1
|
Khamrui E, Banerjee S, Mukherjee DD, Biswas K. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. Glycoconj J 2024; 41:343-360. [PMID: 39368037 DOI: 10.1007/s10719-024-10168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Elora Khamrui
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Sounak Banerjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Dipanwita Das Mukherjee
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India
| | - Kaushik Biswas
- Department of Biological Sciences, Bose Institute, EN-80, Bidhan Nagar, Salt Lake, Sector-V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
2
|
He X, Guan F, Lei L. Structure and function of glycosphingolipids on small extracellular vesicles. Glycoconj J 2022; 39:197-205. [PMID: 35201531 PMCID: PMC8866925 DOI: 10.1007/s10719-022-10052-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delineated particles secreted by most types of cells under both normal and pathophysiological conditions. EVs are believed to mediate intercellular communication by serving as carriers of different bioactive ingredients, including proteins, nucleic acids and lipids. Glycoconjugates are complex molecules consisting of covalently linked carbohydrate with proteins or lipids. These glycoconjugates play essential roles in the sorting of vesicular protein and the uptake of small extracellular vesicles (30–100 nm, sEVs) into recipient cells. Glycosphingolipids (GSLs), one subtype of glycolipids, which are ubiquitous membrane components in almost all living organisms, are also commonly distributed on sEVs. However, the study of functional roles of GSLs on sEVs are far behind than other functional cargos. The purpose of this review is to highlight the importance of GSLs on sEVs. Initially, we described classification and structure of GSLs. Then, we briefly introduced the essential functions of GSLs, which are able to interact with functional membrane proteins, such as growth factor receptors, integrins and tetraspanins, to modulate cell growth, adhesion and cell motility. In addition, we discussed analytical methods for studying GSLs on sEVs. Finally, we focused on the function of GSLs on sEVs, including regulating the aggregation of extracellular α-synuclein (α-syn) or extracellular amyloid-β (Aβ) and influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Nanoscale analysis reveals no domain formation of glycosylphosphatidylinositol-anchored protein SAG1 in the plasma membrane of living Toxoplasma gondii. Histochem Cell Biol 2019; 152:365-375. [PMID: 31542792 DOI: 10.1007/s00418-019-01814-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 10/25/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins typically localise to lipid rafts. GPI-anchored protein microdomains may be present in the plasma membrane; however, they have been studied using heterogeneously expressed GPI-anchored proteins, and the two-dimensional distributions of endogenous molecules in the plasma membrane are difficult to determine at the nanometre scale. Here, we used immunoelectron microscopy using a quick-freezing and freeze-fracture labelling (QF-FRL) method to examine the distribution of the endogenous GPI-anchored protein SAG1 in Toxoplasma gondii at the nanoscale. QF-FRL physically immobilised molecules in situ, minimising the possibility of artefactual perturbation. SAG1 labelling was observed in the exoplasmic, but not cytoplasmic, leaflets of T. gondii plasma membrane, whereas none was detected in any leaflet of the inner membrane complex. Point pattern analysis of SAG1 immunogold labelling revealed mostly random distribution in T. gondii plasma membrane. The present method obtains information on the molecular distribution of natively expressed GPI-anchored proteins and demonstrates that SAG1 in T. gondii does not form significant microdomains in the plasma membrane.
Collapse
|
4
|
The Relationship between Platelet Count and Host Gut Microbiota: A Population-Based Retrospective Cross-Sectional Study. J Clin Med 2019; 8:jcm8020230. [PMID: 30744195 PMCID: PMC6406547 DOI: 10.3390/jcm8020230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 01/19/2023] Open
Abstract
Platelet count reflects the severity and prognosis of multiple diseases. Additionally, alterations in gut microbiota have been linked to several chronic diseases. The purpose of this study was to investigate the association between gut microbiota and platelet count. We selected 1268 subjects with fecal 16S RNA gene sequencing data from a Healthcare Screening Center cohort. Based on the third quartile of platelets (277 × 109/L), we compared the gut microbiota between the upper quartile (n = 321) and lower three quartiles groups (n = 947). The upper quartile group had lower alpha diversity based on observed amplicon sequence variants (q = 0.004) and phylogenetic index (q < 0.001) than the lower three quartiles group. Significant differences were also found in the weighted UniFrac distance (q = 0.001) and Jaccard dissimilarity (q = 0.047) beta diversity measures between the two groups. Compared with the lower three quartiles group, the upper quartile group exhibited decreased relative abundances of the genus Faecalibacterium, which was also inversely correlated with the platelet count. Increased platelet count was associated with reduced diversity in gut microbiota and lower abundances of Faecalibacterium with beneficial gut bacteria spices F. prausnitzii, suggesting that an increased platelet count, even within normal range, may adversely affect gut microbial diversity and composition.
Collapse
|
5
|
Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Mol Cell Biochem 2013; 382:83-92. [DOI: 10.1007/s11010-013-1720-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/29/2013] [Indexed: 01/11/2023]
|
6
|
Brothers MC, Ho M, Maharjan R, Clemons NC, Bannai Y, Waites MA, Faulkner MJ, Kuhlenschmidt TB, Kuhlenschmidt MS, Blanke SR, Rienstra CM, Wilson BA. Membrane interaction of Pasteurella multocida toxin involves sphingomyelin. FEBS J 2011; 278:4633-48. [PMID: 21951695 PMCID: PMC3220749 DOI: 10.1111/j.1742-4658.2011.08365.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pasteurella multocida toxin (PMT) is an AB toxin that causes pleiotropic effects in targeted host cells. The N-terminus of PMT (PMT-N) is considered to harbor the membrane receptor binding and translocation domains responsible for mediating cellular entry and delivery of the C-terminal catalytic domain into the host cytosol. Previous studies have implicated gangliosides as the host receptors for PMT binding. To gain further insight into the binding interactions involved in PMT binding to cell membranes, we explored the role of various membrane components in PMT binding, utilizing four different approaches: (a) TLC-overlay binding experiments with (125) I-labeled PMT, PMT-N or the C-terminus of PMT; (b) pull-down experiments using reconstituted membrane liposomes with full-length PMT; (c) surface plasmon resonance analysis of PMT-N binding to reconstituted membrane liposomes; (d) and surface plasmon resonance analysis of PMT-N binding to HEK-293T cell membranes without or with sphingomyelinase, phospholipase D or trypsin treatment. The results obtained revealed that, in our experimental system, full-length PMT and PMT-N did not bind to gangliosides, including monoasialogangliosides GM(1) , GM(2) or GM(3) , but instead bound to membrane phospholipids, primarily the abundant sphingophospholipid sphingomyelin or phosphatidylcholine with other lipid components. Collectively, these studies demonstrate the importance of sphingomyelin for PMT binding to membranes and suggest the involvement of a protein co-receptor.
Collapse
Affiliation(s)
| | - Mengfei Ho
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ram Maharjan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Nathan C. Clemons
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Yuka Bannai
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Mark A. Waites
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | - Steven R. Blanke
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Brenda A. Wilson
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Haga Y, Hatanaka K, Hakomori SI. Effect of lipid mimetics of GM3 and lyso-GM3 dimer on EGF receptor tyrosine kinase and EGF-induced signal transduction. Biochim Biophys Acta Gen Subj 2007; 1780:393-404. [PMID: 18036568 DOI: 10.1016/j.bbagen.2007.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/29/2007] [Accepted: 10/30/2007] [Indexed: 11/17/2022]
Abstract
The tyrosine kinase activity associated with epidermal growth factor receptor (EGFR) has been a target in studies of pharmacological reagents to inhibit growth of cancer cells, which are mostly of epidermal origin. Lyso-GM3 dimer showed stronger inhibitory effect on the tyrosine kinase of EGFR than GM3, with minimal cytotoxicity [Y. Murozuka, et al. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj. J. 24 (2007) 551-563]. Synthesis of lipids with sphingosine requires many steps, and the yield is low. A biocombinatory approach overcame this difficulty; however, products required a C(12) aliphatic chain, rather than the sphingosine head group [Y. Murozuka, et al. Efficient sialylation on azidododecyl lactosides by using B16 melanoma cells. Chemistry & Biodiversity 2 (2005) 1063-1078]. The present study was to clarify the effects of these lipid mimetics of GM3 and lyso-GM3 dimer on EGFR tyrosine kinase activity, and consequent changes of the A431 cell phenotype, as follows. (i) A lipid mimetic of lyso-GM3 dimer showed similar strong inhibitory effect on EGF-induced EGFR tyrosine kinase activity, and similar low cytotoxicity, as the authentic lyso-GM3 dimer. (ii) A lipid mimetic of lyso-GM3 dimer inhibited tyrosine phosphorylation of EGFR or its dimer to a level similar to that of the authentic lyso-GM3 dimer, but more strongly than GM3 or a lipid mimetic of GM3. (iii) Associated with the inhibitory effect of a lipid mimetic of lyso-GM3 dimer on EGF-induced EGFR kinase activity, only Akt kinase activity was significantly inhibited, but kinases associated with other signal transducers were not affected. (iv) The cell cycle of A431 cells, and the effects of GM3 and a lipid mimetic of lyso-GM3 dimer, were studied by flow cytometry, measuring the rate of DNA synthesis with propidium iodide. Fetal bovine serum greatly enhanced S phase and G(2)/M phase. Enhanced G(2)/M phase was selectively inhibited by pre-incubation of A431 cells with a lipid mimetic of lyso-GM3 dimer, whereas GM3 had only a minimal effect.
Collapse
Affiliation(s)
- Yoshimi Haga
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
8
|
Hakomori SI. Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta Gen Subj 2007; 1780:325-46. [PMID: 17976918 DOI: 10.1016/j.bbagen.2007.08.015] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 01/11/2023]
Abstract
Based on development of various methodologies for isolation and characterization of glycosphingolipids (GSLs), we have identified a number of GSLs with globo-series or lacto-series structure. Many of them are tumor-associated or developmentally regulated antigens. The major question arose, what are their functions in cells and tissues? Various approaches to answer this question were undertaken. While the method is different for each approach, we have continuously studied GSL or glycosyl epitope interaction with functional membrane components, which include tetraspanins, growth factor receptors, integrins, and signal transducer molecules. Often, GSLs were found to interact with other carbohydrates within a specific membrane microdomain termed "glycosynapse", which mediates cell adhesion with concurrent signal transduction. Future trends in GSL and glycosyl epitope research are considered, including stem cell biology and epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Sen-itiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, WA 98122, USA.
| |
Collapse
|
9
|
Murozuka Y, Watanabe N, Hatanaka K, Hakomori SI. Lyso-GM3, its dimer, and multimer: their synthesis, and their effect on epidermal growth factor-induced receptor tyrosine kinase. Glycoconj J 2007; 24:551-63. [PMID: 17638075 DOI: 10.1007/s10719-007-9051-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/25/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Glycosphingolipids, particularly gangliosides, are known to modulate growth factor receptor tyrosine kinase. A well-documented example is the inhibitory effect of GM3 on kinase associated with epidermal growth factor receptor (EGFR) in human epidermoid carcinoma A431 cells. Lyso-GM3 was detected as a minor component in A431 cells, and may function as an auxiliary factor in GM3-dependent inhibition of EGFR. We studied the inhibitory effect of chemically synthesized GM3, lyso-GM3, and its derivatives, on EGFR function, based on their interaction in membrane microdomain, with the following major findings: (1) GM3, EGFR, and caveolin coexist, but tetraspanins CD9 and CD82 are essentially absent, within the same low-density membrane fraction, separated by sucrose density gradient ultracentrifugation. (2) Strong interaction between EGFR and GM3 was indicated by increasing binding of EGFR to GM3-coated polystyrene beads, in a GM3 dose-dependent manner. Confocal microscopy results suggested that three components in the microdomain (GM3, EGFR, and caveolin) are closely associated. (3) Lyso-GM3 or lyso-GM3 dimer strongly inhibited EGFR kinase activity, in a dose-dependent manner, while lyso-GM3 trimer and tetramer did not. >50 microM lyso-GM3 was cytolytic, while >50 microM lyso-GM3 dimer was not cytolytic, yet inhibited EGFR kinase strongly. Thus, lyso-GM3 and its dimer exert an auxiliary effect on GM3-induced inhibition of EGFR kinase and cell growth, and lyso-GM3 dimer may be a good candidate for pharmacological inhibitor of epidermal tumor growth.
Collapse
Affiliation(s)
- Yoshimi Murozuka
- Pacific Northwest Research Institute, University of Washington, Seattle, WA 98122, USA
| | | | | | | |
Collapse
|
10
|
Yoon SJ, Nakayama KI, Hikita T, Handa K, Hakomori SI. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 2006; 103:18987-91. [PMID: 17142315 PMCID: PMC1748164 DOI: 10.1073/pnas.0609281103] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Indexed: 11/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) at membrane microdomains plays an essential role in the growth control of epidermal cells, including cancer cells derived therefrom. Ligand-dependent activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, but to a much lesser degree by other glycosphingolipids. However, the mechanism of the inhibitory effect of GM3 on EGFR tyrosine kinase has been ambiguous. The mechanism is now defined by binding of N-linked glycan having multiple GlcNAc termini to GM3 through carbohydrate-to-carbohydrate interaction, based on the following data: (i) EGFR (molecular mass, approximately 170 kDa) has N-linked glycan with GlcNAc termini, as probed by mAb (J1) or lectin (GS-II); (ii) GS-II-bound EGFR also bound to anti-EGFR Ab as well as to GM3-coated beads; (iii) GM3 inhibitory effect on EGFR tyrosine kinase was abrogated in vitro by coincubation with glycan having multiple GlcNAc termini and in cell culture in situ incubated with the same glycan; and (iv) cells treated with swainsonine, which increased expression of complex-type and hybrid-type glycans with GlcNAc termini, displayed higher inhibition of EGFR kinase by GM3 than swainsonine-untreated control cells. A similar effect was observed with 1-deoxymannojirimycin, which increased hybrid-type structure in addition to major accumulation of high mannose-type glycan. These findings indicate that N-linked glycan with GlcNAc termini linked to EGFR is the target to interact with GM3, causing inhibition of EGF-induced EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Seon-Joo Yoon
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Ken-ichi Nakayama
- Institute of General Industrial Research, Takamatsu, Kagawa 761-0395, Japan; and
| | - Toshiyuki Hikita
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
- Department of Pediatrics, Teikyo University School of Medicine, Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Kazuko Handa
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| | - Sen-itiroh Hakomori
- *Pacific Northwest Research Institute and University of Washington, Seattle, WA 98122
| |
Collapse
|
11
|
Berselli P, Zava S, Sottocornola E, Milani S, Berra B, Colombo I. Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. ACTA ACUST UNITED AC 2006; 1759:348-58. [PMID: 16934889 DOI: 10.1016/j.bbaexp.2006.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 11/22/2022]
Abstract
All human GM3 synthase mRNA variants until now identified predict a protein of 362 amino acids having substrate activity highly restricted to lactosylceramide. In this report we describe the identification of a new GM3 synthase transcript containing an additional translation start codon, located upstream and in-frame with that up to now considered unique translation initiation site in the human GM3 synthase gene. In vitro expression studies showed that the new transcript produces a longer form of human GM3 synthase, that is efficiently translocated into the microsomal lumen and glycosylated. Moreover, stable cDNA transfection into mammalian cells gives rise to a threefold increase of GM3 synthase activity, associated to a broader substrate specificity. Although this transcript has been initially identified in the human placenta, RT-PCR analyses verified the expression of an identical mRNA also in undifferentiated HL60 cells, but not in the monocytic lineage. Altogether, these results are the first demonstration of the existence of a new isoform of human GM3 synthase, which could play an important role during HL60 cell differentiation. The functional relevance of the existence of two isoforms of GM3 synthase is also discussed.
Collapse
Affiliation(s)
- Patrizia Berselli
- Institute of General Physiology and Biological Chemistry, University of Milan, Via Trentacoste, 2-20134 Milan, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG, Kim CH. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology 2006; 16:573-83. [PMID: 16574813 DOI: 10.1093/glycob/cwj105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The simple ganglioside GM3 has been shown to have anti-proliferative effects in several in vitro and in vivo cancer models. Although the exogenous ganglioside GM3 has an inhibitory effect on cancer cell proliferation, the exact mechanism by which it prevents cell proliferation remains unclear. Previous studies showed that MDM2 is an oncoprotein that controls tumorigenesis through both p53-dependent and p53-independent mechanisms, and tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a dual-specificity phosphatase that antagonizes phosphatidylinositol 3-kinase (PI-3K)/AKT signaling, is capable of blocking MDM2 nuclear translocation and destabilizing the MDM2 protein. Results from our current study show that GM3 treatment dramatically increases cyclin-dependent kinase (CDK) inhibitor (CKI) p21(WAF1) expression through the accumulation of p53 protein by the PTEN-mediated inhibition of the PI-3K/AKT/MDM2 survival signaling in HCT116 colon cancer cells. Moreover, the data herein clearly show that ganglioside GM3 induces p53-dependent transcriptional activity of p21(WAF1), as evidenced by the p21(WAF1) promoter-driven luciferase reporter plasmid (full-length p21(WAF1) promoter and a construct lacking the p53-binding sites). Additionally, ganglioside GM3 enhances expression of CKI p27(kip1) through the PTEN-mediated inhibition of the PI-3K/AKT signaling. Furthermore, the down-regulation of the cyclin E and CDK2 was clearly observed in GM3-treated HCT116 cells, but the down-regulation of cyclin D1 and CDK4 was not. On the contrary, suppression of PTEN levels by RNA interference restores the enhanced expression of p53-dependent p21(WAF1) and p53-independent p27(kip1) through inactivating the effect of PTEN on PI-3K/AKT signaling modulated by ganglioside GM3. These results suggest that ganglioside GM3-stimulated PTEN expression modulates cell cycle regulatory proteins, thus inhibiting cell growth. We conclude that ganglioside GM3 represents a modulator of cancer cell proliferation and may have potential for use in colorectal cancer therapy.
Collapse
Affiliation(s)
- Hee-Jung Choi
- Department of Biological Science, Sungkyunkwan University, Suwon City, Kyunggi-Do, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
West AP, Dancho BA, Mizel SB. Gangliosides inhibit flagellin signaling in the absence of an effect on flagellin binding to toll-like receptor 5. J Biol Chem 2005; 280:9482-8. [PMID: 15632166 DOI: 10.1074/jbc.m411875200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recent study (Ogushi, K., Wada, A., Niidome, T., Okuda, T., Llanes, R., Nakayama, M., Nishi, Y., Kurazono, H., Smith, K. D., Aderem, A., Moss, J., and Hirayama, T. (2004) J. Biol. Chem. 279, 12213-12219) concluded that gangliosides serve as co-receptors for flagellin signaling via toll-like receptor 5 (TLR5). In view of several findings in this study that were inconsistent with a role for gangliosides as co-receptors, we re-examined this important issue. Using TLR5-negative RAW 264.7 cells and a TLR5-enhanced yellow fluorescent protein chimera, we established an assay for specific binding of flagellin to cells. Inhibition of clatherin-mediated internalization of flagellin.TLR5-enhanced yellow fluorescent protein complexes did not impair flagellin activation of IRAK-1. Thus flagellin signal occurs at the cell surface and not intracellularly. Exogenous addition of mixed gangliosides (GM1, GD1a, and GT1b) as well as GD1a itself inhibited flagellin-induced interleukin-1 receptor-associated kinase activation as well as tumor necrosis factor alpha production in HeNC2, THP-1, and RAW 264.7 cells. Gangliosides inhibited flagellin signaling in the absence of an effect on flagellin binding to TLR5. Depletion of gangliosides in RAW 264.7 cells did not alter the concentration dependence or magnitude of flagellin signaling as measured by interleukin-1 receptor-associated kinase activation or tumor necrosis factor alpha production. Our findings are consistent with the conclusions that gangliosides are not essential co-receptors for flagellin and that the inhibitory effect of gangliosides is mediated by at least one mechanism that is distinct from any effect on the binding of flagellin to TLR5.
Collapse
Affiliation(s)
- A Phillip West
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
14
|
Abstract
Glycosylation can have a profound influence on the function of a variety of eukaryotic cells. In particular, it can affect signal transduction and cell-cell communication properties and thus shape critical cell decisions, including the regulation of differentiation and apoptosis. Regulation of glycosylation has multiple layers of complexity, both structural and functional, which make its experimental and theoretical analysis difficult to perform and interpret. Novel research methodologies provided by systems biology can help to address many outstanding issues and integrate glycosylation with other metabolic and cell regulation processes. Here we review the toolbox available for biochemical systems analysis of glycosylation.
Collapse
Affiliation(s)
- Michael P Murrell
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
15
|
Sottocornola E, Berra B, Colombo I. GM3 content modulates the EGF-activated p185c-neu levels, but not those of the constitutively activated oncoprotein p185neu. Biochim Biophys Acta Mol Cell Biol Lipids 2003; 1635:55-66. [PMID: 14729068 DOI: 10.1016/j.bbalip.2003.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The functional relationship between ganglioside GM(3) and two tyrosine-kinase receptors, the normal protein p185(c-neu) and the mutant oncogenic protein p185(neu), was examined in HC11 cells and in MG1361 cells, respectively. In the former, p185(c-neu) expression and activation are controlled by EGF addition to the culture medium and by epidermal growth factor receptor (EGFR) activity, whereas the latter express unchangingly high levels of constitutively activated p185(neu). Studies were carried out using (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ganglioside biosynthesis resulting in ganglioside depletion, and addition of exogenous GM(3) to the culture medium. In HC11 cells treated with only [D]-PDMP, p185(c-neu) levels remain similar to control cells, whereas levels of tyrosine-phosphorylated p185(c-neu) increase after treatment with [D]-PDMP in combination with EGF. When exogenous GM(3) is added in combination with [D]-PDMP and EGF, the enhanced phosphorylated-p185(c-neu) returns to control levels. Interestingly, EGFR levels also vary and, analogously to phosphorylated-p185(c-neu), the increase of EGFR content consequent to the [D]-PDMP and EGF addition is reversed by exogenous GM(3). In contrast, the addition of neither [D]-PDMP nor exogenous GM(3) modifies expression and tyrosine-phosphorylation levels of p185(neu) in MG1361 cells. These findings indicate that changes in GM(3) content modulate the tyrosine-phosphorylated p185(c-neu) levels in a reversible manner, but this is not specific for p185(c-neu) because EGFR levels are also modified. Furthermore, these data suggest that GM(3) may play a functional role by affecting the internalisation pathway of p185(c-neu)/EGFR heterodimers, but not of p185(neu) homodimers.
Collapse
Affiliation(s)
- Elena Sottocornola
- Institute of General Physiology and Biological Chemistry, University of Milan, Italy
| | | | | |
Collapse
|
16
|
Abstract
A large variety of glycosylation patterns in combination with different ceramide structures in glycosphingolipids provide a basis for cell type-specific glycosphingolipid pattern in membrane, which essentially reflects the composition of glycosphingolipid-enriched microdomains. Functions of glycosphingolipids as antigens, mediators of cell adhesion, and modulators of signal transduction are all based on such organization. Of particular importance is the assembly of glycosphingolipids with signal transducers and other membrane proteins to form a functional unit termed a, through which glycosylation-dependent cell adhesion coupled with signal transduction takes place. The microenvironment formed by interfacing glycosynapses of interacting cells plays a central role in defining phenotypic changes after cell adhesion, as occur in ontogenic development and cancer progression. These basic functional features of glycosphingolipids in membrane can also be considered roles of glycosphingolipids and gangliosides characteristic of neutrophils, myelocytes, and other blood cells. A series of sialyl fucosyl poly-N-acetylgalactosamine gangliosides without the sialyl-Le epitope, collectively termed, have been shown to mediate E-selectin-dependent rolling and tethering under dynamic flow with physiologic shear stress conditions. Functional roles of myeloglycan in neutrophils during inflammatory processes are discussed.
Collapse
Affiliation(s)
- Senitiroh Hakomori
- Division of Biomembrane Research, Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| |
Collapse
|
17
|
Miljan EA, Bremer EG. Regulation of growth factor receptors by gangliosides. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re15. [PMID: 12454318 DOI: 10.1126/stke.2002.160.re15] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Since their discovery in the 1940s, gangliosides have been associated with a number of biological processes, such as growth, differentiation, and toxin uptake. Hypotheses about regulation of these processes by gangliosides are based on indirect observations and lack a clear definition of their mechanisms within the cell. The first insights were provided when a reduction in cell proliferation in the presence of gangliosides was attributed to inhibition of the epidermal growth factor receptor (EGFR). Since that initial finding, most, if not all, growth factor receptors have been described as regulated by gangliosides. In this review, we describe the effects of gangliosides on growth factor receptors, beginning with a list of known effects of gangliosides on growth factor receptors; we then present three models based on fibroblast growth factor (FGFR), platelet-derived growth factor receptor (PDGFR), and EGFR. We focus first on ganglioside modulation of ligand binding; second, we discuss ganglioside regulation of receptor dimerization; and third, we describe a model that implicates gangliosides with receptor activation state and subcellular localization. The methodology used to develop the three models may be extended to all growth factor receptors, bearing in mind that the three models may not be mutually exclusive. We believe that gangliosides do not act independently of many well-established mechanisms of receptor regulation, such as clathrin-coated pit internalization and ubiquitination, but that gangliosides contribute to these functions and to signal transduction pathways. We hypothesize a role for the diverse structures of gangliosides in biology through the organization of the plasma membrane into lipid raft microdomains of unique ganglioside composition, which directly affect the signal duration and membrane localization of the growth factor receptor.
Collapse
Affiliation(s)
- Erik A Miljan
- The Brain Tumor Research Program, Children's Memorial Medical Center, Chicago, IL 60614, USA
| | | |
Collapse
|
18
|
|
19
|
Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 2002; 277:11239-46. [PMID: 11782461 DOI: 10.1074/jbc.m107756200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of gangliosides for the regulation of cell proliferation, Swiss 3T3 cells were transfected with GM2/GD2 synthase and GM1 synthase cDNAs, resulting in the establishment of GM1-expressing (GM1(+)) lines. Compared with the vector control (GM1(-)) cell lines, GM1(+) cells exhibited reduced cell proliferation by stimulation with platelet-derived growth factor (PDGF). In accordance with the reduced cell growth, GM1(+) cells showed earlier decreases in the phosphorylation levels of PDGF receptor and less activation of MAP kinases than GM1(-) cells. To analyze the effects of GM1 expression on the PDGF/PDGF receptor (PDGFR) signals, the glycolipid-enriched microdomain (GEM) was isolated and the following results were obtained. (i) PDGFR predominantly distributed in the non-GEM fraction in GM1(+) cells, while it was present in both GEM and non-GEM fractions in GM1(-) cells. (ii) Activation of PDGFR as detected by anti-phosphotyrosine antibody occurred almost in parallel with existing amounts of PDGFR in each fraction. (iii) GM1 binds with PDGFR in GEM fractions. These findings suggested that GM1 regulates signals via PDGF/PDGFR by controlling the distribution of PDGFR in- and outside of GEM, and also interacting with PDGFR in the GEM fraction as a functional constituent of the microdomain.
Collapse
Affiliation(s)
- Teruhiko Mitsuda
- Department of Biochemistry II, Nagoya University School of Medicine, 65 Tsurumai, Nagoya, 466-0065 Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Physically distinguishable microdomains associated with various functional membrane proteins are one of the major current topics in cell biology. Glycosphingolipids present in such microdomains have been used as "markers;" however, the functional role of glycosyl epitopes in microdomains has received little attention. In this review, I have tried to summarize the evidence that glycosyl epitopes in microdomains mediate cell adhesion and signal transduction events that affect cellular phenotypes. Molecular assemblies that perform such functions are hereby termed "glycosynapse" in analogy to "immunological synapse," the membrane assembly of immunocyte adhesion and signaling. Three types of glycosynapses are so far distinguishable: (i) Glycosphingolipids organized with cytoplasmic signal transducers and proteolipid tetraspanin with or without growth factor receptors; (ii) transmembrane mucin-type glycoproteins with clustered O-linked glycoepitopes for cell adhesion and associated signal transducers at lipid domain; and (iii) N-glycosylated transmembrane adhesion receptors complexed with tetraspanin and gangliosides, as typically seen with the integrin-tetraspanin-ganglioside complex. The possibility is discussed that glycosynapses give rise to a high degree of diversity and complexity of phenotypes.
Collapse
|
21
|
Li R, Liu Y, Ladisch S. Enhancement of epidermal growth factor signaling and activation of SRC kinase by gangliosides. J Biol Chem 2001; 276:42782-92. [PMID: 11535585 DOI: 10.1074/jbc.m101481200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent study, inhibition of cellular ganglioside synthesis blocked growth factor-induced fibroblast proliferation. Conversely, enrichment of cell membrane gangliosides by ganglioside preincubation enhanced growth factor-elicited cell proliferation. In the absence of serum and growth factors, NeuNAcalpha2-3Galbeta1-3GalNAcbeta1-4(NeuNAcalpha2-3)Galbeta1-4Glcbeta1-1Cer (G(D1a)) acted like a growth factor when cells were pretreated with the ganglioside, stimulating proliferation of normal human dermal fibroblasts and Swiss 3T3 fibroblasts. In contrast, growth inhibition was observed when high concentrations of gangliosides were continuously present in the culture medium during incubation of fibroblasts with growth factors (Li, R., Manela, J., Kong, Y., and Ladisch, S. (2000) J. Biol. Chem. 275, 34213-34223). Here, we investigated the mechanisms whereby gangliosides elicit proliferation-coupled signaling in normal human dermal fibroblasts. Incubation of the fibroblasts with G(D1a) enhanced epidermal growth factor (EGF) receptor autophosphorylation and Ras and MAPK activation in a dose-dependent manner. Exposure of the cells to G(D1a) also enhanced the phosphorylation of Elk-1 by the activated MAPK. Brief pretreatment of the cells with PD98059 blocked the enhancing effect of gangliosides on EGF-induced MAPK activation. In the absence of serum and growth factors, G(D1a) incubation induced phosphorylation of Src kinase, Ras activation, and phosphorylation of MAPK and Elk-1 in a dose-dependent manner. The activation of Src kinase was confirmed by enhanced Src kinase activity. Brief treatment of the cells with PP1 blocked the activation of Src kinase and MAPK. Again, PD98059 treatment inhibited ganglioside-elicited MAPK phosphorylation. Among the gangliosides tested, G(D1a), was the most active molecule, whereas lactosylceramide was the least active one, indicating relative structural specificity of the ganglioside action. In conclusion, gangliosides promote fibroblast proliferation through enhancement of growth factor signaling and activation of Src kinase.
Collapse
Affiliation(s)
- R Li
- Glycobiology Program, Center for Cancer and Transplantation Biology, Children's Research Institute, Washington, DC 20010, USA.
| | | | | |
Collapse
|
22
|
Kleines M, Gärtner A, Ritter K, Schaade L. Cloning and expression of the human single copy homologue of the mouse zinc finger protein zfr. Gene 2001; 275:157-62. [PMID: 11574164 DOI: 10.1016/s0378-1119(01)00620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A human homologue of the murine zinc finger protein zfr is transcriptionally induced in the Epstein-Barr virus-positive Burkitt lymphoma cell line Raji upon treatment with the granulocyte/macrophage lineage ganglioside IV(3)NeuAc-nLcOse(4)Cer. The gene was cloned by a rapid amplification of cDNA ends approach based on a cDNA clone. The resulting hzfr sequence is 3393 base pairs in length coding for a protein of 1057 amino acids. Sequence alignments between hzfr and zfr reveal an identity of 92% on the nucleotide level and an identity of 96.4% on the amino acid level, respectively. Based on Southern blot data hzfr can be addressed as a single copy gene. Tissue-specific expression was determined by semi-quantitative PCR of normalized cDNA populations from various human tissues with glyceraldehyde-3-phosphate dehydrogenase as an internal control. Highest levels of transcripts were found in brain. hzfr transcripts could not be detected in skeletal muscle.
Collapse
Affiliation(s)
- M Kleines
- Division of Virology, Department of Medical Microbiology, University Hospital, RWTH Aachen, Germany
| | | | | | | |
Collapse
|
23
|
Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S. GM3 Ganglioside Inhibits CD9-Facilitated Haptotactic Cell Motility: Coexpression of GM3 and CD9 Is Essential in the Downregulation of Tumor Cell Motility and Malignancy†. Biochemistry 2001; 40:6414-21. [PMID: 11371204 DOI: 10.1021/bi0101998] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cooperative inhibitory effect of GM3, together with CD9, on haptotactic cell motility was demonstrated by a few lines of study as described below. (i) Haptotactic motility of colorectal carcinoma cell lines SW480, SW620, and HRT18, which express CD9 at a high level, is inhibited by exogenous GM3, but not by GM1. (ii) Motility of gastric cancer cell line MKN74, which expresses CD9 at a low level, was not affected by exogenous GM3. Its motility became susceptible to and inhibited by exogenous GM3, but not GM1, when the CD9 level of MKN74 cells was converted to a high level by transfection with CD9 cDNA. Findings i and ii suggest that haptotactic tumor cell motility is cooperatively inhibited by coexpression of CD9 and GM3. (iii) This possibility was further demonstrated using cell line ldlD 14, and its derivative expressing CD9 through transfection of its gene (termed ldlD/CD9). Both of these cell lines are defective in UDP-Gal 4-epimerase and cannot synthesize GM3 unless cultured in the presence of galactose (Gal(+)), whereas GM3 synthesis does not occur when cells are cultured in the absence of Gal (Gal(-)). Haptotactic motility of parental ldlD cells is low, and shows no difference in the presence and absence of Gal. In contrast, the motility of ldlD/CD9 cells is very high in Gal(-) whereby endogenous GM3 synthesis does not occur, and is very reduced in Gal(+) whereby endogenous GM3 synthesis occurs. (iv) Photoactivatable (3)H-labeled GM3 added to HRT18 cells, followed by UV irradiation, causes cross-linking of GM3 to CD9, as evidenced by (3)H labeling of CD9, which is immunoprecipitated with anti-CD9 antibody. These findings suggest that CD9 is a target molecule interacting with GM3, and that CD9 and GM3 cooperatively downregulate tumor cell motility.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/physiology
- CHO Cells
- Cell Migration Inhibition
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/radiation effects
- Chemotaxis/drug effects
- Chemotaxis/radiation effects
- Clone Cells
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Cricetinae
- Cross-Linking Reagents/metabolism
- Culture Media, Conditioned
- G(M3) Ganglioside/biosynthesis
- G(M3) Ganglioside/metabolism
- G(M3) Ganglioside/pharmacology
- G(M3) Ganglioside/physiology
- Galactose/metabolism
- Humans
- Membrane Glycoproteins
- Stomach Neoplasms/genetics
- Stomach Neoplasms/pathology
- Stomach Neoplasms/prevention & control
- Tetraspanin 29
- Transfection
- Tritium/metabolism
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- M Ono
- Pacific Northwest Research Institute, 720 Broadway, Seattle, Washington 98122-4327, USA
| | | | | | | | | | | |
Collapse
|
24
|
Nakatsuji Y, Miller RH. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol 2001; 168:290-9. [PMID: 11259117 DOI: 10.1006/exnr.2000.7602] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Control of cell proliferation and cell survival is critical during development of the vertebrate central nervous system (CNS). Much of the cell death seen during early stages of CNS development occurs through apoptosis; however, the factors that induce this early apoptosis are not clearly understood. Gangliosides, sialylated glycosphingolipids, are expressed in the CNS and have been proposed to regulate cell growth and differentiation. Here we show that the simple ganglioside GM3 selectively inhibits the proliferation of and induces apoptosis of actively dividing astrocyte precursors and other neural progenitors. The inhibition of astrocyte precursor proliferation by GM3 appears to be mediated in part by the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1). During neonatal development there is extensive cell proliferation and little apoptosis in the ventricular and subventricular zones of the CNS. This proliferation was dramatically inhibited and the degree of apoptosis dramatically increased following intraventricular administration of GM3. These data suggest that GM3, a simple ganglioside, may regulate cell proliferation and death in the CNS and as such may have potential for brain tumor therapy.
Collapse
Affiliation(s)
- Y Nakatsuji
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
25
|
Wang X, Rahman Z, Sun P, Meuillet E, George D, Bremer EG, Al-Qamari A, Paller AS. Ganglioside modulates ligand binding to the epidermal growth factor receptor. J Invest Dermatol 2001; 116:69-76. [PMID: 11168800 DOI: 10.1046/j.1523-1747.2001.00222.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whereas previous investigations have shown that pharmacologic addition of gangliosides inhibits keratinocyte proliferation by downregulating epidermal growth factor receptor phosphorylation, the underlying biochemical basis and physiologic relevance are unknown. Using Scatchard and displacement plots, we have shown that supplemental purified gangliosides decrease the binding of (125)I-labeled epidermal growth factor to keratinocyte-derived SCC12 cells. Conversely, SCC12 cells transfected with sialidase and thus depleted of gangliosides show increased ligand binding to the epidermal growth factor receptor, which is consistent with their increased proliferation in response to epidermal growth factor and transforming growth factor-alpha, and increased phosphorylation of the epidermal growth factor receptor, and downstream signal transduction pathway components. The mechanism of the altered binding appears to involve primarily decreased numbers of available receptors within the intact membrane, but not altered receptor protein expression. These studies provide evidence that the effect of gangliosides on keratinocyte proliferation results, at least in part, from the direct binding of ganglioside to the receptor and disruption of the receptor-ligand interaction. Manipulation of membrane ganglioside content may be a powerful new means to alter epidermal growth factor receptor-dependent cell proliferation.
Collapse
Affiliation(s)
- X Wang
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University of Medical School, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kleines M, Gärtner A, Ritter K, Schaade L. Early steps in termination of the immortalization state in Burkitt lymphoma: induction of genes involved in signal transduction, transcription, and trafficking by the ganglioside IV(3)NeuAc-nLcOse(4)Cer. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:139-44. [PMID: 10858540 DOI: 10.1016/s0167-4781(00)00098-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stimulation by the ganglioside IV(3)NeuAc-nLcOse(4)Cer leads to growth arrest in the Burkitt lymphoma cell line Raji. In order to analyze the primary response of Raji cells to that stimulus, a cDNA array screen and a suppression subtractive hybridization-PCR approach were performed. Twenty-four genes with assigned functions were confirmed to be induced by the ganglioside in reverse Northern blot experiments covering e.g. protein kinase B, phospholipase C, the MAP-kinase ERK3, the transcription factors YY1, DR1 and NSEP, the membrane traffic protein TAP, and the nuclear export protein CRM1. Most of the genes identified are involved in signal transduction, transcription, and cell trafficking. For selected genes, the induction of expression was quantified by semiquantitative RT-PCR.
Collapse
Affiliation(s)
- M Kleines
- Division of Virology, Department of Medical Microbiology, RWTH Aachen, D-52057 Aachen, Germany
| | | | | | | |
Collapse
|
27
|
Meuillet EJ, Mania-Farnell B, George D, Inokuchi JI, Bremer EG. Modulation of EGF receptor activity by changes in the GM3 content in a human epidermoid carcinoma cell line, A431. Exp Cell Res 2000; 256:74-82. [PMID: 10739654 DOI: 10.1006/excr.1999.4509] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gangliosides have been described as modulators of growth factor receptors. For example, GM3 addition in cell culture medium inhibits epidermal growth factor (EGF)-stimulated receptor autophosphorylation. Furthermore, depletion of ganglioside by sialidase gene transfection appeared to increase EGF receptor (EGFR) autophosphorylation. These data suggested that changes in GM3 content may result in different responses to EGF. In this study, the ceramide analog d-threo-1-phenyl-2-decannoylamino-3-morpholino-1-propanol ([D]-PDMP), which inhibits UDP-glucose-ceramide glucosyltransferase, and addition of GM3 to the culture medium were used to study the effects of GM3 on the EGFR. Addition of 10 microM [D]-PDMP to A431 cells resulted in significant GM3 depletion. Additionally, EGFR autophosphorylation was increased after EGF stimulation. When exogenous GM3 was added in combination with [D]-PDMP, the enhanced EGFR autophosphorylation was returned to control levels. [D]-PDMP also increased EGF-induced cell proliferation, consistent with its effect on autophosphorylation. Once again, the addition of GM3 in combination with [D]-PDMP reversed these effects. These results indicate that growth factor receptor functions can be modulated by the level of ganglioside expression in cell lines. Addition of GM3 inhibits EGFR activity and decrease of GM3 levels using [D]-PDMP treatment enhances EGFR activity. Modulation of growth factor receptor function may provide an explanation for how transformation-dependent ganglioside changes contribute to the transformed phenotype.
Collapse
Affiliation(s)
- E J Meuillet
- The Brain Tumor Research Program, Children's Memorial Medical Center, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
28
|
Kasahara K, Sanai Y. Functional roles of glycosphingolipids in signal transduction via lipid rafts. Glycoconj J 2000; 17:153-62. [PMID: 11201786 DOI: 10.1023/a:1026576804247] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.
Collapse
Affiliation(s)
- K Kasahara
- The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Japan.
| | | |
Collapse
|
29
|
Saqr HE, Guan Z, Yates AJ, Stokes BT. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells. Neurochem Int 1999; 35:411-22. [PMID: 10524708 DOI: 10.1016/s0197-0186(99)00092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PDGF-BB induces a rapid, sustained increase in intracellular calcium levels in U-1242 MG cells. We used several calcium channel blockers to identify the types of channels involved. L channel blockers (verapamil, nimodipine, nicardipine, nitrendipine and taicatoxin) had no effect on PDGF-BB induced alterations in intracellular calcium. Blockers of P, Q and N channels (omega-agatoxin-IVA, omega-conotoxin MVIIC and omega-conotoxin GVIA) also had no effect. This indicates that these channels play an insignificant role in supplying the Ca2+ necessary for PDGF stimulated events in U-1242 MG cells. However, a T channel blocker (NDGA) and the non-specific (NS) calcium channel blockers (FFA and SK&F 9365) abolished PDGF-induced increases in intracellular calcium. This indicates that PDGF causes calcium influx through both non-specific cationic channels and T channels. To study the participation of intracellular calcium stores in this process, we used thapsigargin, caffeine and ryanodine, all of which cause depletion of intracellular calcium stores. The PDGF effect was abolished using both thapsigargin and caffeine but not ryanodine. Collectively, these data indicate that in these human glioma cells PDGF-BB induces release of intracellular calcium from caffeine- and thapsigargin-sensitive calcium stores which in turn lead to further calcium influx through both NS and T channels.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
30
|
Kanda N. Gangliosides GD1a and GM3 induce interleukin-10 production by human T cells. Biochem Biophys Res Commun 1999; 256:41-4. [PMID: 10066419 DOI: 10.1006/bbrc.1999.0281] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids and exhibit various physiologic functions. Gangliosides GD1a and GM3 strongly induced interleukin-10 (IL-10) protein secretion and mRNA expression in T cells from normal human subjects while the other gangliosides were ineffective. IL-10 induction by both gangliosides was completely blocked by protein tyrosine kinase (PTK) inhibitors, herbimycin A, genistein, and tyrphostin AG 1288, but not by other signal transduction inhibitors. These results suggest that GD1a and GM3 may induce IL-10 production in T cells by regulating the PTK-dependent signaling pathway. These gangliosides may thus act as important immunoregulators via IL-10.
Collapse
Affiliation(s)
- N Kanda
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Ravichandra B, Joshi PG. Gangliosides asymmetrically alter the membrane order in cultured PC-12 cells. Biophys Chem 1999; 76:117-32. [PMID: 10063608 DOI: 10.1016/s0301-4622(98)00222-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exogenous gangliosides readily associate with the cell membranes and produce marked effects on cell growth and differentiation. We have studied the effect of bovine brain gangliosides (BBG) on the membrane dynamics of intact cells. The structural and dynamic changes in the cell membrane were monitored by the fluorescence probes DPH, TMA-DPH and laurdan. Incorporation of BBG into the cell membrane decreased the fluorescence intensity, lifetime and the steady state anisotropy of TMA-DPH. Analysis of the time resolved anisotropy decay by wobbling in the cone model revealed that BBG decreased the order parameter, and increased the cone angle without altering the rotational relaxation rate. The fluorescence intensity and lifetime of DPH were unaffected by BBG incorporation, however, a modest increase was observed in the steady state anisotropy. BBG incorporation reduced the total fluorescence intensity of laurdan with pronounced quenching of the 440-nm band. The wavelength sensitivity of generalized polarization of laurdan manifested an ordered liquid crystalline environment of the probe in the cell membrane. BBG incorporation reduced the GP values and augmented the liquid crystalline behavior of the cell membrane. BBG incorporation also influenced the permeability of cell membranes to cations. An influx of Na+ and Ca2+ and an efflux of K+ was observed. The data demonstrate that incorporation of gangliosides into the cell membrane substantially enhances the disorder and hydration of the lipid bilayer region near the exoplasmic surface. The inner core region near the center of the bilayer becomes slightly more ordered and remains highly hydrophobic. Such changes in the structure and dynamics of the membrane could play an important role in modulation of transmembrane signaling events by the gangliosides.
Collapse
Affiliation(s)
- B Ravichandra
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
32
|
Golard A. Anti-GM3 antibodies activate calcium inflow and inhibit platelet-derived growth factor beta receptors (PDGFbetar) in T51B rat liver epithelial cells. Glycobiology 1998; 8:1221-5. [PMID: 9858644 DOI: 10.1093/glycob/8.12.1221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycolipids expressed in the plasma membrane regulate a variety of cellular processes including intracellular calcium dynamics. We used flow cytometry to characterize the glycoconjugates on the plasma membrane of T51B liver epithelial cells. Antibodies against glycolipids found to be present were tested for their ability elevate intracellular calcium. An antibody against GM3 (DH2) nearly doubles intracellular calcium while an antibody against type II chains (1B2) increases calcium to nearly four times the baseline level, similar to levels obtained with epidermal growth factor (EGF). The antibodies stimulated calcium inflow but did not trigger calcium release from internal stores. In addition DH2 but not 1B2 inhibited platelet-derived growth factor beta receptor (PDGFbetar) function. This is the first demonstration of activation of calcium inflow by agents that bind GM3 and type II chains. The ganglioside-mediated calcium inflow is likely to stimulate secretion by these liver cells.
Collapse
Affiliation(s)
- A Golard
- Northwest Hospital, Molecular Medicine, 120 Northgate Plaza, Suite 230, Seattle, WA 98125, USA
| |
Collapse
|
33
|
Abstract
Phospholipids constitute an important part of cellular membranes, and membrane fluidity and permeability are dependent on the fatty acid composition of the phospholipid. The composition, which changes with aging and disease is, to a large degree, influenced by nutrient supply. Phospholipids have been effective in protecting cellular membranes such as those of the gastrointestinal tract to an extent not much different from that observed with external supply of established mucosa-protective drugs such as misoprostol and sucralfate. Polar lipids have also been shown to be effective in preventing microbial translocation. The effect is further potentiated by an external supply of probiotic fibers such as pectin, guar gum, and oat gum. These and many other fibers also have documented strong mucosa preventive effects. Prebiotic bacteria such as Lactobacillus plantarum have demonstrated a strong ability to preserve food and prevent spoilage. In addition, L. plantarum seems to not only preserve key nutrients such as omega-3 fatty acids, but also increases its content during storage conditions. L. plantarum alone or in combination with various fibers has demonstrated a strong ability to reduce and eliminate potentially pathogenic microorganisms both in vitro and in vivo. It has recently been shown that L. plantarum possesses the ability to adhere to and colonize intestinal mucosa. It seems unique among the lactobacilli for L. plantarum to use mannose-specific adhesins, uncommon among gram-positive, but common among gram-negative bacteria, which makes it possible that L. plantarum competes with gram-negative other potential pathogens for receptor sites at the mucosal cell surfaces. Additionally, L. plantarum seems to be effective in eliminating nitrate and producing nitric oxide. These functions of L. plantarum are among the reasons why it has been used in combination with various fibers and polar lipids to recondition the gastrointestinal mucosa. For the purpose of a L. plantarum-containing formula being produced and tried, a treatment policy is regarded as an extension of the immunonutrition program and called ecoimmunonutrition.
Collapse
Affiliation(s)
- S Bengmark
- Lund University, Ideon Research Center, Sweden
| |
Collapse
|
34
|
Abstract
Growth factor receptors (GFRs) have been described as overexpressed in several types of brain tumors. Overexpression of these transmembrane proteins is considered to be an important part of tumorigenesis. Genetic as well as epigenetic modulation of the receptors have to be considered when trying to understand the role of GFRs in tumors or as targets for tumor therapy. GFR function can be modulated by membrane components (e.g. gangliosides) or by the change in receptor glycosylation. These types of changes and the occurrence of the expression of mutated receptor expressed in tumor cell can result in altered signaling. In this review, we have focused on GFRs, their expression and mutations in brain tumors. Recently the correlation between GFR expression and patient outcome has suggested that these tyrosine kinases and their signaling might play a decisive role in the course of patients with brain tumors. The importance of GFRs as possible targets for brain tumor therapy is also discussed.
Collapse
Affiliation(s)
- E J Meuillet
- Brain Tumor Research Program, Children's Memorial Hospital, Chicago, Ill., USA
| | | |
Collapse
|
35
|
Abstract
Glycosphingolipids are amphipathic compounds that exist mainly in the plasmalemma with their oligosaccharide portion protruding into the extracellular environment. In this position they are admirably situated for interacting with both ligands and receptors. Binding studies have demonstrated that specific glycolipids function as receptors for some microorganisms and bacterial toxins. Specific oligosaccharides on both glycolipids and glycoproteins bind members of the selection families, and some gangliosides facilitate integrins binding to their ligands. Gangliosides modulate the trophic factor-stimulated dimerization, tyrosine phosphorylation, and subsequent signal transduction events of several tyrosine kinase receptors. GM3 inhibits both the epidermal growth factor receptor and basic fibroblast factor receptor; several gangliosides except GM3 inhibit the platelet-derived growth-factor receptor; GM1 enhances nerve growth-factor-stimulated activation of TrkA; insulin receptor is inhibited to varying degrees by several gangliosides, but 2-->3 sialosylparagloboside is most effective. Activities of the beta(1)-adrenergic and delta-opioid receptors are modulated by GM1. Available information suggests that glycolipids serve as coordinators of multiple receptor functions.
Collapse
Affiliation(s)
- A J Yates
- Division of Neuropathology, College of Medicine, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
36
|
Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S. GM3-enriched microdomain involved in cell adhesion and signal transduction through carbohydrate-carbohydrate interaction in mouse melanoma B16 cells. J Biol Chem 1998; 273:9130-8. [PMID: 9535903 DOI: 10.1074/jbc.273.15.9130] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mouse melanoma B16 cells are characterized by the predominant presence of ganglioside GM3 and adhere to lactosylceramide- or Gg3-coated plates through interaction of GM3 with lactosylceramide or Gg3, whereby not only adhesion but also spreading and enhancement of cell motility occur (Kojima, N., Hakomori, S. (1991) J. Biol. Chem. 266, 17552-17558). We now report that the adhesion process is based essentially on a glycosphingolipid-enriched microdomain (GEM) at the B16 cell surface, since >90% of GM3 present in the original cells is found in GEM, and GEM is also enriched in several signal transducer molecules, e.g. c-Src, Ras, Rho, and focal adhesion kinase (FAK). GEM was isolated as a low density membranous fraction by homogenization of B16 cells in lysis buffer under two different conditions (i.e. buffer containing 1% Triton X-100, or hypertonic sodium carbonate without detergent), followed by sucrose density gradient centrifugation. A close association of GM3 with c-Src, Rho, and FAK was indicated by co-immunoprecipitation of GM3 present in GEM by anti-GM3 monoclonal antibody DH2, followed by Western blotting with antibodies directed to these transducer molecules. The following data indicate that GEM is a structural and functional unit for initiation of GM3-dependent cell adhesion coupled with signal transduction. 1) Tyrosine phosphorylation in FAK was greatly enhanced in B16 cells adhered to Gg3-coated plates but was minimal in cells adhered to GM3-coated, GlcCer-coated, or noncoated plates. 2) GTP loading on Ras and Rho increased significantly when cells were adhered to Gg3-coated plates, compared with GM3-coated, GlcCer-coated, or noncoated plates. Since Ras and Rho are closely associated with GM3 in GEM, cell adhesion/stimulation through GM3 in GEM may induce activation of Ras and Rho through enhanced GTP binding.
Collapse
Affiliation(s)
- K Iwabuchi
- Pacific Northwest Research Foundation, Seattle, Washington 98122, USA
| | | | | | | | | |
Collapse
|
37
|
Müthing J, Maurer U, Weber-Schürholz S. Glycosphingolipids of skeletal muscle: II. Modulation of Ca2(+)-flux in triad membranes by gangliosides. Carbohydr Res 1998; 307:147-57. [PMID: 9658570 DOI: 10.1016/s0008-6215(98)00028-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane vesicles of rabbit skeletal muscle were prepared and separated by sucrose density gradient centrifugation. The fractions obtained (in the order of increasing density) were sarcolemma (SL), T-tubules (TT), sarcoplasmic reticulum (SR1 and SR2) and triads/mitochondria (Tr/M) as characterized by their specific marker enzymes, ligand binding, and ion flux activities. The distribution of neutral glycosphingolipids and gangliosides in these membrane preparations has been documented in the preceding paper (J. Müthing, U. Maurer, U. Neumann, B. Kniep, and S. Weber-Schürholz, Carbohydr, Res., (1988) 135-145). GM3(Neu5Ac) is the dominant ganglioside, neolacto-series gangliosides are moderately expressed and ganglio-series gangliosides were found in minor quantities, however, all showing different qualitative and quantitative membrane-type specific patterns. The voltage dependent Ca(2+)-channels of skeletal muscle reside prevalently in the triad enriched membrane fractions deduced from highest binding capacity of 1,4-dihydropyridines. Calcium channel complexes of triads were reconstituted into unilamellar phospholipid vesicles of 400 nm defined size and the active 45Ca(2+)-uptake into intravesicular space was measured after incorporation of muscle specific gangliosides into the outer vesicle lipid bilayer in parallel to control liposomes without gangliosides. GM3(Neu5Ac) strongly increased the uptake of 45Ca2+ (+285%) whereas GM3(Neu5Gc) severely inhibited the ion flux (-61%). Neolacto-series gangliosides evoked miscellaneous effects upon 45Ca(2+)-flux depending on isomeric sialic acid configuration, oligosaccharide size and fatty acid chain length of the ceramide portion. VI3Neu5Ac-nLcOse6Cer (C24-fatty acid), IV3Neu5Ac-nLcOse4Cer (C16-fatty acid) and IV6Neu5Ac-nLcOse4Cer (C16-fatty acid) strongly enhanced the 45Ca(2+)-flux (+208, +162, and +120%, respectively, whereas IV3Neu5Ac-nLcOse4Cer (C24-fatty acid), VI3Neu5Ac-nLcOse6Cer (C16-fatty acid) and IV6Neu5Ac-nLcOse4Cer (C24-fatty acid) slightly reduced 45Ca(2+)-flux (-3, -6, and -17%, respectively). Out of all gangliosides tested in this study, GM1 showed the strongest stimulatory effect (+327%). GD1a and GT1b gave rise to remarkable flux-stimulation of +283 and +255%, respectively, whereas GD1b exhibited only a slightly positive effect (+38%). This data suggest a functional role of gangliosides in subcellular muscle membranes giving strong evidence that gangliosides are capable of modulating the cytosolic calcium level of muscle, which regulates muscle contraction.
Collapse
Affiliation(s)
- J Müthing
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Zellkulturtechnik, Germany.
| | | | | |
Collapse
|
38
|
Abstract
Exogenously added gangliosides are known to promote neurite outgrowth in a variety of cell types, including some neuroblastoma cell lines. To study neuritogenesis in SH-SY5Y human neuroblastoma we serum starved the cells for 24 hr and exposed them to gangliosides (GM1, GM3, or GT1b), platelet-derived growth factor (PDGF), insulin, nerve growth factor (NGF), insulin-like growth factor I (IGF-I), or combinations of these for 3 days. We measured four parameters of neurite outgrowth using image analysis. PDGF induced neurite outgrowth in SH-SY5Y and GM1 inhibited this. Both phenomena were dose-dependent with neurites/cell and neurite length being below controls with 100 microM GM1, and percent of neurite-bearing cells being below controls with 25, 50, and 100 microM GM1. Similar but more inhibitory results were obtained with GM3 and GT1b. Insulin and IGF-I induced a neuritogenic response that was less potent than that of PDGF and was also inhibited by gangliosides. NGF had no effect on neurite outgrowth but gangliosides were still inhibitory even in cells not treated with growth factors. From this we conclude that gangliosides inhibit spontaneous and trophic factor-induced neurite outgrowth in SH-SY5Y cells. For GM1 and GT1b, but not GM3, this probably involves inhibition of trophic factor receptor function.
Collapse
Affiliation(s)
- D L Hynds
- Department of Pathology, Ohio State University, Columbus, USA
| | | | | |
Collapse
|
39
|
Katoh N, Miyamoto T. Enhancement by ganglioside GT1b of annexin I phosphorylation in bovine mammary gland in the presence of phosphatidylserine and Ca2+. Lipids 1996; 31:983-7. [PMID: 8882979 DOI: 10.1007/bf02522693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ganglioside GT1b and, to a lesser extent, GD3, enhanced phosphorylation of a 36 kDa protein (the substrate of protein kinase C) in the particulate fraction from bovine mammary gland. Sialic acids, asialogangliosides, and GM3 were without effect, and GD1a conversely inhibited phosphorylation of the 36 kDa protein. The enhanced phosphorylation by GT1b required the simultaneous presence of phosphatidylserine (PS) and Ca2+. The 36 kDa protein reacted with anti-annexin I in Western blot analysis. Addition of purified annexin I to the reaction mixture containing the particulate fraction increased the extent of phosphorylated 36 kDa protein, and the phosphorylation was further enhanced by GT1b. The enhanced phosphorylation of annexin I by GT1b was also dependent on PS and Ca2+. When annexin I was phosphorylated by purified protein kinase C, GT1b inhibited the annexin I phosphorylation. Addition of epidermal growth factor or insulin to the particulate fraction had little effect on the enhancement. These results suggest that an enzyme or enzymes other than protein kinase C, epidermal growth factor receptor kinase, or insulin receptor kinase is responsible for the GT1b- and GD3-enhanced phosphorylation of annexin I in the presence of PS and Ca2+.
Collapse
Affiliation(s)
- N Katoh
- Laboratory of Biochemistry, National Institute of Animal Health, Ibaraki, Japan
| | | |
Collapse
|
40
|
Meuillet E, Crémel G, Hicks D, Dreyfus H. Ganglioside effects on basic fibroblast and epidermal growth factor receptors in retinal glial cells. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:277-88. [PMID: 8906573 DOI: 10.1016/0929-7855(96)00536-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gangliosides have long been implicated in cell growth regulation and play an important role as modulators in protein phosphorylation. In order to better understand how glycosphingolipids and growth factors interact, we examined the modulation of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) effects on retinal Müller glial cells (RMG), following modification of their GG composition. Treatment of MG cells with GG (GM1, GT1b) and asialoGM1 resulted in modifications of several aspects of cellular responses to EGF- and FGF-receptor (R) activation: mitogenesis, cell migration, tyrosine phosphorylation of the EGF-R and FGF-R and even their cellular substrates were particularly influenced by GG. Indeed GG caused modifications of EGF-R and FGF-R autophosphorylation kinetics. GG long term effects (mitogenesis and migration) correlate with short term effects (tyrosine phosphorylation) and differences in receptor tyrosine kinase signalling could explain the specificity in growth factor responses.
Collapse
Affiliation(s)
- E Meuillet
- INSERM U. 338, Centre de Neurochimie, Strasbourg, France
| | | | | | | |
Collapse
|
41
|
Meuillet E, Cremel G, Dreyfus H, Hicks D. Differential modulation of basic fibroblast and epidermal growth factor receptor activation by ganglioside GM3 in cultured retinal Müller glia. Glia 1996; 17:206-16. [PMID: 8840162 DOI: 10.1002/(sici)1098-1136(199607)17:3<206::aid-glia3>3.0.co;2-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polypeptide growth factors and membrane-bound gangliosides are involved in cell signaling, including that observed in cells of neural origin. To analyze possible interactions between these two systems, we investigated the modulation of short- and long-term responses to basic fibroblast and epidermal growth factor (bFGF and EGF, respectively) in cultured retinal Müller glial cells following experimental modification of their ganglioside composition. These glial cells readily incorporated exogenously administered GM3 ganglioside, which was not substantially metabolized within 24 h. Such treatments significantly inhibited bFGF-induced DNA replication and cell migration, while having much less effect on analogous EGF-mediated behaviors. To explore GM3/growth factor interactions further, different aspects of glial metabolism in response to bFGF or EGF stimulation were examined: membrane fluidity, growth factor binding, global and individual changes in growth factor-induced phosphotyrosine levels, and growth factor-induced activation of mitogen-activated protein kinase. GM3 reduced the intensity of immunocytochemical labeling of phosphotyrosine-containing proteins within bFGF-stimulated cells and down-regulated FGF receptor activation and tyrosine phosphorylation of its cellular substrates, whereas similar parameters in EGF-stimulated cells were much less affected. Hence the data reveal a complex relationship in normal neural cells between polypeptide growth factors and membrane-bound gangliosides, which may participate in retinal cellular physiology in vivo.
Collapse
Affiliation(s)
- E Meuillet
- INSERM U. 338, Centre de Neurochimie, Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Maidment SL, Merzak A, Koochekpour S, Rooprai HK, Rucklidge GJ, Pilkington GJ. The effect of exogenous gangliosides on matrix metalloproteinase secretion by human glioma cells in vitro. Eur J Cancer 1996; 32A:868-71. [PMID: 9081368 DOI: 10.1016/0959-8049(95)00659-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent peptidases and are amongst those enzymes responsible for extracellular matrix (ECM) degradation during tumour-cell migration. Gangliosides are a family of acidic membrane glycolipids thought to play a role during cell development, differentiation and oncogenic transformation. In this descriptive study, we investigated the effects of six exogenous gangliosides (GM1, GM3, GD1a, GD1b, GD3 and GT1b) on the secretion of MMP-2 (72 kDa gelatinase or gelatinase-A) and MMP-9 (92 kDa gelatinase or gelatinase-B). Cell-conditioned media from eight human glioma-derived cell-lines served as the source of MMPs and were investigated using SDS-PAGE zymography. Six of the cell lines showed upregulation of secretion of both enzymes by all six gangliosides. Of the remaining two cell lines, one showed inhibition of MMP secretion by all gangliosides and the other had a small but differential response to the range of gangliosides investigated. These results suggest that gangliosides may stimulate glioma cell invasiveness by promoting MMP expression.
Collapse
Affiliation(s)
- S L Maidment
- Department of Neuropathology, Institute of Psychiatry, Denmark Hill, London, U.K
| | | | | | | | | | | |
Collapse
|
43
|
Saqr HE, Walters JD, Guan Z, Stokes BT, Yates AJ. Gangliosides inhibit PDGF-induced signal transduction events in U-1242 MG human glioma cells. Neurochem Res 1995; 20:1389-95. [PMID: 8786826 DOI: 10.1007/bf00992515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study we investigated the responses of intracellular calcium ([Ca2+]i) and protein kinase C (PKC) to PDGF in U-1242 MG cells. PDGF-BB stimulated [3H]PDBu binding approximately 2-3 fold. This response was inhibited by preincubating the cells with an inhibitor of phospholipase C (PLC), U73122, suggesting that PLC mediates the induction of PKC translocation by PDGF. PDGF also increased the concentration of [Ca2+]i that was attenuated in a calcium-free medium. This indicates that PDGF-induced elevation of [Ca2+]i is mainly due to influx of extracellular calcium. PDGF-stimulated translocation of PKC was inhibited by the intracellular calcium buffer BAPTA/AM. All gangliosides studied except GM3 inhibited these responses with similar efficacy. Collectively, these results indicate that the signal transduction pathway initiated by PDGF leading to PKC translocation in U-1242 MG cells is intact, and this pathway is inhibited by several gangliosides.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
44
|
Saqr HE, Lee MC, Burkman AM, Yates AJ. Gangliosides have a bimodal effect on DNA synthesis in U-1242 MG human glioma cells. J Neurosci Res 1995; 41:491-500. [PMID: 7473880 DOI: 10.1002/jnr.490410408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
GM1, GD1a, and GT1b inhibit both PDGF-stimulated and serum-stimulated DNA synthesis in Swiss 3T3 cells and the human glioma cell line U-1242 MG in a dose-dependent manner. The ganglioside inhibitory effect is counteracted in a dose-responsive fashion by serum such that ganglioside-induced inhibition is essentially abolished in 10% serum. Because of the potentially important role that gangliosides play in growth regulation of human gliomas, this phenomenon was studied in detail using U-1242 MG cells. Stimulation of DNA synthesis by low doses of serum in U-1242 MG cells is inhibited in a dose-responsive fashion by ganglioside GM1. However, serum itself counteracts the inhibitory effect of ganglioside in a dose responsive way. Kinetic analyses demonstrate that GM1 competes with some components of serum for sites on U-1242 MG cells (Kb of GM1 = 12.5 microM). On the other hand, GM1, GD1a, and GT1b stimulate DNA synthesis in quiescent U-1242 MG cells in both sparse and confluent conditions, indicating that ganglioside-stimulated DNA synthesis is dependent on the phase of cellular growth rather than cellular density. This growth stimulatory effect of gangliosides is more potent on quiescent, confluent cells than quiescent, sparse cells. These results demonstrate that exogenously added gangliosides can have opposite (bimodal) effects on progression of human glioma cells through the cell cycle depending upon the growth phase of the cells.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
45
|
Merzak A, Koochekpour S, McCrea S, Roxanis Y, Pilkington GJ. Gangliosides modulate proliferation, migration, and invasiveness of human brain tumor cells in vitro. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 24:121-35. [PMID: 7632317 DOI: 10.1007/bf02962138] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gliomas, the most common form of intrinsic brain tumor, are characterized by diffuse local invasion of the normal brain structures, irrespective of their histological grade of malignancy; a feature that is a major obstacle to successful therapy. They generally infiltrate the central nervous system (CNS) as individual tumor cells several centimeters beyond the macroscopic tumor margin and consequently often recur, after subtotal surgical resection. Factors involved in the control of both their proliferation and invasiveness are poorly documented. In this work, the role of gangliosides on proliferation of both human fetal human brain cells and five cell lines derived from human gliomas with different grades of malignancy was investigated. In addition, 8 microns-porosity polycarbonate filters were used to study cell motility. In addition, these filters were coated with the reconstituted extracellular matrix (ECM) composite, Matrigel, to assess invasiveness. The results presented show that gangliosides generally exert a proliferation inhibitory effect on fetal brain cells and glioma cell lines in vitro and play an important role in promoting glioma cell motility and invasiveness. The molecular mechanisms involved in the action of gangliosides may prove useful in identifying new targets for an anti-invasion therapy.
Collapse
Affiliation(s)
- A Merzak
- Department of Neuropathology, Institute of Psychiatry, London, UK
| | | | | | | | | |
Collapse
|
46
|
Sung CC, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Zheng M, Yates AJ. Correlation of ganglioside patterns of primary brain tumors with survival. Cancer 1995; 75:851-9. [PMID: 7828137 DOI: 10.1002/1097-0142(19950201)75:3<851::aid-cncr2820750317>3.0.co;2-h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Classification/grading schemes for brain tumors are based mainly on histologic examinations, but these have major limitations, which has led to a search for more objective prognostic markers. Gangliosides have several biologic effects relevant to tumors, and ganglioside compositions of primary brain tumors correlate with diagnosis. This led to the authors' hypothesis that ganglioside patterns of brain tumors might be useful as prognostic indicators. METHODS Gangliosides in primary brain tumors of different histologic types from 84 patients were analyzed. Specific ganglioside patterns and several other relevant variables were examined for associations with survival using a Cox proportional hazards model. Kaplan-Meier survival curves were analyzed using the log-rank test. RESULTS Patients in whom less than 30% of total tumor gangliosides consisted of 1b pathway gangliosides (GD1b, GT1b, and GQ1b) had significantly higher risk ratios than those with more than 30% 1b gangliosides (P approximately 0.03). The presence of 6'-LM1 (NeuAc alpha 2-->6Gal beta 1-->4Glc-NAc beta 1-->3Gal beta 1-->4Glc beta 1-->1Cer was also associated with a higher risk ratio (P approximately 0.007). Combinations of 1b gangliosides and 6'-LM1 identified three groups of patients regardless of histologic diagnosis. Group A, with less than 30% 1b and the presence of 6'-LM1, had a median survival time of 331 days. Group B, with less than 30% 1b but no 6'-LM1, had a median survival time of more than 698 days. Group C, with more than 30% 1b had a median survival time of more than 776 days. CONCLUSIONS The correlation of ganglioside patterns with survival in this initial investigation suggests the potential of 1b gangliosides and 6'-LM1 to be used as prognostic indicators. Continuing research is being conducted to assess this possibility prospectively.
Collapse
Affiliation(s)
- C C Sung
- Division of Neuropathology, Ohio State University, Columbus
| | | | | | | | | | | | | |
Collapse
|
47
|
Yates AJ, Saqr HE, Van Brocklyn J. Ganglioside modulation of the PDGF receptor. A model for ganglioside functions. J Neurooncol 1995; 24:65-73. [PMID: 8523078 DOI: 10.1007/bf01052661] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gangliosides are a family of glycolipids that are present at the cell surface of all mammalian cells. Patterns of gangliosides are different in gliomas than normal brain, and exogenously added gangliosides affect the growth of cultured glioma cells. Gangliosides inhibit the activities of several kinases, including protein kinase C (PKC) and cAMP-kinase. U-1242 MG cells (derived from a human malignant glioma) have receptors for platelet-derived growth factor (PDGF) that become phosphorylated on tyrosine when exposed to PDGF. Exposure of these cells to PDGF also causes an increase in intracellular calcium concentration ([Ca2+]i) and induces a translocation of PKC to the membrane. Preincubation of U-1242 MG cells with several species of gangliosides inhibits the increase in ([Ca2+]i) and PKC translocation in response to PDGF, but GM3 is much less effective than other species tested. This is due to a lack of activation of the receptor tyrosine kinase as monitored by phosphorylation of the receptor on tyrosine residues, but is not due to an inhibition of binding of PDGF to its receptors. The lack of activation of the PDGF receptor tyrosine kinase is due to an inhibition of dimerization of the receptor monomers by gangliosides GM1, GM2, GD1a, GT1b, but not GM3. Therefore, gangliosides may be involved in coordinating the activities of multiple trophic factors simultaneously acting on a cell by regulating the dimerization of their respective receptor monomers.
Collapse
Affiliation(s)
- A J Yates
- Division of Neuropathology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
48
|
Ridefelt P, Yokote K, Claesson-Welsh L, Siegbahn A. PDGF-BB triggered cytoplasmic calcium responses in cells with endogenous or stably transfected PDGF beta-receptors. Growth Factors 1995; 12:191-201. [PMID: 8619925 DOI: 10.3109/08977199509036879] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) triggered signal transduction was investigated in human foreskin fibroblasts with endogenous PDGF beta-receptors, and porcine aortic endothelial (PAE) cells with stably transfected PDGF beta-receptors. Immunoprecipitation and immunoblotting showed that PDGF induced dose-dependent autophosphorylation of PDGF beta-receptor, and the PLC-gamma associates with autophosphorylated PDGF beta-receptors and becomes phosphorylated. Activation of PLC-gamma is known to induce fluctuations of the concentration of cytoplasmic calcium ([Ca2+]i). Microfluorometry and digital imaging were employed for measurements of the concentration of [Ca2+]i. In both cell types the growth factor induced four types of [Ca2+]i responses; no rise, a small and sluggish monophasic rise, a biphasic rise with an initial transient peak followed by a sustain elevation, and finally regular oscillations. The frequencies and amplitudes of the oscillatory responses were independent of agonist concentration after stimulation with PDGF-BB. Latency, the period from application of stimulus to the first [Ca2+]i peak, was reduced at higher concentrations of agonist. Also, the proportion of responding cells increased with higher concentrations of ligand. Oscillations of [Ca2+]i were elicited at submaximal concentrations of agonist. In PAE cells PDGF-BB triggered a single [Ca2+]i peak in absence of external Ca2+. Ligand-induced oscillations and sustained increases of [Ca2+]i were counteracted by the inorganic Ca2+ channel blocker Ce3+. These results show that similar types of [Ca2+]i responses occur in different cell types independently of whether the PDGF beta-receptors are expressed endogeneously or after transfection. Potentially, the different [Ca2+]i responses have distinct physiological consequences.
Collapse
Affiliation(s)
- P Ridefelt
- Dept of Clinical Chemistry, Uppsala University, Sweden
| | | | | | | |
Collapse
|
49
|
Sung CC, Pearl DK, Coons SW, Scheithauer BW, Johnson PC, Yates AJ. Gangliosides as diagnostic markers of human astrocytomas and primitive neuroectodermal tumors. Cancer 1994; 74:3010-22. [PMID: 7954264 DOI: 10.1002/1097-0142(19941201)74:11<3010::aid-cncr2820741119>3.0.co;2-i] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Limitations of classification schemes for brain tumors based solely on morphology have stimulated searches for molecular markers of nosologic and prognostic value. Gangliosides are logical candidates because there are high concentrations of them in the nervous system, there is evidence of their roles in regulation of growth and differentiation, and data from small series suggest correlations between ganglioside composition and glioma type. METHODS Ganglioside compositions were determined for 70 primary human brain tumors: 16 low grade astrocytomas (LG), 12 anaplastic astrocytomas (AA), 34 glioblastoma multiformes (GBM), and 8 primitive neuroectodermal tumors (PNET). This method involved identification and quantitation of specific gangliosides using chemical analysis and immunoanalysis. RESULTS Among all tumor types, histologic grade correlated with a progressive loss of 1b gangliosides (P < 0.0001). GQ1b was higher in LGs than in AAs (P < 0.001). Both GT1b and GD1b were higher in AAs than GBMs (P < 0.01 and 0.05, respectively) and lower in PNETs than in GBMs (P < 0.05). GM3 was higher in PNETs than in any astrocytoma group and higher in GBMs than in either AAs or LGs. There was a significant difference in the content of 3'-LM1 among all groups (P < 0.005), between AAs and GBMs (P < 0.05), and between low grade ordinary and juvenile pilocytic astrocyomas (P < 0.01). The lacto-series ganglioside 3'-isoLM1 was present in all groups except PNET. CONCLUSIONS These results indicate that patterns of gangliosides could be of considerable value in refining the classification and diagnosis of primary human brain tumors.
Collapse
Affiliation(s)
- C C Sung
- Division of Neuropathology, Ohio State University, Columbus
| | | | | | | | | | | |
Collapse
|
50
|
Li J, Pearl DK, Pfeiffer SE, Yates AJ. Patterns of reactivity with anti-glycolipid antibodies in human primary brain tumors. J Neurosci Res 1994; 39:148-58. [PMID: 7530777 DOI: 10.1002/jnr.490390205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibodies against carbohydrates of three glycolipids were used to determine patterns of immunohistochemical reactivity of histologically identifiable cell subpopulations in 101 human primary brain tumors. For all tumor types fibrillary cells, polar cells, and gemistocytes (commonly seen in astrocytomas and ependymomas) stained more frequently for galactosylcerebroside with mAbO1 than small tumor cells and macrophages. Frequency of staining for sulfatide with mAbO4 was fibrillary > polar > small cells = macrophages. Gemistocytes stained more frequently with mAbO4 than polar cells in all tumors except low grade astrocytomas. These data indicate that tumors classified on histological grounds as astrocytic are often stained with antibodies that recognize oligodendrocytes and their progenitors. Thus, anti-glycolipid antibodies used in the study of developmental lineage may offer useful tools for classification of human brain tumors. Staining of fibrillary cells, polar cells, and gemistocytes for paragloboside directly with mAb F1H11 was much less common than with mAbO1, but this increased by pretreatment of the tissues with neuraminidase (F1H11 + N). Of particular note was the finding that small tumor cells frequently stained with F1H11 + N. Evidence that these were not macrophages was obtained using double immunostaining with F1H11 + N and anti-macrophage antibodies. In astrocytomas the frequency of small tumor cells immunostained with F1H11 + N was high grade > anaplastic > low grade, demonstrating a correlation of this tumor cell population with more aggressive astrocytomas. Thus, immunostaining with F1H11 + N may be of value in identifying small, anaplastic tumor cells, especially in small biopsies or tissue taken adjacent to the main tumor mass.
Collapse
Affiliation(s)
- J Li
- Division of Neuropathology, Ohio State University, Columbus
| | | | | | | |
Collapse
|