is neede to reduce the risk for human health and the environment. For this purpose, we aimed to evaluate the possible impacts of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) exposure on human hepatocellular carcinoma (HepG2) cells as to elucidate the cytotoxic mechanism of [C8mim]Br. Biochemical assays revealed that [C8mim]Br exposure altered the protein levels of heat shock protein 70 (HSP70) and HSP90, generally inhibiting total antioxidative capacity (T-AOC), depleting heme oxygenase-1 (HO-1) and increasing transcription and activity of inducible nitric oxide synthase (iNOS) in HepG2 cells. These results indicated that [C8mim]Br may induce biochemical disturbances and cause oxidative stress in HepG2 cells. Moreover, increased phosphorylation of p53, mitochondrial membrane disruption, cyclooxygenase-2 activation, Bcl-2 family protein modulation, cytochrome c and Smac/DIABLO release, and inhibition of apoptosis inhibitory protein-2 (c-IAP2) and survivin were also observed in [C8mim]Br-treated cells, suggesting that [C8mim]Br-induced apoptosis might be mediated by the mitochondrial pathway. Further research showed that [C8mim]Br exposure increased tumour necrosis factor α (TNF-α) transcription and content and promoted the expression of Fas and FasL, indicating that TNF-α and Fas/FasL are involved in the apoptosis induced by [C8mim]Br. Additionally, [C8mim]Br cytotoxicity was partly inhibited by N-acetyl-cysteine (NAC), and NAC reversed [C8mim]Br-mediated mitochondrial dysfunction and blocked apoptotic events by inhibiting the generation of reactive oxygen species (ROS). This work first demonstrated that the ROS-mediated mitochondrial and death receptor-initiated apoptotic pathway is involved in [C8mim]Br-induced HepG2 cell apoptosis.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
28
|
Dong H, Lu G, Yan Z, Liu J, Nkoom M, Yang H. Responses of antioxidant and biotransformation enzymes in Carassius carassius exposed to hexabromocyclododecane. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:46-53. [PMID: 29960092 DOI: 10.1016/j.etap.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
The ubiquitous existence of hexabromocyclododecane (HBCD) in environmental matrices has made it attractive to both field investigators as well as laboratory researchers. However, literature on the biological effects caused by HBCD on aquatic vertebrates seldom exist. This has inevitably increased the difficulty of toxicological assessment in the aquatic environment. Juvenile crucian carp (Carassius carassius) were exposed (flow-through) to different concentrations of technical HBCD (nominal 2, 20, 200 μg L-1) for 7 days to determine the responses of antioxidant and biotransformation enzymes. HBCD was found to be increasingly bioconcentrated in the fish livers as time proceeds. Also, the contribution of α-HBCD exhibited an enhancement from 13% in the exposure solutions to 24% in crucian carp, still much lower than in wild fishes (ca. 80%). HBCD induced activities of antioxidant enzymes in most cases, as well as increased level of lipid peroxidation. In contrast to the weak response of 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-depentylase (PROD) activity was generally induced in a time-dependent manner with peaks at day 2. Phase II enzyme Glutathione-S-transferase (GST) showed a dose-dependent induction with maximums in the 20 μg L-1 treatment at all the four timepoints of 1, 2, 4 and 7 days. Some enzymatic responses showed good associations, indicating coordinated functions. To sum up, tHBCD exposure in the present circumstance had produced an ecological stress to crucian carp. The low levels of biotransformation and slow rates of bioisomerization suggest a possible long-term toxic effect, especially around HBCD point sources.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Matthew Nkoom
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
29
|
Ma J, Li Y, Wu M, Zhang C, Che Y, Li W, Li X. Serum immune responses in common carp (Cyprinus carpio L.) to paraquat exposure: The traditional parameters and circulating microRNAs. FISH & SHELLFISH IMMUNOLOGY 2018; 76:133-142. [PMID: 29499338 DOI: 10.1016/j.fsi.2018.02.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Paraquat (PQ) is a herbicide used worldwide, and it was shown to be a high-risk compound to aquatic organisms. This study was conducted to investigate the effects of PQ on traditional serum parameters and circulating microRNAs (miRNAs) in common carp to further elucidate the mechanism of PQ toxicity in fish. In the current study, a subacute toxicity test of common carp exposed to PQ at 1.596 and 3.192 mg/L for 7 d was conducted under laboratory conditions. The results showed that PQ exposure generally reduced the levels of T-AOC, SOD, CAT, and GST, but significantly increased MDA levels in the serum, indicating that PQ exposure induces oxidative stress and lipid peroxidation in the fish. The results of biochemical assays showed that PQ exposure not only significantly altered the activities of LDH, AST, ALT, ACP, AKP, and lysozyme and the contents of IgM and complement 3 but also promoted the expression of pro-inflammatory cytokines, including IFN-γ, IL-1β, IL-6, IL-8, and TNF-α. Additionally, PQ inhibited the levels of the anti-inflammatory cytokines IL-10 and TGF-β, suggesting that PQ exposure may cause fish tissue injury and promote immune inflammatory responses. Furthermore, we found that serum circulating miRNAs, such as ccr-mir-122, ccr-mir-125b, ccr-mir-146a, and ccr-mir-155, were generally promoted in fish following PQ exposure. Based on our results and reports on miRNA-based diagnosis of tissue damage and inflammatory responses in mammals, we suggest that serum ccr-mir-122, ccr-mir-125b, ccr-mir-146a, and ccr-mir-155 could be new biomarkers of PQ toxicity in fish.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengli Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Can Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqing Che
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiguo Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
30
|
Ma J, Li Y, Wu M, Li X. Oxidative stress-mediated p53/p21 WAF1/CIP1 pathway may be involved in microcystin-LR-induced cytotoxicity in HepG2 cells. CHEMOSPHERE 2018; 194:773-783. [PMID: 29248874 DOI: 10.1016/j.chemosphere.2017.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
A previous study showed that microcystin-LR (MC-LR) exerted cytotoxicity and induced apoptosis in HepG2 cells. In the present study, we investigated whether oxidative stress-mediated p53/p21WAF1/CIP1 is involved in this process to further elucidate the mechanism of cytotoxicity induced by MC-LR. Morphological evaluation showed that MC-LR induced time- and dose-dependent cytotoxicity in HepG2 cells. Biochemical assays revealed that MC-LR exposure altered the protein levels of HSP70 and HSP90, generally inhibited superoxide dismutase and catalase, reduced glutathione content, and increased the cellular malondialdehyde level of HepG2 cells, suggesting that MC-LR may induce biochemical disturbance and oxidative stress in HepG2 cells. The protein levels of p-p53 and p21 were markedly increased by MC-LR exposure in a concentration-dependent manner, suggesting that p53 and p21 may be involved in the process. Moreover, we also found that the proto-oncogene c-myc was significantly activated in HepG2 cells following MC-LR exposure, indicating that c-myc in HepG2 cells was potentially involved in response to MC-LR-induced apoptosis. These findings may contribute to further understanding the in vitro molecular mechanism of MC-LR hepatotoxicity.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengli Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
31
|
Ma J, Li Y, Li W, Li X. Hepatotoxicity of paraquat on common carp (Cyprinus carpio L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:889-898. [PMID: 29107372 DOI: 10.1016/j.scitotenv.2017.10.231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Paraquat (PQ) is a nonselective herbicide that is used worldwide and has been demonstrated to be a high risk to aquatic organisms. However, relatively little is known about the mechanisms on detoxification and hepatotoxicity of PQ in fish. In the present study, a sub-acute toxicity test of PQ exposure on common carp at 1.596 and 3.192mgL-1 for 7d was conducted under laboratory conditions. The results showed that the transcriptional levels of cytochrome P450s (CYPs), such as CYP1A, CYP2K, and CYP3A138, GSTα and GSTpi, and export pump gene MDR1, as well as the erythromycin-N-demethylase (ERND) activity were generally up-regulated by PQ exposure for 7d, indicating that these genes or enzymes are potentially involved in the detoxification of PQ in the fish liver. Further research showed that PQ exposure significantly increased the levels of HSP70, HSP90, NOS, and MDA; promoted expression of pro-inflammatory cytokines, including IL-6 and IL-8; altered the levels of anti-inflammatory cytokines IL-10 and TGF-β, and generally reduced the levels of T-AOC, SOD, CAT, and GSH. In addition, we also found that caspase-3, caspase-8, and caspase-9 were significantly activated in the fish liver following PQ exposure. In brief, the present study showed that PQ exposure induced fish liver injury by destabilizing the metabolism of fish, inhibiting antioxidant enzyme activity, elevating lipid peroxidation, and promoting an immune inflammatory response and apoptosis. The present study further enriches and perfects the mechanism theory of PQ hepatotoxicity to fish, which may be valuable for the risk assessment of PQ and human health protection.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiguo Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
32
|
Ma J, Li Y, Duan H, Sivakumar R, Li X. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. CHEMOSPHERE 2018; 192:305-317. [PMID: 29117589 DOI: 10.1016/j.chemosphere.2017.10.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Low dose but long-term exposure of microcystin-LR (MC-LR) could induce human hepatitis and promote liver cancer according to epidemiological investigation results, but the exact mechanism has not been completely elucidated. In the present study, a chronic toxicity test of MC-LR exposure on HepG2 cells at 0.1-30 nM for 83 d was conducted under laboratory conditions. The western blot assay result revealed that MC-LR entered HepG2 cells, even at the concentration of 0.1 nM, after 83 d of exposure, but no cytotoxicity was observed in the HepG2 cells, as determined by the CCK-8 and LDH tests. However, the results of the DCF fluorescence assay showed that the intracellular ROS level in the 30 nM MC-LR-treated cells was significantly higher than that of the control cells, and 5 and 10 nM of MC-LR exposure totally increased the activity of SOD in HepG2 cells. These results indicate that MC-LR exposure at low concentration also induced excessive ROS in HepG2 cells. Additionally, long-term exposure of MC-LR at low concentration remarkably promoted the expression of NF-κB p65, COX-2, iNOS, TNF-α, IL-1β, and IL-6 in the cells, suggesting that long-term MC-LR exposure at low concentration can induce inflammatory reaction to HepG2 cells, which might account for MC-induced human hepatitis. Thus, we hypothesized that the pathogenesis of human hepatitis and hepatocarcinoma caused by MCs might be closely associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongying Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | | | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
33
|
Karami-Mohajeri S, Ahmadipour A, Rahimi HR, Abdollahi M. Adverse effects of organophosphorus pesticides on the liver: a brief summary of four decades of research. Arh Hig Rada Toksikol 2018; 68:261-275. [DOI: 10.1515/aiht-2017-68-2989] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/01/2017] [Indexed: 01/20/2023] Open
Abstract
Abstract
Organophosphorus pesticides (OPs) are widely used volatile pesticides that have harmful effects on the liver in acute and chronic exposures. This review article summarises and discusses a wide collection of studies published over the last 40 years reporting on the effects of OPs on the liver, in an attempt to propose general mechanisms of OP hepatotoxicity and possible treatment. Several key biological processes have been reported as involved in OP-induced hepatotoxicity such as disturbances in the antioxidant defence system, oxidative stress, apoptosis, and mitochondrial and microsomal metabolism. Most studies show that antioxidants can attenuate oxidative stress and the consequent changes in liver function. However, few studies have examined the relationship between OP structures and the severity and mechanism of their action. We hope that future in vitro, in vivo, and clinical trials will answer the remaining questions about the mechanisms of OP hepatotoxicity and its management.
Collapse
Affiliation(s)
- Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Ahmad Ahmadipour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Hamid-Reza Rahimi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Tehran , Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran , Iran
| | - Mohammad Abdollahi
- Kerman University of Medical Sciences, Kerman , Pharmaceutical Sciences Research Center, Iran
- Department of Toxicology and Pharmacology4, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran , Iran
| |
Collapse
|
34
|
Özdemir S, Altun S, Arslan H. Imidacloprid exposure cause the histopathological changes, activation of TNF-α, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp ( Cyprinus carpio L.). Toxicol Rep 2017; 5:125-133. [PMID: 29321977 PMCID: PMC5751999 DOI: 10.1016/j.toxrep.2017.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022] Open
Abstract
IMI toxication was evaluated with three different methods. Pathological lesions were observed after IMI exposure in gills, liver and brain. IMI exposure induced iNOS, 8-OHdG and TNF-α activation in gills, liver and brain. IMI exposure caused upregulation iNOS, caspase 3 and MT1 expressions in brain.
Imidacloprid (IMI) is a neonicotinoid that is widely used for the protection of crops and carnivores from insects and parasites, respectively. It is well known that imidacloprid exposure has a harmful effect on several organisms. However, there is little information about imidacloprid toxicity in aquatic animals, particularly fish. Thus, in the current study, we assessed the histopathological changes; activation of iNOS, 8-OHdG and TNF-α; and expression levels of caspase 3, iNOS, CYP1A and MT1 genes in the common carp exposed to imidacloprid. For this purpose, fish were exposed to either a low dose (140 mg/L) or a high dose (280 mg/L) of imidacloprid for 24 h, 48 h, 72 h and 96 h. After IMI exposure, we detected hyperplasia of secondary lamellar cells and mucous cell hyperplasia in the gills, as well as hydropic degeneration in hepatocytes and necrosis in the liver. Moreover, 8-OHdG, iNOS and TNF-α activation was found particularly in the gills and liver but also moderately in the brain. Transcriptional analysis showed that caspase 3 expression was altered low dose and high doses of IMI for 72 h and 96 h exposure (p < 0.05), iNOS expression was up-regulated with both low and high doses of IMI and in a time-dependent manner (p < 0.05, p < 0.01, p < 0.001), CYP1A expression was not significantly changed regardless of the dose of IMI and exposure time (p > 0.05) except with low and high doses of IMI for 96 h (p < 0.05), and lastly, MT1 gene expression was up-regulated only in the brain with low doses of IMI for 96 h and high doses of IMI for 48 h, 72 h and 96 h exposure (p < 0.05, p < 0.01). Our results indicated that acute IMI exposure moderately induce apoptosis in the brain but caused severe histopathological lesions, inflammation, and oxidative stress in the gills, liver, and brain of the common carp.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
35
|
Bonifacio AF, Ballesteros ML, Bonansea RI, Filippi I, Amé MV, Hued AC. Environmental relevant concentrations of a chlorpyrifos commercial formulation affect two neotropical fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. CHEMOSPHERE 2017; 188:486-493. [PMID: 28903091 DOI: 10.1016/j.chemosphere.2017.08.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
The increase of cultivated areas together with the intensive use of pesticides have greatly contributed to impair the quality of aquatic systems along different areas of South America. The main goal of the present study was to assess the effects of a commercial formulation of chlorpyrifos at environmentally relevant concentrations on two native fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Adult individuals were exposed during 48 h to the following concentrations: 0.084 nl/l (Ci-Cf 1) and 0.84 nl/l (Ci-CF 2) in C. interruptus (Ci) of Clorfox (CF), and 0.84 nl/l (Cd-CF 1) and 8.4 nl/l (Cd-CF 2) in C. decemmaculatus (Cd). Fish behavior was evaluated through locomotor activity and space usage variables. The activity of acetylcholinesterase (AChE) in brain and muscle, catalase (CAT) and glutathione-S-transferase (GST) in brain, liver, muscle and gills, and aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in liver, were measured. Both locomotor activity and space usage varied between the two species studied and between CF treatments. The enzyme activities showed significant variations in CAT for C. interruptus and in CAT, GST, AChE, AST, and AST/ALT for C. decemmaculatus under the exposure conditions. Given that both species responded to CF and the concentrations we tested are environmentally relevant, the presence of this pesticide in freshwater systems could impose a risk for populations of both native fish studied at field.
Collapse
Affiliation(s)
- Alejo Fabian Bonifacio
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET, and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
| | - María Laura Ballesteros
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET, and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
| | - Rocío Inés Bonansea
- Universidad Nacional de Córdoba, CONICET, Facultad Ciencias Químicas, Dto, Bioquímica Clínica, CIBICI, Córdoba CP 5000, Argentina
| | - Iohanna Filippi
- Universidad Nacional de Córdoba, CONICET, Facultad Ciencias Químicas, Dto, Bioquímica Clínica, CIBICI, Córdoba CP 5000, Argentina
| | - María Valeria Amé
- Universidad Nacional de Córdoba, CONICET, Facultad Ciencias Químicas, Dto, Bioquímica Clínica, CIBICI, Córdoba CP 5000, Argentina
| | - Andrea Cecilia Hued
- Instituto de Diversidad y Ecología Animal (IDEA), CONICET, and Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina.
| |
Collapse
|
36
|
Altun S, Özdemir S, Arslan H. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:432-443. [PMID: 28675853 DOI: 10.1016/j.envpol.2017.06.085] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution.
Collapse
Affiliation(s)
- Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| | - Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Atatürk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
37
|
Zhang J, Liu L, Ren L, Feng W, Lv P, Wu W, Yan Y. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. JOURNAL OF HAZARDOUS MATERIALS 2017; 334:121-131. [PMID: 28407539 DOI: 10.1016/j.jhazmat.2017.03.055] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/14/2017] [Accepted: 03/24/2017] [Indexed: 05/28/2023]
Abstract
Water environment pollution caused by the widespread application of beta-cypermethrin (BCP) and chlorpyrifos (CPF) in agriculture has attracted extensive concern of the world. In this study, zebrafish was used as a model to investigate the individual and joint toxicity of BCP and CPF. In the acute toxicity test, 3 hpf embryos were exposed to various concentrations of CPF, BCP and their binary mixtures (MIX) for 96h. The results indicated that these two pesticides and mixtures induced malformation and death in larvae, and affected hatchability. These two pesticides in mixtures were verified to act together in a synergistic manner under experimental conditions. Oxidative stress assaying manifested that CPF, BCP and MIX altered CAT, SOD and GST activities and MDA content, resulting in oxidative damage in larvae. By pathology analysis, CPF (236μg/L), BCP (5.9μg/L) and MIX (236μg/L CPF+5.9μg/L BCP) were found to trigger liver lesions and promote apoptosis in tissues. The transcriptome sequencing suggested that ECM- receptor interaction, focal adhesion, cell cycle, DNA replication, phototransduction and adherens junction pathways were closely associated with the toxicity of these two pesticides.
Collapse
Affiliation(s)
- Jiayu Zhang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lili Liu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Ren
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weimin Feng
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Lv
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Wu
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
38
|
Ma J, Feng Y, Jiang S, Li X. Altered cellular metabolism of HepG2 cells caused by microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:610-619. [PMID: 28336091 DOI: 10.1016/j.envpol.2017.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the possible effects of microcystin-LR (MC-LR) exposure on the metabolism and drug resistance of human hepatocellular carcinoma (HepG2) cells. For this purpose, we first conducted an experiment to make sure that MC-LR could penetrate the HepG2 cell membrane effectively. The transcriptional levels of phase I (such as CYP2E1, CYP3A4, and CYP26B1) and phase II (such as EPHX1, SULTs, and GSTM) enzymes and export pump genes (such as MRP1 and MDR1) were altered by MC-LR-exposure for 24 h, indicating that MC-LR treatment may destabilize the metabolism of HepG2 cells. Further research showed that the CYP inducers omeprazole, ethanol, and rifampicin inhibited cell viability, in particular, ethanol, a CYP2E1 inducer, induced ROS generation, lipid peroxidation, and apoptosis in HepG2 cells treated with MC-LR. The CYP2E1 inhibitor chlormethiazole inhibited ROS generation, mitochondrial membrane potential loss, caspase-3 activity, and cytotoxicity caused by MC-LR. Meanwhile, the results also showed that co-incubation with the ROS scavenger l-ascorbic acid and MC-LR decreased ROS levels and effectively prevented apoptosis. These findings provide an interesting mechanistic explanation of cellular metabolism associated with MC-LR, i.e., MC-LR-exposure exerted toxicity on HepG2 cells and induced apoptosis of HepG2 cells via promoting CYP2E1 expression and inducing excessive ROS in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Siyu Jiang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
39
|
Olsvik PA, Berntssen MH, Søfteland L. In vitro toxicity of pirimiphos-methyl in Atlantic salmon hepatocytes. Toxicol In Vitro 2017; 39:1-14. [DOI: 10.1016/j.tiv.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
|
40
|
Ma J, Li Y, Yao L, Li X. Analysis of MicroRNA Expression Profiling Involved in MC-LR-Induced Cytotoxicity by High-Throughput Sequencing. Toxins (Basel) 2017; 9:toxins9010023. [PMID: 28067858 PMCID: PMC5308255 DOI: 10.3390/toxins9010023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/27/2022] Open
Abstract
In recent years, microRNAs (miRNAs) in toxicology have attracted great attention. However, the underlying mechanism of miRNAs in the cytotoxicity of microcystin-LR (MC-LR) is lacking. The objective of this study is to analyze miRNA profiling in HepG2 cells after 24 h of MC-LR-exposure to affirm whether and how miRNAs were involved in the cytotoxicity of MC-LR. The results showed that totally 21 and 37 miRNAs were found to be significantly altered in the MC-LR treated cells at concentrations of 10 and 50 μM, respectively, when compared to the control cells. In these two groups, 37,566 and 39,174 target genes were predicted, respectively. The further analysis showed that MC-LR-exposure promoted the expressions of has-miR-149-3p, has-miR-449c-5p, and has-miR-454-3p while suppressed the expressions of has-miR-4286, has-miR-500a-3p, has-miR-500a-5p, and has-miR-500b-5p in MC-LR-treated groups when compared to the control group. Moreover, the result of qPCR confirmed the above result, suggesting that these miRNAs may be involved in MC-LR-hepatotoxicity and they may play an important role in the hepatitis and liver cancer caused by MC-LR. The target genes for differentially expressed miRNAs in MC-LR treatment groups were significantly enriched to totally 23 classes of GO, in which three were significantly enriched in both 10 and 50 μM MC-LR groups. Moreover, the results of KEGG pathway analysis showed that MC-LR-exposure altered some important signaling pathways such as MAPK, biosynthesis of secondary metabolites, and pyrimidine and purine metabolism, which were possibly negatively regulated by the corresponding miRNAs and might play important role in MC-LR-mediated cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Lan Yao
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
41
|
Kim RO, Kim BM, Jeong CB, Lee JS, Rhee JS. Effects of chlorpyrifos on life cycle parameters, cytochrome P450S expression, and antioxidant systems in the monogonont rotifer Brachionus koreanus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1449-1457. [PMID: 26496856 DOI: 10.1002/etc.3288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Chlorpyrifos is a widely used organophosphorus insecticide for controlling diverse insect pests of crops. In the monogonont rotifer Brachionus koreanus, population growth retardation with the inhibition of lifespan, fecundity, and individual body size of ovigerous females was shown over 10 d in response to chlorpyrifos exposure. At the molecular and biochemical levels, the rotifer B. koreanus defensome, composed of cytochrome P450 complements, heat shock protein 70, and antioxidant enzymatic systems (i.e., glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase), was significantly induced in response to different concentrations of chlorpyrifos. Thus, chlorpyrifos strongly induced a defensome system to mitigate the deleterious effects of chlorpyrifos at in vivo and in vitro levels as a trade-off in fitness costs. Environ Toxicol Chem 2016;35:1449-1457. © 2015 SETAC.
Collapse
Affiliation(s)
- Ryeo-Ok Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, South Korea
| |
Collapse
|
42
|
Jeon HJ, Lee YH, Kim MJ, Choi SD, Park BJ, Lee SE. Integrated biomarkers induced by chlorpyrifos in two different life stages of zebrafish (Danio rerio) for environmental risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:166-174. [PMID: 26998704 DOI: 10.1016/j.etap.2016.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
This study was performed to understand how chlorpyrifos (CHL) affects zebrafish (Danio rerio) embryos and adults, by exposing this model organism to various concentrations of the insecticide. The 96-h acute toxicity test to determine the effect of CHL on adult zebrafish yielded a LC50 of 709.43μg/L(-1). Small molecular weight proteins less than 25kDa and phospholipids were analyzed with MALDI-TOF MS/MS in order to compare expression patterns, revealing that some peaks were dramatically altered after CHL treatment. Whereas no acute toxicity was detected in the embryo toxicity test, malformation of zebrafish larvae was observed, with many individuals harboring curved spines. In an angiogenesis test on larvae of transgenic zebrafish, CHL did not have an inhibitory effect. Relative gene expression analyses using real-time polymerase chain reaction (RT-PCR) of DNA from zebrafish embryos revealed that different subtypes of cytochrome P450 (CYP450), such as CYP1A and CYP3A, were significantly up-regulated in response to CHL at a concentration of 400μg/L(-1) compared to the control. The expression level of NR1I2, a CYP gene transcriptional regulator, UGT1a1, and MDR1 were all up-regulated in the CHL-treated embryos. Finally, the expression level of acetylcholinesterase (AChE) and catalase (CAT) decreased, whereas that of superoxide dismutase (SOD) did not differ significantly. Our results suggest that the up-regulation of metabolic enzymes including CYP450 and MDR1 may be involved in CHL resistance in zebrafish.
Collapse
Affiliation(s)
- Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Yong-Ho Lee
- Institute of Ecological Phytochemistry, Department of Plant Life & Environmental Science, Hankyong National University, Anseong 456-749, Republic of Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Byung-Jun Park
- Chemical Safety Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54875, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
43
|
Cao CW, Sun LL, Niu F, Liu P, Chu D, Wang ZY. Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:73-80. [PMID: 26494514 DOI: 10.1017/s0007485315000826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenol, also known as carbolic acid or phenic acid, is a priority pollutant in aquatic ecosystems. The present study has investigated metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis under phenol stress. Exposure of C. kiinensis larvae to three sublethal doses of phenol (1, 10 and 100 µM) inhibited cytochrome P450 enzyme activity during the 96 h exposure period. The P450 activity measured after the 24 h exposure to phenol stress could be used to assess the level (low or high) of phenol contamination in the environment. To investigate the potential of cytochrome P450 genes as molecular biomarkers to monitor phenol contamination, the cDNA of ten CYP6 genes from the transcriptome of C. kiinensis were identified and sequenced. The open reading frames of the CYP6 genes ranged from 1266 to 1587 bp, encoding deduced polypeptides composed of between 421 and 528 amino acids, with predicted molecular masses from 49.01 to 61.94 kDa and isoelectric points (PI) from 6.01 to 8.89. Among the CYP6 genes, the mRNA expression levels of the CYP6EW3, CYP6EV9, CYP6FV1 and CYP6FV2 genes significantly altered in response to phenol exposure; therefore, these genes could potentially serve as biomarkers in the environment. This study shows that P450 activity combined with one or multiple CYP6 genes could be used to monitor phenol pollution.
Collapse
Affiliation(s)
- C W Cao
- School of Forestry,Northeast Forestry University,Harbin,China
| | - L L Sun
- School of Forestry,Northeast Forestry University,Harbin,China
| | - F Niu
- School of Forestry,Northeast Forestry University,Harbin,China
| | - P Liu
- School of Forestry,Northeast Forestry University,Harbin,China
| | - D Chu
- School of Forestry,Northeast Forestry University,Harbin,China
| | - Z Y Wang
- School of Forestry,Northeast Forestry University,Harbin,China
| |
Collapse
|
44
|
Khalil AM. Neurotoxicity and biochemical responses in the earthworm Pheretima hawayana exposed to TiO2NPs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:455-461. [PMID: 26398239 DOI: 10.1016/j.ecoenv.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Serious concerns have been expressed about potential risks of manufactured TiO2NPs. In this research, toxicity of nanoparticulate and bulk TiO2 were examined to the earthworm Pheretima hawayana. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic. The 24-h LC50 for TiO2NPs (145.36 mg kg(-1)) was highly toxic than that of bulk TiO2 (357.77 mg kg(-1)). The aim of the present work is to evaluate the suitability of P. hawayana and its biochemical responses to be used as a bioindicator organism and biomarkers of TiO2 toxicity. Earthworms were exposed to three sublethal concentrations of TiO2NPs (1, 10 and 100 µg kg(-1)) for 28 days to test acetylcholinesterase (AChE), antioxidant enzymes (superoxide dismutase: SOD and catalase: CAT) activities and MDA content. The response of the antioxidant enzymes combined with AChE inhibition and MDA accumulation indicated that TiO2NPs could induce significant impairments to the earthworms at the actual environment tested concentrations. The results pointed out the high sensitivity of the antioxidant and oxidative stress related responses to TiO2NPs exposure, demonstrating their usefulness in environmental monitoring and risk assessment. The study highlights also the usefulness of earthworm P. hawayana as potential bioindicator species for assessing the risk of nanoparticles environmental contamination.
Collapse
Affiliation(s)
- Abdelmonem M Khalil
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
45
|
Li IJ, Chang CJ, Liu SC, Abe G, Ota KG. Postembryonic staging of wild-type goldfish, with brief reference to skeletal systems. Dev Dyn 2015; 244:1485-518. [PMID: 26316229 PMCID: PMC5054871 DOI: 10.1002/dvdy.24340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/10/2015] [Accepted: 08/23/2015] [Indexed: 01/06/2023] Open
Abstract
Background: Artificial selection of postembryonic features is known to have established morphological variation in goldfish (Carassius auratus). Although previous studies have suggested that goldfish and zebrafish are almost directly comparable at the embryonic level, little is known at the postembryonic level. Results: Here, we categorized the postembryonic developmental process in the wild‐type goldfish into 11 different stages. We also report certain differences between the postembryonic developmental processes of goldfish and zebrafish, especially in the skeletal systems (scales and median fin skeletons), suggesting that postembryonic development underwent evolutionary divergence in these two teleost species. Conclusions: Our postembryonic staging system of wild‐type goldfish paves the way for careful and appropriate comparison with other teleost species. The staging system will also facilitate comparative ontogenic analyses between wild‐type and mutant goldfish strains, allowing us to closely study the relationship between artificial selection and molecular developmental mechanisms in vertebrates. Developmental Dynamics 244:1485–1518, 2015. © 2015 Wiley Periodicals, Inc. This study provides the first reliable descriptions of normal post‐embryonic stages of wild type goldfish. Several post‐embryonic features of goldfish and zebrafish are diverged in these two teleost lineages. Goldfish larvae and juvenile provide a novel model for the investigation of the evolutionary relationship between domestication and ontogeny.
Collapse
Affiliation(s)
- Ing-Jia Li
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Chun-Ju Chang
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Shi-Chieh Liu
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Gembu Abe
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Kinya G Ota
- Laboratory of Aquatic Zoology, Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| |
Collapse
|
46
|
Khalil AM. Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 116:137-142. [PMID: 25800985 DOI: 10.1016/j.ecoenv.2015.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos is a widely used organophosphorous pesticide in agriculture and environmental health. Laboratory studies of chlorpyrifos have revealed acute lethal toxicity at very low concentration (96-h LC50) of 0.39 μg L(-1) to the freshwater snail, Lanistes carinatus. Acetylcholinesterase (AChE) inhibition progressed and reached 52% and 78% of the control after 28-d exposure to 0.09 and 0.29 μg L(-1) chlorpyrifos, respectively. Catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities increased in comparison to control group in the first period of exposure (7-21 d), then decreased relative to the control in the second period of exposure (21-28 d). A significant (p<0.05) glutathione (GSH) depletion was observed in snails exposed to 0.09 and 0.29 μg L(-1) in comparison to the control, whereas malondialdehyde (MDA) content gradually increased in a dose-dependent manner. This study showed that alterations in antioxidant enzyme activities along with depletion of GSH content and elevation of MDA content can be used as biomarkers in environmental assessment programs.
Collapse
Affiliation(s)
- Abdelmonem M Khalil
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
47
|
In vitro evaluation of neurotoxicity potential and oxidative stress responses of diazinon and its degradation products in rat brain synaptosomes. Toxicol Lett 2015; 233:29-37. [DOI: 10.1016/j.toxlet.2015.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 11/22/2022]
|
48
|
Zhang DL, Zhang J, Hu CX, Wang GH, Li DH, Liu YD. Morphological alterations and acetylcholinesterase and monoamine oxidase inhibition in liver of zebrafish exposed to Aphanizomenon flos-aquae DC-1 aphantoxins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:215-224. [PMID: 25456236 DOI: 10.1016/j.aquatox.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography. The main components were gonyautoxins 1 and 5 (GTX1, GTX5) and neosaxitoxin (neoSTX), which comprised 34.04%, 21.28%, and 12.77% respectively. Zebrafish (Danio rerio) were exposed intraperitoneally to 5.3 or 7.61 μg STX equivalents (eq)/kg (low and high doses, respectively) of A. flos-aquae DC-1 aphantoxins. Morphological alterations and changes in neurotransmitter conduction functions of acetylcholinesterase (AChE) and monoamine oxidase (MAO) in zebrafish liver were detected at different time points 1-24h post-exposure. Aphantoxin significantly enhanced hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histological and ultrastructural damage in zebrafish liver at 3-12 h post-exposure. Toxin exposure increased the reactive oxygen species content and reduced total antioxidative capacity in zebrafish liver, suggesting oxidative stress. AChE and MAO activities were significantly inhibited, suggesting neurotransmitter inactivation/conduction function abnormalities in zebrafish liver. All alterations were dose- and time-dependent. Overall, the results indicate that aphantoxins/PSPs induce oxidative stress through inhibition of AChE and MAO activities, leading to neurotoxicity in zebrafish liver. The above parameters may be useful as bioindicators for investigating aphantoxins/PSPs and cyanobacterial blooms in nature.
Collapse
Affiliation(s)
- De Lu Zhang
- Department of Lifescience and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jing Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Chun Xiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Gao Hong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dun Hai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yong Ding Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|