1
|
Ward A, Jessop F, Faris R, Shoup D, Bosio CM, Peterson KE, Priola SA. Lack of the immune adaptor molecule SARM1 accelerates disease in prion infected mice and is associated with increased mitochondrial respiration and decreased expression of NRF2. PLoS One 2022; 17:e0267720. [PMID: 35507602 PMCID: PMC9067904 DOI: 10.1371/journal.pone.0267720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are a group of fatal, transmissible neurodegenerative diseases of mammals. In the brain, axonal loss and neuronal death are prominent in prion infection, but the mechanisms remain poorly understood. Sterile alpha and heat/Armadillo motif 1 (SARM1) is a protein expressed in neurons of the brain that plays a critical role in axonal degeneration. Following damage to axons, it acquires an NADase activity that helps to regulate mitochondrial health by breaking down NAD+, a molecule critical for mitochondrial respiration. SARM1 has been proposed to have a protective effect in prion disease, and we hypothesized that it its role in regulating mitochondrial energetics may be involved. We therefore analyzed mitochondrial respiration in SARM1 knockout mice (SARM1KO) and wild-type mice inoculated either with prions or normal brain homogenate. Pathologically, disease was similar in both strains of mice, suggesting that SARM1 mediated axonal degradation is not the sole mechanism of axonal loss during prion disease. However, mitochondrial respiration was significantly increased and disease incubation time accelerated in prion infected SARM1KO mice when compared to wild-type mice. Increased levels of mitochondrial complexes II and IV and decreased levels of NRF2, a potent regulator of reactive oxygen species, were also apparent in the brains of SARM1KO mice when compared to wild-type mice. Our data suggest that SARM1 slows prion disease progression, likely by regulating mitochondrial respiration, which may help to mitigate oxidative stress via NRF2.
Collapse
Affiliation(s)
- Anne Ward
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Forrest Jessop
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Robert Faris
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Catharine M. Bosio
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Suzette A. Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
2
|
Schmitt-Ulms G, Mehrabian M, Williams D, Ehsani S. The IDIP framework for assessing protein function and its application to the prion protein. Biol Rev Camb Philos Soc 2021; 96:1907-1932. [PMID: 33960099 DOI: 10.1111/brv.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023]
Abstract
The quest to determine the function of a protein can represent a profound challenge. Although this task is the mandate of countless research groups, a general framework for how it can be approached is conspicuously lacking. Moreover, even expectations for when the function of a protein can be considered to be 'known' are not well defined. In this review, we begin by introducing concepts pertinent to the challenge of protein function assignments. We then propose a framework for inferring a protein's function from four data categories: 'inheritance', 'distribution', 'interactions' and 'phenotypes' (IDIP). We document that the functions of proteins emerge at the intersection of inferences drawn from these data categories and emphasise the benefit of considering them in an evolutionary context. We then apply this approach to the cellular prion protein (PrPC ), well known for its central role in prion diseases, whose function continues to be considered elusive by many investigators. We document that available data converge on the conclusion that the function of the prion protein is to control a critical post-translational modification of the neural cell adhesion molecule in the context of epithelial-to-mesenchymal transition and related plasticity programmes. Finally, we argue that this proposed function of PrPC has already passed the test of time and is concordant with the IDIP framework in a way that other functions considered for this protein fail to achieve. We anticipate that the IDIP framework and the concepts analysed herein will aid the investigation of other proteins whose primary functional assignments have thus far been intractable.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Sepehr Ehsani
- Theoretical and Philosophical Biology, Department of Philosophy, University College London, Bloomsbury, London, WC1E 6BT, U.K.,Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, U.S.A
| |
Collapse
|
3
|
M Passos Y, J do Amaral M, C Ferreira N, Macedo B, Chaves JAP, E de Oliveira V, P B Gomes M, L Silva J, Cordeiro Y. The interplay between a GC-rich oligonucleotide and copper ions on prion protein conformational and phase transitions. Int J Biol Macromol 2021; 173:34-43. [PMID: 33476618 DOI: 10.1016/j.ijbiomac.2021.01.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) misfolding to its infectious form is critical to the development of prion diseases, whereby various ligands are suggested to participate, such as copper and nucleic acids (NA). The PrP globular domain was shown to undergo NA-driven liquid-liquid phase separation (LLPS); this latter may precede pathological aggregation. Since Cu(II) is a physiological ligand of PrP, we argue whether it modulates phase separation altogether with nucleic acids. Using recombinant PrP, we investigate the effects of Cu(II) (at 6 M equivalents) and a previously described PrP-binding GC-rich DNA (equimolarly to protein) on PrP conformation, oligomerization, and phase transitions using a range of biophysical techniques. Raman spectroscopy data reveals the formation of the ternary complex. Microscopy suggests that phase separation is mainly driven by DNA, whereas Cu(II) has no influence. Our results show that DNA can be an adjuvant, leading to the structural conversion of PrP, even in the presence of an endogenous ligand, copper. These results provide new insights into the role of Cu(II) and NA on the phase separation, structural conversion, and aggregation of PrP, which are critical events leading to neurodegeneration.
Collapse
Affiliation(s)
- Yulli M Passos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Mariana J do Amaral
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Natalia C Ferreira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil; Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, MT, USA
| | - Bruno Macedo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Juliana A P Chaves
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil
| | - Vanessa E de Oliveira
- Departamento de Ciências da Natureza, Universidade Federal Fluminense, Rio das Ostras 28890-000, RJ, Brazil
| | - Mariana P B Gomes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Jerson L Silva
- Instituto de Bioquímica Médica, Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-590, RJ, Brazil.
| |
Collapse
|
4
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
5
|
Kanyo R, Leighton PLA, Neil GJ, Locskai LF, Allison WT. Amyloid-β precursor protein mutant zebrafish exhibit seizure susceptibility that depends on prion protein. Exp Neurol 2020; 328:113283. [PMID: 32165257 DOI: 10.1016/j.expneurol.2020.113283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/03/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
It has been proposed that Amyloid β Precursor Protein (APP) might act as a rheostat controlling neuronal excitability, but mechanisms have remained untested. APP and its catabolite Aβ are known to impact upon synapse function and dysfunction via their interaction with the prion protein (PrPC), suggesting a candidate pathway. Here we test if PrPC is required for this APP function in vivo, perhaps via modulating mGluR5 ion channels. We engineered zebrafish to lack homologs of PrPC and APP, allowing us to assess their purported genetic and physiological interactions in CNS development. We generated four appa null alleles as well as prp1-/-;appa-/- double mutants (engineering of prp1 mutant alleles is described elsewhere). Unexpectedly, appa-/- and compound prp1-/-;appa-/- mutants are viable and lacked overt phenotypes (except being slightly smaller than wildtype fish at some developmental stages). Zebrafish prp1-/- mutants were substantially more sensitive to appa knockdown than wildtype fish, and both zebrafish prp1 and mammalian Prnp mRNA were significantly able to partially rescue this effect. Further, appa-/- mutants exhibited increased seizures upon exposure to low doses of convulsant. The mechanism of this seizure susceptibility requires prp1 insomuch that seizures were significantly dampened to wildtype levels in prp1-/-;appa-/- mutants. Inhibiting mGluR5 channels, which may be downstream of PrPC, increased seizure intensity only in prp1-/- mutants, and this seizure mechanism required intact appa. Taken together, these results support an intriguing genetic interaction between prp1 and appa with their shared roles impacting upon neuron hyperexcitability, thus complementing and extending past works detailing their biochemical interaction(s).
Collapse
Affiliation(s)
- Richard Kanyo
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Gavin J Neil
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Laszlo F Locskai
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
6
|
Keller G, Binyamin O, Frid K, Saada A, Gabizon R. Mitochondrial dysfunction in preclinical genetic prion disease: A target for preventive treatment? Neurobiol Dis 2018; 124:57-66. [PMID: 30423473 DOI: 10.1016/j.nbd.2018.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial malfunction is a common feature in advanced stages of neurodegenerative conditions, as is the case for the accumulation of aberrantly folded proteins, such as PrP in prion diseases. In this work, we investigated mitochondrial activity and expression of related factors vis a vis PrP accumulation at the subclinical stages of TgMHu2ME199K mice, modeling for genetic prion diseases. While these mice remain healthy until 5-6 months of age, they succumb to fatal disease at 12-14 months. We found that mitochondrial respiratory chain enzymatic activates and ATP/ROS production, were abnormally elevated in asymptomatic mice, concomitant with initial accumulation of disease related PrP. In parallel, the expression of Cytochrome c oxidase (COX) subunit IV isoform 1(Cox IV-1) was reduced and replaced by the activity of Cox IV isoform 2, which operates in oxidative neuronal conditions. At all stages of disease, Cox IV-1 was absent from cells accumulating disease related PrP, suggesting that PrP aggregates may directly compromise normal mitochondrial function. Administration of Nano-PSO, a brain targeted antioxidant, to TgMHu2ME199K mice, reversed functional and biochemical mitochondrial functions to normal conditions regardless of the presence of misfolded PrP. Our results therefore indicate that in genetic prion disease, oxidative damage initiates long before clinical manifestations. These manifest only when aggregated PrP levels are too high for the compensatory mechanisms to sustain mitochondrial activity.
Collapse
Affiliation(s)
- Guy Keller
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Orli Binyamin
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Kati Frid
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ann Saada
- Department of Genetics and Metabolic Diseases, The Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Israel; Medical School, The Hebrew University, Jerusalem, Israel
| | - Ruth Gabizon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Israel; Medical School, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
7
|
Ghodrati F, Mehrabian M, Williams D, Halgas O, Bourkas MEC, Watts JC, Pai EF, Schmitt-Ulms G. The prion protein is embedded in a molecular environment that modulates transforming growth factor β and integrin signaling. Sci Rep 2018; 8:8654. [PMID: 29872131 PMCID: PMC5988664 DOI: 10.1038/s41598-018-26685-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
At times, it can be difficult to discern if a lack of overlap in reported interactions for a protein-of-interest reflects differences in methodology or biology. In such instances, systematic analyses of protein-protein networks across diverse paradigms can provide valuable insights. Here, we interrogated the interactome of the prion protein (PrP), best known for its central role in prion diseases, in four mouse cell lines. Analyses made use of identical affinity capture and sample processing workflows. Negative controls were generated from PrP knockout lines of the respective cell models, and the relative levels of peptides were quantified using isobaric labels. The study uncovered 26 proteins that reside in proximity to PrP. All of these proteins are predicted to have access to the outer face of the plasma membrane, and approximately half of them were not reported to interact with PrP before. Strikingly, although several proteins exhibited profound co-enrichment with PrP in a given model, except for the neural cell adhesion molecule 1, no protein was highly enriched in all PrP-specific interactomes. However, Gene Ontology analyses revealed a shared association of the majority of PrP candidate interactors with cellular events at the intersection of transforming growth factor β and integrin signaling.
Collapse
Affiliation(s)
- Farinaz Ghodrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada
| | - Ondrej Halgas
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 5th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Toronto, Ontario, M5G 1L7, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, 6th Floor, 60 Leonard Avenue, Toronto, Ontario, M5T 0S8, Canada. .,Department of Laboratory Medicine & Pathobiology, University of Toronto, Medical Sciences Building, 6th Floor, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
8
|
Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol 2018; 135:179-199. [PMID: 29094186 DOI: 10.1007/s00401-017-1782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022]
Abstract
Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.
Collapse
|
9
|
Leighton PLA, Allison WT. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function. J Alzheimers Dis 2018; 54:3-29. [PMID: 27392869 DOI: 10.3233/jad-160361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted.
Collapse
Affiliation(s)
- Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Caneus J, Granic A, Rademakers R, Dickson DW, Coughlan CM, Chial HJ, Potter H. Mitotic defects lead to neuronal aneuploidy and apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. Mol Biol Cell 2017; 29:575-586. [PMID: 29282277 PMCID: PMC6004587 DOI: 10.1091/mbc.e17-01-0031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023] Open
Abstract
Mutant Tau (MAPT) can lead to frontotemporal lobar degeneration (FTLD). Previous studies associated MAPT mutations and altered function with aneuploidy and chromosome instability in human lymphocytes and in Drosophila development. Here we examine whether FTLD-causing mutations in human MAPT induce aneuploidy and apoptosis in the mammalian brain. First, aneuploidy was found in brain cells from MAPT mutant transgenic mice expressing FTLD mutant human MAPT. Then brain neurons from mice homozygous or heterozygous for the Tau (Mapt) null allele were found to exhibit increasing levels of aneuploidy with decreasing Tau gene dosage. To determine whether aneuploidy leads to neurodegeneration in FTLD, we measured aneuploidy and apoptosis in brain cells from patients with MAPT mutations and identified both increased aneuploidy and apoptosis in the same brain neurons and glia. To determine whether there is a direct relationship between MAPT-induced aneuploidy and apoptosis, we expressed FTLD-causing mutant forms of MAPT in karyotypically normal human cells and found that they cause aneuploidy and mitotic spindle defects that then result in apoptosis. Collectively, our findings reveal a neurodegenerative pathway in FTLD-MAPT in which neurons and glia exhibit mitotic spindle abnormalities, chromosome mis-segregation, and aneuploidy, which then lead to apoptosis.
Collapse
Affiliation(s)
- Julbert Caneus
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Antoneta Granic
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom.,Campus for Ageing and Vitality, Biomedical Research Building, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | - Christina M Coughlan
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045
| | - Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045 .,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
11
|
Allison WT, DuVal MG, Nguyen-Phuoc K, Leighton PLA. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology. Int J Mol Sci 2017; 18:E2223. [PMID: 29064456 PMCID: PMC5666902 DOI: 10.3390/ijms18102223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.
Collapse
Affiliation(s)
- W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Michèle G DuVal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kim Nguyen-Phuoc
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
12
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
13
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Carmona-Aparicio L, Pérez-Cruz C, Zavala-Tecuapetla C, Granados-Rojas L, Rivera-Espinosa L, Montesinos-Correa H, Hernández-Damián J, Pedraza-Chaverri J, Sampieri AIII, Coballase-Urrutia E, Cárdenas-Rodríguez N. Overview of Nrf2 as Therapeutic Target in Epilepsy. Int J Mol Sci 2015; 16:18348-67. [PMID: 26262608 PMCID: PMC4581249 DOI: 10.3390/ijms160818348] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.
Collapse
Affiliation(s)
- Liliana Carmona-Aparicio
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Claudia Pérez-Cruz
- Laboratory of Neuroplasticity and Neurodegeneration, Cinvestav, D.F. 07360, Mexico; E-Mail:
| | - Cecilia Zavala-Tecuapetla
- Laboratory of Physiology of the Reticular Formation, National Institute of Neurology and Neurosurgery-MVS, D.F. 14269, Mexico; E-Mail:
| | - Leticia Granados-Rojas
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | | | | | - Jacqueline Hernández-Damián
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Aristides III Sampieri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, D.F. 04150, Mexico; E-Mails: (J.H.-D.); (J.P.-C.)
| | - Elvia Coballase-Urrutia
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| | - Noemí Cárdenas-Rodríguez
- Laboratory of Neurochemistry (Neurosciences), National Institute of Pediatrics, D.F. 04530, Mexico; E-Mail:
| |
Collapse
|
15
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
16
|
Onodera T, Sakudo A, Wu G, Saeki K. Bovine Spongiform Encephalopathy in Japan: History and Recent Studies on Oxidative Stress in Prion Diseases. Microbiol Immunol 2013; 50:565-78. [PMID: 16924141 DOI: 10.1111/j.1348-0421.2006.tb03831.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the respect to BSE and vCJD, compliance with the following three rules should strictly be observed: (i) Identification and destruction of all clinically affected cattle; (ii) destruction of all mammalian proteins used in feeding ruminant livestock; and (iii) destruction of all high-risk tissues for use in human consumption. Scrapie in sheep has been documented in the 18th century in the United Kingdom. Through studies of brain-to-brain transmission in the same species in 1935, Cuille et al. successfully isolated the culprit protein from the sheep brain. To transmit said protein from an animal to another, intracerebral inoculation was much more efficient than intraperitoneal or oral route in certain species; i.e. the hamster and mouse. Since discovery of the more efficacious infection route, studies and development of prion research have undergone 4 developmental phases. Phase I depicted discoveries of the pathological features of Creutzfeldt-Jakob disease (CJD) and scrapie with typical lesions of spongiform encephalopathy, while Phase II revealed individual-to-individual (or cross-species) transmissions of CJD, kuru and scrapie in animals. Phases I and II suggested the possible participation of a slow virus in the infection process. In Phase III, Prusiner et al. proposed the 'prion' theory in 1982, followed by the milestone development of the transgenic or gene-targeted mouse in prion research in Phase IV. By strain-typing of prions, CJD has been classified as type 2 or 4 by Parchi et al. and Wadsworth as type-2 or -4 and type-1 or -2, respectively. Wadsworth type 1 is detected in the cerebellum, while Wadsworth type 2 was detected in the prefrontal cortex of 10% of sporadic CJD patients. In 1999, Puoti et al. have reported the co-existence of two types of PrP(res) in a same patient. These reports indicated that PrP(res)-typing is a quantitative rather than a qualitative process, and the relationship between the molecular type and the prion strain is rather complex. In fact, previous findings of Truchot have correlated type-1 distribution with synaptic deposits, and type-2 with arrangement of diffuse deposits in neurons. Although the normal function of PrP(C) has not been fully understood, recent studies have shown that PrP(C) plays a role in copper metabolism, signal transduction, neuroprotection and cell maturation. Further search of PrP(C)-interacting molecules and detailed studies using Prnp(-/-) mice and various type of Prnp(-/-) cell lines under various conditions are the prerequisites in elucidating PrP functions. In the pathogenesis of prion diseases, present results support the hypothesis that 'loss-of-function' of PrP(C) decreases resistance to oxidative stress, and 'gain-of-function' of PrP(Sc) increases oxidative stress. The mechanisms of (i) the 'loss-of-function' of PrP(C) in enhanced susceptibility to oxidative stress and (ii) the 'gain-of-function' of PrP(Sc) in generation of oxidative stress remain to be elucidated, although their mechanisms of action, at least in part, involve the decrease and increase in SOD activity, respectively.
Collapse
Affiliation(s)
- Takashi Onodera
- Department of Molecular Immunology, School of Agricultural and Life Sciences, University of Tokyo
| | | | | | | |
Collapse
|
17
|
Kaiser DM, Acharya M, Leighton PLA, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT. Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 2012; 7:e51305. [PMID: 23236467 PMCID: PMC3517466 DOI: 10.1371/journal.pone.0051305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 01/12/2023] Open
Abstract
Genetic and biochemical mechanisms linking onset or progression of Alzheimer Disease and prion diseases have been lacking and/or controversial, and their etiologies are often considered independent. Here we document a novel, conserved and specific genetic interaction between the proteins that underlie these diseases, amyloid-β precursor protein and prion protein, APP and PRP, respectively. Knockdown of APP and/or PRNP homologs in the zebrafish (appa, appb, prp1, and prp2) produces a dose-dependent phenotype characterized by systemic morphological defects, reduced cell adhesion and CNS cell death. This genetic interaction is surprisingly exclusive in that prp1 genetically interacts with zebrafish appa, but not with appb, and the zebrafish paralog prp2 fails to interact with appa. Intriguingly, appa & appb are largely redundant in early zebrafish development yet their abilities to rescue CNS cell death are differentially contingent on prp1 abundance. Delivery of human APP or mouse Prnp mRNAs rescue the phenotypes observed in app-prp-depleted zebrafish, highlighting the conserved nature of this interaction. Immunoprecipitation revealed that human APP and PrP(C) proteins can have a physical interaction. Our study reports a unique in vivo interdependence between APP and PRP loss-of-function, detailing a biochemical interaction that considerably expands the hypothesized roles of PRP in Alzheimer Disease.
Collapse
Affiliation(s)
- Darcy M. Kaiser
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moulinath Acharya
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L. A. Leighton
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hao Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Beipei Shi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - W. Ted Allison
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Rubenstein R. Proteomic analysis of prion diseases: creating clarity or causing confusion? Electrophoresis 2012; 33:3631-43. [PMID: 23161058 DOI: 10.1002/elps.201200310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/25/2012] [Accepted: 07/04/2012] [Indexed: 11/10/2022]
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are progressive, fatal neurodegenerative diseases. There are both human and animal forms of the disease and all are associated with the conversion of a normal host-coded cellular prion protein (PrP(C) ) into an abnormal protease-resistant isoform (PrP(Sc) ). Although methodologies are sensitive and specific for postmortem disease diagnosis, the use of PrP(Sc) as a preclinical or general biomarker for surveillance is difficult, due to the fact that it is present in extremely small amounts in accessible tissues or body fluids such as blood, urine, saliva, and cerebrospinal fluid. Recently, amplification techniques have been developed, which have enabled increased sensitivity for PrP(Sc) detection. However, it has recently been reported that proteinase K sensitive, pathological isoforms of PrP may have a significant role in the pathogenesis of some prion diseases. Accordingly, the development of new diagnostic tests that do not rely on PrP(Sc) and proteinase K digestion is desirable. The search for biomarkers (other than PrP(Sc) ) as tools for diagnosis of prion diseases has a long history. Ideally biomarkers able to detect all transmissible spongiform encephalopathies, even at preclinical stages of infection are desirable but not yet possible due to the heterogeneity of the disease and lengthy disease progression. Recent advances in neuroproteomics have led to an overwhelming amount of information, which may offer insight on protein-protein interactions. While the amount of data obtained is impressive, the ability to relate it to the disease and validating its usefulness in diagnostic biomarker development remains a formidable challenge.
Collapse
Affiliation(s)
- Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| |
Collapse
|
19
|
Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity. Mol Neurodegener 2012; 7:18. [PMID: 22534096 PMCID: PMC3355018 DOI: 10.1186/1750-1326-7-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/26/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. FINDINGS Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. CONCLUSIONS This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.
Collapse
|
20
|
Zampieri M, Legname G, Segre D, Altafini C. A system-level approach for deciphering the transcriptional response to prion infection. Bioinformatics 2011; 27:3407-14. [DOI: 10.1093/bioinformatics/btr580] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur J Cell Biol 2011; 90:414-9. [DOI: 10.1016/j.ejcb.2010.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
|
22
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 PMCID: PMC11498852 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
23
|
Frigerio CS, Fadeeva JV, Minogue AM, Citron M, Leuven FV, Stufenbiel M, Paganetti P, Selkoe DJ, Walsh DM. beta-Secretase cleavage is not required for generation of the intracellular C-terminal domain of the amyloid precursor family of proteins. FEBS J 2010; 277:1503-18. [PMID: 20163459 PMCID: PMC2847843 DOI: 10.1111/j.1742-4658.2010.07579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amyloid precursor family of proteins are of considerable interest, both because of their role in Alzheimer's disease pathogenesis and because of their normal physiological functions. In mammals, the amyloid precursor protein (APP) has two homologs, amyloid precursor-like protein (APLP) 1 and APLP2. All three proteins undergo ectodomain shedding and regulated intramembrane proteolysis, and important functions have been attributed to the full-length proteins, shed ectodomains, C-terminal fragments and intracellular domains (ICDs). One of the proteases that is known to cleave APP and that is essential for generation of the amyloid beta-protein is the beta-site APP-cleaving enzyme 1 (BACE1). Here, we investigated the effects of genetic manipulation of BACE1 on the processing of the APP family of proteins. BACE1 expression regulated the levels and species of full-length APLP1, APP and APLP2, of their shed ectodomains, and of their membrane-bound C-terminal fragments. In particular, APP processing appears to be tightly regulated, with changes in beta-cleaved APPs (APPsbeta) being compensated for by changes in alpha-cleaved APPs (APPsalpha). In contrast, the total levels of soluble cleaved APLP1 and APLP2 species were less tightly regulated, and fluctuated with BACE1 expression. Importantly, the production of ICDs for all three proteins was not decreased by loss of BACE1 activity. These results indicate that BACE1 is involved in regulating ectodomain shedding, maturation and trafficking of the APP family of proteins. Consequently, whereas inhibition of BACE1 is unlikely to adversely affect potential ICD-mediated signaling, it may alter other important facets of amyloid precursor-like protein/APP biology.
Collapse
Affiliation(s)
- Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Julia V. Fadeeva
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Aedín M. Minogue
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Martin Citron
- Amgen Inc., Thousand Oaks, CA 91320-1799, Current affiliation: Eli Lilly and Company, Indianapolis, IN 46285
| | - Fred Van Leuven
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Matthias Stufenbiel
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Paolo Paganetti
- Nervous System Research, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dennis J. Selkoe
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
24
|
Nygaard HB, Strittmatter SM. Cellular prion protein mediates the toxicity of beta-amyloid oligomers: implications for Alzheimer disease. ACTA ACUST UNITED AC 2009; 66:1325-8. [PMID: 19901162 DOI: 10.1001/archneurol.2009.223] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Alzheimer disease (AD) is the most common cause of age-related dementia, affecting more than 25 million people worldwide. The accumulation of insoluble beta-amyloid (Abeta) plaques in the brain has long been considered central to the pathogenesis of AD. However, recent evidence suggests that soluble oligomeric assemblies of Abeta may be of greater importance. beta-Amyloid oligomers have been found to be potent synaptotoxins, but the mechanism by which they exert their action has remained elusive. Herein, we review the recently published finding that cellular prion protein (PrP(c)) is a high-affinity receptor for Abeta oligomers, mediating their toxic effects on synaptic plasticity. We further discuss the relationship between AD and PrP(c) and the potential clinical implications. Cellular prion protein may provide a novel target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | | |
Collapse
|
25
|
New insights into cellular prion protein (PrPc) functions: the "ying and yang" of a relevant protein. ACTA ACUST UNITED AC 2009; 61:170-84. [PMID: 19523487 DOI: 10.1016/j.brainresrev.2009.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 12/19/2022]
Abstract
The conversion of cellular prion protein (PrP(c)), a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrP(sc)) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrP(c) is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully determined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrP(c) interacts with several molecules to activate signaling cascades with a high number of cellular effects. To determine PrP(c) functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrP(c) protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrP(c) has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. In this review, we summarize new findings on PrP(c) functions, especially those related to neural degeneration and cell signaling.
Collapse
|
26
|
Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009; 457:1128-32. [PMID: 19242475 PMCID: PMC2748841 DOI: 10.1038/nature07761] [Citation(s) in RCA: 1224] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 01/07/2009] [Indexed: 11/09/2022]
Abstract
A pathological hallmark of Alzheimer’s disease (AD) is an accumulation of insoluble plaque containing the amyloid-β peptide (Aβ) of 40–42 aa residues1. Prefibrillar, soluble oligomers of Aβ have been recognized to be early and key intermediates in AD-related synaptic dysfunction2–9. At nanomolar concentrations, soluble Aβ-oligomers block hippocampal long-term potentiation7, cause dendritic spine retraction from pyramidal cells5,8 and impair rodent spatial memory2. Soluble Aβ-oligomers have been prepared from chemical syntheses, from transfected cell culture supernatants, from transgenic mouse brain and from human AD brain2,4,7,9. Together, these data imply a high affinity cell surface receptor for soluble Aβ-oligomers on neurons, one that is central to the pathophysiological process in AD. Here, we identify the cellular Prion Protein (PrPC) as an Aβ-oligomer receptor by expression cloning. Aβ-oligomers bind with nanomolar affinity to PrPC, but the interaction does not require the infectious PrPSc conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the Aβ-oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent Aβ-oligomer binding to PrPC and rescue synaptic plasticity in hippocampal slices from oligomeric β. Thus, PrPC is a mediator of Aβoligomer induced synaptic dysfunction, and PrPC-specific pharmaceuticals may have therapeutic potential for Alzheimer’s disease.
Collapse
Affiliation(s)
- Juha Laurén
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | |
Collapse
|
27
|
Sellarajah S, Boussard C, Lekishvili T, Brown DR, Gilbert IH. Synthesis and testing of peptides for anti-prion activity. Eur J Med Chem 2008; 43:2418-27. [DOI: 10.1016/j.ejmech.2008.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|
28
|
Meyerett C, Michel B, Pulford B, Spraker TR, Nichols TA, Johnson T, Kurt T, Hoover EA, Telling GC, Zabel MD. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification. Virology 2008; 382:267-76. [PMID: 18952250 DOI: 10.1016/j.virol.2008.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
Abstract
We used serial protein misfolding cyclic amplification (sPMCA) to amplify the D10 strain of CWD prions in a linear relationship over two logs of D10 dilutions. The resultant PMCA-amplified D10 induced terminal TSE disease in CWD-susceptible Tg(cerPrP)1536 mice with a survival time approximately 80 days shorter than the original D10 inoculum, similar to that produced by in vivo sub-passage of D10 in Tg(cerPrP)1536 mice. Both in vitro-amplified and mouse-passaged D10 produced brain lesion profiles, glycoform ratios and conformational stabilities significantly different than those produced by the original D10 inoculum in Tg(cerPrP)1536 mice. These findings demonstrate that sPMCA can amplify and adapt prion strains in vitro as effectively and much more quickly than in vivo strain adaptation by mouse passage. Thus sPMCA may represent a powerful tool to assess prion strain adaptation and species barriers in vitro.
Collapse
Affiliation(s)
- Crystal Meyerett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Frank Baumann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| | - Juliane Bremer
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland,
| |
Collapse
|
30
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
31
|
Noinville S, Chich JF, Rezaei H. Misfolding of the prion protein: linking biophysical and biological approaches. Vet Res 2008; 39:48. [PMID: 18533092 DOI: 10.1051/vetres:2008025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 06/03/2008] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases that can arise spontaneously, be inherited, or acquired by infection in mammals. The propensity of the prion protein to adopt different structures is a clue to its pathological and perhaps biological role too. While the normal monomeric PrP is well characterized, the misfolded conformations responsible for neurodegeneration remain elusive despite progress in this field. Both structural dynamics and physico-chemical approaches are thus fundamental for a better knowledge of the molecular basis of this pathology. Indeed, multiple misfolding pathways combined with extensive posttranslational modifications of PrP and probable interaction(s) with cofactors call for a combination of approaches. In this review, we outline the current physico-chemical knowledge explaining the conformational diversities of PrP in relation with postulated or putative cellular partners such as proteic or non-proteic ligands.
Collapse
Affiliation(s)
- Sylvie Noinville
- Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, F-78352 Jouy-en-Josas, France
| | | | | |
Collapse
|
32
|
Satoh J, Obayashi S, Misawa T, Sumiyoshi K, Oosumi K, Tabunoki H. Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 2008; 35:16-35. [PMID: 18482256 DOI: 10.1111/j.1365-2990.2008.00947.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS To obtain an insight into the function of cellular prion protein (PrPC), we studied PrPC-interacting proteins (PrPIPs) by analysing a protein microarray. METHODS We identified 47 novel PrPIPs by probing an array of 5000 human proteins with recombinant human PrPC spanning amino acid residues 23-231 named PR209. RESULTS The great majority of 47 PrPIPs were annotated as proteins involved in the recognition of nucleic acids. Coimmunoprecipitation and cell imaging in a transient expression system validated the interaction of PR209 with neuronal PrPIPs, such as FAM64A, HOXA1, PLK3 and MPG. However, the interaction did not generate proteinase K-resistant proteins. KeyMolnet, a bioinformatics tool for analysing molecular interaction on the curated knowledge database, revealed that the complex molecular network of PrPC and PrPIPs has a significant relationship with AKT, JNK and MAPK signalling pathways. CONCLUSIONS Protein microarray is a useful tool for systematic screening and comprehensive profiling of the human PrPC interactome. Because the network of PrPC and interactors involves signalling pathways essential for regulation of cell survival, differentiation, proliferation and apoptosis, these observations suggest a logical hypothesis that dysregulation of the PrPC interactome might induce extensive neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- J Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Gavín R, Ureña J, Rangel A, Pastrana MA, Requena JR, Soriano E, Aguzzi A, Del Río JA. Fibrillar prion peptide PrP(106-126) treatment induces Dab1 phosphorylation and impairs APP processing and Abeta production in cortical neurons. Neurobiol Dis 2008; 30:243-54. [PMID: 18374587 DOI: 10.1016/j.nbd.2008.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 01/30/2008] [Accepted: 02/01/2008] [Indexed: 02/03/2023] Open
Abstract
Alzheimer's disease and prion diseases (e.g., Creutzfeldt-Jakob disease) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. However, the intracellular events in prion diseases and their relation with the processing of the amyloid precursor protein (APP) and beta-amyloid generation are unknown. The adaptor protein Dab1 may regulate intracellular trafficking and secretase-mediated proteolysis in APP processing. However, a putative relationship between prion diseases and Dab1/APP interactions is lacking. Thus, we examined, in inoculated animals, whether Dab1 and APP processing are targets of the intracellular events triggered by extracellular exposure to PrP(106-126) peptide. Our in vitro results indicate that PrP(106-126) peptide induces tyrosine phosphorylation of Dab1 by activated members of the Src family of tyrosine kinases (SFK), which implies further Dab1 degradation. We also corroborate these results in Dab1 protein levels in prion-inoculated hamsters. Finally, we show that fibrillar prion peptides have a dual effect on APP processing and beta-amyloid production. First, they block APP trafficking at the cell membrane, thus decreasing beta-amyloid production. In parallel, they reduce Dab1 levels, which also alter APP processing. Lastly, neuronal cultures from Dab1-deficient mice showed severe impairment of APP processing with reduced sAPP secretion and A beta production after prion peptide incubation. Taken together, these data indicate a link between intracellular events induced by exposure to extracellular fibrillar peptide or PrP(res), and APP processing and implicate Dab1 in this link.
Collapse
Affiliation(s)
- Rosalina Gavín
- Cellular and Molecular Basis of Neurodegeneration and Neurorepair, Department of Cell Biology, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Watts JC, Westaway D. The prion protein family: Diversity, rivalry, and dysfunction. Biochim Biophys Acta Mol Basis Dis 2007; 1772:654-72. [PMID: 17562432 DOI: 10.1016/j.bbadis.2007.05.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 11/24/2022]
Abstract
The prion gene family currently consists of three members: Prnp which encodes PrP(C), the precursor to prion disease associated isoforms such as PrP(Sc); Prnd which encodes Doppel, a testis-specific protein involved in the male reproductive system; and Sprn which encodes the newest PrP-like protein, Shadoo, which is expressed in the CNS. Although the identification of numerous candidate binding partners for PrP(C) has hinted at possible cellular roles, molecular interpretations of PrP(C) activity remain obscure and no widely-accepted view as to PrP(C) function has emerged. Nonetheless, studies into the functional interrelationships of prion proteins have revealed an interesting phenomenon: Doppel is neurotoxic to cerebellar cells in a manner which can be blocked by either PrP(C) or Shadoo. Further examination of this paradigm may help to shed light on two prominent unanswered questions in prion biology: the functional role of PrP(C) and the neurotoxic pathways initiated by PrP(Sc) in prion disease.
Collapse
Affiliation(s)
- Joel C Watts
- Centre for Research in Neurodegenerative Diseases and Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | |
Collapse
|
35
|
Fasano C, Campana V, Zurzolo C. Prions: protein only or something more? Overview of potential prion cofactors. J Mol Neurosci 2007; 29:195-214. [PMID: 17085779 DOI: 10.1385/jmn:29:3:195] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/30/1999] [Accepted: 02/03/2006] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrP(C) into a misfolded form (e.g., PrP(Sc) for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrP(Sc)) with the cellular form (PrP(C)) or might result from a mutation in the gene for PrP(C). However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.
Collapse
Affiliation(s)
- Carlo Fasano
- Unité de Trafic Membranaire et Pathogénése, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
36
|
Vana K, Zuber C, Nikles D, Weiss S. Novel aspects of prions, their receptor molecules, and innovative approaches for TSE therapy. Cell Mol Neurobiol 2007; 27:107-28. [PMID: 17151946 PMCID: PMC11517296 DOI: 10.1007/s10571-006-9121-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 09/20/2006] [Indexed: 10/23/2022]
Abstract
1. Prion diseases are a group of rare, fatal neurodegenerative diseases, also known as transmissible spongiform encephalopathies (TSEs), that affect both animals and humans and include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep, chronic wasting disease (CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) in humans. TSEs are usually rapidly progressive and clinical symptoms comprise dementia and loss of movement coordination due to the accumulation of an abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(c)). 2. This article reviews the current knowledge on PrP(c) and PrP(Sc), prion replication mechanisms, interaction partners of prions, and their cell surface receptors. Several strategies, summarized in this article, have been investigated for an effective antiprion treatment including development of a vaccination therapy and screening for potent chemical compounds. Currently, no effective treatment for prion diseases is available. 3. The identification of the 37 kDa/67 kDa laminin receptor (LRP/LR) and heparan sulfate as cell surface receptors for prions, however, opens new avenues for the development of alternative TSE therapies.
Collapse
Affiliation(s)
- Karen Vana
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Chantal Zuber
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Daphne Nikles
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie, Genzentrum, Institut für Biochemie der Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 München, Germany
| |
Collapse
|
37
|
Raeber AJ, Brandner S, Klein MA, Benninger Y, Musahl C, Frigg R, Roeckl C, Fischer MB, Weissmann C, Aguzzi A. Transgenic and knockout mice in research on prion diseases. Brain Pathol 2006; 8:715-33. [PMID: 9804380 PMCID: PMC8098451 DOI: 10.1111/j.1750-3639.1998.tb00197.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since the discovery of the prion protein (PrP) gene more than a decade ago, transgenetic investigations on the PrP gene have shaped the field of prion biology in an unprecedented way. Many questions regarding the role of PrP in susceptibility of an organism exposed to prions have been elucidated. For example mice with a targeted disruption of the PrP gene have allowed the demonstration that an organism that lacks PrPc is resistant to infection by prions. Reconstitution of these mice with mutant PrP genes allowed investigations on the structure-activity relationship of the PrP gene with regard to scrapie susceptibility. Unexpectedly, transgenic mice expressing PrP with specific amino-proximal truncations spontaneously develop a neurologic syndrome presenting with ataxia and cerebellar lesions. A distinct spontaneous neurologic phenotype was observed in mice with internal deletions in PrP. Using ectopic expression of PrP in PrP knockout mice has turned out to be a valuable approach towards the identification of host cells that are capable of replicating prions. Transgenic mice have also contributed to our understanding of the molecular basis of the species barrier for prions. Finally, the availability of PrP knockout mice and transgenic mice overexpressing PrP allows selective reconstitution experiments aimed at expressing PrP in neurografts or in specific populations of hemato- and lymphopoietic cells. Such studies have shed new light onto the mechanisms of prion spread and disease pathogenesis.
Collapse
Affiliation(s)
- A J Raeber
- Institute of Neuropathology, Department of Pathology, University Hospital, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Moleres FJ, Velayos JL. Expression of PrP(C) in the rat brain and characterization of a subset of cortical neurons. Brain Res 2005; 1056:10-21. [PMID: 16109385 DOI: 10.1016/j.brainres.2005.06.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/21/2005] [Accepted: 06/25/2005] [Indexed: 10/25/2022]
Abstract
The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein mainly present in the CNS. The scrapie prion protein (PrP(Sc)) is an isoform of PrP(C), and it is responsible for transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases affecting both humans and animals. The presence of the cellular form is necessary for the establishment and further evolution of prion diseases. Here, we map the regional distribution of PrP(C) in the rat brain and study the chemical nature of these immunopositive neurons. Our observations are congruent with retrograde transport of prions, as shown by the ubiquitous distribution of PrP(C) throughout the rat brain, but especially in the damaged areas that send projections to primarily affected nuclei in fatal familial insomnia. On the other hand, the presence of the cellular isoform in a subset of GABAergic neurons containing calcium-binding proteins suggests that PrP(C) plays a role in the metabolism of calcium. The lack of immunostaining in neurons ensheathed by perineuronal nets indicates that prions do not directly interact with components of these nets. The destruction of these nets is more likely to be the consequence of a factor needed for prions during the early stages of TSEs. This would cause destruction of these nets and death of the surrounded neurons. Our results support the view that destruction of this extracellular matrix is caused by the pathogenic effect of prions and not a primary event in TSEs.
Collapse
Affiliation(s)
- Francisco J Moleres
- Department of Anatomy, Faculty of Medicine, University of Navarra, Irunlarrea s/n, 31080 Pamplona, Spain
| | | |
Collapse
|
39
|
Hijazi N, Kariv-Inbal Z, Gasset M, Gabizon R. PrPSc incorporation to cells requires endogenous glycosaminoglycan expression. J Biol Chem 2005; 280:17057-61. [PMID: 15668233 DOI: 10.1074/jbc.m411314200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many lines of evidence suggest an interaction between glycosaminoglycans (GAGs) and the PrP proteins as well as a possible role for GAGs in prion disease pathogenesis. In this work, we sought to determine whether the PrP-GAG interaction affects the incorporation of PrP(Sc) (the scrapie isoform of PrP) to normal cells. This may be the first step in prion disease pathogenesis. To this effect, we incubated proteinase K-digested hamster scrapie brain homogenates with several lines of Chinese hamster ovary (CHO) cells in the presence or absence of heparin. Our results show that over a large range of PrP(Sc) concentrations the binding of PrP(Sc) to wild type CHO cells, which do not express detectable PrP, was equivalent to the binding of PrP(Sc) to CHO cells overexpressing PrP. A significant part of PrP(Sc) binding to both lines could be inhibited by heparin. Additional evidence that PrP(Sc) binding to cells was dependent on the presence of GAGs could be concluded from the fact that the binding of PrP(Sc) to CHO cells missing GAGs on the cell surface was significantly reduced. Interestingly, preincubation of scrapie brain homogenate with heparin before intraperitoneal inoculation into normal hamsters resulted in a significant delay in prion disease manifestation.
Collapse
Affiliation(s)
- Nuha Hijazi
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
40
|
Derjuga A, Gourley TS, Holm TM, Heng HHQ, Shivdasani RA, Ahmed R, Andrews NC, Blank V. Complexity of CNC transcription factors as revealed by gene targeting of the Nrf3 locus. Mol Cell Biol 2004; 24:3286-94. [PMID: 15060151 PMCID: PMC381672 DOI: 10.1128/mcb.24.8.3286-3294.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cap'n'collar (CNC) family basic leucine zipper transcription factors play crucial roles in the regulation of mammalian gene expression and development. To determine the in vivo function of the CNC protein Nrf3 (NF-E2-related factor 3), we generated mice deficient in this transcription factor. We performed targeted disruption of two Nrf3 exons coding for CNC homology, basic DNA-binding, and leucine zipper dimerization domains. Nrf3 null mice developed normally and revealed no obvious phenotypic differences compared to wild-type animals. Nrf3(-/-) mice were fertile, and gross anatomy as well as behavior appeared normal. The mice showed normal age progression and did not show any apparent additional phenotype during their life span. We observed no differences in various blood parameters and chemistry values. We infected wild-type and Nrf3(-/-) mice with acute lymphocytic choriomeningitis virus and found no differences in these animals with respect to their number of virus-specific CD8 and CD4 T cells as well as their B-lymphocyte response. To determine whether the mild phenotype of Nrf3 null animals is due to functional redundancy, we generated mice deficient in multiple CNC factors. Contrary to our expectations, an absence of Nrf3 does not seem to cause additional lethality in compound Nrf3(-/-)/Nrf2(-/-) and Nrf3(-/-)/p45(-/-) mice. We hypothesize that the role of Nrf3 in vivo may become apparent only after appropriate challenge to the mice.
Collapse
Affiliation(s)
- Anna Derjuga
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA. Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 2004; 22:724-31. [PMID: 15146195 DOI: 10.1038/nbt969] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 03/16/2004] [Indexed: 11/09/2022]
Abstract
Because of their sensitivity to solubilizing detergents, membrane protein assemblies are difficult to study. We describe a protocol that covalently conserves protein interactions through time-controlled transcardiac perfusion cross-linking (tcTPC) before disruption of tissue integrity. To validate tcTPC for identifying protein-protein interactions, we established that tcTPC allowed stringent immunoaffinity purification of the gamma-secretase complex in high salt concentrations and detergents and was compatible with mass spectrometric identification of cross-linked aph-1, presenilin-1 and nicastrin. We then applied tcTPC to identify more than 20 proteins residing in the vicinity of the cellular prion protein (PrPC), suggesting that PrP is embedded in specialized membrane regions with a subset of molecules that, like PrP, use a glycosylphosphatidylinositol anchor for membrane attachment. Many of these proteins have been implicated in cell adhesion/neuritic outgrowth, and harbor immunoglobulin C2 and fibronectin type III-like motifs.
Collapse
Affiliation(s)
- Gerold Schmitt-Ulms
- Institute for Neurodegenerative Disease, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mangé A, Crozet C, Lehmann S, Béranger F. Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin. J Cell Sci 2004; 117:2411-6. [PMID: 15126640 DOI: 10.1242/jcs.01094] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrPC) denoted PrPSc. Recently, wild-type and pathogenic PrP mutants have been shown to be degraded by the endoplasmic reticulum-associated degradation proteasome pathway after translocation into the cytosol. We show here that a protease resistant form of PrP accumulated in the nuclei of prion-infected cells independently of proteasome activity, and that this nuclear translocation required an intact microtubule network. Moreover, our results show for the first time that nuclear PrP interacts with chromatin in vivo, which may have physiopathological consequences in prion diseases
Collapse
Affiliation(s)
- Alain Mangé
- Institut de Génétique Humaine, UPR CNRS1142, 141 Rue de la Cardonille 34396 Montpellier CEDEX 5, France
| | | | | | | |
Collapse
|
43
|
Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM. Detection of New Quantitative Trait Loci for Susceptibility to Transmissible Spongiform Encephalopathies in Mice. Genetics 2003; 165:2085-91. [PMID: 14704188 PMCID: PMC1462892 DOI: 10.1093/genetics/165.4.2085] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractSusceptibility to scrapie is largely controlled by the PRNP gene in mice and in several other species. However, individuals with identical scrapie susceptibility Prnp alleles may have very different incubation periods, suggesting the influence of other environmental and genetic factors. To detect loci influencing susceptibility to TSE, two mouse lines carrying the same PRNP genotype (C57BL and RIII) were crossed to produce an F2 population inoculated intracerebrally with a mouse-adapted scrapie strain. Linkage was studied between 72 markers and the age of death of F2 animals. Six QTL were detected, two at a genome-wide significant level (chromosomes 5 and 7) and four at a genome-wide suggestive level (chromosomes 4, 6, 8, and 17). Our results confirmed the existence of some QTL that were detected previously (chromosomes 4, 6, 7, and 8) while others were found only in the present study (chromosomes 5 and 17). Furthermore, it seems that some QTL (chromosomes 4 and 8) are involved in resistance to scrapie as well as to BSE.
Collapse
Affiliation(s)
- Carole R Moreno
- Station d'Amélioration Génétique des Animaux, Institut National de la Recherche Agronomique, 31326 Auzeville, France.
| | | | | | | | | |
Collapse
|
44
|
Ryou C, Prusiner SB, Legname G. Cooperative binding of dominant-negative prion protein to kringle domains. J Mol Biol 2003; 329:323-33. [PMID: 12758079 DOI: 10.1016/s0022-2836(03)00342-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of the cellular prion protein (PrP(C)) to the pathogenic isoform (PrP(Sc)) is a major biochemical alteration in the progression of prion disease. This conversion process is thought to require interaction between PrP(C) and an as yet unidentified auxiliary factor, provisionally designated protein X. In searching for protein X, we screened a phage display cDNA expression library constructed from prion-infected neuroblastoma (ScN2a) cells and identified a kringle protein domain using full-length recombinant mouse PrP (recMoPrP(23-231), hereafter recMoPrP) expressing a dominant-negative mutation at codon 218 (recMoPrP(Q218K)). In vitro binding analysis using ELISA verified specific interaction of recMoPrP to kringle domains (K(1+2+3)) with higher binding by recMoPrP(Q218K) than by full-length recMoPrP without the mutation. This interaction was confirmed by competitive binding analysis, in which the addition of either a specific anti-kringle antibody or L-lysine abolished the interaction. Biochemical studies of the interactions between K(1+2+3) and various concentrations of both recMoPrP molecules demonstrated binding in a dose-dependent manner. A Hill plot analysis of the data indicates positive cooperative binding of both recMoPrP(Q218K) and recMoPrP to K(1+2+3) with stronger binding by recMoPrP(Q218K). Using full-length and an N-terminally truncated MoPrP(89-231), we demonstrate that N-terminal sequences enable PrP to bind strongly to K(1+2+3). Further characterization with truncated MoPrP(89-231) refolded in different conformations revealed that both alpha-helical and beta-sheet conformations bind to K(1+2+3). Our data demonstrate specific, high-affinity binding of a dominant-negative PrP as well as binding of other PrPs to K(1+2+3). The relevance of such interactions during prion pathogenesis remains to be established.
Collapse
Affiliation(s)
- Chongsuk Ryou
- Institute for Neurodegenerative Diseases, University of California, San Francisco 94143-0518, USA
| | | | | |
Collapse
|
45
|
Li R, Liu T, Yoshihiro F, Tary-Lehmann M, Obrenovich M, Kuekrek H, Kang SC, Pan T, Wong BS, Medof ME, Sy MS. On the same cell type GPI-anchored normal cellular prion and DAF protein exhibit different biological properties. Biochem Biophys Res Commun 2003; 303:446-51. [PMID: 12659837 DOI: 10.1016/s0006-291x(03)00354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.
Collapse
Affiliation(s)
- Ruliang Li
- School of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee KS, Linden R, Prado MAM, Brentani RR, Martins VR. Towards cellular receptors for prions. Rev Med Virol 2003; 13:399-408. [PMID: 14625887 DOI: 10.1002/rmv.408] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) are attributed to the conversion of the cellular prion protein (PrP(c)) into an abnormal isoform (PrP(sc)). This can be caused by the invasion of living organisms by infectious particles, or be inherited due to mutations on the PrP(c) gene. One of the most intriguing problems of prion biology is the inability to generate the infectious agent in vitro. This argues strongly that other cellular proteins besides those added in test tubes or found in cellular preparations are necessary for infection. Despite recent progress in the understanding of prion pathology, the subcellular compartments in which the interaction and conversion of PrP(c) into PrP(sc) take place are still controversial. PrP(c) interacts with various macromolecules at the cell membrane, in endocytic compartments and in the secretory pathway, all of which may play specific roles in the internalisation of PrP(sc) and conversion of PrP(c). A specific interacting protein required for the propagation of prions was originally proposed as a prion receptor, and later referred to as a ligand, a cofactor, protein X, or a partner. However, current studies indicate that PrP(c) associates with multi-molecular complexes, which mediate a variety of functions in distinct cellular compartments. It is proposed that a deeper understanding of the mechanics of such interactions, coupled to a better knowledge of the corresponding signalling pathways and ensuing cellular responses, will have a major impact on the prevention and treatment of TSE.
Collapse
Affiliation(s)
- Kil Sun Lee
- Ludwig Institute for Cancer Research, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
47
|
Alain M, Sylvain L. Nouveaux aspects de la biologie de la protéine prion. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218121267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Legname G, Nelken P, Guan Z, Kanyo ZF, DeArmond SJ, Prusiner SB. Prion and doppel proteins bind to granule cells of the cerebellum. Proc Natl Acad Sci U S A 2002; 99:16285-90. [PMID: 12446843 PMCID: PMC138603 DOI: 10.1073/pnas.242611999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We reported that expression of the cellular prion protein (PrPC) rescues doppel (Dpl)-induced cerebellar degeneration in mice. To search for protein(s) that mediate this process, we fused the C-termini of mouse (Mo) PrP and Dpl to the Fc portion of an IgG. Although both MoPrP-Fc and MoDpl-Fc bound to many regions of the brain, we observed restricted binding to granule cells in the cerebellum, suggesting a scenario in which granule cells express a protein that mediates Dpl-induced neurodegeneration. Because granule cells do not express PrPC, it seems unlikely that MoPrP-Fc binding reflects a ligand that is involved in the conversion of PrPC into PrPSc, the disease-causing isoform. In contrast, the dominant-negative MoPrP(Q218K)-Fc not only binds to granule cells but also binds to neurons of the molecular layer where PrPC is expressed. These findings raise the possibility that the cells of the molecular layer express an auxiliary protein, provisionally designated protein X, which is involved in prion formation and is likely to be distinct from the protein that mediates Dpl-induced degeneration. Although the binding of the dominant-negative MoPrP(Q218K)-Fc to cells in the molecular layer expressing PrPC is consistent with a scenario for the binding of MoPrP(Q218K)-Fc to protein X, the absence of PrPSc deposition in the molecular layer requires that PrP(Sc), once formed there, be readily transported to the cerebellar white matter where PrPSc is found. Identifying the ligands to which PrP-Fc, Dpl-Fc, and dominant-negative PrP bind may provide new insights into the functions of PrPC and Dpl as well as the mechanism of PrPSc formation.
Collapse
Affiliation(s)
- Giuseppe Legname
- Institute for Neurodegenerative Diseases and Departments of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review examines recent attempts to advance the understanding of the mechanism by which neurones die in prion disease. Prion diseases or transmissible spongiform encephalopathies are characterized by the conversion of a normal glycoprotein, the prion protein, to a protease-resistant form that is suggested to be both the infectious agent and the cause of the rapid neurodegeneration in the disease. Death of the patient results from this widespread neuronal loss. Thus understanding the mechanism by which the abnormal form of the prion protein causes neuronal death might lead to treatments that would prevent the life-threatening nature of these diseases.
Collapse
Affiliation(s)
- David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
50
|
Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R. Cellular prion protein transduces neuroprotective signals. EMBO J 2002; 21:3317-26. [PMID: 12093733 PMCID: PMC125390 DOI: 10.1093/emboj/cdf324] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2001] [Revised: 05/02/2002] [Accepted: 05/02/2002] [Indexed: 02/02/2023] Open
Abstract
To test for a role for the cellular prion protein (PrP(c)) in cell death, we used a PrP(c)-binding peptide. Retinal explants from neonatal rats or mice were kept in vitro for 24 h, and anisomycin (ANI) was used to induce apoptosis. The peptide activated both cAMP/protein kinase A (PKA) and Erk pathways, and partially prevented cell death induced by ANI in explants from wild-type rodents, but not from PrP(c)-null mice. Neuroprotection was abolished by treatment with phosphatidylinositol-specific phospholipase C, with human peptide 106-126, with certain antibodies to PrP(c) or with a PKA inhibitor, but not with a MEK/Erk inhibitor. In contrast, antibodies to PrP(c) that increased cAMP also induced neuroprotection. Thus, engagement of PrP(c) transduces neuroprotective signals through a cAMP/PKA-dependent pathway. PrP(c) may function as a trophic receptor, the activation of which leads to a neuroprotective state.
Collapse
Affiliation(s)
| | - Adriana R.O. Freitas
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro,
Instituto Ludwig de Pesquisa sobre o Câncer, Centro de Tratamento e Pesquisa do Hospital do Câncer and Departamento de Bioquímica, Instituto de Química da USP, São Paulo, Brasil Corresponding author e-mail: L.B.Chiarini and A.R.O.Freitas contributed equally to this work
| | - Silvio M. Zanata
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro,
Instituto Ludwig de Pesquisa sobre o Câncer, Centro de Tratamento e Pesquisa do Hospital do Câncer and Departamento de Bioquímica, Instituto de Química da USP, São Paulo, Brasil Corresponding author e-mail: L.B.Chiarini and A.R.O.Freitas contributed equally to this work
| | - Ricardo R. Brentani
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro,
Instituto Ludwig de Pesquisa sobre o Câncer, Centro de Tratamento e Pesquisa do Hospital do Câncer and Departamento de Bioquímica, Instituto de Química da USP, São Paulo, Brasil Corresponding author e-mail: L.B.Chiarini and A.R.O.Freitas contributed equally to this work
| | - Vilma R. Martins
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro,
Instituto Ludwig de Pesquisa sobre o Câncer, Centro de Tratamento e Pesquisa do Hospital do Câncer and Departamento de Bioquímica, Instituto de Química da USP, São Paulo, Brasil Corresponding author e-mail: L.B.Chiarini and A.R.O.Freitas contributed equally to this work
| | - Rafael Linden
- Instituto de Biofísica da UFRJ, CCS, bloco G, Cidade Universitária, 21949-900, Rio de Janeiro,
Instituto Ludwig de Pesquisa sobre o Câncer, Centro de Tratamento e Pesquisa do Hospital do Câncer and Departamento de Bioquímica, Instituto de Química da USP, São Paulo, Brasil Corresponding author e-mail: L.B.Chiarini and A.R.O.Freitas contributed equally to this work
| |
Collapse
|