1
|
Kaiser F, Huebecker M, Wachten D. Sphingolipids controlling ciliary and microvillar function. FEBS Lett 2020; 594:3652-3667. [PMID: 32415987 DOI: 10.1002/1873-3468.13816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
Abstract
Cilia and microvilli are membrane protrusions that extend from the surface of many different mammalian cell types. Motile cilia or flagella are only found on specialized cells, where they control cell movement or the generation of fluid flow, whereas immotile primary cilia protrude from the surface of almost every mammalian cell to detect and transduce extracellular signals. Despite these differences, all cilia consist of a microtubule core called the axoneme. Microvilli instead contain bundled linear actin filaments and are mainly localized on epithelial cells, where they modulate the absorption of nutrients. Cilia and microvilli constitute subcellular compartments with distinctive lipid and protein repertoires and specialized functions. Here, we summarize the role of sphingolipids in defining the identity and controlling the function of cilia and microvilli in mammalian cells.
Collapse
Affiliation(s)
- Fabian Kaiser
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Mylene Huebecker
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, Germany
| |
Collapse
|
2
|
Lin IYC, Van TTH, Smooker PM. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery. Vaccines (Basel) 2015; 3:940-72. [PMID: 26569321 PMCID: PMC4693226 DOI: 10.3390/vaccines3040940] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined.
Collapse
Affiliation(s)
- Ivan Y C Lin
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Thi Thu Hao Van
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| | - Peter M Smooker
- School of Applied Sciences, RMIT University, Plenty Road, Bundoora VIC-3083, Australia.
| |
Collapse
|
3
|
Abstract
Animals assemble and maintain a diverse but host-specific gut microbial community. In addition to characteristic microbial compositions along the longitudinal axis of the intestines, discrete bacterial communities form in microhabitats, such as the gut lumen, colonic mucus layers and colonic crypts. In this Review, we examine how the spatial distribution of symbiotic bacteria among physical niches in the gut affects the development and maintenance of a resilient microbial ecosystem. We consider novel hypotheses for how nutrient selection, immune activation and other mechanisms control the biogeography of bacteria in the gut, and we discuss the relevance of this spatial heterogeneity to health and disease.
Collapse
|
4
|
Wu Z, Xia R, Yin X, Huo Y, Zhu G, Wu S, Bao W. Proteomic Analysis of Duodenal Tissue from Escherichia coli F18-Resistant and -Susceptible Weaned Piglets. PLoS One 2015; 10:e0127164. [PMID: 26053838 PMCID: PMC4459693 DOI: 10.1371/journal.pone.0127164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
Diarrhea and edema disease in weaned piglets due to infection by Escherichia coli F18 is a leading cause of economic loss in the pig industry. Resistance to E. coli F18 depends on expression of receptors on intestinal epithelial cells, and individual immunity. This study was conducted in Sutai pig E. coli F18-resistant and -susceptible full sib-pair individuals, identified on the basis of resource populations and verification of adhesion assays. The molecular mechanism underlying E. coli F18 resistance was investigated through analysis of the expression of E. coli F18 receptor associated and innate immunity proteins, using proteomics and bioinformatics techniques. Two-dimensional electrophoresis analysis revealed a total of 20 differentially expressed proteins in E. coli F18-resistant and -susceptible groups (10 upregulated and 10 downregulated). A total of 16 differentially expressed proteins were identified by MALDI TOF/TOF mass spectral analysis. According to gene ontology and pathway analysis, differentially expressed proteins were mainly involved in cell adhesion, immune response and other biologically relevant functions. Network analysis of interactions between differentially expressed proteins indicated a likelihood of their involvement in E. coli F18 infection. The expression levels of several important proteins including actin beta (ACTB), vinculin (VCL), heat stress proteins (HSPs) and transferrin (TF) in E. coli F18-resistant and -susceptible individuals were verified by Western blotting, supporting the identification of ACTB, VCL, HSPs and TF as promising candidate proteins for association with E. coli F18 susceptibility.
Collapse
Affiliation(s)
- Zhengchang Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Riwei Xia
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xuemei Yin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yongjiu Huo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
|
7
|
Bao WB, Ye L, Zi C, Su XM, Pan ZY, Zhu J, Zhu GQ, Huang XG, Wu SL. Study on the age-dependent tissue expression of FUT1 gene in porcine and its relationship to E. coli F18 receptor. Gene 2012; 497:336-339. [PMID: 22305985 DOI: 10.1016/j.gene.2012.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/16/2011] [Accepted: 01/19/2012] [Indexed: 11/20/2022]
Abstract
Escherichia coli (E. coli) that produces adhesin F18 is the main pathogen responsible for porcine post-weaning diarrhea and edema disease. The receptor for E. coli F18 has not been described in pigs, however the alpha (1,2)-fucosyltransferase (FUT1) gene on chromosome 6 has been proposed as a candidate. The objective of this study, therefore, was to investigate the relationship between FUT1 gene expression and E. coli F18 receptor in Sutai pigs of different ages (8-, 18-, 30- and 35-day-old). FUT1 gene expression was detected in 11 pig tissues with the highest level in lung, and expressed consistently at the four time points. In most tissues, FUT1 gene expression levels decreased from days 8 to 18, then continually increased on days 30 and 35, with expression around weaning time higher than that on day 8. Gene ontology and pathway analysis showed that FUT1 was involved in 32 biological processes, mainly those integral to the membrane, or involved in glycosylation, as well as regulation of binding, interestingly participating in three pathways related to glycosphingolipid biosynthesis. From this analysis and the high linkage disequilibrium between the FUT1 gene and the E. coli F18 receptor locus, we can speculate that higher expression of the FUT1 gene in small intestine is beneficial to the formation of receptors to the E. coli F18 strain and is related to the sensitivity to the pathogen.
Collapse
Affiliation(s)
- Wen-Bin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The effects of ethanol administration on brush border membrane glycolipids in rat intestine. Alcohol 2010; 44:515-22. [PMID: 20708369 DOI: 10.1016/j.alcohol.2010.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/17/2010] [Accepted: 07/14/2010] [Indexed: 11/22/2022]
Abstract
Ethanol ingestion is well known to induce morphological and biochemical changes in intestine and is responsible for intestinal dysfunctions. Luminal surface of enterocytes is rich in glycolipids, but the effects of ethanol ingestion on membrane glycolipids are not well characterized. In the present study, rats were given 1 mL of 30% ethanol daily for 15, 25, 35, and 56 days. Ethanol feeding for 15 days did not affect glycolipid pattern in microvillus membranes, but the levels of cerebrosides (glucosylceramide, lactosylceramide, globotriasyloceramide) were enhanced in rats fed with ethanol for 35 or 56 days compared with controls. In contrast, the content of fucolipids and gangliosides was reduced in rats on ethanol ingestion for 35 or 56 days. The observed changes in membrane glycolipids were substantiated using biotinylated lectins Jacalin (affinity for N-acetylgalactosamine) and Aleuria aurantia (affinity for α-l-fucose). The incorporation of [(14)C]-mannose and [(14)C]-glucosamine revealed an increase (P<.01) in glucosamination and reduction (P<.01) in mannosylation of glycolipids from ethanol-fed rats for 45 days compared with controls. These findings were further characterized by autoradiography of the glycolipids separated on thin layer chromatograms. These findings indicate that ethanol ingestion modulates the glycolipids composition of brush borders, resulting in generalized aberration of intestinal glycosylation in chronic alcoholism in rats.
Collapse
|
9
|
Kosloski MP, Miclea RD, Balu-Iyer SV. Role of glycosylation in conformational stability, activity, macromolecular interaction and immunogenicity of recombinant human factor VIII. AAPS J 2009; 11:424-31. [PMID: 19499345 PMCID: PMC2758112 DOI: 10.1208/s12248-009-9119-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 05/20/2009] [Indexed: 11/30/2022] Open
Abstract
Factor VIII (FVIII) is a multi-domain glycoprotein that is an essential cofactor in the blood coagulation cascade. Its deficiency or dysfunction causes hemophilia A, a bleeding disorder. Replacement using exogenous recombinant human factor VIII (rFVIII) is the first line of therapy for hemophilia A. The role of glycosylation on the activity, stability, protein-lipid interaction, and immunogenicity of FVIII is not known. In order to investigate the role of glycosylation, a deglycosylated form of FVIII was generated by enzymatic cleavage of carbohydrate chains. The biochemical properties of fully glycosylated and completely deglycosylated forms of rFVIII (degly rFVIII) were compared using enzyme-linked immunosorbent assay, size exclusion chromatography, and clotting activity studies. The biological activity of degly FVIII decreased in comparison to the fully glycosylated protein. The ability of degly rFVIII to interact with phosphatidylserine containing membranes was partly impaired. Data suggested that glycosylation significantly influences the stability and the biologically relevant macromolecular interactions of FVIII. The effect of glycosylation on immunogenicity was investigated in a murine model of hemophilia A. Studies showed that deletion of glycosylation did not increase immunogenicity.
Collapse
Affiliation(s)
- Matthew P. Kosloski
- />Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 521 Hochstetter Hall, Amherst, New York 14260 USA
| | - Razvan D. Miclea
- />Amgen, Inc., One Amgen, Center Drive, Thousand Oaks, California 91320-1799 USA
| | - Sathy V. Balu-Iyer
- />Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, 521 Hochstetter Hall, Amherst, New York 14260 USA
| |
Collapse
|
10
|
Hallén U, Angström J, Björkner AE. Glycolipid binding epitopes involved in adherence of the periodontitis-associated bacterium Porphyromonas gingivalis. Glycoconj J 2008; 25:561-72. [PMID: 18247115 DOI: 10.1007/s10719-008-9113-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
The ability of the periodontal pathogen Porphyromonas gingivalis to use different glycolipid structures as receptors has previously been demonstrated. The bacterium adhered to acid and nonacid glycolipids originating from human organs and to nonacid glycolipids of porcine origin. The aim of the present study was to analyze these binding epitopes by structural characterization. Glycolipid fractions with positive bacterial binding from e.g. human and porcine origin, were purified by the high performance liquid chromatography technique and thereafter used in bacterial overlay assays with (35)S-labeled P. gingivalis. Purified fractions with positive binding were structurally characterized by proton nuclear magnetic resonance spectroscopy. Complementing thin-layer chromatograms and bacterial overlay assays with pure reference glycolipid fractions and competition experiments with lactose were performed to define potential receptors. The P. gingivalis binding epitopes, including cerebrosides with nonhydroxy fatty acids, lactosylceramide with hydroxy fatty acids, sulfatides, lacto-, neolacto- and gangliotetraosylceramides, are in several instances similar to those found for other bacteria, e.g. H. pylori, H. influenzae and N. meningitidis. In addition P. gingivalis also bound to the Galalpha4Gal epitope of the globo series of glycolipids. In the future these results may be valuable for development of new treatment strategies, such as anti-adhesion therapies and vaccines specifically directed against P. gingivalis infection.
Collapse
Affiliation(s)
- Ulrika Hallén
- Department of Oral Pathology, Institute of Odontology, The Sahlgrenska Academy at Göteborg University, Box 450, SE 405 30 Göteborg, Sweden
| | | | | |
Collapse
|
11
|
George S, Oh Y, Lindblom S, Vilain S, Rosa AJM, Francis DH, Brözel VS, Kaushik RS. Lectin binding profile of the small intestine of five-week-old pigs in response to the use of chlortetracycline as a growth promotant and under gnotobiotic conditions. J Anim Sci 2007; 85:1640-50. [PMID: 17400973 DOI: 10.2527/jas.2006-662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antibiotics have traditionally been used for growth promotion in the pork industry; however, their use in animal feed has recently been limited because of human health concerns. The intestinal microbiota plays an important role in mediating many physiological functions such as digestion and animal growth. It was hypothesized that use of antibiotics as growth promotants and subsequent variations in intestinal microbiota induce significant changes in the intestinal glycoconjugate composition, which ultimately affects animal growth and disease susceptibility. The aim of this study was to characterize the lectin binding profiles of the ileum of weanling pigs in response to the absence of intestinal microbiota and to the use of the antibiotic chlortetracycline as growth promotant. Eighteen half-sib piglets obtained by cesarean section were divided into 3 treatment groups (n = 6) and maintained as control, antibiotic-fed, and gnotobiotic piglets until 5 wk of age. The glycoconjugate composition of the ileal tissues was examined by lectin histochemistry. Lycopersicon esculentum lectin, Jacalin, Pisum sativum agglutinin, Lens culinaris agglutinin (LCA), and Sambucus nigra lectin showed significant differences (P < 0.05) in binding intensities on the dome and villous epithelium between the treatment groups. Griffonia simplicifolia lectin I, Glycine maxi agglutinin, and Arachis hypogea agglutinin exhibited differences (P < 0.05) between treatment groups in lectin binding on goblet cells. Triticum vulgaris agglutinin, Pisum sativum agglutinin, and LCA showed significant differences (P < 0.05) in binding intensities on dome, corona, and follicular regions of the ileum among treatment groups of animals. Overall, ileal tissues from gnotobiotic piglets expressed significantly weaker (P < 0.05) lectin binding for many lectins compared with control and antibiotic groups. This suggests that the intestinal microbiota plays an important role in the expression of sugar moieties in the intestine. Lectins LCA, Phaseolus vulgaris Leucoagglutinin, and Maackia amurensis lectin II showed significant differences (P < 0.05) in lectin bindings between control and antibiotic-fed piglets. This indicates that chlortetracycline as a growth promotant induces biologically relevant changes in the lectin binding profile of the ileum. These findings will help in further understanding the role of the gut microbiota and the mechanisms of action of antibiotics as growth promotants in pigs.
Collapse
Affiliation(s)
- S George
- Department of Biology and Microbiology, Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mitra N, Sinha S, Ramya TNC, Surolia A. N-linked oligosaccharides as outfitters for glycoprotein folding, form and function. Trends Biochem Sci 2006; 31:156-63. [PMID: 16473013 DOI: 10.1016/j.tibs.2006.01.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 01/06/2006] [Accepted: 01/30/2006] [Indexed: 01/27/2023]
Abstract
Glycosylation, particularly N-linked glycosylation, profoundly affects protein folding, oligomerization and stability. The increased efficiency of folding of glycosylated proteins could be due to the chaperone-like activity of glycans, which is observed even when the glycan is not attached to the protein. Covalently linked glycans could also facilitate oligomerization by mediating inter-subunit interactions in the protein or stabilizing the oligomer in other ways. Glycosylation also affects the rate of fibril formation in prion proteins: N-glycans reduce the rate of fibril formation, and O-glycans affect the rate either way depending on factors such as position and orientation. It has yet to be determined whether there is any correlation among the sites of glycosylation and the ensuing effect in multiply glycosylated proteins. It is also not apparent whether there is a common pattern in the conservation of glycans in a related family of glycoproteins, but it is evident that glycosylation is a multifaceted post-translational modification. Indeed, glycosylation serves to "outfit" proteins for fold-function balance.
Collapse
Affiliation(s)
- Nivedita Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
13
|
Hansen GH, Pedersen EDK, Immerdal L, Niels-Christiansen LL, Danielsen EM. Anti-glycosyl antibodies in lipid rafts of the enterocyte brush border: a possible host defense against pathogens. Am J Physiol Gastrointest Liver Physiol 2005; 289:G1100-7. [PMID: 16081758 DOI: 10.1152/ajpgi.00256.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pig small intestinal brush border is a glycoprotein- and glycolipid-rich membrane that functions as a digestive/absorptive surface for dietary nutrients as well as a permeability barrier for pathogens. The present work was performed to identify carbohydrate-binding (lectinlike) proteins associated with the brush border. Chromatography on lactose-agarose was used to isolate such proteins, and their localization was studied biochemically and by immunofluorescence microscopy and immunogold electron microscopy. IgG and IgM were the two major proteins isolated, indicating that naturally occurring anti-glycosyl antibodies are among the major lectinlike proteins in the gut. IgG and IgM as well as IgA were localized to the enterocyte brush border, and a brief lactose wash partially released all three immunoglobulins from the membrane, indicating that anti-glycosyl antibodies constitute a major part of the immunoglobulins at the lumenal surface of the gut. The antibodies were associated with lipid rafts at the brush border, and they frequently (52%) coclustered with the raft marker galectin 4. A lactose wash increased the susceptibility of the brush border toward lectin peanut agglutin and cholera toxin B, suggesting that anti-glycosyl antibodies compete with other carbohydrate-binding proteins at the lumenal surface of the gut. Thus anti-glycosyl antibodies constitute a major group of proteins associated with the enterocyte brush border membrane. We propose they function by protecting the lipid raft microdomains of the brush border against pathogens.
Collapse
Affiliation(s)
- Gert H Hansen
- Dept. of Medical Biochemistry and Genetics, The Panum Institute, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
14
|
Freitas M, Axelsson LG, Cayuela C, Midtvedt T, Trugnan G. Indigenous microbes and their soluble factors differentially modulate intestinal glycosylation steps in vivo. Use of a "lectin assay" to survey in vivo glycosylation changes. Histochem Cell Biol 2005; 124:423-33. [PMID: 16160839 DOI: 10.1007/s00418-005-0004-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2005] [Indexed: 10/25/2022]
Abstract
It has been shown that Bacteroides thetaiotaomicron, a representative member of the gut microflora, signals intestinal epithelial cells both in vivo and in vitro and modulate specific glycosylation processes that may mediate intestinal functions. However it is not known whether these modulations depend on the presence of live bacteria or may be elicited by soluble factors produced in vitro by this bacterium. We used lectins and an histochemical approach to survey tissue sections prepared from various cellular compartments of the small and large intestine of NRMI/KI mice grown under gnotobiotic conditions. We compared the results obtained with bacterial culture supernatant and live B. thetaiotaomicron to those obtained from germ-free mice or mice having a conventional microflora. This approach allowed us to conclude that (1) a small but specific number of glycan patterns were restored after treatment with bacterial culture supernatant and (2) the B. thetaiotaomicron associated mice restored a larger number of patterns, however, the complete conventional mice pattern must be a function of the whole microflora in the gut. The possibility to modulate this complex glycosylation pattern by introducing exogenous bacteria and bacterial products should be considered as a promising approach towards understanding the molecular basis of microbial-host interactions.
Collapse
Affiliation(s)
- Miguel Freitas
- Pierre et Marie Curie UMR538, MF, GT, INSERM-University, CHU St-Antoine, 27 rue de Chaligny, 75012, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Nokhbeh MR, Hazra S, Alexander DA, Khan A, McAllister M, Suuronen EJ, Griffith M, Dimock K. Enterovirus 70 binds to different glycoconjugates containing alpha2,3-linked sialic acid on different cell lines. J Virol 2005; 79:7087-94. [PMID: 15890948 PMCID: PMC1112099 DOI: 10.1128/jvi.79.11.7087-7094.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Enterovirus 70 (EV70), the causative agent of acute hemorrhagic conjunctivitis, exhibits a restricted tropism for conjunctival and corneal cells in vivo but infects a wide spectrum of mammalian cells in culture. Previously, we demonstrated that human CD55 is a receptor for EV70 on HeLa cells but that EV70 also binds to sialic acid-containing receptors on a variety of other human cell lines. Virus recognition of sialic acid attached to underlying glycans by a particular glycosidic linkage may contribute to host range, tissue tropism, and pathogenesis. Therefore, we tested the possibility that EV70 binds to alpha2,3-linked sialic acid, like other viruses associated with ocular infections. Through the use of linkage-specific sialidases, sialyltransferases, and lectins, we show that EV70 recognizes alpha2,3-linked sialic acid on human corneal epithelial cells and on U-937 cells. Virus attachment to both cell lines is CD55 independent and sensitive to benzyl N-acetyl-alpha-D-galactosaminide, an inhibitor of O-linked glycosylation. Virus binding to corneal cells, but not U-937 cells, is inhibited by proteinase K, but not by phosphatidylinositol-specific phospholipase C treatment. These results are consistent with the idea that a major EV70 receptor on corneal epithelial cells is an O-glycosylated, non-glycosyl phosphatidylinositol-anchored membrane glycoprotein containing alpha2,3-linked sialic acid, while sialylated receptors on U-937 cells are not proteinaceous.
Collapse
Affiliation(s)
- M Reza Nokhbeh
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Miller-Podraza H, Lanne B, Angström J, Teneberg S, Milh MA, Jovall PA, Karlsson H, Karlsson KA. Novel Binding Epitope for Helicobacter pylori Found in Neolacto Carbohydrate Chains. J Biol Chem 2005; 280:19695-703. [PMID: 15743770 DOI: 10.1074/jbc.m412688200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a bacterium that colonizes the stomach of a majority of the global human population causing common gastric diseases like ulcers and cancer. It has an unusually complex pattern of binding to various host glycoconjugates including interaction with sialylated, sulfated, and fucosylated sequences. The present study describes an additional binding epitope comprising the neolacto internal sequence of GlcNAcbeta3-Galbeta4GlcNAcbeta. The binding was detected on TLC plates as an interaction with a seven-sugar ganglioside of rabbit thymus. The glycolipid was purified and characterized as Neu5Gcalpha3Galbeta4GlcNAcbeta3Galbeta4GlcNAcbeta3-Galbeta4Glcbeta1Cer with less than 10% of the fraction carrying a repeated lacto (type-1) core chain, Galbeta3Glc-NAcbeta3Galbeta3GlcNAcbeta. After stepwise chemical and enzymatic degradation and structural analysis of products the strongest binder was found to be the pentaglycosylceramide GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer, whereas the hexa- and tetraglycosylceramides were less active, and the trihexosylceramide was inactive. Further studies revealed that the terminal GlcNAcbeta of the pentaglycosylceramide may be exchanged for either GalNAcbeta3, GalNAcalpha3, or Galalpha3 without loss of the activity. Calculated minimum energy conformers of these four isoreceptors show a substantial topographical similarity suggesting that this binding is a result of a molecular mimicry. Although the glycoconjugate composition of human gastric epithelial cells is not known in detail it is proposed that repeating N-acetyllactosamine units of glycoconjugates may serve as bacterial attachment sites in the stomach.
Collapse
|
17
|
Møller JD, Larsen JL, Madsen L, Dalsgaard I. Involvement of a sialic acid-binding lectin with hemagglutination and hydrophobicity of Flavobacterium psychrophilum. Appl Environ Microbiol 2003; 69:5275-80. [PMID: 12957914 PMCID: PMC194956 DOI: 10.1128/aem.69.9.5275-5280.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 07/04/2003] [Indexed: 11/20/2022] Open
Abstract
Strains of Flavobacterium psychrophilum were studied for their ability to adhere and cause agglutination of erythrocytes and yeast cells. Strains of the serotype Th showed low or no hemagglutinating (HA) properties toward human, avian, bovine, and rainbow trout erythrocytes, whereas strains of serotype Fd and Fp(T) exhibited distinct HA properties. None of the strains was able to cause agglutination of yeast cells. Greater adherence specificity toward rainbow trout blood cells was seen for the HA-positive strains. Growth at 5 degrees C, compared to that at 15 degrees C, induced an increase in the hemagglutination of some strains. HA activities of F. psychrophilum were inhibited only by sialic acid (N-acetyl-neuraminic acid), heat treatment at 65 degrees C, and proteinase K treatment and not by any of seven other carbohydrates, periodate oxidation, or treatment with trypsin. The supernatant from washed bacterial cells also showed some HA properties. All strains were shown to be highly hydrophobic by the hydrophobic interaction chromatography test, although some contradictions to the results of the salt aggregation test (showing some strains as less hydrophobic) were seen. These results indicate that the aggregation of F. psychrophilum and erythrocytes depend on a lectin present on the surface of HA-positive F. psychrophilum strains and absent on HA-negative strains. This lectin reacts specifically with sialic acid. The adhesion differences observed for F. psychrophilum strains do not appear to correlate with the virulence but still provide insights into the interaction of F. psychrophilum and rainbow trout.
Collapse
Affiliation(s)
- Jeannette Dan Møller
- Fish Disease Laboratory, Danish Institute for Fisheries Research, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
18
|
Laarmann S, Schmidt MA. The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1871-1882. [PMID: 12855738 DOI: 10.1099/mic.0.26264-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AIDA-I autotransporter adhesin, as a prototype of the AIDA adhesin family, represents a tripartite antigen consisting of the functional adhesin AIDA-I (alpha-domain), which mediates the specific attachment of bacteria to target cells, and a two-domain translocator (AIDA(c)) organized in the beta(1)- and beta(2)-domains. Cellular receptor moieties for the adhesin AIDA-I have not been identified. Here, it is demonstrated that the purified adhesin binds specifically to a high-affinity class of receptors on HeLa cells. Additionally, the adhesin was found to bind to a variety of mammalian cell types, indicating a broad tissue distribution of the receptor moiety. By using complementary techniques, including co-immunoprecipitation and one- and two-dimensional gel electrophoresis, the AIDA-I binding protein on HeLa cells was identified as a surface glycoprotein of about 119 kDa (gp119). The gp119 AIDA-I cellular receptor protein was characterized biochemically and found to be an integral N-glycosylated membrane protein with a pI of 5.2.
Collapse
Affiliation(s)
- Sven Laarmann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - M Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
19
|
Loris R, Imberty A, Beeckmans S, Van Driessche E, Read JS, Bouckaert J, De Greve H, Buts L, Wyns L. Crystal structure of Pterocarpus angolensis lectin in complex with glucose, sucrose, and turanose. J Biol Chem 2003; 278:16297-303. [PMID: 12595543 DOI: 10.1074/jbc.m211148200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the Man/Glc-specific seed lectin from Pterocarpus angolensis was determined in complex with methyl-alpha-d-glucose, sucrose, and turanose. The carbohydrate binding site contains a classic Man/Glc type specificity loop. Its metal binding loop on the other hand is of the long type, different from what is observed in other Man/Glc-specific legume lectins. Glucose binding in the primary binding site is reminiscent of the glucose complexes of concanavalin A and lentil lectin. Sucrose is found to be bound in a conformation similar as seen in the binding site of lentil lectin. A direct hydrogen bond between Ser-137(OG) to Fru(O2) in Pterocarpus angolensis lectin replaces a water-mediated interaction in the equivalent complex of lentil lectin. In the turanose complex, the binding site of the first molecule in the asymmetric unit contains the alphaGlc1-3betaFruf form of furanose while the second molecule contains the alphaGlc1-3betaFrup form in its binding site.
Collapse
Affiliation(s)
- Remy Loris
- Laboratorium voor Ultrastructuur, Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
del C Rocha-Gracia R, Castañeda-Roldán EI, Giono-Cerezo S, Girón JA. Brucella sp. bind to sialic acid residues on human and animal red blood cells. FEMS Microbiol Lett 2002; 213:219-24. [PMID: 12167541 DOI: 10.1111/j.1574-6968.2002.tb11309.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We report that Brucella abortus and Brucella melitensis agglutinate human (A+ and B+), hamster and rabbit erythrocytes, a heretofore undescribed feature in this genus. This activity was associated with a 29-kDa surface protein (SP29) that bound selectively to these erythrocytes and this binding was inhibited by rabbit anti-SP29 antibodies. Hemagglutination was inhibited by pretreatment of erythrocytes with neuraminidase and by preincubation of B. abortus with chondroitin sulfate, N-acetylneuraminic acid and N-acetylneuramin-lactose.
Collapse
Affiliation(s)
- Rosa del C Rocha-Gracia
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio 76, Complejo de Ciencias, Cd. Universitaria, Pue. C.P. 72000, Puebla, Mexico
| | | | | | | |
Collapse
|
21
|
Maroncle N, Balestrino D, Rich C, Forestier C. Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infect Immun 2002; 70:4729-34. [PMID: 12117993 PMCID: PMC128202 DOI: 10.1128/iai.70.8.4729-4734.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen responsible for nosocomial infections that initially colonize the intestinal tract of patients. Signature-tagged mutagenesis was used to identify genes required for this function. A library of 2,200 mutants was analyzed for the inability of the mutants to survive in a murine model of intestinal colonization and to adhere to human intestinal cells (Int-407) in vitro. Twenty-nine attenuated mutants were selected for further analyses after competition assays against the wild-type strain. Whatever the screening model, most of the transposon insertions occurred in genes involved in metabolic pathways, membrane transport, DNA metabolism, transcriptional regulation, and unknown functions. Only one mutant was attenuated in both the murine colonization and the in vitro adhesion models, and the sequence disrupted by the transposon had homology to adhesin-encoding genes of Haemophilus sp.
Collapse
Affiliation(s)
- Nathalie Maroncle
- Laboratoire de Bactériologie, Université d'Auvergne, Faculté de Pharmacie, 63000 Clermont-Ferrand, France
| | | | | | | |
Collapse
|
22
|
|
23
|
Golden NJ, Acheson DWK. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 2002; 70:1761-71. [PMID: 11895937 PMCID: PMC127829 DOI: 10.1128/iai.70.4.1761-1771.2002] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni has been identified as the leading cause of acute bacterial diarrhea in the United States, yet compared with other enteric pathogens, considerably less is understood concerning the virulence factors of this human pathogen. A random in vivo transposon mutagenesis system was recently developed for the purpose of creating a library of C. jejuni transformants. A total of 1,065 C. jejuni transposon mutants were screened for their ability to swarm on motility agar plates and autoagglutinate in liquid cultures; 28 mutants were subsequently identified. The transposon insertion sites were obtained by using random-primed PCR, and the putative genes responsible for these phenotypes were identified. Of these mutants, all 28 were found to have diminished motility (0 to 86% that of the control). Seventeen motility mutants had insertions in genes with strong homology to functionally known motility and chemotaxis genes; however, 11 insertions were in genes of unknown function. Twenty motility mutants were unable to autoagglutinate, suggesting that the expression of flagella is correlated with autoagglutination (AAG). However, four mutants expressed wild-type levels of surface FlaA, as indicated by Western blot analysis, yet were unable to autoagglutinate (Cj1318, Cj1333, Cj1340c, and Cj1062). These results suggest that FlaA is necessary but not sufficient to mediate the AAG phenotype. Furthermore, two of the four AAG mutants (Cj1333 and Cj1062) were unable to invade INT-407 intestinal epithelial cells, as determined by a gentamicin treatment assay. These data identify novel genes important for motility, chemotaxis, and AAG and demonstrate their potential role in virulence.
Collapse
Affiliation(s)
- Neal J Golden
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
24
|
Freitas M, Cayuela C, Antoine JM, Piller F, Sapin C, Trugnan G. A heat labile soluble factor from Bacteroides thetaiotaomicron VPI-5482 specifically increases the galactosylation pattern of HT29-MTX cells. Cell Microbiol 2001; 3:289-300. [PMID: 11298652 DOI: 10.1046/j.1462-5822.2001.00113.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to set up and validate an in vitro model to study a molecular response of an intestinal host cell line (HT29-MTX), to a non-pathogen microflora component. We found that Bacteroides thetaiotaomicron strain VPI-5482 had the capacity to change a specific glycosylation process in HT29-MTX cells via a mechanism that involved a soluble factor. Differentiated HT29-MTX cells were grown in the presence of 20% of spent culture supernatant from the B. thetaiotaomicron during 10 days. Glycosylation processes were followed using a large panel of lectins and analysed using confocal microscopy, western blotting and flow cytometry techniques. Our results show that a B. thetaiotaomicron soluble factor modified specifically the galactosylation pattern of HT29-MTX cells, whereas other glycosylation steps remained mainly unaffected. Further characterization of this soluble factor indicates that it is a heat labile, low molecular weight compound. Reverse transcript-PCR (RT-PCR) analysis was unable to show any significant change in mRNA expression level of the main galactosyltransferases expressed in HT29-MTX cells. By contrast, galactosyltransferase activities dramatically increased in HT29-MTX cells treated by the soluble extract of B. thetaiotaomicron, suggesting a post-translational regulation of these activities. Our in vitro model allowed us to study the cross-talk between a single bacteria and intestinal cells. The galactosylation process appears to be a target of this communication, thus uncovering a new window to study the functional consequences of co-operative symbiotic bacterial-host interactions.
Collapse
Affiliation(s)
- M Freitas
- Danone VITAPOLE, 15 avenue Galilée, 92350 Le Plessis Robinson, France
| | | | | | | | | | | |
Collapse
|
25
|
Fiorina JC, Weber M, Block JC. Occurrence of lectins and hydrophobicity of bacteria obtained from biofilm of hospital catheters and water pipes. J Appl Microbiol 2000; 89:494-500. [PMID: 11021582 DOI: 10.1046/j.1365-2672.2000.01143.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria isolated from biofilms of water distribution pipes and colonized catheters from hospitalized patients were studied for their haemagglutination ability, expression of lectins and hydrophobicity. Higher haemagglutination ability of clinical strains for human red blood cells was demonstrated, which could be an expression of their adaptation to the human ecosystem. Environmental strains had higher hydrophobicity, possibly related to adaptation to a low nutritive ecosystem. Expression of lectins was relatively low and comparable in both bacterial populations, but carbohydrate specificities were very different, possibly related to a different implication of these structures in the two ecosystems.
Collapse
Affiliation(s)
- J C Fiorina
- LCPE-UMR, Faculté de Pharmacie-Pôle de l'Eau, Vandoeuvre, France
| | | | | |
Collapse
|
26
|
Edwards RA, Puente JL. Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 1998; 6:282-7. [PMID: 9717217 DOI: 10.1016/s0966-842x(98)01288-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of species of enteric bacteria to recognize and colonize unique niches along the intestine is mainly based on receptor distribution and interpretation of a combination of environmental signals leading to the expression of specific adherence factors. Such elaborate orchestration of events is critical during the initial steps of pathogenesis.
Collapse
Affiliation(s)
- R A Edwards
- Dept of Microbiology, University of Illinois Urbana-Champaign 61801, USA.
| | | |
Collapse
|