1
|
Iijima H, Watari Y, Doi K, Yasuo K, Okabe K. Forest Fragmentation and Warmer Climate Increase Tick-Borne Disease Infection. ECOHEALTH 2025; 22:124-137. [PMID: 39864039 DOI: 10.1007/s10393-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 12/15/2024] [Indexed: 01/27/2025]
Abstract
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan. We collected data on SFTS case numbers, annual temperature and precipitation, species richness of large- and middle-sized mammals, forest perimeter length (indicating the amount of forest boundaries), percentage of agricultural land, human population, and sightseeing place numbers for each 25 km2 grid cell encompassing Miyazaki Prefecture. Through the construction of a model incorporating these factors, we found that longer forest perimeter and higher temperature led to a higher number of SFTS cases. Precipitation, mammal species richness, percentage of agricultural land, human population, and sightseeing point numbers had no effect on SFTS case numbers. In conclusion, climate condition and forest fragmentation, which increase the opportunity for human infection, played a pivotal role in SFTS outbreak.
Collapse
Affiliation(s)
- Hayato Iijima
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kandai Doi
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Kazuhiro Yasuo
- Sapporo Higashi Tokushukai Hospital, 3-1, Higashi 14, Kita 33, Higashi-ku, Sapporo, 065-0033, Japan
| | - Kimiko Okabe
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
2
|
Tu Z, Wang T, Xu Y, Sun H, Peng P, Qin S, Tu C. Identification and genetic analysis of new ephemeroviruses in wild boars in China. Virol Sin 2025:S1995-820X(25)00006-9. [PMID: 39961416 DOI: 10.1016/j.virs.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Ephemeroviruses (EVs) are arthropod-borne rhabdoviruses and were isolated exclusively from cattle and haematophagous arthropods until two new ephemeroviruses were first identified from domestic pigs most recently. Here we report the identification of newer EVs in wild boar by meta-transcriptomic (MTT) sequencing. Further screening by specific RT-nPCR of tissue samples of 459 free-ranging wild boars collected between 2018 and 2023 from 26 provinces across China confirmed five positive wild boars in four provinces. Interestingly, two ticks especially collected from two positive wild boars were also EV positive. Finally, four complete genome sequences of wild boar ephemeroviruses (WbEVs) were obtained with two strains belonging to a new EV species, and the rest two falling into porcine ephemerovirus 2 (PoEV2) species identified from domestic pigs. Our study has further extended EV host range and demonstrated natural circulations of divergent EVs in wild boars, in which ticks may play roles. Biological implications of EV infection in wild boars should be interesting topics for future investigations.
Collapse
Affiliation(s)
- Zhongzhong Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China
| | - Tong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Yu Xu
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Heting Sun
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Peng Peng
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Siyuan Qin
- Biological Disaster Control and Prevention Center, National Forestry and Grassland Administration, Shenyang 110034, PR China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
3
|
Chae JB, Rim JM, Han SW, Cho YK, Kang JG, Chae JS. Prevalence, Isolation, and Molecular Characterization of Severe Fever with Thrombocytopenia Syndrome Virus in Cattle from the Republic of Korea. Vector Borne Zoonotic Dis 2024; 24:826-834. [PMID: 39029504 DOI: 10.1089/vbz.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by Bandavirus dabieense. Initially identified in China, this disease has spread throughout Asian countries via tick bites and animal-to-human transmission. However, reports of the prevalence of SFTS virus (SFTSV) in cattle in Korea are lacking. This study aimed to investigate SFTSV infections in grazing cattle in the Republic of Korea (ROK). Materials and Methods: In total, 845 grazing cattle serum samples were collected over 2 years (2019 and 2020) in the ROK, and viral RNA was extracted using a kit. One-step RT-nested PCR was performed to amplify the S-segment of SFTSV. Positive serum samples were used to isolate SFTSV in Vero E6 cells, and the full sequences were analyzed. A phylogenetic tree was constructed using the maximum-likelihood method with MEGA X. In addition, immunoglobulin G antibodies against SFTSV were investigated using an enzyme-linked immunosorbent assay. Results: Here, 4.0% of serum samples (34/845) were positive for SFTSV S-segments, and one virus isolate was cultured in Vero E6 cells. Phylogenetic analysis based on the partial S-segment classified 4 SFTSV isolates as the B-2 genotype, 9 as the B-3 genotype, 18 as an unclassified B genotype, and 3 as the D genotype. One cultured virus was classified as the B-2 genotype based on SFTSV L-, M-, and S-segments. Antibody detection results showed that 21.1% of serum samples (161/763) were positive for SFTSV. Conclusion: To the best of our knowledge, this is the first study performed to identify the prevalence of SFTSV in grazing cattle in the ROK. Our findings indicate the necessity for more intensive and continuous SFTSV monitoring, not only in cattle but also in other animals, to comprehend the genetic diversity of the virus and its potential eco-epidemiological impact on human health.
Collapse
Affiliation(s)
- Jeong-Byoung Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zhang H, Zhang L. Knowledge mapping of severe fever with thrombocytopenia syndrome: a bibliometric analysis. Front Microbiol 2024; 15:1423181. [PMID: 39139373 PMCID: PMC11319145 DOI: 10.3389/fmicb.2024.1423181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS), caused by the Dabie bandavirus (DBV), formerly known as the SFTS virus (SFTSV), is characterized by rapid progression, high morbidity, and mortality. This study aims to analyze the current research status, hotspots, and trends of SFTS since 2009 through bibliometrics, focusing on original research and providing valuable references and inspirations for future basic research, prevention and control of SFTS. Methods The Web of Science Core Collection (WOSCC) was used to extract global papers on SFTS from 2009 to 2024. VOSviewer and CiteSpace software were also used to process and visualize results. Results A total of 760 publications relevant to SFTS were reviewed. Among these publications, the most active country, author, and publication type included China, Liu Wei, and original articles, respectively. Among the institutions, the National Institute of Infectious Diseases emerged as the top publisher. The most frequently used keywords were "China," "Bunyavirus," and "person-to-person transmission." The bibliometric analysis reviewed and summarized the research results in the field of SFTS and demonstrated the research trends in the field. In addition, the study revealed the current research hotspots and predicted the future research frontiers and potential challenges in the field of SFTS, which will provide references for further exploring and investigating the SFTS-related mechanisms and inspire new therapeutic strategies. Conclusion Bibliometric visualization provides an overview of research advances, hotspots, and trends regarding SFTS and consolidates existing knowledge. SFTS research is in a phase of rapid development, and the number of annual publications in the field is growing steadily and rapidly. This is laying the groundwork for further research and providing new ideas for clinicians engaged in SFTS-related therapies and researchers working to improve public health. Currently, researchers are focused on elucidating the biology of SFTS, exploring antibodies, delving into pathogenesis, and investigating specific therapies.
Collapse
Affiliation(s)
- Huiying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Hidaka K, Mitoma S, Norimine J, Shimojima M, Kuroda Y, Hinoura T. Seroprevalence for severe fever with thrombocytopenia syndrome virus among the residents of Miyazaki, Japan: An epidemiological study. J Infect Chemother 2024; 30:481-487. [PMID: 38042299 DOI: 10.1016/j.jiac.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
INTRODUCTION Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease caused by the SFTS virus (SFTSV). The Miyazaki Prefecture has the highest number of SFTS cases in Japan and requires countermeasures for prevention. In this study, we aimed to conduct an epidemiological survey in Miyazaki Prefecture to determine the exposure conditions of SFTSV by measuring the seroprevalence among residents of Miyazaki and to evaluate the factors that influence the endemicity of SFTS. METHODS The survey was conducted between June 2014 and April 2019 in all 26 municipalities in Miyazaki Prefecture. SFTSV antibodies were detected using an enzyme-linked immunosorbent assay in the blood samples of 6013 residents (3184 men and 2829 women). A questionnaire-based survey of the living environment was also conducted. RESULTS Multiple logistic regression analysis revealed that age and occupation were significant factors related to the proportion of participants with an optical density (OD) value > 0.2 and a seroprevalence of 0.9 % (54/6013). Seven seropositive individuals (0.1 %) with an OD value of >0.4 were identified (three men and four women, aged 54-69 years), and all were asymptomatic. One participant had a higher OD than the positive control. CONCLUSION Although SFTS is endemic in Miyazaki Prefecture, Japan, its seroprevalence is relatively low. Since some risk areas in Miyazaki prefecture have been identified, it is important to enhance awareness of SFTS in residences and reduce contact with ticks, especially in high-risk areas.
Collapse
Affiliation(s)
- Kazuhiro Hidaka
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shuya Mitoma
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Junzo Norimine
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Masayuki Shimojima
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiki Kuroda
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takuji Hinoura
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
6
|
Mekata H, Yamada K, Umeki K, Yamamoto M, Ochi A, Umekita K, Kobayashi I, Hirai T, Okabayashi T. Nine-year seroepidemiological study of severe fever with thrombocytopenia syndrome virus infection in feral horses in Cape Toi, Japan. BMC Vet Res 2024; 20:190. [PMID: 38734647 PMCID: PMC11088034 DOI: 10.1186/s12917-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture. While these animals are managed in a wild-like manner, their ages are ascertainable due to individual identification. In the present study, we conducted a seroepidemiological survey of SFTSV in Misaki horses between 2015 and 2023. This study aimed to understand SFTSV infection in horses and its transmission to wildlife. A total of 707 samples from 180 feral horses were used to determine the seroprevalence of SFTSV using enzyme-linked immunosorbent assay (ELISA). Neutralization testing was performed on 118 samples. In addition, SFTS viral RNA was detected in ticks from Cape Toi and feral horses. The overall seroprevalence between 2015 and 2023 was 78.5% (555/707). The lowest seroprevalence was 55% (44/80) in 2016 and the highest was 92% (76/83) in 2018. Seroprevalence was significantly affected by age, with 11% (8/71) in those less than one year of age and 96.7% (435/450) in those four years of age and older (p < 0.0001). The concordance between ELISA and neutralization test results was 88.9% (105/118). SFTS viral RNA was not detected in ticks (n = 516) or feral horses. This study demonstrated that horses can be infected with SFTSV and that age is a significant factor in seroprevalence in wildlife. This study provides insights into SFTSV infection not only in horses but also in wildlife in SFTS-endemic areas.
Collapse
Affiliation(s)
- Hirohisa Mekata
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan.
| | - Kentaro Yamada
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu City, Oita, 879-5593, Japan
| | - Kazumi Umeki
- Division of Respirology Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200-Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Mari Yamamoto
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Akihiro Ochi
- Equine Research Institute, Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Kunihiko Umekita
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Division of Respirology Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200-Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Ikuo Kobayashi
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Field Science Center, Faculty of Agriculture, University of Miyazaki, 10100-1 Shimanouchi, Miyazaki, 880-0121, Japan
| | - Takuya Hirai
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| | - Tamaki Okabayashi
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki, 889-2192, Japan
| |
Collapse
|
7
|
Duan Q, Tian X, Pang B, Zhang Y, Xiao C, Yao M, Ding S, Zhang X, Jiang X, Kou Z. Spatiotemporal distribution and environmental influences of severe fever with thrombocytopenia syndrome in Shandong Province, China. BMC Infect Dis 2023; 23:891. [PMID: 38124061 PMCID: PMC10731860 DOI: 10.1186/s12879-023-08899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease discovered in China in 2009. The purpose of this study was to describe the spatiotemporal distribution of SFTS and to identify its environmental influencing factors and potential high-risk areas in Shandong Province, China. METHODS Data on the SFTS incidence from 2010 to 2021 were collected. Spatiotemporal scan statistics were used to identify the time and area of SFTS clustering. The maximum entropy (MaxEnt) model was used to analyse environmental influences and predict high-risk areas. RESULTS From 2010 to 2021, a total of 5705 cases of SFTS were reported in Shandong. The number of SFTS cases increased yearly, with a peak incidence from April to October each year. Spatiotemporal scan statistics showed the existence of one most likely cluster and two secondary likely clusters in Shandong. The most likely cluster was in the eastern region, from May to October 2021. The first secondary cluster was in the central region, from May to October 2021. The second secondary cluster was in the southeastern region, from May to September 2020. The MaxEnt model showed that the mean annual wind speed, NDVI, cattle density and annual cumulative precipitation were the key factors influencing the occurrence of SFTS. The predicted risk map showed that the area of high prevalence was 28,120 km2, accounting for 18.05% of the total area of the province. CONCLUSIONS The spatiotemporal distribution of SFTS was heterogeneous and influenced by multidimensional environmental factors. This should be considered as a basis for delineating SFTS risk areas and developing SFTS prevention and control measures.
Collapse
Affiliation(s)
- Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Xueying Tian
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Chuanhao Xiao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Shujun Ding
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| | - Xiaolin Jiang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| | - Zengqiang Kou
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| |
Collapse
|
8
|
Kim EH, Park SJ. Emerging Tick-Borne Dabie bandavirus: Virology, Epidemiology, and Prevention. Microorganisms 2023; 11:2309. [PMID: 37764153 PMCID: PMC10536723 DOI: 10.3390/microorganisms11092309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea;
| | - Su-Jin Park
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Kaneko C, Mekata H, Umeki K, Sudaryatma PE, Irie T, Yamada K, Misawa N, Umekita K, Okabayashi T. Seroprevalence of severe fever with thrombocytopenia syndrome virus in medium-sized wild mammals in Miyazaki, Japan. Ticks Tick Borne Dis 2023; 14:102115. [PMID: 36577308 DOI: 10.1016/j.ttbdis.2022.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a fatal emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). SFTSV infection in humans and companion animals is a matter of concern in endemic areas. Various wild animals are involved in the transmission cycle of SFTSV with vector ticks. Because the home range of medium-sized wild mammals commonly overlaps with humans' living spheres, this study aimed to reveal the endemicity of SFTSV in such mammals. This study investigated the prevalence of antibodies against SFTSV and viral RNA in medium-sized wild mammals in Miyazaki Prefecture, Japan where human cases have been most frequently reported in Japan and performed a phylogenetic analysis to compare the detected SFTSV with those previously reported. Forty-three of 63 (68%) Japanese badgers (Meles anakuma) and 12 of 53 (23%) Japanese raccoon dogs (Nyctereutes procyonoides viverrinus) had antibodies against SFTSV. Japanese marten (n = 1), weasels (n = 4), and Japanese red fox (n = 1) were negative. Two of 63 (3%) badgers tested positive for SFTSV RNA, whereas the other species were negative. Phylogenetic analysis of the partial nucleotide sequence of SFTSV revealed that viral RNA detected from badgers exhibited 99.8% to 100% similarity to SFTSV, as previously reported in humans, cat, and ticks in the study area. This study demonstrated high seropositivity of antibodies in medium-sized wild mammals and suggested that SFTSV could be shared among these mammals, humans, and companion animals in endemic areas.
Collapse
Affiliation(s)
- Chiho Kaneko
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan.
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kazumi Umeki
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Medical Life Science, Faculty of Medical Bioscience, Kyushu University of Health and Welfare, Yoshino-cho 1714-1, Nobeoka, Miyazaki 882-8508, Japan
| | - Putu Eka Sudaryatma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Takao Irie
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan; Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan; Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
10
|
The First Nationwide Surveillance of Severe Fever with Thrombocytopenia Syndrome in Ruminants and Wildlife in Taiwan. Viruses 2023; 15:v15020441. [PMID: 36851653 PMCID: PMC9965706 DOI: 10.3390/v15020441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Since the first discovery of severe fever with thrombocytopenia syndrome virus (SFTSV) in China in 2009, SFTSV has rapidly spread through other Asian countries, including Japan, Korea, Vietnam and Pakistan, in chronological order. Taiwan reported its first discovery of SFTSV in sheep and humans in 2020. However, the prevalence of SFTSV in domestic and wildlife animals and the geographic distribution of the virus within the island remain unknown. A total of 1324 animal samples, including 803 domestic ruminants, 521 wildlife animals and 47 tick pools, were collected from March 2021 to December 2022 from 12 counties and one terrestrial island. The viral RNA was detected by a one-step real-time reverse transcription polymerase chain reaction (RT-PCR). Overall, 29.9% (240/803) of ruminants showed positive SFTSV RNA. Sheep had the highest viral RNA prevalence of 60% (30/50), followed by beef cattle at 28.4% (44/155), goats at 28.3% (47/166), and dairy cows at 27.5% (119/432). The bovine as a total of dairy cow and beef cattle was 27.8% (163/587). The viral RNA prevalence in ticks (predominantly Rhipicephalus microplus) was similar to those of ruminants at 27.7% (13/47), but wild animals exhibited a much lower prevalence at 1.3% (7/521). Geographically the distribution of positivity was quite even, being 33%, 29.1%, 27.5% and 37.5% for northern, central, southern and eastern Taiwan, respectively. Statistically, the positive rate of beef cattle in the central region (55.6%) and dairy cattle in the eastern region (40.6%) were significantly higher than the other regions; and the prevalence in Autumn (September-November) was significantly higher than in the other seasons (p < 0.001). The nationwide study herein revealed for the first time the wide distribution and high prevalence of SFTSV in both domestic animals and ticks in Taiwan. Considering the high mortality rate in humans, surveillance of other animal species, particularly those in close contact with humans, and instigation of protective measures for farmers, veterinarians, and especially older populations visiting or living near farms or rural areas should be prioritized.
Collapse
|
11
|
Ishijima K, Tatemoto K, Park E, Kimura M, Fujita O, Taira M, Kuroda Y, Mendoza MV, Inoue Y, Harada M, Matsuu A, Shimoda H, Kuwata R, Morikawa S, Maeda K. Lethal Disease in Dogs Naturally Infected with Severe Fever with Thrombocytopenia Syndrome Virus. Viruses 2022; 14:v14091963. [PMID: 36146769 PMCID: PMC9502089 DOI: 10.3390/v14091963] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Severe fever with the thrombocytopenia syndrome virus (SFTSV) causes fatal disease in humans, cats, and cheetahs. In this study, the information on seven dogs with SFTS was summarized. All dogs showed anorexia, high fever, leukopenia, and thrombocytopenia, two dogs showed vomiting and loose stool, and five dogs had tick parasites. All dogs also had a history of outdoor activity. The SFTSV gene was detected in all dogs. Remarkably, three dogs (43%) died. SFTSV was isolated from six dogs and the complete genomes were determined. A significant increase in anti-SFTSV-IgG antibodies was observed in two dogs after recovery, and anti-SFTSV-IgM antibodies were detected in four dogs in the acute phase. Using an ELISA cut-off value of 0.410 to discriminate between SFTSV-negative and positive dogs, the detection of anti-SFTSV-IgM antibodies was useful for the diagnosis of dogs with acute-phase SFTS. Four out of the ninety-eight SFTSV-negative dogs possessed high anti-SFTSV IgG antibody titers, indicating that some dogs can recover from SFTSV infection. In conclusion, SFTSV is lethal in some dogs, but many dogs recover from SFTSV infection.
Collapse
Affiliation(s)
- Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Eunsil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masanobu Kimura
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masakatsu Taira
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Milagros Virhuez Mendoza
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yusuke Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiroshi Shimoda
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan
| | - Shigeru Morikawa
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Correspondence: ; Tel.: +81-3-4582-2750
| |
Collapse
|
12
|
Tatemoto K, Mendoza MV, Ishijima K, Kuroda Y, Inoue Y, Taira M, Kuwata R, Takano A, Morikawa S, Shimoda H. Risk assessment of infection with severe fever with thrombocytopenia syndrome virus based on a 10-year serosurveillance in Yamaguchi Prefecture. J Vet Med Sci 2022; 84:1142-1145. [PMID: 35793949 PMCID: PMC9412060 DOI: 10.1292/jvms.22-0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Japan, the first patient with severe fever with thrombocytopenia syndrome was reported
in Yamaguchi in 2012. To understand the severe fever with thrombocytopenia syndrome virus
(SFTSV) infection in this region, a retrospective surveillance in sika deer and wild boars
in Yamaguchi was conducted using a virus-neutralizing (VN) test. The result revealed that
510 of the 789 sika deer and 199 of the 517 wild boars were positive for anti-SFTSV
antibodies. Interestingly, seroprevalence in sika deer increased significantly from
2010–2013 to 2015–2020. The SFTSV gene was detected in one of the 229 serum samples
collected from sika deer, but not from wild boars. In conclusion, SFTSV had spread among
wild animals before 2012 and expanded gradually around 2013–2015 in Yamaguchi.
Collapse
Affiliation(s)
- Kango Tatemoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Milagros Virhuez Mendoza
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University.,Department of Veterinary Science, National Institute of Infectious Diseases
| | - Masakatsu Taira
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science
| | - Ai Takano
- Joint Graduate School of Veterinary Medicine, Yamaguchi University
| | | | - Hiroshi Shimoda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University
| |
Collapse
|