1
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
2
|
Louizi C, Khan MAA, Faisal K, Chowdhury R, Ghosh P, Hossain F, Nisansala T, Ranasinghe S, Moreno J, Alvar J, Mondal D, Buhl T, Lüder CGK, Abd El Wahed A. Assessment of pan-Leishmania detection by recombinase polymerase amplification assay. Diagn Microbiol Infect Dis 2023; 105:115862. [PMID: 36493571 DOI: 10.1016/j.diagmicrobio.2022.115862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The spread of vector habitats along with increasing human mobility can introduce atypical Leishmania species and hence can challenge existing diagnostic practices for rapid detection of active infection with species outside the narrow target range. Here we assessed the pan-Leishmania detection ability of isothermal recombinase polymerase amplification (RPA) assays targeting 18S rRNA gene, cathepsin L-like cysteine proteinase B (Cpb) gene, and kinetoplast minicircle DNA (kDNA) regions. While the lowest limit of detection of the 18S rRNA-RPA and Cpb-RPA assays were estimated as 12 and 17 standard DNA molecules, respectively, both assays could amplify genomic DNA of 7 pathogenic Leishmania species. Evaluation of 18S rRNA-RPA and our previously developed kDNA-RPA assays on 70 real-time PCR-positive leishmaniasis samples of varying pathologies resulted in sensitivity rates of 35.71% and 88.57%, respectively, while the combined sensitivity was 98.57%. Combinatorial application of 18S rRNA-RPA and kDNA-RPA assays can be recommended for further diagnostic assessments.
Collapse
Affiliation(s)
- Chiheb Louizi
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| | - Md Anik Ashfaq Khan
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany; Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh.
| | - Khaledul Faisal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Thilini Nisansala
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Baru, Kelantan, Malaysia; Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Shalindra Ranasinghe
- Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Javier Moreno
- WHO Collaborating Center for Leishmaniasis, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Alvar
- Royal Academy of Medicine of Spain, Madrid, Spain
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh; Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Centre Göttingen, Georg-August University, Göttingen, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August University, Göttingen, Germany
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
3
|
Benikhlef R, Chaouch M, Abid MB, Aoun K, Harrat Z, Bouratbine A, BenAbderrazak S. ITS1
and cpb genetic polymorphisms in Algerian and Tunisian
Leishmania infantum
isolates from humans and dogs. Zoonoses Public Health 2022; 70:201-212. [PMID: 36443904 DOI: 10.1111/zph.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
Leishmania (L.) infantum strains, isolated from varying hosts and clinical manifestations (cutaneous, visceral and canine leishmaniasis), were investigated in order to understand the genetic polymorphisms within this species in Algeria and Tunisia. Two DNA-based typing methods were tested in order to evaluate their effectiveness against Multilocus enzyme electrophoresis (MLEE), widely considered as the reference method for Leishmania parasite typing. On the other hand, MLEE is cumbersome, high-cost, time consuming and frequently does not detect intra-species genetic polymorphisms. In this work, we used two molecular target regions to discriminate L. infantum strains, Internal transcribed spacer 1 (ITS1) and the cysteine proteinase B (cpb). The ITS1 region offers good resolution for Leishmania discrimination but does not spotlight intra-species polymorphisms. In contrast, cpbE and cpbF PCR-Sequencing demonstrated a certain variability within CL and VL Algerian and Tunisian L. infantum isolates. Following phylogenetic analyses of 44 L. infantum isolates, two main groups were identified, a group with 39 bp deletion in the cpb sequence, composed of cutaneous, visceral and canine isolates from both countries with no significant clinical or geographic distribution; these samples were typed as MON-1, MON-24, and MON-80 zymodemes. A second group which presents a clear clusterization of Tunisian cutaneous strains belonging to the L. infantum MON-24. This group, with no deletion in the mature domain of the cpb gene sequence, should be further explored with a higher number of samples.
Collapse
Affiliation(s)
- Razika Benikhlef
- Laboratoire d'Eco‐épidémiologie Parasitaire et Génétique des Populations, Route du Petit Staoueli Institut Pasteur d'Algérie Dely‐Brahim Algeria
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
| | - Melek Chaouch
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR 16 IPT 09 Institut Pasteur de Tunis Tunis Tunisia
| | - Meriem Ben Abid
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
| | - Karim Aoun
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
- Laboratoire d'Epidémiologie et d'Ecologie Parasitaires Institut Pasteur de Tunis Tunis Tunisia
| | - Zoubir Harrat
- Laboratoire d'Eco‐épidémiologie Parasitaire et Génétique des Populations, Route du Petit Staoueli Institut Pasteur d'Algérie Dely‐Brahim Algeria
- Laboratoire Biodiversité Et Environnement: Interactions, Génomes USTHB Bab Ezzouar Algeria
| | - Aida Bouratbine
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
| | - Souha BenAbderrazak
- Laboratoire de Recherche Parasitologie Médicale, Biotechnologies et Biomolécules, LR 20‐IPT‐06, Institut Pasteur de Tunis Université Tunis El Manar Tunis Tunisia
| |
Collapse
|
4
|
Gupta AK, Das S, Kamran M, Ejazi SA, Ali N. The Pathogenicity and Virulence of Leishmania - interplay of virulence factors with host defenses. Virulence 2022; 13:903-935. [PMID: 35531875 PMCID: PMC9154802 DOI: 10.1080/21505594.2022.2074130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a group of disease caused by the intracellular protozoan parasite of the genus Leishmania. Infection by different species of Leishmania results in various host immune responses, which usually lead to parasite clearance and may also contribute to pathogenesis and, hence, increasing the complexity of the disease. Interestingly, the parasite tends to reside within the unfriendly environment of the macrophages and has evolved various survival strategies to evade or modulate host immune defense. This can be attributed to the array of virulence factors of the vicious parasite, which target important host functioning and machineries. This review encompasses a holistic overview of leishmanial virulence factors, their role in assisting parasite-mediated evasion of host defense weaponries, and modulating epigenetic landscapes of host immune regulatory genes. Furthermore, the review also discusses the diagnostic potential of various leishmanial virulence factors and the advent of immunomodulators as futuristic antileishmanial drug therapy.
Collapse
Affiliation(s)
- Anand Kumar Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
5
|
Rawat A, Roy M, Jyoti A, Kaushik S, Verma K, Srivastava VK. Cysteine proteases: Battling pathogenic parasitic protozoans with omnipresent enzymes. Microbiol Res 2021; 249:126784. [PMID: 33989978 DOI: 10.1016/j.micres.2021.126784] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
Millions of people worldwide lie at the risk of parasitic protozoic infections that kill over a million people each year. The rising inefficacy of conventional therapeutics to combat these diseases, mainly due to the development of drug resistance to a handful of available licensed options contributes substantially to the rising burden of these ailments. Cysteine proteases are omnipresent enzymes that are critically implicated in the pathogenesis of protozoic infections. Despite their significance and druggability, cysteine proteases as therapeutic targets have not yet been translated into the clinic. The review presents the significance of cysteine proteases of members of the genera Plasmodium, Entamoeba, and Leishmania, known to cause Malaria, Amoebiasis, and Leishmaniasis, respectively, the protozoic diseases with the highest morbidity and mortality. Further, projecting them as targets for molecular tools like the CRISPR-Cas technology for favorable manipulation, exploration of obscure genomes, and achieving a better insight into protozoic functioning. Overcoming the hurdles that prevent us from gaining a better insight into the functioning of these enzymes in protozoic systems is a necessity. Managing the burden of parasitic protozoic infections pivotally depends upon the betterment of molecular tools and therapeutic concepts that will pave the path to an array of diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Aadish Rawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Kuldeep Verma
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India.
| |
Collapse
|
6
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
7
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
8
|
Haroon M, Akhtar T, S. Santos AC, Pereira VRA, Ferreira LFGR, Hernandes MZ, Rocha REO, Ferreira RS, M. Gomes PAT, Sousa FA, B. Dias MCH, Tahir MN, Hameed S, Leite ACL. Design, Synthesis and In Vitro Trypanocidal and Leishmanicidal Activities of 2‐(2‐Arylidene)hydrazono‐4‐oxothiazolidine‐5‐acetic Acid Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Haroon
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Tashfeen Akhtar
- Department of ChemistryMirpur University of Science and Technology (MUST) 10250-Mirpur (AJK) Pakistan
| | - Aline C. S. Santos
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Valéria R. A. Pereira
- Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo Cruz 50670-420 Recife, PE Brazil
| | - Luiz F. G. R. Ferreira
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Marcelo Z. Hernandes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Rafael E. O. Rocha
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Rafaela S. Ferreira
- Departamento de Bioquímica and ImunologiaUniversidade Federal de Minas Gerais CEP 31270–901 Belo Horizonte, MG Brazil
| | - Paulo A. T. M. Gomes
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Fabiano A. Sousa
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Mabilly C. H. B. Dias
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| | - Muhammad N. Tahir
- Department of PhysicsUniversity of Sargodha, Sargodha Punjab Pakistan
| | - Shahid Hameed
- Department of ChemistryQuaid-i-Azam University Islamabad- 45320 Pakistan
| | - Ana C. L. Leite
- Departamento de Ciências FarmacêuticasCentro de Ciências da SaúdeUniversidade Federal de Pernambuco 50740-520 Recife, PE Brazil
| |
Collapse
|
9
|
Conter CC, Mota CA, Dos Santos BA, de Souza Braga L, de Souza Terron M, Navasconi TR, Fernandes ACBS, Demarchi IG, de Castro KRR, Aristides SMA, Lonardoni MVC, Teixeira JJV, Silveira TGV. PCR primers designed for new world Leishmania: A systematic review. Exp Parasitol 2019; 207:107773. [PMID: 31605671 DOI: 10.1016/j.exppara.2019.107773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
Studies of the primers that were designed to detect New World Leishmania were systematically reviewed to report the characteristics of each target, detection limit, specificity of the primers designed and diagnostic sensibility. The papers identified in the databases PubMed and Web of Science involved 50 studies. Minicircle is the most applied target in molecular research for diagnosis, due to its high sensitivity in detecting Leishmania in different clinical samples, a characteristic that can be partially attributed to the higher number of copies of the minicircle per cell. The other molecular targets shown in this review were less sensitive to diagnostic use because of the lower number of copies of the target gene per cell, but more specific for identification of the subgenus and/or species. The choice of the best target is an important step towards the result of the research. The target allows the design of primers that are specific to the genus, subgenus or a particular species and also imparts sensitivity to the method for diagnosis. The findings of this systematic review provide the advantages and disadvantages of the main molecular targets and primers designed for New World Leishmania, offering information so that the researcher can choose the PCR system best suited to their research need. This is a timely and extremely thorough review of the primers designed for New World Leishmania.
Collapse
Affiliation(s)
- Carolina Cella Conter
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Camila Alves Mota
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Laís de Souza Braga
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Taísa Rocha Navasconi
- Graduate Program in Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Izabel Galhardo Demarchi
- Department of Clinical Analyses and Biomedicine, State University of Maringá, Maringá, Paraná, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Santos-de-Souza R, Souza-Silva F, de Albuquerque-Melo BC, Ribeiro-Guimarães ML, de Castro Côrtes LM, Pereira BAS, Silva-Almeida M, Cysne-Finkelstein L, de Oliveira Junior FOR, Pereira MCDS, Alves CR. Insights into the tracking of the cysteine proteinase B COOH-terminal polypeptide of Leishmania (Leishmania) amazonensis by surface plasmon resonance. Parasitol Res 2019; 118:1249-1259. [PMID: 30747292 DOI: 10.1007/s00436-019-06238-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Leishmania (Leishmania) amazonensis has adaptive mechanisms to the host environment that are guided by its proteinases, including cysteine proteinase B (CPB), and primarily its COOH-terminal region (Cyspep). This work aimed to track the fate of Cyspep by surface plasmon resonance (SPR) of promastigotes and amastigotes to gain a greater understanding of the adaptation of this parasite in both hosts. This strategy consisted of antibody immobilization on a COOH1 surface, followed by interaction with parasite proteins and epoxysuccinyl-L-leucylamido(4-guanidino)butane (E-64). Pro-CPB and Cyspep were detected using specific polyclonal antibodies against a recombinant Cyspep in both parasite forms. The parasitic supernatants from amastigotes and promastigotes exhibited higher anti-Cyspep recognition compared with that in the subcellular fractions. As the supernatant of the promastigote cultures exhibited resonance unit values indicative of an effective with to E-64, this result was assumed to be Pro-CPB detection. Finally, after using three sequential SPR assay steps, we propose that amastigotes and promastigotes release Cyspep into the extracellular environment, but only promastigotes release this polypeptide as Pro-CPB.
Collapse
Affiliation(s)
- Raquel Santos-de-Souza
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Franklin Souza-Silva
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Barbara Cristina de Albuquerque-Melo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Michelle Lopes Ribeiro-Guimarães
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Luzia Monteiro de Castro Côrtes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Bernardo Acácio Santini Pereira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Léa Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | - Mirian Claudia de Souza Pereira
- Laboratório de Ultraestrutura Celular, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
11
|
Samarasinghe SR, Samaranayake N, Kariyawasam UL, Siriwardana YD, Imamura H, Karunaweera ND. Genomic insights into virulence mechanisms of Leishmania donovani: evidence from an atypical strain. BMC Genomics 2018; 19:843. [PMID: 30486770 PMCID: PMC6262978 DOI: 10.1186/s12864-018-5271-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023] Open
Abstract
Background Leishmaniasis is a neglected tropical disease with diverse clinical phenotypes, determined by parasite, host and vector interactions. Despite the advances in molecular biology and the availability of more Leishmania genome references in recent years, the association between parasite species and distinct clinical phenotypes remains poorly understood. We present a genomic comparison of an atypical variant of Leishmania donovani from a South Asian focus, where it mostly causes cutaneous form of leishmaniasis. Results Clinical isolates from six cutaneous leishmaniasis patients (CL-SL); 2 of whom were poor responders to antimony (CL-PR), and two visceral leishmaniasis patients (VL-SL) were sequenced on an Illumina MiSeq platform. Chromosome aneuploidy was observed in both groups but was more frequent in CL-SL. 248 genes differed by 2 fold or more in copy number among the two groups. Genes involved in amino acid use (LdBPK_271940) and energy metabolism (LdBPK_271950), predominated the VL-SL group with the same distribution pattern reflected in gene tandem arrays. Genes encoding amastins were present in higher copy numbers in VL-SL and CL-PR as well as being among predicted pseudogenes in CL-SL. Both chromosome and SNP profiles showed CL-SL and VL-SL to form two distinct groups. While expected heterozygosity was much higher in VL-SL, SNP allele frequency patterns did not suggest potential recent recombination breakpoints. The SNP/indel profile obtained using the more recently generated PacBio sequence did not vary markedly from that based on the standard LdBPK282A1 reference. Several genes previously associated with resistance to antimonials were observed in higher copy numbers in the analysis of CL-PR. H-locus amplification was seen in one cutaneous isolate which however did not belong to the CL-PR group. Conclusions The data presented suggests that intra species variations at chromosome and gene level are more likely to influence differences in tropism as well as response to treatment, and contributes to greater understanding of parasite molecular mechanisms underpinning these differences. These findings should be substantiated with a larger sample number and expression/functional studies. Electronic supplementary material The online version of this article (10.1186/s12864-018-5271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sumudu R Samarasinghe
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Udeshika L Kariyawasam
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Yamuna D Siriwardana
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
12
|
Nath-Chowdhury M, Sangaralingam M, Bastien P, Ravel C, Pratlong F, Mendez J, Libman M, Ndao M. Real-time PCR using FRET technology for Old World cutaneous leishmaniasis species differentiation. Parasit Vectors 2016; 9:255. [PMID: 27141967 PMCID: PMC4855858 DOI: 10.1186/s13071-016-1531-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/24/2016] [Indexed: 02/06/2023] Open
Abstract
Background Recently, there has been a re-emergence of cutaneous leishmaniasis in endemic countries and an increase in imported cases in non-endemic countries by travelers, workers, expatriates, immigrants, and military force personnel. Old World cutaneous leishmaniasis is caused primarily by Leishmania major, L. tropica and L. aethiopica. Despite their low sensitivity, diagnosis traditionally includes microscopic and histopathological examinations, and in vitro cultivation. Several conventional PCR techniques have been developed for species identification, which are time-consuming and labour-intensive. Real-time PCR using SYBR green dye, although provides rapid detection, may generate false positive signals. Therefore, a rapid and easy method such as a FRET-based real-time PCR would improve not only the turn-around time of diagnosing Old World cutaneous Leishmania species but will also increase its specificity and sensitivity. Methods A FRET-based real-time PCR assay which amplifies the cathepsin L-like cysteine protease B gene encoding a major Leishmania antigen was developed to differentiate L. major, L. tropica, and L. aethiopica in one single step using one set of primers and probes. Assay performance was tested on cutaneous and visceral strains of Leishmania parasite cultures and isolates of other protozoan parasites as well as human biopsy specimen. Results The assay readily differentiates between the three Old World cutaneous leishmaniasis species based on their melting curve characteristics. A single Tm at 55.2 ± 0.5 °C for L. aethiopica strains was distinguished from a single Tm at 57.4 ± 0.2 °C for L. major strains. A double curve with melting peaks at 66.6 ± 0.1 °C and 48.1 ± 0.5 °C or 55.8 ± 0.6 °C was observed for all L. tropica strains. The assay was further tested on biopsy specimens, which showed 100 % agreement with results obtained from isoenzyme electrophoresis and Sanger sequencing. Conclusion Currently, there are no published data on real-time PCR using FRET technology to differentiate between Old World cutaneous Leishmania species. In summary, our assay based on specific hybridization addresses the limitations of previous PCR technology and provides a single step, reliable method of species identification and rapid diagnostic applications.
Collapse
Affiliation(s)
- Milli Nath-Chowdhury
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mugundhine Sangaralingam
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patrick Bastien
- Department of Parasitology-Mycology, Centre National de Référence des Leishmanioses, Centre Hospitalier Régional Universitaire of Montpellier and University Montpellier I (Faculty of Medicine), UMR CNRS 5290-IRD 224- UM1 et 2 "MIVEGEC", Montpellier, France
| | - Christophe Ravel
- Department of Parasitology-Mycology, Centre National de Référence des Leishmanioses, Centre Hospitalier Régional Universitaire of Montpellier and University Montpellier I (Faculty of Medicine), UMR CNRS 5290-IRD 224- UM1 et 2 "MIVEGEC", Montpellier, France
| | - Francine Pratlong
- Department of Parasitology-Mycology, Centre National de Référence des Leishmanioses, Centre Hospitalier Régional Universitaire of Montpellier and University Montpellier I (Faculty of Medicine), UMR CNRS 5290-IRD 224- UM1 et 2 "MIVEGEC", Montpellier, France
| | - Juan Mendez
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael Libman
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,J.D. MacLean Centre for Tropical Diseases at McGill University, Montreal, QC, Canada
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,J.D. MacLean Centre for Tropical Diseases at McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Brandt AML, Batista PR, Souza-Silva F, Alves CR, Caffarena ER. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins. Proteins 2016; 84:473-87. [PMID: 26798994 DOI: 10.1002/prot.24994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 11/07/2022]
Abstract
New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å.
Collapse
Affiliation(s)
- Artur M L Brandt
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil.,Faculdade De Educação Tecnológica Do Estado Do Rio De Janeiro (FAETERJ), Rio De Janeiro, RJ, CEP 21311-280, Brazil
| | - Paulo Ricardo Batista
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Franklin Souza-Silva
- Laboratório De Biologia Molecular E Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Carlos Roberto Alves
- Laboratório De Biologia Molecular E Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| | - Ernesto Raul Caffarena
- Programa De Computação Científica (PROCC), Fundação Oswaldo Cruz, Manguinhos, Rio De Janeiro, RJ, CEP 21040-360, Brazil
| |
Collapse
|
14
|
Fernández-Boo S, Villalba A, Cao A. Variable protein profiles in extracellular products of the protistan parasite Perkinsus olseni among regions of the Spanish coast. J Invertebr Pathol 2015; 132:233-241. [DOI: 10.1016/j.jip.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
15
|
Alves MA, de Queiroz AC, Alexandre-Moreira MS, Varela J, Cerecetto H, González M, Doriguetto AC, Landre IM, Barreiro EJ, Lima LM. Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives. Eur J Med Chem 2015; 100:24-33. [PMID: 26069927 DOI: 10.1016/j.ejmech.2015.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 01/07/2023]
Abstract
Trypanosomatids are protozoan parasites that cause various diseases in human, such as leishmaniasis, Chagas disease and sleeping sickness. The highly syntenic genomes of the trypanosomatid species lead the assumption that they can encode similar proteins, indicating the possibility to design new antitrypanosomatid drugs with dual trypanosomicidal and leishmanicidal activities. In this work a series of compounds (6a-h and 7a-h), containing a semicarbazone scaffold as a peptide mimetic framework, was designed and synthesized. From this series compound 7g (LASSBio-1483) highlighted, showing dual in vitro trypanosomicidal and leishmanicidal activities, with potency similar to the standard drugs nifurtimox and pentamidine. This data, taken together with its good in silico druglikeness profile and its great chemical and plasma stability, make LASSBio-1483 (7g) a new antitrypanosomatid lead-candidate.
Collapse
Affiliation(s)
- Marina A Alves
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Aline C de Queiroz
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); LaFI - Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); LaFI - Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Javier Varela
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Mercedes González
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Antonio C Doriguetto
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); Laboratório de Cristalografia, Instituto de Química, Universidade Federal de Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Iara M Landre
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); Laboratório de Cristalografia, Instituto de Química, Universidade Federal de Alfenas, 37130-000, Alfenas, MG, Brazil
| | - Eliezer J Barreiro
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Lídia M Lima
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Laboratório de Avaliação e Síntese de Substâncias Bioativas, CCS, Cidade Universitária, P.O. Box 68024, 21941-971, Rio de Janeiro, RJ, Brazil(1)(2); Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Comparative in-silico genome analysis of Leishmania (Leishmania) donovani: A step towards its species specificity. Meta Gene 2014; 2:782-98. [PMID: 25606461 PMCID: PMC4287845 DOI: 10.1016/j.mgene.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/12/2014] [Accepted: 10/04/2014] [Indexed: 12/24/2022] Open
Abstract
Comparative genome analysis of recently sequenced Leishmania (L.) donovani was unexplored so far. The present study deals with the complete scanning of L. (L.) donovani genome revealing its interspecies variations. 60 distinctly present genes in L. (L.) donovani were identified when the whole genome was compared with Leishmania (L.) infantum. Similarly 72, 159, and 265 species specific genes were identified in L. (L.) donovani when compared to Leishmania (L.) major, Leishmania (L.) mexicana and Leishmania (Viannia) braziliensis respectively. The cross comparison of L. (L.) donovani in parallel with the other sequenced species of leishmanial led to the identification of 55 genes which are highly specific and expressed exclusively in L. (L.) donovani. We found mainly the discrepancies of surface proteins such as amastins, proteases, and peptidases. Also 415 repeat containing proteins in L. (L.) donovani and their differential distribution in other leishmanial species were identified which might have a potential role during pathogenesis. The genes identified can be evaluated as drug targets for anti-leishmanial treatment, exploring the scope for extensive future investigations. Comparative genome analysis identifies 55 species specific L. (L.) donovani genes. Discrepancies of surface proteins such as amastins, proteases, and peptidases are identified in L. (L.) donovani. Apical Membrane Antigen (AMA1) might be a novel factor which helps L. (L.) donovani invasion. Novel A2 and amastin genes in L. (L.) donovani genome are identified. Our study identifies differential gene distribution in L. (L.) donovani with respect to other leishmanial species.
Collapse
|
17
|
Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-Like rCPB2.8. PLoS One 2013; 8:e80153. [PMID: 24278253 PMCID: PMC3836952 DOI: 10.1371/journal.pone.0080153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/28/2013] [Indexed: 11/19/2022] Open
Abstract
Background Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity. Methodology/Principal Findings The data analysis revealed that the presence of heparin affects all steps of the enzyme reaction: (i) it decreases 3.5-fold the k1 and 4.0-fold the k−1, (ii) it affects the acyl-enzyme accumulation with pronounced decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The large values of ΔG = 12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys25)-S−/(His163)-Im+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme. Conclusions/Significance Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface.
Collapse
|
18
|
Rana S, Dikhit MR, Rani M, Moharana KC, Sahoo GC, Das P. CPDB: cysteine protease annotation database in Leishmania species. Integr Biol (Camb) 2013; 4:1351-7. [PMID: 23001143 DOI: 10.1039/c2ib20131c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNLABELLED There has been a revival of interest in Cysteine protease for Visceral Leishmaniasis (VL) attributed to massive outbreaks of leishmaniasis in the tropical region. The cysteine protease database (CPDB) was designed to find data related to cysteine protease (CP) of different species of Leishmania and Trypanosoma brucei in a single platform. This has reflected in substantial increase in the submission of Leishmania genome sequences to NCBI (National Center for Biotechnology Information) database. The CPDB database aims to provide a summary of data analysis, such as physiochemical and molecular properties, proteolytic cleavage sites, classification into functional families using SVMProt and other ExPASy tools. The main aim of this database is to provide different protein inhibitors of cysteine protease groups that were collected from literature and make available their 3-D structures through JMol with JAVA platform. These CP inhibitors are freely downloadable and also have added links for functional analyses of other proteins, which is helpful for users. All this information in CPDB, a single platform, will prove to be of great help for researchers who are involved in drug discovery and analysis of other physiochemical and molecular properties of the protein. AVAILABILITY the database is available for free at.
Collapse
Affiliation(s)
- Sindhuprava Rana
- Biomedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Agam Kuan, Patna, India800007.
| | | | | | | | | | | |
Collapse
|
19
|
Chaouch M, Fathallah-Mili A, Driss M, Lahmadi R, Ayari C, Guizani I, Ben Said M, BenAbderrazak S. Identification of Tunisian Leishmania spp. by PCR amplification of cysteine proteinase B (cpb) genes and phylogenetic analysis. Acta Trop 2013; 125:357-65. [PMID: 23228525 DOI: 10.1016/j.actatropica.2012.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
Discrimination of the Old World Leishmania parasites is important for diagnosis and epidemiological studies of leishmaniasis. We have developed PCR assays that allow the discrimination between Leishmania major, Leishmania tropica and Leishmania infantum Tunisian species. The identification was performed by a simple PCR targeting cysteine protease B (cpb) gene copies. These PCR can be a routine molecular biology tools for discrimination of Leishmania spp. from different geographical origins and different clinical forms. Our assays can be an informative source for cpb gene studying concerning drug, diagnostics and vaccine research. The PCR products of the cpb gene and the N-acetylglucosamine-1-phosphate transferase (nagt) Leishmania gene were sequenced and aligned. Phylogenetic trees of Leishmania based cpb and nagt sequences are close in topology and present the classic distribution of Leishmania in the Old World. The phylogenetic analysis has enabled the characterization and identification of different strains, using both multicopy (cpb) and single copy (nagt) genes. Indeed, the cpb phylogenetic analysis allowed us to identify the Tunisian Leishmania killicki species, and a group which gathers the least evolved isolates of the Leishmania donovani complex, that was originated from East Africa. This clustering confirms the African origin for the visceralizing species of the L. donovani complex.
Collapse
|
20
|
Silva-Almeida M, Pereira BAS, Ribeiro-Guimarães ML, Alves CR. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 2012; 5:160. [PMID: 22871236 PMCID: PMC3436776 DOI: 10.1186/1756-3305-5-160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients' biological samples and from assays with animal models confirm the involvement of an array of the parasite's components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.
Collapse
Affiliation(s)
- Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC, Fiocruz, Avenida Brasil, 4365 Manguinhos Pavilhão Leônidas Deane-Sala 209, CEP: 21040-900, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
21
|
Identification of lead compounds targeting the cathepsin B-like enzyme of Eimeria tenella. Antimicrob Agents Chemother 2011; 56:1190-201. [PMID: 22143531 DOI: 10.1128/aac.05528-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cysteine peptidases have been implicated in the development and pathogenesis of Eimeria. We have identified a single-copy cathepsin B-like cysteine peptidase gene in the genome database of Eimeria tenella (EtCatB). Molecular modeling of the predicted protein suggested that it differs significantly from host enzymes and could be a good drug target. EtCatB was expressed and secreted as a soluble, active, glycosylated mature enzyme from Pichia pastoris. Biochemical characterization of the recombinant enzyme confirmed that it is cathepsin B-like. Screening of a focused library against the enzyme identified three inhibitors (a nitrile, a thiosemicarbazone, and an oxazolone) that can be used as leads for novel drug discovery against Eimeria. The oxazolone scaffold is a novel cysteine peptidase inhibitor; it may thus find widespread use.
Collapse
|
22
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
23
|
C-terminal domain deletion enhances the protective activity of cpa/cpb loaded solid lipid nanoparticles against Leishmania major in BALB/c mice. PLoS Negl Trop Dis 2011; 5:e1236. [PMID: 21765963 PMCID: PMC3134432 DOI: 10.1371/journal.pntd.0001236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/26/2011] [Indexed: 11/29/2022] Open
Abstract
Background We have demonstrated that vaccination with pDNA encoding cysteine proteinase Type II (CPA) and Type I (CPB) with its unusual C-terminal extension (CTE) can partially protect BALB/c mice against cutaneous leishmanial infection. Unfortunately, this protection is insufficient to completely control infection without booster injection. Furthermore, in developing vaccines for leishmaniasis, it is necessary to consider a proper adjuvant and/or delivery system to promote an antigen specific immune response. Solid lipid nanoparticles have found their way in drug delivery system development against intracellular infections and cancer, but not Leishmania DNA vaccination. Therefore, undefined effect of cationic solid lipid nanoparticles (cSLN) as an adjuvant in enhancing the immune response toward leishmanial antigens led us to refocus our vaccine development projects. Methodology/Principal Findings Three pDNAs encoding L. major cysteine proteinase type I and II (with or without CTE) were formulated by cSLN. BALB/c mice were immunized twice by 3-week interval, with cSLN-pcDNA-cpa/b, pcDNA-cpa/b, cSLN-pcDNA-cpa/b-CTE, pcDNA-cpa/b-CTE, cSLN, cSLN-pcDNA and PBS. Mice vaccinated with cSLN-pcDNA-cpa/b-CTE showed significantly higher levels of parasite inhibition related to protection with specific Th1 immune response development, compared to other groups. Parasite inhibition was determined by different techniques currently available in exploration vacciation efficacy, i.e., flowcytometry on footpad and lymph node, footpad caliper based measurements and imaging as well as lymph node microtitration assay. Among these techniques, lymph node flowcytometry was found to be the most rapid, sensitive and easily reproducible method for discrimination between the efficacy of vaccination strategies. Conclusions/Significance This report demonstrates cSLN's ability to boost immune response magnitude of cpa/cpb-CTE cocktail vaccination against leishmaniasis so that the average parasite inhibition percent could be increased significantly. Hence, cSLNs can be considered as suitable adjuvant and/or delivery systems for designing third generation cocktail vaccines. Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis with an annual incidence of approximately 2 million cases and is endemic in 88 countries, including Iran. CL's continued spread, along with rather ineffectual treatments and drug-resistant variants emergence has increased the need for advanced preventive strategies. We studied Type II cysteine proteinase (CPA) and Type I (CPB) with its C-terminal extension (CTE) as cocktail DNA vaccine against murine and canine leishmaniasis. However, adjuvants' success in enhancing immune responses to selected antigens led us to refocus our vaccine development programs. Herein, we discuss cationic solid lipid nanoparticles' (cSLN) ability to improve vaccine-induced protective efficacy against CL and subsequent lesion size and parasite load reduction in BALB/c mice. For this work, we evaluated five different conventional as well as novel parasite detection techniques, i.e., footpad imaging, footpad flowcytometry and lymph node flowcytometry for disease progression assessments. Vaccination with cSLN-cpa/cpb-CTE formulation showed highest parasite inhibition at 3-month post vaccination. Immunized mice showed reduced IL-5 level and significant IFN-ã increase, compared to control groups. We think our study represents a potential future and a major step forward in vaccine development against leishmaniasis.
Collapse
|
24
|
Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. J Control Release 2011; 153:154-62. [DOI: 10.1016/j.jconrel.2011.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/16/2023]
|
25
|
Ortiz P, Maia da Silva F, Cortez A, Lima L, Campaner M, Pral E, Alfieri S, Teixeira M. Genes of cathepsin L-like proteases in Trypanosoma rangeli isolates: markers for diagnosis, genotyping and phylogenetic relationships. Acta Trop 2009; 112:249-59. [PMID: 19683503 DOI: 10.1016/j.actatropica.2009.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T. rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T. rangeli (rangelipain) closest to T. cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T. rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T. rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T. rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T. rangeli lineages associated with sympatric species of Rhodnius.
Collapse
|
26
|
Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 2009; 167:12-9. [DOI: 10.1016/j.molbiopara.2009.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
27
|
Soto M, Ramírez L, Pineda MA, González VM, Entringer PF, de Oliveira CI, Nascimento IP, Souza AP, Corvo L, Alonso C, Bonay P, Brodskyn C, Barral A, Barral-Netto M, Iborra S. Searching Genes Encoding Leishmania Antigens for Diagnosis and Protection. SCHOLARLY RESEARCH EXCHANGE 2009; 2009:1-25. [DOI: 10.3814/2009/173039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Cathepsin L-like genes of Trypanosoma vivax from Africa and South America--characterization, relationships and diagnostic implications. Mol Cell Probes 2008; 23:44-51. [PMID: 19063960 DOI: 10.1016/j.mcp.2008.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/16/2008] [Accepted: 11/16/2008] [Indexed: 11/22/2022]
Abstract
We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa.
Collapse
|
29
|
Choudhury R, Bhaumik SK, De T, Chakraborti T. Identification, purification, and characterization of a secretory serine protease in an Indian strain of Leishmania donovani. Mol Cell Biochem 2008; 320:1-14. [DOI: 10.1007/s11010-008-9849-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 06/13/2008] [Indexed: 11/27/2022]
|
30
|
Ruszczyk A, Forlenza M, Joerink M, Ribeiro CMS, Jurecka P, Wiegertjes GF. Trypanoplasma borreli cysteine proteinase activities support a conservation of function with respect to digestion of host proteins in common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1348-1361. [PMID: 18571233 DOI: 10.1016/j.dci.2008.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 04/17/2008] [Accepted: 05/05/2008] [Indexed: 05/26/2023]
Abstract
Trypanoplasma borreli is an extracellular parasite that is transmitted by a leech vector and is naturally found in the blood of cyprinid fish. High parasitemia and associated severe anemia together with splenomegaly are typical of infection of common carp, Cyprinus carpio L. Papain-like cysteine proteinases expressed by trypanosome parasites contribute to the pathogenicity of trypanosomes, and are considered an important target for the development of new trypanocidal drugs. T. borreli is a member of the Parabodonida, sharing a common ancestor with the other Kinetoplastida. We demonstrate the presence of a cysteine proteinase expressed by T. borreli. Alignment of the sequence with other kinetoplastid cysteine proteinase sequences supports the phylogenetic hypotheses based on analyses of ribosomal RNA genes. We expressed the T. borreli cysteine proteinase in Escherichia coli, refolded the purified protein into a biologically active proteinase and showed it has cathepsin L-like activity. Addition of the (non)active proteinase to in vitro-derived carp head kidney-derived macrophages did not significantly modulate macrophage activity. Immunization of carp with the recombinant proteinase did induce a very high increase in proteinase-specific antibodies but only slightly lowered parasitemia. Digestion of host hemoglobin and immunoglobulin by the cysteine proteinase likely contribute to the pathogenicity of T. borreli. The possibility that digestion by the cysteine proteinase of host transferrin could contribute to an innate activation profile of macrophages in vivo is discussed. Our findings suggest a conservation of function with respect to cysteine proteinase activity in the Parabodonida in support of the hypotheses on the phylogeny of the Kinetoplastida.
Collapse
Affiliation(s)
- Aleksandra Ruszczyk
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Paape D, Lippuner C, Schmid M, Ackermann R, Barrios-Llerena ME, Zimny-Arndt U, Brinkmann V, Arndt B, Pleissner KP, Jungblut PR, Aebischer T. Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics 2008; 7:1688-701. [PMID: 18474515 DOI: 10.1074/mcp.m700343-mcp200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to approximately 6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3'-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens.
Collapse
Affiliation(s)
- Daniel Paape
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cohen-Freue G, Holzer TR, Forney JD, McMaster WR. Global gene expression in Leishmania. Int J Parasitol 2007; 37:1077-86. [PMID: 17574557 DOI: 10.1016/j.ijpara.2007.04.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/10/2007] [Accepted: 04/18/2007] [Indexed: 11/28/2022]
Abstract
The completion of the genomic sequences of many protozoan pathogens of humans, including species of Leishmania, Trypanosoma and Plasmodium, provide new approaches to study the pattern of gene expression during differentiation and development. Leishmania are a major public health risk in many countries and cause a wide spectrum of clinical disease referred to as leishmaniasis. The Leishmania life cycle consists of two morphologically distinct stages: intracellular amastigotes that reside in the phagolysosome of mammalian macrophages, and extracellular promastigotes that reside within the gut of the sandfly vector. DNA microarray analysis is a powerful method to study global gene expression in terms of quantitation of mRNA levels. This review discusses the application of DNA microarray technology to study the pattern of global gene expression of Leishmania promastigote and amastigote life stages. Results from several studies show that, overall, there is a surprisingly low level of differentially expressed genes, ranging from 0.2% to 5% of total genes, between the amastigote and promastigote life stages. Thus, the Leishmania genome can be considered to be constitutively expressed with a limited number of genes showing stage-specific expression. Comparative genomic analyses of gene expression levels between Leishmania major and Leishmania mexicana show that the majority of differentially expressed genes between amastigotes and promastigotes are species specific with relatively few differentially expressed genes in common between these two Leishmania species. Quantitative proteomic analysis of Leishmania relative protein expression shows there is a weak correlation to gene expression. Therefore, Leishmania protein expression levels are likely regulated at the level of translation or by post transcriptional mechanisms, and differential protein modifications may be more important in development than the regulation of gene expression.
Collapse
|
33
|
Jesudhasan PRR, Tan CW, Hontzeas N, Woo PTK. A cathepsin L-like cysteine proteinase gene from the protozoan parasite, Cryptobia salmositica. Parasitol Res 2006; 100:881-6. [PMID: 17111176 DOI: 10.1007/s00436-006-0344-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
The present study describes the identification of a cathepsin L-like cysteine proteinase gene (CYS) from the hemoflagellate Cryptobia salmositica. Genomic DNA sequence of cysteine proteinase was obtained by genome walking using degenerate primers. Specific primers were designed to amplify the cDNA of cysteine proteinase from mRNA by rapid amplification of cDNA ends-PCR. The open reading frame of CYS is 1,329 bp, with 443 deduced amino acids. Based on the sequence analysis, cysteine proteinase of C. salmositica is similar to the cathepsin L-like cysteine proteinase of kinetoplastid parasites such as Leishmania spp. and Trypanosoma spp. The identification of CYS proteinase gene could help to design cysteine proteinase specific inhibitors. Further studies are required to characterize the complete genomic organization of the cysteine proteinase.
Collapse
Affiliation(s)
- Palmy R R Jesudhasan
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
34
|
Ponte-Sucre A, Vicik R, Schultheis M, Schirmeister T, Moll H. Aziridine-2,3-dicarboxylates, peptidomimetic cysteine protease inhibitors with antileishmanial activity. Antimicrob Agents Chemother 2006; 50:2439-47. [PMID: 16801424 PMCID: PMC1489792 DOI: 10.1128/aac.01430-05] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemotherapy of leishmaniasis is mainly based on antimonials. However, they are extremely toxic and cause serious side effects, and there is a worldwide increasing frequency of chemoresistance to antimonials. These issues emphasize the urgent need for affordable alternative drugs against leishmaniasis. Leishmania cysteine proteases are essential for parasite growth, differentiation, pathogenicity, and virulence and are thus attractive targets for combating leishmaniasis. Herein we demonstrate that the cysteine protease inhibitors aziridine-2,3-dicarboxylates 13b and 13e impaired promastigote growth at mid-micromolar concentrations and decreased the infection rate of peritoneal macrophages at concentrations 8- to 13-fold lower than those needed to inhibit parasite replication. Simultaneous treatment of infected cells with compound 13b and gamma interferon resulted in an even further reduction of the concentration needed for a significant decrease in macrophage infection rate. Notably, treatment with the compounds alone modulated the cytokine secretion of infected macrophages, with increased levels of interleukin-12 and tumor necrosis factor alpha. Furthermore, the decreased infection rate in the presence of compound 13b correlated with increased nitric oxide production by macrophages. Importantly, at the concentrations used herein, compounds 13b and 13e were not toxic against fibroblasts, macrophages, or dendritic cells. Together, these results suggest that the aziridine-2,3-dicarboxylates 13b and 13e are potential antileishmanial lead compounds with low toxicity against host cells and selective antiparasitic effects.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Institute for Molecular Infection Biology, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Mackey ZB, O'Brien TC, Greenbaum DC, Blank RB, McKerrow JH. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J Biol Chem 2004; 279:48426-33. [PMID: 15326171 DOI: 10.1074/jbc.m402470200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification and analysis of Clan CA (papain) cysteine proteases in primitive protozoa and metazoa have suggested that this enzyme family is more diverse and biologically important than originally thought. The protozoan parasite Trypanosoma brucei is the etiological agent of African sleeping sickness. The cysteine protease activity of this organism is a validated drug target as first recognized by the killing of the parasite with the diazomethane inhibitor Z-Phe-Ala-CHN(2) (where Z is benzyloxycarbonyl). Whereas the presumed target of this inhibitor was rhodesain (also brucipain, trypanopain), the major cathepsin L-like cysteine protease of T. brucei, genomic analysis has now identified tbcatB, a cathepsin B-like cysteine protease as a possible inhibitor target. The mRNA of tbcatB is more abundantly expressed in the bloodstream versus the procyclic form of the parasite. Induction of RNA interference against rhodesain did not result in an abnormal phenotype in cultured T. brucei. However, induction of RNA interference against tbcatB led to enlargement of the endosome, accumulation of fluorescein isothiocyanate-transferrin, defective cytokinesis after completion of mitosis, and ultimately the death of cultured parasites. Therefore, tbcatB, but not rhodesain, is essential for T. brucei survival in culture and is the most likely target of the diazomethane protease inhibitor Z-Phe-Ala-CHN(2) in T. brucei.
Collapse
Affiliation(s)
- Zachary B Mackey
- Department of Pathology Tropical Disease Research Unit, University of California, San Francisco, California 94143, USA.
| | | | | | | | | |
Collapse
|
37
|
Zadeh-Vakili A, Taheri T, Taslimi Y, Doustdari F, Salmanian AH, Rafati S. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis. Vaccine 2004; 22:1930-40. [PMID: 15121305 DOI: 10.1016/j.vaccine.2003.11.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 11/06/2003] [Indexed: 11/28/2022]
Abstract
Cysteine proteinases (CPs) are enzymes that belong to the papain superfamily, which are found in a number of organisms from prokaryotes to mammals. On the parasitic protozoan Leishmania, extensive studies have shown that CPs are involved in parasite survival, replication and the onset of disease, and have, therefore, been considered as attractive drugs and/or vaccine targets for the control of leishmaniasis. We have previously shown that cysteine proteinases, Type I (CPB) and Type II (CPA), in Leishmania major (L. major), delivered as recombinant proteins or in plasmid DNA, induce partial protection against infection with the parasite in BALB/c mice. We had shown that the level of protection was greater if a cocktail of cpa and cpb containing DNA constructs was used. Therefore, to reduce the costs associated with the production of these vaccine candidates, a construct was developed, whereby the cpa and cpb genes were fused together to give rise to a single hybrid protein. The genes were fused in tandem where the C-terminal extension (CTE), encoding region of CPB, was located at the 3' of the fused genes, and ultimately expressed in the bacterial expression construct pET-23a. The expression of the CPA/B hybrid protein (60 kDa) was verified using rabbit anti-CPA and anti-CPB antibodies by SDS-PAGE and immunoblotting. The protective potential of the CPA/B hybrid protein against the infection with Leishmania was then assessed in BALB/c mice. The animals were vaccinated with CPA/B, challenged with live L. major promastigotes, and the degree of protection was examined by measuring footpad lesion sizes. It was found that there was a delay in the expansion of lesions size compared to control groups. Furthermore, an immunological analysis of antibody isotypes, before and after infection, showed high levels of IgG2a compared to IgG1 (more than five-fold) in the CPA/B hybrid protein vaccinated group. In addition, a predominant Th1 immune response characterized by in vitro IFN-gamma production was observed, along with little, if any, IL-5 production. This finding indicates that the hybrid CPA/B is able to elicit a protective immune response against L. major in the mice model. In addition, 54% of individuals tested, who had recovered from cutaneous leishmaniasis, produced more than 50 pg/ml IFN-gamma, in response to the CPA/B hybrid protein in an in vitro assay, demonstrating the importance of cysteine proteinases as targets of immune response in humans.
Collapse
Affiliation(s)
- Azita Zadeh-Vakili
- Department of Immunology, Pasteur Institute of Iran, P.O. Box 11365-6699, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Judice WAS, Puzer L, Cotrin SS, Carmona AK, Coombs GH, Juliano L, Juliano MA. Carboxydipeptidase activities of recombinant cysteine peptidases. ACTA ACUST UNITED AC 2004; 271:1046-53. [PMID: 15009216 DOI: 10.1111/j.1432-1033.2004.04008.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The recombinant cysteine peptidases, cruzain from Trypanosoma cruzi and CPB2.8DeltaCTE from Leishmania mexicana, are cathepsin L-like and characteristically endopeptidases. In this study, we characterized the carboxydipeptidase activities of these enzymes and compared them with those of human recombinant cathepsin B and cathepsin L. The analysis used the internally quenched fluorescent peptide Abz-FRFK*-OH and some of its analogues, where Abz is ortho-aminobenzoic acid and K* is (2,4-dinitrophenyl)-epsilon-NH2-lysine. These peptides were demonstrated to be very sensitive substrates, due to the strong quenching effect of K* on the fluorescence of the Abz group. The carboxydipeptidase activity of cruzain was shown to be very similar to that of cathepsin B, while that of CPB2.8DeltaCTE is closer to the carboxydipeptidase activity of cathepsin L. The S2 subsite architecture of cruzain and the nature of the amino acid at the P2 position of the substrates determine its carboxydipeptidase activity and gives further and direct support to the notion that the carboxydipeptidase activity of the papain family cysteine peptidases rely on the S2-P2 interaction [Nägler D. K., Tam, W., Storer, A.C., Krupa, J.C., Mort, J.S. & Menard, R. (1999) Biochemistry38, 4868-4874]. Cruzain and CPB2.8DeltaCTE presented a broad pH-range for both the endo- and exo-peptidase activities, although the later is approximately one order of magnitude lower. This feature, that is not common in related mammalian cysteine peptidases, is consistent with the enzymes being exposed to different environmental conditions and having different locations during parasite development.
Collapse
Affiliation(s)
- Wagner A S Judice
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, 04044-20 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Buxbaum LU, Denise H, Coombs GH, Alexander J, Mottram JC, Scott P. Cysteine Protease B ofLeishmania mexicanaInhibits Host Th1 Responses and Protective Immunity. THE JOURNAL OF IMMUNOLOGY 2003; 171:3711-7. [PMID: 14500670 DOI: 10.4049/jimmunol.171.7.3711] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
C3H mice infected with Leishmania mexicana fail to develop a protective Th1 response, and are unable to cure. In this study, we show that L. mexicana cysteine proteases suppress the antileishmanial immune response. Previous studies demonstrated that deletion of the entire multicopy cysteine protease B (CPB) gene array in L. mexicana is associated with decreased parasite virulence, potentially attributable to factors related to parasite fitness rather than to direct effects on the host immune response. We now show that C3H mice infected with the L. mexicana deletion mutant (Deltacpb) initially develop lesions that grow at rates comparable to those of wild-type L. mexicana-infected mice. However, in contrast to controls, Deltacpb-induced lesions heal with an accompanying Th1 immune response. Lesion resolution was Th1 dependent, as Deltacpb-infected IL-12p40(-/-) and STAT4(-/-) mice developed high parasite burdens and progressive disease. Moreover, when L. major was transfected with a cosmid expressing multiple L. mexicana CPB genes, this parasite induced a significantly lower IFN-gamma response compared with wild-type L. major. These data indicate that cysteine proteases of L. mexicana are critical in suppressing protective immune responses and that inhibition of CPB may prove to be a valuable immunomodulatory strategy for chronic forms of leishmaniasis.
Collapse
MESH Headings
- Animals
- Cathepsin B/deficiency
- Cathepsin B/genetics
- Cathepsin B/immunology
- Cathepsin B/physiology
- Cells, Cultured
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Expression Regulation, Enzymologic/immunology
- Immunity, Innate
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interleukin-12/deficiency
- Interleukin-12/genetics
- Interleukin-12/physiology
- Interleukin-12 Subunit p40
- Leishmania mexicana/enzymology
- Leishmania mexicana/genetics
- Leishmania mexicana/immunology
- Leishmaniasis, Cutaneous/genetics
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Subunits/deficiency
- Protein Subunits/genetics
- Protein Subunits/physiology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- STAT4 Transcription Factor
- Signal Transduction/genetics
- Signal Transduction/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/parasitology
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/physiology
Collapse
Affiliation(s)
- Laurence U Buxbaum
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
40
|
Lasakosvitsch F, Gentil LG, dos Santos MRM, da Silveira JF, Barbiéri CL. Cloning and characterisation of a cysteine proteinase gene expressed in amastigotes of Leishmania (L.) amazonensis. Int J Parasitol 2003; 33:445-54. [PMID: 12705937 DOI: 10.1016/s0020-7519(03)00010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study describes the cloning and characterisation of a gene encoding a cysteine proteinase isoform, Llacys1, expressed in amastigote forms of Leishmania (L.) amazonensis. Recombinant clones containing the Llacys1 gene were isolated from genomic DNA by PCR amplification and screening of an amastigote cDNA library. Sequence analysis of the Llacys1 gene showed a high identity to sequence of Leishmania (L.) pifanoi Lpcys1, Leishmania (L.) major cpa, Leishmania (L.) mexicana LCPa, and Leishmania (L.) chagasi Ldccys2. The Llacys1 gene is present in a single copy per L. (L.) amazonensis haploid genome and was mapped on a chromosome of approximately 700 kb. Two transcripts of the Llacys1 gene were identified, one of 2.4 kb transcribed in both forms of L. (L.) amazonensis, and another of 1.6 kb weakly expressed in amastigotes. Related forms of Llacys1 gene exist in other species of Leishmania genus, including L. (L.) major, L. (L.) mexicana, L. (L.) chagasi and Leishmania (V.) braziliensis. The Llacys1 expression in Escherichia coli was obtained when the nucleotide sequence corresponding to the signal sequence was deleted, suggesting that this signal sequence was recognised by Escherichia coli and cleaved, generating a truncated protein.
Collapse
Affiliation(s)
- Fernanda Lasakosvitsch
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, 6o andar, Brazil
| | | | | | | | | |
Collapse
|
41
|
Vairo Cavalli SE, Arribére MC, Cortadi A, Caffini NO, Priolo NS. Morrenain b I, a papain-like endopeptidase from the latex of Morrenia brachystephana Griseb. (Asclepiadaceae). JOURNAL OF PROTEIN CHEMISTRY 2003; 22:15-22. [PMID: 12739894 DOI: 10.1023/a:1023059525861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new cysteine endopeptidase (morrenain b I) has been purified and characterized from the latex of stems and petiols of Morrenia brachystephana Griseb. (Asclepiadaceae). Morrenain b I was the minor proteolytic component in the latex but showed higher specific activity than morrenain b II, which was the main active fraction. Both enzymes showed similar pH profiles and molecular masses, but kinetic parameters and N-terminal sequences were quite distinct, demonstrating that they are different enzymes instead of different forms of the same enzyme.
Collapse
Affiliation(s)
- Sandra E Vairo Cavalli
- LIPROVE, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 711, B1900AVW La Plata, Argentina.
| | | | | | | | | |
Collapse
|
42
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
43
|
Pelletier I, Sato S. Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. J Biol Chem 2002; 277:17663-70. [PMID: 11882664 DOI: 10.1074/jbc.m201562200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipophosphoglycan is a major surface molecule of Leishmania, protozoa parasites, which are the causative agents of leishmaniasis, a disease that annually afflicts millions of people worldwide. The oligosaccharide structures of lipophosphoglycan varies among species, and epitopes of these species-specific oligosaccharides are suggested to be implicated in the interaction of Leishmania with macrophages as well as species-specific tissue tropism observed in leishmaniasis. The recognition of the species-specific variation of oligosaccharides is likely to be mediated by host carbohydrate-binding proteins, lectins, but the identities of the lectins remain elusive. Galectin-3 is a mammalian soluble beta-galactoside-binding lectin and is expressed in macrophages, dendritic cells, and keratinocytes, as well as fibroblasts, all of which are present in the site of Leishmania infection. In this paper, we found that galectin-3 binds to lipophosphoglycan of Leishmania major but not to those of Leishmania donovani through L. major-specific polygalactose epitopes. Association of galectin-3 with L. major led to the cleavage of galectin-3, resulting in truncated galectin-3 containing the C-terminal lectin domain but lacking the N-terminal domain implicated in lectin oligomerization. This cleavage was inhibited by the galectin-3 antagonist lactose, as well as 1,10-ortho-phenanthroline, suggesting that galectin-3 is cleaved by zinc metalloproteases after its binding to lipophosphoglycans. The modulation of various innate immunity reactions by galectin-3 is affected by its oligomerization; therefore, we propose the L. major-specific truncation of galectin-3 may contribute to the species-specific immune responses induced by Leishmania.
Collapse
Affiliation(s)
- Isabelle Pelletier
- Glycobiology Laboratory, Research Centre for Infectious Disease, Laval University Medical Centre, Centre Hospitalier Universitaire de Québec, Québec G1V 4G2, Canada
| | | |
Collapse
|
44
|
Hong YC, Hwang MY, Yun HC, Yu HS, Kong HH, Yong TS, Chung DI. Isolation and characterization of a cDNA encoding a mammalian cathepsin L-like cysteine proteinase from Acanthamoeba healyi. THE KOREAN JOURNAL OF PARASITOLOGY 2002; 40:17-24. [PMID: 11949209 PMCID: PMC2721051 DOI: 10.3347/kjp.2002.40.1.17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have cloned a cDNA encoding a cysteine proteinase of the Acanthamoeba healyi OC-3A strain isolated from the brain of a granulomatous amoebic encephalitis patient. A DNA probe for an A. healyi cDNA library screening was amplified by PCR using degenerate oligonucleotide primers designed on the basis of conserved amino acids franking the active sites of cysteine and asparagine residues that are conserved in the eukaryotic cysteine proteinases. Cysteine proteinase gene of A. healyi (AhCP1) was composed of 330 amino acids with signal sequence, a proposed pro-domain and a predicted active site made up of the catalytic residues. Cys25, His159, and Asn175. Deduced amino acid sequence analysis indicates that AhCP1 belong to ERFNIN subfamily of C1 peptidases. By Northern blot analysis, no direct correlation was observed between AhCP1 mRNA expression and virulence of Acanthamoeba, but the gene was expressed at higher level in amoebae isolated from soil than amoeba from clinical samples. These findings raise the possibility that Ahcp1 protein may play a role in protein metabolism and digestion of phagocytosed bacteria or host tissue debris rather than in invasion of amoebae into host tissue.
Collapse
Affiliation(s)
- Yeon-Chul Hong
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Caffrey CR, Hansell E, Lucas KD, Brinen LS, Alvarez Hernandez A, Cheng J, Gwaltney SL, Roush WR, Stierhof YD, Bogyo M, Steverding D, McKerrow JH. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol Biochem Parasitol 2001; 118:61-73. [PMID: 11704274 DOI: 10.1016/s0166-6851(01)00368-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cysteine protease activity of African trypanosome parasites is a target for new chemotherapy using synthetic protease inhibitors. To support this effort and further characterize the enzyme, we expressed and purified rhodesain, the target protease of Trypanosoma brucei rhodesiense (MVAT4 strain), in reagent quantities from Pichia pastoris. Rhodesain was secreted as an active, mature protease. Site-directed mutagenesis of a cryptic glycosylation motif not previously identified allowed production of rhodesain suitable for crystallization. An invariable ER(A/V)FNAA motif in the pro-peptide sequence of rhodesain was identified as being unique to the genus Trypanosoma. Antibodies to rhodesain localized the protease in the lysosome and identified a 40-kDa protein in long slender forms of T. b. rhodesiense and all life-cycle stages of T. b. brucei. With the latter parasite, protease expression was five times greater in short stumpy trypanosomes than in the other stages. Radiolabeled active site-directed inhibitors identified brucipain as the major cysteine protease in T. b. brucei. Peptidomimetic vinyl sulfone and epoxide inhibitors designed to interact with the S2, S1 and S' subsites of the active site cleft revealed differences between rhodesain and the related trypanosome protease cruzain. Using fluorogenic dipeptidyl substrates, rhodesain and cruzain had acid pH optima, but unlike some mammalian cathepsins retained significant activity and stability up to pH 8.0, consistent with a possible extracellular function. S2 subsite mapping of rhodesain and cruzain with fluorogenic peptidyl substrates demonstrates that the presence of alanine rather than glutamate at S2 prevents rhodesain from cleaving substrates in which P2 is arginine.
Collapse
Affiliation(s)
- C R Caffrey
- Tropical Disease Research Unit, Department of Pathology, University of California San Francisco, VAMC, 4150 Clement Street-113B, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alves LC, St Hilaire PM, Meldal M, Sanderson SJ, Mottram JC, Coombs GH, Juliano L, Juliano MA. Identification of peptides inhibitory to recombinant cysteine proteinase, CPB, of Leishmania mexicana. Mol Biochem Parasitol 2001; 114:81-8. [PMID: 11356516 DOI: 10.1016/s0166-6851(01)00239-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have identified peptides that are relatively resistant to hydrolysis by a recombinant cysteine proteinase, CPB2.8DeltaCTE, of Leishmania mexicana, and yet exhibit inhibition constant (K(i)) values in the nanomolar range. Common to these peptides is a basic-hydrophobic-hydrophobic motif in the P3-P1 sites, which is also present in the pro-region of the enzyme. A nine-amino acid stretch, FAARYLNGA, which has good homology to the pro-region of mammalian cathepsin L was identified as the part of the pro-region most likely to interact with the active site of the parasite enzyme. This peptide is not hydrolyzed by CPB2.8DeltaCTE and inhibited it with a K(i) of 4 microM. Extension of this sequence at both the N- and C-termini and the introduction of ortho-aminobenzoic acid at the N-terminal site reduced the K(i) value to 30 nM. The best substrate for CPB2.8DeltaCTE was also well hydrolyzed by cathepsin L, however the best inhibitor of the parasite enzyme inhibit poorly cathepsin L, with K(i) value two order of magnitude higher than against the parasite enzyme. These promising data provide insights into the peculiar specificity of the parasite enzyme and will aid the design of antiparasitic drugs directed against the leishmanial enzyme.
Collapse
Affiliation(s)
- L C Alves
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Tres de Maio 100, 04044-20, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Rafati S, Salmanian AH, Taheri T, Vafa M, Fasel N. A protective cocktail vaccine against murine cutaneous leishmaniasis with DNA encoding cysteine proteinases of Leishmania major. Vaccine 2001; 19:3369-75. [PMID: 11348700 DOI: 10.1016/s0264-410x(01)00081-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The protection elicited by the intramuscular injection of two plasmid DNAs encoding Leishmania major cysteine proteinase type I (CPb) and type II (CPa) was evaluated in a murine model of experimental cutaneous leishmaniasis. BALB/c mice were immunized either separately or with a cocktail of the two plasmids expressing CPa or CPb. It was only when the cpa and cpb genes were co-injected that long lasting protection against parasite challenge was achieved. Similar protection was also observed when animals were first immunized with cpa/cpb DNA followed by recombinant CPa/CPb boost. Analysis of the immune response showed that protected animals developed a specific Th1 immune response, which was associated with an increase of IFN-gamma production. This is the first report demonstrating that co-injection of two genes expressing different antigens induces a long lasting protective response, whereas the separate injection of cysteine proteases genes is not protective.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Cysteine Endopeptidases/administration & dosage
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/immunology
- Female
- Genes, Protozoan
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Interferon-gamma/biosynthesis
- Leishmania major/enzymology
- Leishmania major/genetics
- Leishmania major/immunology
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/prevention & control
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/pharmacology
- Vaccines, Combined/administration & dosage
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/pharmacology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- S Rafati
- Department of Immunology, Pasteur Institute of Iran, PO Box 11365-6699, Tehran, Iran.
| | | | | | | | | |
Collapse
|
48
|
Alves LC, Judice WA, St Hilaire PM, Meldal M, Sanderson SJ, Mottram JC, Coombs GH, Juliano L, Juliano MA. Substrate specificity of recombinant cysteine proteinase, CPB, of Leishmania mexicana. Mol Biochem Parasitol 2001; 116:1-9. [PMID: 11463460 DOI: 10.1016/s0166-6851(01)00290-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The primary S(1) subsite specificity of a recombinant cysteine proteinase, CPB2.8 Delta CTE, of Leishmania mexicana was investigated in a systematic way using a series of peptides derived from Abz-KLRFSKQ-EDDnp in which Arg was substituted by all natural amino acids (where Abz is ortho-amino-benzoyl and EDDnp is N-[2,4-dinitrophenyl]-ethylenediamine). The peptides from this series with charged side chain amino acids, Cys, Cys(SBzl), and Thr(OBzl) were well hydrolysed. All other substitutions resulted in peptides that were resistant or hydrolysed very slowly and inhibited the enzyme with K(i) values in the range of 9--400 nM. Looking for natural substrates for CPB2.8, we observed that the recombinant enzyme failed to release kinin from human kininogen, an activity earlier observed with cruzipain from Trypanosoma cruzi (Del Nery et al., J. Biol. Chem. 272 (1997) 25713.). This lack of activity seems to be a result of the resistance to hydrolysis of the sequence at the N-terminal site of bradykinin in the human kininogen. The preferences for the S(3), S(2) and S(1)'-S(3)' for some amino acids were also examined using substrates derived from Abz-KLRFSKQ-EDDnp with variations at Lys, Leu, Phe, Ser and Lys, using the amino acids Ala, Phe, Leu, His or Pro. Peptides with Phe at P(1)' presented the highest affinity to the leishmanial enzyme. For comparison, some of the obtained peptides were also assayed with recombinant human cathepsin L and cruzain. The best substrates for CPB2.8 Delta CTE were also well hydrolysed by cathepsin L, however, the best inhibitors of the parasite enzyme have low affinity to cathepsin L. These promising data provide leads for the design of anti-parasitic drugs directed against the leishmanial enzyme.
Collapse
Affiliation(s)
- L C Alves
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Tres de Maio 100, 04044-020 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rafati S, Salmanian AH, Hashemi K, Schaff C, Belli S, Fasel N. Identification of Leishmania major cysteine proteinases as targets of the immune response in humans. Mol Biochem Parasitol 2001; 113:35-43. [PMID: 11254952 DOI: 10.1016/s0166-6851(00)00377-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.
Collapse
Affiliation(s)
- S Rafati
- Department of Immunology, Pasteur Institute of Iran, P.O. Box 11365-6699, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
50
|
Alves LC, Melo RL, Sanderson SJ, Mottram JC, Coombs GH, Caliendo G, Santagada V, Juliano L, Juliano MA. S1 subsite specificity of a recombinant cysteine proteinase, CPB, of Leishmania mexicana compared with cruzain, human cathepsin L and papain using substrates containing non-natural basic amino acids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1206-12. [PMID: 11231271 DOI: 10.1046/j.1432-1327.2001.01973.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have explored the substrate specificity of a recombinant cysteine proteinase of Leishmania mexicana (CPB2.8 Delta CTE) in order to obtain data that will enable us to design specific inhibitors of the enzyme. Previously we have shown that the enzyme has high activity towards substrates with a basic group at the P1 position [Hilaire, P.M.S., Alves, L.C., Sanderson, S.J., Mottram, J.C., Juliano, M.A., Juliano, L., Coombs, G.H. & Meldal M. (2000) Chem. Biochem. 1, 115--122], but we have also observed high affinity for peptides with hydrophobic residues at this position. In order to have substrates containing both features, we synthesized one series of internally quenched fluorogenic peptides derived from the sequence ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine, and substituted the Arg at the P1 position with the following non-natural basic amino acids: 4-aminomethyl-phenylalanine (Amf), 4-guanidine-phenylalanine (Gnf), 4-aminomethyl-N-isopropyl-phenylalanine (Iaf), 3-pyridyl-alanine (Pya), 4-piperidinyl-alanine (Ppa), 4-aminomethyl-cyclohexyl-alanine (Ama), and 4-aminocyclohexyl-alanine (Aca). For comparison, the series derived from ortho-amino-benzoyl-FRSRQ-N-[2,4-dinitrophenyl]-ethylenediamine was also assayed with cruzain (the major cysteine proteinase of Trypanosoma cruzi), human cathepsin L and papain. The peptides ortho-amino-benzoyl-FAmfSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 12,000 mM(-1) x s(-1)) and ortho-amino-benzoyl-FIafSRQ-N-[2,4-dinitrophenyl]-ethylenediamine (k(cat)/K(m) = 27,000 mM(-1) x s(-1)) were the best substrates for CPB2.8 Delta CTE. In contrast, ortho-amino-benzoyl-FAmaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine and ortho-amino-benzoyl-FAcaSRQ-N-[2,4-dinitrophenyl]-ethylenediamine were very resistant and inhibited this enzyme with K(i) values of 23 nM and 30 nM, respectively. Cruzain hydrolyzed quite well the substrates in this series with Amf, Ppa and Aca, whereas the peptide with Ama was resistant and inhibited cruzain with a K(i) of 40 nM. Human cathepsin L presented an activity on these peptides very similar to that of CPB2.8 Delta CTE and papain hydrolyzed all the peptides with high efficiency. In conclusion, we have demonstrated that CPB2.8 Delta CTE has more restricted specificity at the S1 subsite and it seems possible to design efficient inhibitors with amino acids such as Ama or Aca at the P(1) position.
Collapse
Affiliation(s)
- L C Alves
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|