1
|
Mostafa M, Disouky A, Lazarov O. Therapeutic modulation of neurogenesis to improve hippocampal plasticity and cognition in aging and Alzheimer's disease. Neurotherapeutics 2025; 22:e00580. [PMID: 40180804 PMCID: PMC12047516 DOI: 10.1016/j.neurot.2025.e00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss and cognitive decline. The hippocampal formation is the most vulnerable brain area in Alzheimer's disease. Neurons in layer II of the entorhinal cortex and the CA1 region of the hippocampus are lost at early stages of the disease. A unique feature of the hippocampus is the formation of new neurons that incorporate in the dentate gyrus of the hippocampus. New neurons form synapses with neurons in layer II of the entorhinal cortex and with the CA3 region. Immature and new neurons are characterized by high level of plasticity. They play important roles in learning and memory. Hippocampal neurogenesis is impaired early in mouse models of Alzheimer's disease and in human patients. In fact, neurogenesis is compromised in mild cognitive impairment (MCI), suggesting that rescuing neurogenesis may restore hippocampal plasticity and attenuate neuronal vulnerability and memory loss. This review will discuss the current understanding of therapies that target neurogenesis or modulate it, for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mostafa Mostafa
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ahmed Disouky
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Herhaus B, Heni M, Bloch W, Petrowski K. Dynamic interplay of cortisol and BDNF in males under acute and chronic psychosocial stress - A randomized controlled study. Psychoneuroendocrinology 2024; 170:107192. [PMID: 39332135 DOI: 10.1016/j.psyneuen.2024.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The neurotrophic protein brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain function and is affected by acute and chronic stress. We here investigate the patterns of BDNF and cortisol stress reactivity and recovery under the standardized stress protocol of the TSST and the effect of perceived chronic stress on the basal BDNF levels in healthy young men. Twenty-nine lean young men underwent the Trier Social Stress Test (TSST) and a resting condition. Serum BDNF and cortisol were measured before and repeatedly after both conditions. The perception of chronic stress was assessed by the Trier Inventory for Chronic Stress (TICS). After the TSST, there was a significant increase over time for BDNF and cortisol. Stronger increase in cortisol in response to stress was linked to an accelerated BDNF decline after stress. Basal resting levels of BDNF was significantly predicted by chronic stress perception. The increased BDNF level following psychosocial stress suggest a stress-induced neuroprotective mechanism. The presumed interplay between BDNF and the HPA-axis indicates an antagonistic relationship of cortisol on BDNF recovery post-stress. Chronically elevated high cortisol levels, as present in chronic stress, could thereby contribute to reduced neurogenesis, and an increased risk of neurodegenerative conditions in persons suffering from chronic stress.
Collapse
Affiliation(s)
- Benedict Herhaus
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Martin Heni
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Wilhelm Bloch
- Department Molecular and Cellular Sports Medicine, German Sport University Cologne, Institute of Cardiology and Sports Medicine, Cologne, Germany
| | - Katja Petrowski
- Medical Psychology and Medical Sociology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Geus TD, Franken G, Zuidema X, van Zundert J, Joosten EAJ. Structural changes in the nociceptive system induced by long-term conventional spinal cord stimulation in experimental painful diabetic polyneuropathy. Reg Anesth Pain Med 2024:rapm-2024-105919. [PMID: 39542640 DOI: 10.1136/rapm-2024-105919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Clinical studies suggest that long-term conventional spinal cord stimulation (LT-SCS) for painful diabetic peripheral neuropathy (PDPN) is initially effective but may decline in efficacy over time. Preclinical studies indicate that LT-SCS alleviates mechanical hypersensitivity and enhances hind paw blood flow in PDPN rats, suggesting nociceptive system plasticity. This study hypothesized that LT-SCS induces peripheral hind paw small-fiber sprouting and reduces central protein expression of glial and P2X4 brain-derived neurotrophic factor (BDNF) pathway markers. METHODS Diabetes was induced via Streptozotocin injection in 32 rats, with 16 developing PDPN and receiving a quadrupolar lead implant. LT-SCS was applied for 4 weeks, 12 hours per day. Pain behavior was assessed using the Von Frey test for mechanical hypersensitivity and the mechanical conflict avoidance system for motivational aspects of pain. Fiber sprouting was assessed via immunohistochemical analysis of nerve fibers in the hind paw skin. Protein expression in the spinal cord was assessed using western blotting. RESULTS LT-SCS increased the baseline threshold of mechanical hypersensitivity in PDPN animals, consistent with previous findings, but showed no effects on motivational aspects of pain. Hind paw tissue analysis revealed significantly increased intraepidermal nerve fiber density of PGP9.5 fibers in LT-SCS animals compared with Sham-SCS animals. Protein analysis showed significantly decreased pro-BDNF expression in LT-SCS animals compared with Sham-SCS animals. CONCLUSION LT-SCS induces structural changes in both peripheral and central components of the nociceptive system in PDPN animals. These changes may contribute to observed behavioral modifications, elucidating mechanisms underlying LT-SCS efficacy in PDPN management.
Collapse
Affiliation(s)
- Thomas de Geus
- Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands
- Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands
- Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Xander Zuidema
- Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands
- Department of Anesthesiology and Pain Management, Diakonessenhuis Utrecht Zeist Doorn, Utrecht, The Netherlands
| | - Jan van Zundert
- Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands
- Department of Anesthesiology, Intensive Care, Emergency Medicine and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands
- Maastricht University School for Mental Health and Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
4
|
Sanaeifar F, Pourranjbar S, Pourranjbar M, Ramezani S, Mehr SR, Wadan AHS, Khazeifard F. Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration. Exp Gerontol 2024; 195:112539. [PMID: 39116955 DOI: 10.1016/j.exger.2024.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a class of neurological disorders marked by the progressive loss of neurons that afflict millions of people worldwide. These illnesses affect brain connection, impairing memory, cognition, behavior, sensory perception, and motor function. Alzheimer's, Parkinson's, and Huntington's diseases are examples of common NDDs, which frequently include the buildup of misfolded proteins. Cognitive-behavioral impairments are early markers of neurodevelopmental disorders, emphasizing the importance of early detection and intervention. Neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical for neuron survival and synaptic plasticity, which is required for learning and memory. NDDs have been associated with decreased BDNF levels. Physical exercise, a non-pharmacological intervention, benefits brain health by increasing BDNF levels, lowering cognitive deficits, and slowing brain degradation. Exercise advantages include increased well-being, reduced depression, improved cognitive skills, and neuroprotection by lowering amyloid accumulation, oxidative stress, and neuroinflammation. This study examines the effects of physical exercise on cognitive-behavioral deficits and BDNF levels in the limbic system impacted by neurodegeneration. The findings highlight the necessity of including exercise into NDD treatment to improve brain structure, function, and total BDNF levels. As research advances, exercise is becoming increasingly acknowledged as an important technique for treating cognitive decline and neurodegenerative disorders.
Collapse
Affiliation(s)
- Farhad Sanaeifar
- Department of Behavioral and Cognitive Sciences in Sport, Faculty of Sport Sciences andHealth, University of Tehran, Tehran, Iran
| | - Sina Pourranjbar
- Doctor of Medicine, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pourranjbar
- Department of Physical Education, Faculty of Medicine and Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sana Ramezani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Rostami Mehr
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Farnaz Khazeifard
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Emmons HA, Fordahl SC. Moderate-intensity aerobic exercise enhanced dopamine signaling in diet-induced obese female mice without preventing body weight gain. Neuroscience 2024; 555:1-10. [PMID: 39032807 PMCID: PMC11344652 DOI: 10.1016/j.neuroscience.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. Therefore, the aim of this study was to investigate whether moderate-intensity exercise could reduce body weight gain and the associated decreases in dopamine signaling observed with high-fat diet-induced adiposity. We hypothesized that exercise would attenuate body weight gain and diet-induced inflammation in high-fat (HF)-fed mice, resulting in dopamine signaling (release and reuptake rate) comparable to sedentary, low-fat (LF)-fed counterparts. This hypothesis was tested using a mouse model of diet-induced obesity (DIO) and fast-scan cyclic voltammetry to measure evoked dopamine release and reuptake rates. Although the exercise protocol employed in this study was not sufficient to prevent significant body weight gain, there was an enhancement of dopamine signaling observed in female mice fed a HF diet that underwent treadmill running. Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.
Collapse
Affiliation(s)
| | - Steve C Fordahl
- UNC Greensboro, Department of Nutrition, Greensboro NC, USA.
| |
Collapse
|
6
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
7
|
Liu Y, Tan J, Miao Y, Zhang Q. Neurogenesis, A Potential Target for Intermittent Hypoxia Leading to Cognitive Decline. Curr Stem Cell Res Ther 2024; 19:63-70. [PMID: 37005547 DOI: 10.2174/1574888x18666230330083206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/04/2023]
Abstract
As a sleep breathing disorder, characterized by intermittent hypoxia (IH) and Obstructive sleep apnea (OSA), is believed to decrease the cognitive function of patients. Many factors are thought to be responsible for cognitive decline in OSA patients. Neurogenesis, a process by which neural stem cells (NSCs) differentiate into new neurons in the brain, is a major determinant affecting cognitive function. However, there is no clear relationship between IH or OSA and neurogenesis. In recent years, increasing numbers of studies on IH and neurogenesis are documented. Therefore, this review summarizes the effects of IH on neurogenesis; then discusses the influencing factors that may cause these effects and the potential signaling pathways that may exist. Finally, based on this impact, we discuss potential methods and future directions for improving cognition.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
8
|
Lozano-Ureña A, Frade JM. Differential contribution of TrkB and p75 NTR to BDNF-dependent self-renewal, proliferation, and differentiation of adult neural stem cells. Front Mol Neurosci 2023; 16:1271820. [PMID: 38188197 PMCID: PMC10770873 DOI: 10.3389/fnmol.2023.1271820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Alterations in adult neurogenesis are a common hallmark of neurodegenerative diseases. Therefore, understanding the molecular mechanisms that control this process is an indispensable requirement for designing therapeutic interventions addressing neurodegeneration. Neurotrophins have been implicated in multiple functions including proliferation, survival, and differentiation of the neural stem cells (NSCs), thereby being good candidates for therapeutic intervention. Brain-derived neurotrophic factor (BDNF) belongs to the neurotrophin family and has been proven to promote neurogenesis in the subgranular zone. However, the effects of BDNF in the adult subventricular zone (SVZ) still remain unclear due to contradictory results. Using in vitro cultures of adult NSCs isolated from the mouse SVZ, we show that low concentrations of BDNF are able to promote self-renewal and proliferation in these cells by activating the tropomyosin-related kinase B (TrkB) receptor. However, higher concentrations of BDNF that can bind the p75 neurotrophin receptor (p75NTR) potentiate TrkB-dependent self-renewal and proliferation and promote differentiation of the adult NSCs, suggesting different molecular mechanisms in BDNF-promoting proliferation and differentiation. The use of an antagonist for p75NTR reduces the increment in NSC proliferation and commitment to the oligodendrocyte lineage. Our data support a fundamental role for both receptors, TrkB and p75NTR, in the regulation of NSC behavior.
Collapse
Affiliation(s)
| | - José M. Frade
- Laboratory of Neuronal Generation and Degeneration in Vertebrates, Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
9
|
Akbari S, Haghani M, Ghobadi M, Hooshmandi E, Haghighi AB, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Zabihi S, Nemati M, Bayat M. Combination Therapy with Platelet-Rich Plasma and Epidermal Neural Crest Stem Cells Increases Treatment Efficacy in Vascular Dementia. Stem Cells Int 2023; 2023:3784843. [PMID: 38146481 PMCID: PMC10749736 DOI: 10.1155/2023/3784843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
This study aimed to evaluate the efficacy and treatment mechanism of platelet-rich plasma (PRP) and neural crest-derived epidermal stem cells (ESCs) in their administration alone and combination in vascular dementia (VaD) model by two-vessel occlusion (2VO). Methods. Sixty-six rats were divided into six groups: the control, sham, 2VO + vehicle, 2VO + PRP, 2VO + ESC, and 2VO + ESC + PRP. The treated groups received 1 million cells on days 4, 14, and 21 with or without 500 µl PRP (twice a week) after 2VO. The memory performance and anxiety were evaluated by behavioral tests including open field, passive avoidance, and Morris water maze. The basal-synaptic transmission (BST) and long-term potentiation (LTP) were assessed through field-potential recordings of the CA1. The mRNA expression levels of IGF-1, TGF-β1, PSD-95, and GSk-3β were measured in the rat hippocampus by quantitative reverse transcription polymerase chain reaction. Results. The results demonstrated impaired learning, memory, and synaptic plasticity in the 2VO rats, along with a significant decrease in the expression of IGF-1, TGF-β1, PSD-95, and upregulation of GSK-3β. Treatment with ESC alone and ESC + PRP showed similar improvements in spatial memory and LTP induction, with associated upregulation of PSD-95 and downregulation of GSK-3β. However, only the ESC + PRP group showed recovery in BST. Furthermore, combination therapy was more effective than PRP monotherapy for LTP and memory. Conclusions. The transplantation of ESC showed better effects than PRP alone, and combination therapy increased the treatment efficacy with the recovery of BST. This finding may be a clue for the combination therapy of ESC and PRP for VaD.
Collapse
Affiliation(s)
- Somayeh Akbari
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Ghobadi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrbanoo Zabihi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Murtagh CF, Hall ECR, Brownlee TE, Drust B, Williams AG, Erskine RM. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int J Sports Med 2023; 44:941-960. [PMID: 37253386 DOI: 10.1055/a-2103-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.
Collapse
Affiliation(s)
- Conall F Murtagh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Sports Science Department, Liverpool Football Club and Athletic Grounds Ltd, Liverpool, United Kingdom
| | - Elliott C R Hall
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Thomas E Brownlee
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alun G Williams
- Manchester Metropolitan Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| |
Collapse
|
11
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
12
|
Ávila-González D, Romero-Morales I, Caro L, Martínez-Juárez A, Young LJ, Camacho-Barrios F, Martínez-Alarcón O, Castro AE, Paredes RG, Díaz NF, Portillo W. Increased proliferation and neuronal fate in prairie vole brain progenitor cells cultured in vitro: effects by social exposure and sexual dimorphism. Biol Sex Differ 2023; 14:77. [PMID: 37919790 PMCID: PMC10623709 DOI: 10.1186/s13293-023-00563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The prairie vole (Microtus ochrogaster) is a socially monogamous rodent that establishes an enduring pair bond after cohabitation, with (6 h) or without (24 h) mating. Previously, we reported that social interaction and mating increased cell proliferation and differentiation to neuronal fate in neurogenic niches in male voles. We hypothesized that neurogenesis may be a neural plasticity mechanism involved in mating-induced pair bond formation. Here, we evaluated the differentiation potential of neural progenitor cells (NPCs) isolated from the subventricular zone (SVZ) of both female and male adult voles as a function of sociosexual experience. Animals were assigned to one of the following groups: (1) control (Co), sexually naive female and male voles that had no contact with another vole of the opposite sex; (2) social exposure (SE), males and females exposed to olfactory, auditory, and visual stimuli from a vole of the opposite sex, but without physical contact; and (3) social cohabitation with mating (SCM), male and female voles copulating to induce pair bonding formation. Subsequently, the NPCs were isolated from the SVZ, maintained, and supplemented with growth factors to form neurospheres in vitro. RESULTS Notably, we detected in SE and SCM voles, a higher proliferation of neurosphere-derived Nestin + cells, as well as an increase in mature neurons (MAP2 +) and a decrease in glial (GFAP +) differentiated cells with some sex differences. These data suggest that when voles are exposed to sociosexual experiences that induce pair bonding, undifferentiated cells of the SVZ acquire a commitment to a neuronal lineage, and the determined potential of the neurosphere is conserved despite adaptations under in vitro conditions. Finally, we repeated the culture to obtain neurospheres under treatments with different hormones and factors (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone); the ability of SVZ-isolated cells to generate neurospheres and differentiate in vitro into neurons or glial lineages in response to hormones or factors is also dependent on sex and sociosexual context. CONCLUSION Social interactions that promote pair bonding in voles change the properties of cells isolated from the SVZ. Thus, SE or SCM induces a bias in the differentiation potential in both sexes, while SE is sufficient to promote proliferation in SVZ-isolated cells from male brains. In females, proliferation increases when mating is performed. The next question is whether the rise in proliferation and neurogenesis of cells from the SVZ are plastic processes essential for establishing, enhancing, maintaining, or accelerating pair bond formation. Highlights 1. Sociosexual experiences that promote pair bonding (social exposure and social cohabitation with mating) induce changes in the properties of neural stem/progenitor cells isolated from the SVZ in adult prairie voles. 2. Social interactions lead to increased proliferation and induce a bias in the differentiation potential of SVZ-isolated cells in both male and female voles. 3. The differentiation potential of SVZ-isolated cells is conserved under in vitro conditions, suggesting a commitment to a neuronal lineage under a sociosexual context. 4. Hormonal and growth factors treatments (brain-derived neurotrophic factor, estradiol, prolactin, oxytocin, and progesterone) affect the generation and differentiation of neurospheres, with dependencies on sex and sociosexual context. 5. Proliferation and neurogenesis in the SVZ may play a crucial role in establishing, enhancing, maintaining, or accelerating pair bond formation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Italo Romero-Morales
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Lizette Caro
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Alejandro Martínez-Juárez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Emory National Primate Research Center, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, USA
| | - Francisco Camacho-Barrios
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Omar Martínez-Alarcón
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Analía E Castro
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Raúl G Paredes
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
- Escuela Nacional de Estudios Superiores Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Néstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico.
| | - Wendy Portillo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
13
|
Maffioli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Toni M. The Neurotoxic Effect of Environmental Temperature Variation in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2023; 24:15735. [PMID: 37958719 PMCID: PMC10648238 DOI: 10.3390/ijms242115735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neurotoxicity consists of the altered functionality of the nervous system caused by exposure to chemical agents or altered chemical-physical parameters. The neurotoxic effect can be evaluated from the molecular to the behavioural level. The zebrafish Danio rerio is a model organism used in many research fields, including ecotoxicology and neurotoxicology. Recent studies by our research group have demonstrated that the exposure of adult zebrafish to low (18 °C) or high (34 °C) temperatures alters their brain proteome and fish behaviour compared to control (26 °C). These results showed that thermal variation alters the functionality of the nervous system, suggesting a temperature-induced neurotoxic effect. To demonstrate that temperature variation can be counted among the factors that generate neurotoxicity, eight different protein datasets, previously published by our research group, were subjected to new analyses using an integrated proteomic approach by means of the Ingenuity Pathway Analysis (IPA) software (Release December 2022). The datasets consist of brain proteome analyses of wild type adult zebrafish kept at three different temperatures (18 °C, 26 °C, and 34 °C) for 4 days (acute) or 21 days (chronic treatment), and of BDNF+/- and BDNF-/- zebrafish kept at 26 °C or 34 °C for 21 days. The results (a) demonstrate that thermal alterations generate an effect that can be defined as neurotoxic (p value ≤ 0.05, activation Z score ≤ -2 or ≥2), (b) identify 16 proteins that can be used as hallmarks of the neurotoxic processes common to all the treatments applied and (c) provide three protein panels (p value ≤ 0.05) related to 18 °C, 34 °C, and BDNF depletion that can be linked to anxiety-like or boldness behaviour upon these treatments.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.)
- CRC “Innovation for Well-Being and Environment” (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Via Alfonso Borrelli 50, 00161 Rome, Italy
| |
Collapse
|
14
|
Toni M, Arena C, Cioni C, Tedeschi G. Temperature- and chemical-induced neurotoxicity in zebrafish. Front Physiol 2023; 14:1276941. [PMID: 37854466 PMCID: PMC10579595 DOI: 10.3389/fphys.2023.1276941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Throughout their lives, humans encounter a plethora of substances capable of inducing neurotoxic effects, including drugs, heavy metals and pesticides. Neurotoxicity manifests when exposure to these chemicals disrupts the normal functioning of the nervous system, and some neurotoxic agents have been linked to neurodegenerative pathologies such as Parkinson's and Alzheimer's disease. The growing concern surrounding the neurotoxic impacts of both naturally occurring and man-made toxic substances necessitates the identification of animal models for rapid testing across a wide spectrum of substances and concentrations, and the utilization of tools capable of detecting nervous system alterations spanning from the molecular level up to the behavioural one. Zebrafish (Danio rerio) is gaining prominence in the field of neuroscience due to its versatility. The possibility of analysing all developmental stages (embryo, larva and adult), applying the most common "omics" approaches (transcriptomics, proteomics, lipidomics, etc.) and conducting a wide range of behavioural tests makes zebrafish an excellent model for neurotoxicity studies. This review delves into the main experimental approaches adopted and the main markers analysed in neurotoxicity studies in zebrafish, showing that neurotoxic phenomena can be triggered not only by exposure to chemical substances but also by fluctuations in temperature. The findings presented here serve as a valuable resource for the study of neurotoxicity in zebrafish and define new scenarios in ecotoxicology suggesting that alterations in temperature can synergistically compound the neurotoxic effects of chemical substances, intensifying their detrimental impact on fish populations.
Collapse
Affiliation(s)
- Mattia Toni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Chiara Arena
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carla Cioni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
- CRC “Innovation for Well-Being and Environment” (I-WE), Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
15
|
Papadopoulou MA, Rogdakis T, Charou D, Peteinareli M, Ntarntani K, Gravanis A, Chanoumidou K, Charalampopoulos I. Neurotrophin Analog ENT-A044 Activates the p75 Neurotrophin Receptor, Regulating Neuronal Survival in a Cell Context-Dependent Manner. Int J Mol Sci 2023; 24:11683. [PMID: 37511441 PMCID: PMC10380564 DOI: 10.3390/ijms241411683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Neuronal cell fate is predominantly controlled based on the effects of growth factors, such as neurotrophins, and the activation of a variety of signaling pathways acting through neurotrophin receptors, namely Trk and p75 (p75NTR). Despite their beneficial effects on brain function, their therapeutic use is compromised due to their polypeptidic nature and blood-brain-barrier impermeability. To overcome these limitations, our previous studies have proven that DHEA-derived synthetic analogs can act like neurotrophins, as they lack endocrine side effects. The present study focuses on the biological characterization of a newly synthesized analog, ENT-A044, and its role in inducing cell-specific functions of p75NTR. We show that ENT-A044 can induce cell death and phosphorylation of JNK protein by activating p75NTR. Additionally, ENT-A044 can induce the phosphorylation of TrkB receptor, indicating that our molecule can activate both neurotrophin receptors, enabling the protection of neuronal populations that express both receptors. Furthermore, the present study demonstrates, for the first time, the expression of p75NTR in human-induced Pluripotent Stem Cells-derived Neural Progenitor Cells (hiPSC-derived NPCs) and receptor-dependent cell death induced via ENT-A044 treatment. In conclusion, ENT-A044 is proposed as a lead molecule for the development of novel pharmacological agents, providing new therapeutic approaches and research tools, by controlling p75NTR actions.
Collapse
Affiliation(s)
- Maria Anna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Maria Peteinareli
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Katerina Ntarntani
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Konstantina Chanoumidou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
16
|
McCarty KJ, Pratt SL, Long NM. Effects of Exogenous Glucocorticoid Infusion on Appetitic Center Development in Postnatal Dairy Bull Calves. Animals (Basel) 2023; 13:1980. [PMID: 37370490 DOI: 10.3390/ani13121980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to determine the effects of exogenous glucocorticoid administration on leptin concentrations and brain development markers, such as protein and hypothalamic gene expression, in dairy bull calves. Within 4 h of parturition, Holstein bulls were intravenously infused with either a low cortisol dose (LC; n = 9, 3.5 µg/kg of body weight (BW)), high cortisol dose (HC; n = 9, 7.0 µg/kg BW), or control (CON; n = 9, saline) dose, with a 2nd infusion 24 h postpartum. Jugular blood was collected prior to infusion and daily until the calves were euthanized (day 5). Cerebrospinal fluid (CSF) from the third ventricle and adipose (omental, perirenal, and mesenteric) and hypothalamic tissue were collected. The blood and CSF samples were analyzed for leptin concentrations. The data were analyzed using SAS. Serum (p = 0.013) and CSF (p = 0.005) leptin concentrations in HC- and LC-treated calves were decreased compared with CON-treated calves. Leptin protein expression was decreased (p < 0.044) in perirenal and omental adipose tissue of LC-treated calves compared with CON-treated calves. Gene abundance of brain-derived neurotrophic factor and fibroblast growth factors 1 and 2 were decreased (p < 0.006) in HC- and LC-treated calves compared with CON-treated calves. In summary, cortisol administered to dairy bull calves reduced leptin concentrations, decreased leptin protein expression in perirenal and omental adipose tissue, and altered gene expression in hypothalamic tissue.
Collapse
Affiliation(s)
- Keelee J McCarty
- Animal And Veterinary Science Department, Clemson University, Clemson, SC 29631, USA
| | - Scott L Pratt
- Animal And Veterinary Science Department, Clemson University, Clemson, SC 29631, USA
| | - Nathan M Long
- Animal And Veterinary Science Department, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
17
|
Lin TC, Tsai YC, Chen YA, Young TH, Wu CC, Chiang YH, Kao CH, Huang APH, Hsu YH, Chen KY, Tsai LK. Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study. Front Cell Neurosci 2023; 17:1170251. [PMID: 37252187 PMCID: PMC10210133 DOI: 10.3389/fncel.2023.1170251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background and purpose Intracerebral hemorrhage (ICH) enhances neurogenesis in the subventricular zone (SVZ); however, the mechanism is not fully understood. We investigated the role of brain-derived neurotrophic factor (BDNF) in post-ICH neurogenesis in a rodent model and in patients with ICH using cerebrospinal fluid (CSF). Methods A rat model of ICH was constructed via stereotaxic injection of collagenase into the left striatum. Patients with ICH receiving an external ventricular drain were prospectively enrolled. CSF was collected from rats and patients at different post-ICH times. Primary cultured rat neural stem cells (NSCs) were treated with CSF with or without BDNF-neutralized antibody. Immunohistochemistry and immunocytochemistry were used to detect NSC proliferation and differentiation. The BDNF concentration in CSF was quantified using enzyme-linked immunosorbent assays (ELISA). Results In the rat model of ICH, the percentage of proliferating NSCs and neuroblasts in SVZ was elevated in bilateral hemispheres. The cultured rat NSCs treated with CSF from both rats and patients showed an increased capacity for proliferation and differentiation toward neuroblasts. BDNF concentration was higher in CSF collected from rats and patients with ICH than in controls. Blocking BDNF decreased the above-noted promotion of proliferation and differentiation of cultured NSCs by CSF treatment. In patients with ICH, the BDNF concentration in CSF and the neurogenesis-promoting capacity of post-ICH CSF correlated positively with ICH volume. Conclusion BDNF in CSF contributes to post-ICH neurogenesis, including NSC proliferation and differentiation toward neuroblasts in a rat model and patients with ICH.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chieh Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yun-An Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Che Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsin Kao
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Abel Po-Hao Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hua Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Yun Chen
- TMU Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| |
Collapse
|
18
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
19
|
Sex and Age-Dependent Olfactory Memory Dysfunction in ADHD Model Mice. Life (Basel) 2023; 13:life13030686. [PMID: 36983841 PMCID: PMC10056048 DOI: 10.3390/life13030686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
ADHD is a typical neurodevelopmental disorder with a high prevalence rate. NSCs in the subventricular zone (SVZ) are closely related to neurodevelopmental disorder and can affect olfactory function by neurogenesis and migratory route. Although olfactory dysfunction is one of the symptoms of ADHD, the relevance of cells in the olfactory bulb derived from NSCs has not been studied. Therefore, we investigated olfactory memory and NSCs in Git1-deficient mice, under the ADHD model. Interestingly, only adult male G protein-coupled receptor kinase-interacting protein-1 (GIT1)-deficient (+/−, HE) mice showed impaired olfactory memory, suggesting sex and age dependence. We performed adult NSCs culture from the SVZ and observed distinct cell population in both sex and genotype. Taken together, our study suggests that the altered differentiation of NSCs in GIT1+/− mice can contribute to olfactory dysfunction in ADHD.
Collapse
|
20
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Lozano-Ureña A, Lázaro-Carot L, Jiménez-Villalba E, Montalbán-Loro R, Mateos-White I, Duart-Abadía P, Martínez-Gurrea I, Nakayama KI, Fariñas I, Kirstein M, Gil-Sanz C, Ferrón SR. IGF2 interacts with the imprinted gene Cdkn1c to promote terminal differentiation of neural stem cells. Development 2023; 150:dev200563. [PMID: 36633189 PMCID: PMC9903205 DOI: 10.1242/dev.200563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023]
Abstract
Adult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive. Insulin-like growth factor 2 (IGF2) is encoded by an imprinted gene that contributes to NSC maintenance in the adult subventricular zone through a biallelic expression in only the vascular compartment. We show here that IGF2 additionally promotes terminal differentiation of NSCs into astrocytes, neurons and oligodendrocytes by inducing the expression of the maternally expressed gene cyclin-dependent kinase inhibitor 1c (Cdkn1c), encoding the cell cycle inhibitor p57. Using intraventricular infusion of recombinant IGF2 in a conditional mutant strain with Cdkn1c-deficient NSCs, we confirm that p57 partially mediates the differentiation effects of IGF2 in NSCs and that this occurs independently of its role in cell-cycle progression, balancing the relationship between astrogliogenesis, neurogenesis and oligodendrogenesis.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Laura Lázaro-Carot
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Esteban Jiménez-Villalba
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Raquel Montalbán-Loro
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Isabel Mateos-White
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Pere Duart-Abadía
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Irene Martínez-Gurrea
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 819-0395, Japan
| | - Isabel Fariñas
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Cristina Gil-Sanz
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| | - Sacri R. Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Valencia 46100, Spain
- Departamento de Biología Celular, Universidad de Valencia, Valencia 46100, Spain
| |
Collapse
|
22
|
Paccione N, Rahmani M, Barcia E, Negro S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2022; 15:pharmaceutics15010013. [PMID: 36678642 PMCID: PMC9866990 DOI: 10.3390/pharmaceutics15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by progressive destruction of dopaminergic tissue in the central nervous system (CNS). To date, there is no cure for the disease, with current pharmacological treatments aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In addition to new therapeutic options, there exists the need for improved efficiency of the existing ones, as many agents have difficulties in crossing the blood-brain barrier (BBB) to achieve therapeutic levels in the CNS or exhibit inappropriate pharmacokinetic profiles, thereby limiting their clinical benefits. To overcome these limitations, an interesting approach is the use of drug delivery systems, such as polymeric microparticles (MPs) and nanoparticles (NPs) that allow for the controlled release of the active ingredients targeting to the desired site of action, increasing the bioavailability and efficacy of treatments, as well as reducing the number of administrations and adverse effects. Here we review the polymeric micro- and nano-systems under investigation as potential new therapies for PD.
Collapse
Affiliation(s)
- Nicola Paccione
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Mahdieh Rahmani
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941741
| | - Emilia Barcia
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Sofía Negro
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
23
|
Variant brain-derived neurotrophic factor val66met polymorphism engages memory-associated systems to augment olfaction. Sci Rep 2022; 12:20007. [PMID: 36411369 PMCID: PMC9678911 DOI: 10.1038/s41598-022-24365-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The neurogenetic basis of variability in human olfactory function remains elusive. This study examined olfactory performance and resting-state functional neuroimaging results from healthy volunteers within the context of the brain-derived neurotrophic factor (BDNF) val66met polymorphism with the aim of unraveling the genotype-associated intrinsic reorganization of the olfactory network. We found that the presence of the Met allele is associated with better olfactory identification and additional engagement of semantic memory system within the olfactory network, in an allele dosage-dependent manner. This suggests that the Met allele may promote adaptive neural reorganization to augment olfactory capacity.
Collapse
|
24
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
25
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
26
|
Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. Int J Mol Sci 2022; 23:ijms23126362. [PMID: 35742806 PMCID: PMC9223746 DOI: 10.3390/ijms23126362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.
Collapse
|
27
|
Beneficial effects of whole-body vibration exercise for brain disorders in experimental studies with animal models: a systematic review. Behav Brain Res 2022; 431:113933. [PMID: 35654174 DOI: 10.1016/j.bbr.2022.113933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 12/09/2022]
Abstract
Brain disorders have been a health challenge and is increasing over the years. Early diagnosis and interventions are considered essential strategies to treat patients at risk of brain disease. Physical exercise has shown to be beneficial for patients with brain diseases. A type of exercise intervention known as whole-body vibration (WBV) exercise gained increasing interest. During WBV, mechanical vibrations, produced by a vibrating platform are transmitted, to the body. The purpose of the current review was to summarize the effects of WBV exercise on brain function and behavior in experimental studies with animal models. Searches were performed in EMBASE, PubMed, Scopus and Web of Science including publications from 1960 to July 2021, using the keywords "whole body vibration" AND (animal or mice or mouse or rat or rodent). From 1284 hits, 20 papers were selected. Rats were the main animal model used (75%) followed by mice (20%) and porcine model (5%), 16 studies used males species and 4 females. The risk of bias, accessed with the SYRCLE Risk of Bias tool, indicated that none of the studies fulfilled all methodological criteria, resulting in possible bias. Despite heterogeneity, the results suggest beneficial effects of WBV exercise on brain functioning, mainly related to motor performance, coordination, behavioral control, neuronal plasticity and synapse function. In conclusion, the findings observed in animal studies justifies continued clinical research regarding the effectiveness and potential of WBV for the treatment of various types of brain disorders such as trauma, developmental disorders, neurogenetic diseases and other neurological diseases.
Collapse
|
28
|
Caballero-Villarraso J, Medina FJ, Escribano BM, Agüera E, Santamaría A, Pascual-Leone A, Túnez I. Mechanisms Involved in Neuroprotective Effects of Transcranial Magnetic Stimulation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:557-573. [PMID: 34370648 DOI: 10.2174/1871527320666210809121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
Transcranial Magnetic Stimulation (TMS) is widely used in neurophysiology to study cortical excitability. Research over the last few decades has highlighted its added value as a potential therapeutic tool in the treatment of a broad range of psychiatric disorders. More recently, a number of studies have reported beneficial and therapeutic effects for TMS in neurodegenerative conditions and strokes. Yet, despite its recognised clinical applications and considerable research using animal models, the molecular and physiological mechanisms through which TMS exerts its beneficial and therapeutic effects remain unclear. They are thought to involve biochemical-molecular events affecting membrane potential and gene expression. In this aspect, the dopaminergic system plays a special role. This is the most directly and selectively modulated neurotransmitter system, producing an increase in the flux of dopamine (DA) in various areas of the brain after the application of repetitive TMS (rTMS). Other neurotransmitters, such as glutamate and gamma-aminobutyric acid (GABA) have shown a paradoxical response to rTMS. In this way, their levels increased in the hippocampus and striatum but decreased in the hypothalamus and remained unchanged in the mesencephalon. Similarly, there are sufficient evidence that TMS up-regulates the gene expression of BDNF (one of the main brain neurotrophins). Something similar occurs with the expression of genes such as c-Fos and zif268 that encode trophic and regenerative action neuropeptides. Consequently, the application of TMS can promote the release of molecules involved in neuronal genesis and maintenance. This capacity may mean that TMS becomes a useful therapeutic resource to antagonize processes that underlie the previously mentioned neurodegenerative conditions.
Collapse
Affiliation(s)
- Javier Caballero-Villarraso
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Análisis Clínicos, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Francisco J Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| | - Begoña M Escribano
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Veterinaria, Universidad de Córdoba, Cordoba, Spain
| | - Eduardo Agüera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain.,UGC Neurología, Hospital Universitario Reina Sofía, Córdoba, Cordoba, Spain
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A. Mexico City, Mexico
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Instituto Guttman de Neurorrehabilitación, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Cordoba, Cordoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
29
|
Brain-Derived Neurotropic Factor in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10051143. [PMID: 35625880 PMCID: PMC9138678 DOI: 10.3390/biomedicines10051143] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, neurodegenerative diseases cause a significant degree of disability and distress. Brain-derived neurotrophic factor (BDNF), primarily found in the brain, has a substantial role in the development and maintenance of various nerve roles and is associated with the family of neurotrophins, including neuronal growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). BDNF has affinity with tropomyosin receptor kinase B (TrKB), which is found in the brain in large amounts and is expressed in several cells. Several studies have shown that decrease in BDNF causes an imbalance in neuronal functioning and survival. Moreover, BDNF has several important roles, such as improving synaptic plasticity and contributing to long-lasting memory formation. BDNF has been linked to the pathology of the most common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. This review aims to describe recent efforts to understand the connection between the level of BDNF and neurodegenerative diseases. Several studies have shown that a high level of BDNF is associated with a lower risk for developing a neurodegenerative disease.
Collapse
|
30
|
Xie WS, Shehzadi K, Ma HL, Liang JH. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 2022; 29:5315-5347. [DOI: 10.2174/0929867329666220509114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Adult hippocampal neurogenesis is a multistage mechanism that continues throughout the lifespan of human and non-human mammals. These adult-born neurons in the central nervous system (CNS) play a significant role in various hippocampus-dependent processes, including learning, mood regulation, pattern recognition, etc. Reduction of adult hippocampal neurogenesis, caused by multiple factors such as neurological disorders and aging, would impair neuronal proliferation and differentiation and result in memory loss. Accumulating studies have indicated that functional neuron impairment could be restored by promoting adult hippocampal neurogenesis. In this review, we summarized the small molecules that could efficiently promote the process of adult neurogenesis, particularly the agents that have the capacity of crossing the blood-brain barrier (BBB), and showed in vivo efficacy in mammalian brains. This may pave the way for the rational design of drugs to treat humnan neurodegenerative disorders in the future.
Collapse
Affiliation(s)
- Wei-Song Xie
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hong-Le Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| |
Collapse
|
31
|
Kamimura S, Masaoka Y, Yoshikawa A, Kamijo S, Ohtaki H, Koiwa N, Honma M, Sakikawa K, Kobayashi H, Izumizaki M. New granule cells in the olfactory bulb are associated with high respiratory input in an enriched odor environment. Neurosci Res 2022; 182:52-59. [DOI: 10.1016/j.neures.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
32
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Gohil K, Kazmi MZH, Williams FJ. Structure-activity relationship and bioactivity studies of neurotrophic trans-banglene. Org Biomol Chem 2022; 20:2187-2193. [PMID: 35229853 DOI: 10.1039/d2ob00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The synthesis and bioactivity of neurotrophic banglenes and derivatives is described, establishing a structure-activity relationship which enables future mechanistic studies. Neuritogenesis assays indicate that (-) trans-banglene is the active enantiomer. Assays performed with and without NGF protein suggest that neurotrophic activity and potentiation of NGF activity by (-) trans-banglene might be distinct unassociated processes. Interestingly, (-) trans-banglene potentiation of NGF-induced neuritogenesis is unaffected by the presence of Erk1/2, Akt and Pkc inhibitors.
Collapse
Affiliation(s)
- Khyati Gohil
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - M Zain H Kazmi
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | |
Collapse
|
34
|
Chronic IL-10 overproduction disrupts microglia-neuron dialogue similar to aging, resulting in impaired hippocampal neurogenesis and spatial memory. Brain Behav Immun 2022; 101:231-245. [PMID: 34990747 DOI: 10.1016/j.bbi.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgranular zone of the dentate gyrus is an adult neurogenic niche where new neurons are continuously generated. A dramatic hippocampal neurogenesis decline occurs with increasing age, contributing to cognitive deficits. The process of neurogenesis is intimately regulated by the microenvironment, with inflammation being considered a strong negative factor for this process. Thus, we hypothesize that the reduction of new neurons in the aged brain could be attributed to the age-related microenvironmental changes towards a pro-inflammatory status. In this work, we evaluated whether an anti-inflammatory microenvironment could counteract the negative effect of age on promoting new hippocampal neurons. Surprisingly, our results show that transgenic animals chronically overexpressing IL-10 by astrocytes present a decreased hippocampal neurogenesis in adulthood. This results from an impairment in the survival of neural newborn cells without differences in cell proliferation. In parallel, hippocampal-dependent spatial learning and memory processes were affected by IL-10 overproduction as assessed by the Morris water maze test. Microglial cells, which are key players in the neurogenesis process, presented a different phenotype in transgenic animals characterized by high activation together with alterations in receptors involved in neuronal communication, such as CD200R and CX3CR1. Interestingly, the changes described in adult transgenic animals were similar to those observed by the effect of normal aging. Thus, our data suggest that chronic IL-10 overproduction mimics the physiological age-related disruption of the microglia-neuron dialogue, resulting in hippocampal neurogenesis decrease and spatial memory impairment.
Collapse
|
35
|
Fomo KN, Schmelter C, Pfeiffer N, Grus FH. Tear Film-specific Biomarkers in Glaucoma Patients. Klin Monbl Augenheilkd 2022; 239:165-168. [PMID: 35211938 DOI: 10.1055/a-1749-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glaucoma is a group of chronic eye diseases that lead to degeneration of retinal ganglion cells (RGCs) and their axons followed by irreversible loss of vision in the patient. Glaucoma is a disease that initially evolves asymptomatically with the first symptoms appearing only at an advanced stage of this eye disease. For this reason, it is always necessary to develop state-of-the-art technologies and methods for the identification and characterization of new, specific biomarkers for the early diagnosis of glaucoma. Therefore, the analysis of biological fluids, as in this case the tear fluid of patients, represents an attractive source to identify new specific as well as sensitive biomarkers in glaucoma. These biomarkers could be involved in the pathophysiological processes of glaucoma or possibly serve for diagnostic differentiation of various types of glaucoma.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Experimentelle und Translationale Ophthalmologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Carsten Schmelter
- Experimentelle und Translationale Ophthalmologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Norbert Pfeiffer
- Experimentelle und Translationale Ophthalmologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| | - Franz H Grus
- Experimentelle und Translationale Ophthalmologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Deutschland
| |
Collapse
|
36
|
Gholami E, Gholami MR, Tavakoli A, Ahmadi M, Rezaian J, Alipour M, Chehelcheraghi F, Khaksarian M. Effect of fluoxetine treatment on neurotoxicity induced by lysolecithin in male rats. Can J Physiol Pharmacol 2022; 100:107-116. [PMID: 34935529 DOI: 10.1139/cjpp-2021-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.
Collapse
Affiliation(s)
- Elham Gholami
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Gholami
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asadollah Tavakoli
- Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| | - Mahdie Ahmadi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Rezaian
- Department of Anatomy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Alipour
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Chehelcheraghi
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mojtaba Khaksarian
- Razi Herbal Medicine Research Center and Department of Physiology, Loretan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
37
|
Akbari S, Hooshmandi E, Bayat M, Borhani Haghighi A, Salehi MS, Pandamooz S, Yousefi Nejad A, Haghani M. The neuroprotective properties and therapeutic potential of epidermal neural crest stem cells transplantation in a rat model of vascular dementia. Brain Res 2021; 1776:147750. [PMID: 34896332 DOI: 10.1016/j.brainres.2021.147750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The incidence rate of senile dementia is rising, and there is no definite cure for it yet. Cell therapy, as a new investigational approach, has shown promising results. Hair bulges with abundant easily accessible neural stem cells permit autologous implantation in irreversible neurodegenerative disorders. METHODS Fifty rats were randomly divided into 5 groups of control, sham-operation, two-common carotid vessel-occlusion rats that received vehicle (2VO + V), 2VO rats that received 1 × 106 epidermal stem cells (2VO + ESC1), and 2VO rats that received 2.5 × 106 epidermal stem cells (2VO + ESC2) in 300 µl PBS intravenously on days 4, 9, and 14 after surgery. The epidermal neural crest stem cells (EPI-NCSCs) were isolated from hair follicles of rat whiskers. The open-field, passive avoidance, and Morris water maze were used as behavioral tests. The basal-synaptic transmission, long-term potentiation (LTP), and short-term synaptic plasticity were evaluated by field-potential recording of the CA1 hippocampal area. RESULTS 30 days after the first transplantation in the 2VO + ESC1 group, functional recovery was prominent in anxiety and fear memory compared to the 2VO + ESC2 group, while LTP induction was recovered in both groups of grafted animals without improvement in basal synaptic transmission. These positive recoveries may be related to the release of different neurotrophic factors from grafted cells that can stimulate endogenous neurogenesis and synaptic plasticity. CONCLUSIONS Our results showed that EPI-NCSCs implantation could rescue LTP and cognitive disability in 2VO rats, while transplantation of 1 million cells showed better performance relative to 2.5 million cells.
Collapse
Affiliation(s)
- Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Saied Salehi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Yousefi Nejad
- Department of Veterinary Medicine, Faculty of Veterinary Medicine. Islamic Azad University of Kazeroon, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Fauser M, Loewenbrück KF, Rangnick J, Brandt MD, Hermann A, Storch A. Adult Neural Stem Cells from Midbrain Periventricular Regions Show Limited Neurogenic Potential after Transplantation into the Hippocampal Neurogenic Niche. Cells 2021; 10:3021. [PMID: 34831242 PMCID: PMC8616334 DOI: 10.3390/cells10113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
The regulation of adult neural stem or progenitor cell (aNSC) proliferation and differentiation as an interplay of cell-intrinsic and local environmental cues remains in part unclear, impeding their role in putative regenerative therapies. aNSCs with all major properties of NSCs in vitro have been identified in a variety of brain regions beyond the classic neurogenic niches, including the caudal periventricular regions (PVRs) of the midbrain, though active neurogenesis is either limited or merely absent in these regions. To elucidate cell-intrinsic properties of aNSCs from various PVRs, we here examined the proliferation and early differentiation capacity of murine aNSCs from non-neurogenic midbrain PVRs (PVRMB) compared to aNSCs from the neurogenic ventricular-subventricular zone (PVRV-SVZ) 7 days after transplantation into the permissive pro-neurogenic niche of the dentate gyrus (DG) of the hippocampus in mice. An initial in vitro characterization of the transplants displayed very similar characteristics of both aNSC grafts after in vitro expansion with equal capacities of terminal differentiation into astrocytes and Tuj1+ neurons. Upon the allogenic transplantation of the respective aNSCs into the DG, PVRMB grafts showed a significantly lower graft survival and proliferative capacity compared to PVRV-SVZ transplants, whereby the latter are exclusively capable of generating new neurons. Although these differences might be-in part-related to the transplantation procedure and the short-term study design, our data strongly imply important cell-intrinsic differences between aNSCs from neurogenic compared to non-neurogenic PVRs with respect to their neurogenic potential and/or their sensitivity to neurogenic cues.
Collapse
Affiliation(s)
- Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Kai F Loewenbrück
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Johannes Rangnick
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, 01307 Dresden, Germany
| | - Andreas Hermann
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (K.F.L.); (J.R.); (M.D.B.); (A.H.)
- Translational Neurodegeneration Section, “Albrecht-Kossel”, Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany;
- German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
39
|
Ribeiro FF, Ferreira F, Rodrigues RS, Soares R, Pedro DM, Duarte-Samartinho M, Aroeira RI, Ferreiro E, Valero J, Solá S, Mira H, Sebastião AM, Xapelli S. Regulation of hippocampal postnatal and adult neurogenesis by adenosine A 2A receptor: Interaction with brain-derived neurotrophic factor. Stem Cells 2021; 39:1362-1381. [PMID: 34043863 DOI: 10.1002/stem.3421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Adenosine A2A receptor (A2A R) activation modulates several brain processes, ranging from neuronal maturation to synaptic plasticity. Most of these actions occur through the modulation of the actions of the neurotrophin brain-derived neurotrophic factor (BDNF). In this work, we studied the role of A2A Rs in regulating postnatal and adult neurogenesis in the rat hippocampal dentate gyrus (DG). Here, we show that A2A R activation with CGS 21680 promoted neural stem cell self-renewal, protected committed neuronal cells from cell death and contributed to a higher density of immature and mature neuronal cells, particularly glutamatergic neurons. Moreover, A2A R endogenous activation was found to be essential for BDNF-mediated increase in cell proliferation and neuronal differentiation. Our findings contribute to further understand the role of adenosinergic signaling in the brain and may have an impact in the development of strategies for brain repair under pathological conditions.
Collapse
Affiliation(s)
- Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo M Pedro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Duarte-Samartinho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita I Aroeira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elisabete Ferreiro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jorge Valero
- Laboratory of Glial Cell Biology, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
- University of the Basque Country EHU/UPV, Leioa, Spain
| | - Susana Solá
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Mira
- Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (iMM, JLB), Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
40
|
Bicker F, Nardi L, Maier J, Vasic V, Schmeisser MJ. Criss-crossing autism spectrum disorder and adult neurogenesis. J Neurochem 2021; 159:452-478. [PMID: 34478569 DOI: 10.1111/jnc.15501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) comprises a group of multifactorial neurodevelopmental disorders primarily characterized by deficits in social interaction and repetitive behavior. Although the onset is typically in early childhood, ASD poses a lifelong challenge for both patients and caretakers. Adult neurogenesis (AN) is the process by which new functional neurons are created from neural stem cells existing in the post-natal brain. The entire event is based on a sequence of cellular processes, such as proliferation, specification of cell fate, maturation, and ultimately, synaptic integration into the existing neural circuits. Hence, AN is implicated in structural and functional brain plasticity throughout life. Accumulating evidence shows that impaired AN may underlie some of the abnormal behavioral phenotypes seen in ASD. In this review, we approach the interconnections between the molecular pathways related to AN and ASD. We also discuss existing therapeutic approaches targeting such pathways both in preclinical and clinical studies. A deeper understanding of how ASD and AN reciprocally affect one another could reveal important converging pathways leading to the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Frank Bicker
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Leonardo Nardi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
41
|
Padmakumar S, Jones G, Khorkova O, Hsiao J, Kim J, Bleier BS, Amiji MM. Osmotic core-shell polymeric implant for sustained BDNF AntagoNAT delivery in CNS using minimally invasive nasal depot (MIND) approach. Biomaterials 2021; 276:120989. [PMID: 34252799 PMCID: PMC8607190 DOI: 10.1016/j.biomaterials.2021.120989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023]
Abstract
The development of drug delivery strategies for efficacious therapeutic administration directly into the central nervous system (CNS) in a minimally invasive manner remains a major obstacle hindering the clinical translation of biological disease-modifying therapeutics. A novel direct trans-nasal delivery method, termed 'Minimally-Invasive Nasal Depot' (MIND), has proved to be successful in providing high CNS uptake and brain distribution of blood-brain barrier (BBB) impermeant therapeutics via direct administration to the olfactory submucosal space in a rodent model. The present study describes the engineering of custom-made implants with a unique architecture of an "osmotically-active core" entrapping the therapeutic and a "biodegradable polymeric shell" to enable long-acting delivery using the MIND procedure. The MIND-administered implant provided sustained CNS delivery of brain derived neurotrophic factor (BDNF) AntagoNATs for up to 4 weeks in Sprague Dawley rats resulting in significant endogenous BDNF protein upregulation in several brain tissues. The biocompatibility of such core-shell implants coupled with their substantial pharmacokinetic advantages and safety of the MIND procedure highlights the practical utility and translational potential of this synergistic approach for treatment of chronic age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Gregory Jones
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | | | | | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts at Lowell, Lowell, MA, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mansoor M Amiji
- (')Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA.
| |
Collapse
|
42
|
Bayat M, Kohlmeier KA, Haghani M, Haghighi AB, Khalili A, Bayat G, Hooshmandi E, Shabani M. Co-treatment of vitamin D supplementation with enriched environment improves synaptic plasticity and spatial learning and memory in aged rats. Psychopharmacology (Berl) 2021; 238:2297-2312. [PMID: 33991198 DOI: 10.1007/s00213-021-05853-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVE Environmental enrichment (EE) has been shown in old rats to improve learning and memory. Vitamin D (VitD) has also been shown to modulate age-related, cognitive dysfunction. As both EE and VitD could work to improve cognition via enhancement of neurotrophic factors, their effects might occlude one another. Therefore, a clinically relevant question is whether noted cognition-promoting effects of EE and VitD can co-occur. METHODS Aged rats were housed for 6 weeks in one of three housing conditions: environmentally enriched (EE), socially enriched (SE), or standard condition (SC). Further, a 4th group was co-treated with VitD supplementation (400 IU kg-1 daily, 6 weeks) under EE conditions (EE + VitD). RESULTS Treatment with VitD and EE housing were associated with higher score on measures of learning and memory and exhibited lower anxiety scores compared to EE alone, SE or SC as assayed in the elevated plus maze, Morris water maze, passive avoidance, and open field tasks. Additionally, in the EE + VitD group, mRNA expression levels of NGF, TrkA, BDNF, Nrf2, and IGF-1 were significantly higher compared to expression seen in the EE group. Furthermore, field potential recordings showed that EE + VitD resulted in a greater enhancement of hippocampal LTP and neuronal excitability when compared to EE alone. CONCLUSIONS These findings demonstrate that in aged rats exposure to EE and VitD results in effects on hippocampal cognitive dysfunction and molecular mechanisms which are greater than effects of EE alone, suggesting potential for synergistic therapeutic effects for management of age-related cognitive decline.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Masoud Haghani
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Azadeh Khalili
- Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
43
|
Lin MS, Chiu IH, Lin CC. Ultrarapid Inflammation of the Olfactory Bulb After Spinal Cord Injury: Protective Effects of the Granulocyte Colony-Stimulating Factor on Early Neurodegeneration in the Brain. Front Aging Neurosci 2021; 13:701702. [PMID: 34248610 PMCID: PMC8267925 DOI: 10.3389/fnagi.2021.701702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The correlation among olfactory dysfunction, spinal cord injury (SCI), subjective cognitive decline, and neurodegenerative dementia has been established. Impaired olfaction is considered a marker for neurodegeneration. Hence, there is a need to examine if SCI leads to olfactory dysfunction. In this study, the brain tissue of mice with spinal cord hemisection injury was subjected to microarray analysis. The mRNA expression levels of olfactory receptors in the brain began to decline at 8 h post-SCI. SCI promoted neuroinflammation, downregulated the expression of olfactory receptors, decreased the number of neural stem cells (NSCs), and inhibited the production of neurotrophic factors in the olfactory bulbs at 8 h post-SCI. In particular, the SCI group had upregulated mRNA and protein expression levels of glial fibrillary acidic protein (GFAP; a marker of astrocyte reactivation) and pro-inflammatory mediators [IL-1β, IL-6, and Nestin (marker of NSCs)] in the olfactory bulb compared to levels in the sham control group. The mRNA expression levels of olfactory receptors (Olfr1494, Olfr1324, Olfr1241, and Olfr979) and neurotrophic factors [brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and nerve growth factor (NGF)] were downregulated in the olfactory bulb of the SCI group mice at 8 h post-SCI. The administration of granulocyte colony-stimulating factor (G-CSF) mitigated these SCI-induced pathological changes in the olfactory bulb at 8 h post-SCI. These results indicate that the olfactory bulb is vulnerable to environmental damage even if the lesion is located at sites distant from the brain, such as the spinal cord. Additionally, SCI initiated pathological processes, including inflammatory response, and impaired neurogenesis, at an early stage. The findings of this study will provide a basis for future studies on pathological mechanisms of early neurodegenerative diseases involving the olfactory bulb and enable early clinical drug intervention.
Collapse
Affiliation(s)
- Muh-Shi Lin
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan.,Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan.,Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan.,Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung, Taiwan
| | - I-Hsiang Chiu
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan, Taiwan
| |
Collapse
|
44
|
Xue LL, Du RL, Hu Y, Xiong LL, Su ZY, Ma Z, Tan YX, Liu J, Hu Q, Zhu ZQ, Liu XZ, Wang TH. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1. Brain Res Bull 2021; 174:131-140. [PMID: 34058286 DOI: 10.1016/j.brainresbull.2021.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE), is a major cause of neurologic disorders in terms of neonates, with the unclear underlying mechanisms. In the study, triphenyl tetrazolium chloride (TTC) staining and Zea-longa score were performed to examine the neurologic damage in hypoxia and ischemia (HI) rats. The results showed that HI induced obviously infarct and serious neurologic impairment in neonatal rats. Then, protein chip was applied to detect the differential expression genes in cortex and hippocampus and found the brain-derived neurotrophic factor (BDNF) down-regulated both in cortex and hippocampus. Moreover, low expression of BDNF after HI in right cortex and hippocampus was validate by immunohistochemistry (IHC) and Western Blotting (WB). Afterwards, overexpressing and interfering HSV vector were produced, then verified by immunofluorescent staining and real-time quantitative polymerase chain reaction (qRT-PCR). The results of Tuj1 staining indicated that overexpression of BDNF could promote axonal regeneration and inhibit neuron swelling, whereas BDNF interference take an opposite effect after Oxygen glucose deprivation (OGD) injury. Finally, the interaction network among BDNF and associated proteins as examined by Genemania and confirmed by qRT-PCR. We found that the expression of VDAC1 was decreased and Stx1b was increased when BDNF overexpressing, which indicated that BDNF promoted neurite regrowth after OGD might be related to downregulation of VDAC1 and upregulation of Stx1b. Our results might provide novel strategy for the treatment of neurological defects induced by cerebral ischemia and hypoxia.
Collapse
Affiliation(s)
- Lu-Lu Xue
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Ruo-Lan Du
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Hu
- Department of Anesthesiology, Shuangliu District People's Hospital, Chengdu 610041, China
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhang-Yu Su
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Zheng Ma
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Ya-Xin Tan
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Jia Liu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650500, China
| | - Qiao Hu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xue-Zheng Liu
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650500, China; Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
45
|
Kot K, Łanocha-Arendarczyk N, Kosik-Bogacka D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int J Mol Sci 2021; 22:1261. [PMID: 33514026 PMCID: PMC7865479 DOI: 10.3390/ijms22031261] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Free-living amoebas, including Acanthamoeba spp., are widely distributed in soil, water, and air. They are capable of causing granulomatous amebic encephalitis, Acanthamoeba pneumonia, Acanthamoeba keratitis, and disseminated acanthamoebiasis. Despite low occurrence worldwide, the mortality rate of Acanthamoeba spp. infections is very high, especially in immunosuppressed hosts. Acanthamoeba infections are a medical problem, owing to limited improvement in diagnostics and treatment, which is associated with incomplete knowledge of pathophysiology, pathogenesis, and the host immune response against Acanthamoeba spp. infection. The aim of this review is to present the biochemical and molecular mechanisms of Acanthamoeba spp.-host interactions, including the expression of Toll-like receptors, mechanisms of an immune response, the activity of metalloproteinases, the secretion of antioxidant enzymes, and the expression and activity of cyclooxygenases. We show the relationship between Acanthamoeba spp. and the host at the cellular level and host defense reactions that lead to changes in the selected host's organs.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
46
|
Intervention of Brain-Derived Neurotrophic Factor and Other Neurotrophins in Adult Neurogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:95-115. [PMID: 34453295 DOI: 10.1007/978-3-030-74046-7_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell survival during adult neurogenesis and the modulation of each step, namely, proliferation, lineage differentiation, migration, maturation, and functional integration of the newborn cells into the existing circuitry, is regulated by intrinsic and extrinsic factors. Transduction of extracellular niche signals triggers the activation of intracellular mechanisms that regulate adult neurogenesis by affecting gene expression. While the intrinsic factors include transcription factors and epigenetic regulators, the extrinsic factors are molecular signals that are present in the neurogenic niche microenvironment. These include morphogens, growth factors, neurotransmitters, and signaling molecules secreted as soluble factors or associated to the extracellular matrix. Among these molecular mechanisms are neurotrophins and neurotrophin receptors which have been implicated in the regulation of adult neurogenesis at different levels, with brain-derived neurotrophic factor (BDNF) being the most studied neurotrophin. In this chapter, we review the current knowledge about the role of neurotrophins in the regulation of adult neurogenesis in both the subventricular zone (SVZ) and the hippocampal subgranular zone (SGZ).
Collapse
|
47
|
Bayraktar B, Tekce E, Aksakal V, Gül M, Takma Ç, Bayraktar S, Bayraktar FG, Eser G. Effect of the addition of essential fatty acid mixture to the drinking water of the heat stress broilers on adipokine (Apelin, BDNF) response, histopathologic findings in liver and intestines, and some blood parameters. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1778548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Bülent Bayraktar
- Faculty of Health Sciences, Department of Physiotherapy and Rehabilitation, Bayburt University, Bayburt, Turkey
| | - Emre Tekce
- Faculty of Applied Sciences, Department of Organic Agriculture Management, Bayburt University, Bayburt, Turkey
| | - Vecihi Aksakal
- Faculty of Applied Sciences, Department of Organic Agriculture Management, Bayburt University, Bayburt, Turkey
| | - Mehmet Gül
- Faculty of Veterinary Medicine, Animal Nutrition and Nutrition Disease, Atatürk University, Erzurum, Turkey
| | - Çiğdem Takma
- Faculty of Agriculture, Department of Animal Science, Biometry and Genetics Unit, Ege University, İzmir, Turkey
| | - Sevil Bayraktar
- Faculty of Veterinary Medicine, Department of physiology, Ondokuz Mayıs University, Samsun, Turkey
| | - Fatma Gülten Bayraktar
- Faculty of Veterinary Medicine, Department of pathology, Atatürk University, Erzurum, Turkey
| | - Gizem Eser
- Faculty of Veterinary Medicine, Department of pathology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
48
|
Cerebral dopamine neurotrophic factor (CDNF) protects against quinolinic acid-induced toxicity in in vitro and in vivo models of Huntington's disease. Sci Rep 2020; 10:19045. [PMID: 33154393 PMCID: PMC7645584 DOI: 10.1038/s41598-020-75439-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder with a progressive loss of medium spiny neurons in the striatum and aggregation of mutant huntingtin in the striatal and cortical neurons. Currently, there are no rational therapies for the treatment of the disease. Cerebral dopamine neurotrophic factor (CDNF) is an endoplasmic reticulum (ER) located protein with neurotrophic factor (NTF) properties, protecting and restoring the function of dopaminergic neurons in animal models of PD more effectively than other NTFs. CDNF is currently in phase I–II clinical trials on PD patients. Here we have studied whether CDNF has beneficial effects on striatal neurons in in vitro and in vivo models of HD. CDNF was able to protect striatal neurons from quinolinic acid (QA)-induced cell death in vitro via increasing the IRE1α/XBP1 signalling pathway in the ER. A single intrastriatal CDNF injection protected against the deleterious effects of QA in a rat model of HD. CDNF improved motor coordination and decreased ataxia in QA-toxin treated rats, and stimulated the neurogenesis by increasing doublecortin (DCX)-positive and NeuN-positive cells in the striatum. These results show that CDNF positively affects striatal neuron viability reduced by QA and signifies CDNF as a promising drug candidate for the treatment of HD.
Collapse
|
49
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
50
|
The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS One 2020; 15:e0234458. [PMID: 32569264 PMCID: PMC7307776 DOI: 10.1371/journal.pone.0234458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/03/2020] [Indexed: 12/17/2022] Open
Abstract
We investigated the association of multiple single nucleotide polymorphisms (SNPs) with athlete status and power/speed performance in elite male youth soccer players (ESP) and control participants (CON) at different stages of maturity. ESP (n = 535; aged 8-23 years) and CON (n = 151; aged 9-26 years) were genotyped for 10 SNPs and grouped according to years from predicted peak-height-velocity (PHV), i.e. pre- or post-PHV, to determine maturity status. Participants performed bilateral vertical countermovement jumps, bilateral horizontal-forward countermovement jumps, 20m sprints and modified 505-agility tests. Compared to CON, pre-PHV ESP demonstrated a higher ACTN3 (rs1815739) XX ('endurance') genotype frequency distribution, while post-PHV ESP revealed a higher frequency distribution of the PPARA (rs4253778) C-allele, AGT (rs699) GG genotype and NOS3 (rs2070744) T-allele ('power' genotypes/alleles). BDNF (rs6265) CC, COL5A1 (rs12722) CC and NOS3 TT homozygotes sprinted quicker than A-allele carriers, CT heterozygotes and CC homozygotes, respectively. COL2A1 (rs2070739) CC and AMPD1 (rs17602729) GG homozygotes sprinted faster than their respective minor allele carrier counterparts in CON and pre-PHV ESP, respectively. BDNF CC homozygotes jumped further than T-allele carriers, while ESP COL5A1 CC homozygotes jumped higher than TT homozygotes. To conclude, we have shown for the first time that pre- and post-PHV ESP have distinct genetic profiles, with pre-PHV ESP more suited for endurance, and post-PHV ESP for power and speed (the latter phenotypes being crucial attributes for post-PHV ESP). We have also demonstrated that power, acceleration and sprint performance were associated with five SNPs, both individually and in combination, possibly by influencing muscle size and neuromuscular activation.
Collapse
|