1
|
Wang Y, Xu YA, Peters BH, Peddicord M, Qiu D, Cheng J, Zeng M, Chen Z. Development and validation of a label-free HPLC-CAD method to determine total sialic acid in therapeutic proteins. J Pharm Biomed Anal 2025; 263:116937. [PMID: 40318254 DOI: 10.1016/j.jpba.2025.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/07/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Sialylation plays a crucial role in influencing the pharmacokinetic, chemical, physical, and immunogenic properties of therapeutic proteins and is commonly tracked through total sialic acid analysis. In this study, we developed a novel label-free HPLC method to monitor total sialic acid levels in protein drug products. The method utilizes a replaceable, pre-column C18 cartridge that removes protein in-line, preventing protein interference with sialic acid and contamination of the analytical column and enabling direct sample injection. The optimized mixed-mode hydrophilic interaction-ion exchange liquid chromatography (HILIC-IEX) separation condition includes a volatile mobile phase for charged aerosol detection (CAD) of sialic acids. The method was validated to demonstrate satisfactory specificity, linearity (R > 0.999), precision (RSD between 0.4 % and 2.1 %), sensitivity (QL < 25 ng), and accuracy (recovery between 93 % and 102 %). It was successfully applied to determine total sialic acids in a model protein drug product, demonstrating promising potential as an accurate, robust, efficient, and cost-effective approach for sialylation evaluation.
Collapse
Affiliation(s)
- Yifei Wang
- Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA.
| | - Yuechuan Alex Xu
- Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Björn-Hendrik Peters
- Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Michael Peddicord
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Difei Qiu
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Julie Cheng
- Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Ming Zeng
- Biologics Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA
| | - Zhi Chen
- Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08901, USA.
| |
Collapse
|
2
|
Kopp KT, Beer MD, Voorspoels J, Lysebetten DV, den Mooter GV. Spray drying for protein stabilization. Int J Pharm 2025; 677:125600. [PMID: 40280286 DOI: 10.1016/j.ijpharm.2025.125600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
During formulation development, stabilizing buffers and excipients are added to therapeutic proteins to overcome their intrinsic instability. Another approach is their solidification using techniques like freeze drying or spray drying (SD). In this work, to enhance the stability of three proteins (α-chymotrypsin, catalase and Horseradish Peroxidase (HRP)), suitable buffers and excipients were selected in solution state for three formulations (referred to as concepts) for each protein using Differential Scanning Fluorimetry (DSF) combined with Static Light Scattering (SLS). Two of these concepts were supposed to stabilize the protein and one was less stabilizing. Then, SD was performed, and the protein stability was compared to that prior SD using dynamic light scattering, UV-VIS spectroscopy, far-UV circular dichroism, size-exclusion and reversed-phase chromatography. While the selected excipients did not differ much from the ones used during a previous study on Bovine Serum Albumin (BSA), Immunoglobulin G (IgG) and lysozyme, clear stability differences during solidification were observed. The measured recovery was partly 40 % lower than prior to SD and only one catalase concept was able to maintain its original concentration. While the stability of two catalase concepts was correctly predicted by DSF/SLS, it was not the case for the other proteins. This outcome led to the question whether it is sufficient to determine protein stability during solidification using DSF/SLS or if a more holistic approach is necessary.
Collapse
Affiliation(s)
- Katharina Tatjana Kopp
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium; Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium
| | - Maarten De Beer
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | - Jody Voorspoels
- Eurofins Amatsigroup, Industriepark-Zwijnaarde 7B, 9052 Gent, Belgium
| | | | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Yu H, Jin S, Zeng M, Yang Z, Wang X. TIGIT antibody with PVR competitive ability enhances cancer immunotherapy and capable of eliciting anti-tumour immune memory. Br J Cancer 2025:10.1038/s41416-025-03046-w. [PMID: 40394151 DOI: 10.1038/s41416-025-03046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 04/01/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND T-cell immunoreceptor with immunoglobulin (Ig) and ITIM domains (TIGIT) is a checkpoint receptor thought to be involved in mediating T-cell exhaustion and dysfunction of natural killer (NK) cells in tumours and is emerging as novel promising targets in immunotherapy, however, the ligand binding and the efficacy of its antibody still need to be further explored. METHODS Four different TIGIT antibodies in characteristics of antigen binding, in vitro effects on activated T cells, Fc region functions and tumour inhibition in animal models were compared. The antibody as monotherapy and combined with anti-PD-L1 antibody, effects on PBMC in ex vivo coculture with autologous human CRC organoids as well as PK profile were evaluated. RESULTS Studies demonstrated that TIGIT antibody with PVR-competitive ability as monotherapy resulted in inhibition of tumour growth, sustained anti-tumour immune memory in tumour re-challenge mice, enhanced anti-tumour therapy in combination with anti-PD-L1. Ex vivo coculture assay suggested that TIGIT antibody treatment activated immune cells and promoted infiltration and tumour killing ability of autologous PBMC in human CRC organoids. CONCLUSIONS Our study broadens the knowledge of TIGIT antibody in cancer immunotherapy and may benefit future development of next-generation checkpoint inhibitors with improved clinical outcomes.
Collapse
Affiliation(s)
- Huijuan Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shaowen Jin
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Zeng
- Guangdong Annpobio Co., Ltd, Guangzhou, China
| | | | - Xiaofei Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
- Guangdong Annpobio Co., Ltd, Guangzhou, China.
| |
Collapse
|
4
|
Char S, Corley N, Alamdari S, Yang KK, Amini AP. ProtNote: a multimodal method for protein-function annotation. Bioinformatics 2025; 41:btaf170. [PMID: 40233101 PMCID: PMC12054973 DOI: 10.1093/bioinformatics/btaf170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/02/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025] Open
Abstract
MOTIVATION Understanding the protein sequence-function relationship is essential for advancing protein biology and engineering. However, <1% of known protein sequences have human-verified functions. While deep-learning methods have demonstrated promise for protein-function prediction, current models are limited to predicting only those functions on which they were trained. RESULTS Here, we introduce ProtNote, a multimodal deep-learning model that leverages free-form text to enable both supervised and zero-shot protein-function prediction. ProtNote not only maintains near state-of-the-art performance for annotations in its training set but also generalizes to unseen and novel functions in zero-shot test settings. ProtNote demonstrates superior performance in the prediction of novel Gene Ontology annotations and Enzyme Commission numbers compared to baseline models by capturing nuanced sequence-function relationships that unlock a range of biological use cases inaccessible to prior models. We envision that ProtNote will enhance protein-function discovery by enabling scientists to use free text inputs without restriction to predefined labels-a necessary capability for navigating the dynamic landscape of protein biology. AVAILABILITY AND IMPLEMENTATION The code is available on GitHub: https://github.com/microsoft/protnote; model weights, datasets, and evaluation metrics are provided via Zenodo: https://zenodo.org/records/13897920.
Collapse
Affiliation(s)
- Samir Char
- Microsoft Cloud & AI, Microsoft, Redmond, WA 98052, United States
| | - Nathaniel Corley
- Microsoft Cloud & AI, Health & Life Sciences, Microsoft, Redmond, WA 98052, United States
| | - Sarah Alamdari
- Microsoft Research, Microsoft, 1 Memorial Dr, Cambridge, MA 02142, United States
| | - Kevin K Yang
- Microsoft Research, Microsoft, 1 Memorial Dr, Cambridge, MA 02142, United States
| | - Ava P Amini
- Microsoft Research, Microsoft, 1 Memorial Dr, Cambridge, MA 02142, United States
| |
Collapse
|
5
|
Sun Z, Fu H, Zhang R, Wang H, Shen S, Zhao C, Li X, Sun Y, Li Y, Li Y. Advances in chemically modified HSA as a multifunctional carrier for transforming cancer therapy regimens. Int J Biol Macromol 2025; 305:141373. [PMID: 39988174 DOI: 10.1016/j.ijbiomac.2025.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Human serum albumin (HSA) is a versatile, biodegradable, biocompatible, non-toxic, and non-immunogenic protein nanocarrier, making it an ideal platform for developing advanced drug delivery systems. These properties have garnered significant attention in utilizing HSA nanoparticles for the safe and efficient delivery of chemotherapeutic agents. HSA-based nanoparticles can be surface-modified with various ligands to enable tumor-targeted drug delivery, enhancing therapeutic specificity and efficacy. Furthermore, the multifunctionality of HSA nanoparticles offers promising strategies to overcome challenges in cancer therapy, including poor bioavailability, off-target toxicity, and drug resistance. This review highlights the structural features of HSA, explores its diverse modifications to improve drug-binding affinity and targeting ability, and discusses its potential as a multifunctional carrier in oncology. By summarizing the latest advances in HSA modification techniques and applications, this review provides a comprehensive perspective on the future of protein-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Zheng Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruixuan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyang Shen
- School of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yujiao Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Yu Y, Li J, Yu B, Yu Y, Sun Y, Wang Y, Wang B, Zhang K, Tang M, Lu Y, Wang N. The Identification of Biomarkers and Therapeutic Targets for Diabetic Kidney Disease by Integrating the Proteome with the Genome. Biomedicines 2025; 13:971. [PMID: 40299563 PMCID: PMC12025092 DOI: 10.3390/biomedicines13040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The blood proteome is a major source of biomarkers and therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify cardiometabolic protein markers for diabetic kidney disease (DKD). Methods: We measured all 369 proteins in the Olink Explore 384 Cardiometabolic and Cardiometabolic panel of 500 patients with type 2 diabetes from 11 communities in Shanghai. Protein quantitative trait loci (pQTLs) were derived by coupling genomic and proteomic data. Cis-pQTLs identified for proteins were used as instrumental variables in MR analyses of DKD risk, and the outcome data were obtained from 8401 Japanese individuals with type 2 diabetes (2809 cases and 5592 controls). Replication MR analysis was performed in the UK Biobank Pharma Proteomics Project (UKB-PPP). Colocalization analysis and the Heidi test were used to examine whether the identified proteins and DKD shared causal variants. Results: Among the 369 proteins, we identified 66 independent cis-pQTLs for 64 proteins. MR analysis suggested that two cardiometabolic proteins (UMOD and SIRPA) may play a causal role in increasing DKD risk, with UMOD showing replication in UKB-PPP. Bayesian colocalization further supported the causal effects of these proteins. Additional analyses indicated that UMOD is highly expressed in renal macrophages. Further downstream analyses suggested that UMOD could be a potential novel target and that SIRPA could be a potential repurposing target for DKD; however, further validation is needed. Conclusions: By integrating proteomic and genetic data from patients with type 2 diabetes, we identified two protein biomarkers potentially associated with DKD risk. These findings provide insights into DKD pathophysiology and therapeutic target development, but further replication and functional studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Jiang Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Yuetian Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Mengjun Tang
- The 967th Hospital of Joint Logistic Support Force of People’s Liberation Army, Dalian 116011, China;
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| |
Collapse
|
7
|
Tran JP, Gao J, Lansdell C, Lorbetskie B, Johnston MJW, Wang L, Li X, Lu H. A Comprehensive Evaluation of Analytical Method Parameters Critical to the Reliable Assessment of Therapeutic mRNA Integrity by Capillary Gel Electrophoresis. Electrophoresis 2025; 46:365-375. [PMID: 40130674 PMCID: PMC12039171 DOI: 10.1002/elps.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/26/2025]
Abstract
In recent years, messenger ribonucleic acid (mRNA)-lipid nanoparticle (LNP) biotherapeutics have demonstrated significant promise in disease treatment and prevention given their rapidly modifiable production processes and considerable capacity to adapt to complex or low-yielding proteins of interest. As a result, many products are currently being developed in this space. Critically, well-characterized and appropriately designed assays are required to monitor purity and integrity in order to maintain the efficacy and consistency of these novel products. Currently, capillary gel electrophoresis with laser-induced fluorescence (CGE-LIF) and ion-pair reversed-phase liquid chromatography (IP-RPLC) are techniques of choice for mRNA integrity analysis. However, most methods proposed for biotherapeutic analysis have been developed using naked mRNA without LNP components or proprietary buffer formulations, which can obscure undiscovered impurities or complex interactions between mRNA and the sample matrix. In this study, we addressed these methodological challenges by using a biotherapeutically relevant commercial mRNA-LNP sample (approx. 4200 b) to refine and optimize a customizable CGE-LIF method currently under consideration for mRNA-LNP biotherapeutic analysis. We systematically characterized how critical method parameters-such as denaturant type, concentration, and usage-and LNP disruption protocols can interfere with accurate mRNA integrity analysis in CGE-LIF and IP-RPLC. We found that optimal conditions for CGE-LIF assay sensitivity, variability, and resolution included sample precipitation by isopropanol, high urea concentrations, no formamide as a sample diluent, and high concentrations of dye. Finally, the advantages and disadvantages of both CGE-LIF and IP-RPLC are highlighted, and a discussion of key considerations when using or designing methods for mRNA integrity assessment is presented.
Collapse
Affiliation(s)
- Jessica P. Tran
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Jun Gao
- Centre for VaccinesClinical Trials and BiostatisticsBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
| | - Casey Lansdell
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
| | - Barry Lorbetskie
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
| | - Michael J. W. Johnston
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
- Department of ChemistryCarleton UniversityOttawaOntarioCanada
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Xuguang Li
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Huixin Lu
- Centre for OncologyRadiopharmaceuticals and ResearchBiologic and Radiopharmaceutical Drugs DirectorateHealth Products and Food BranchHealth CanadaOttawaOntarioCanada
| |
Collapse
|
8
|
Tran V, Nguyen N, Renkes S, Nguyen KT, Nguyen T, Alexandrakis G. Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties. Bioengineering (Basel) 2025; 12:362. [PMID: 40281721 PMCID: PMC12025210 DOI: 10.3390/bioengineering12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Active targeting nanoparticles are a new generation of drug and gene delivery systems with the potential for greatly improved therapeutics delivery compared to conventional nanomedicine approaches. Despite their potential, the translation of active targeting nanoparticles faces challenges in production scale-up and batch consistency. Accurate quality control methods for nanoparticle therapeutic payload and coating characterization are critical for attaining the desired levels of batch repeatability, drug/gene loading efficiency, targeting molecule coating effectiveness, and safety profiles. Current limitations in nanoparticle characterization technologies, such as relying on ensemble-average analysis, pose challenges in assessing the drug/gene content and surface modification heterogeneity, which can greatly affect therapeutic outcomes. Single-molecule analysis technologies have emerged as a promising alternative, offering rich information on heterogeneity and stochastic variations between nanoparticle batches. This review first evaluates and identifies the challenges of traditional nanoparticle characterization tools that rely on indirect, bulk solution quantification methods. Subsequently, newly emerging characterization technologies are introduced for the quantification of therapeutic loading and targeted moiety coating efficiencies with single-nanoparticle resolution, to help guide researchers towards advancing the translation of active targeting nanoparticles into the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| |
Collapse
|
9
|
Roser SM, Munarin F, Polucha C, Minor AJ, Choudhary G, Coulombe KLK. Customized Heparinized Alginate and Collagen Hydrogels for Tunable, Local Delivery of Angiogenic Proteins. ACS Biomater Sci Eng 2025; 11:1612-1628. [PMID: 39945764 DOI: 10.1021/acsbiomaterials.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
Therapeutic protein delivery has ushered in a promising new generation of disease treatment, garnering more recognition for its clinical potential than ever. However, proteins' limited stability, extremely short average half-lives, and evidenced toxicity following systemic delivery continue to undercut their efficacy. Biomaterial-based protein delivery, however, demonstrates the potential to overcome these obstacles. To this end, we have developed a heparinized alginate and collagen hydrogel for the local, sustained delivery of therapeutic proteins. In an effort to match this ubiquitous application of protein delivery to various disease states and target tissues with sufficient versatility, we identified three distinct delivery modes as design targets. A shear-thinning, low-viscosity injectable for minimal tissue damage, a higher-viscosity gel plug for subcutaneous injection, and a submillimeter-thickness film for solid-form implantation were optimized and characterized in this work. In vitro assessments confirmed feasible injection control, mechanical stability for up to 6 h of unsubmerged storage, and isotropic early collagen fibril assembly. Release kinetics were assessed both in vitro and in vivo, demonstrating up to 14 days of functional vascular endothelial growth factor delivery. Rodent models of pulmonary hypertension, subcutaneous injection, and myocardial infarction, three promising applications of protein therapeutics, were used to assess the feasible delivery and biocompatibility of the injectable gel, gel plug, and film, respectively. Histological evaluation of the delivered materials and surrounding tissue showed high biocompatibility with cell and blood vessel infiltration, remodeling, and integration with the host tissue. Our successful customization of the biomaterial to heterogeneous delivery modes demonstrates its versatile capacity for the local, sustained delivery of therapeutic proteins for a diverse array of regenerative medicine applications.
Collapse
Affiliation(s)
- Stephanie M Roser
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Fabiola Munarin
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Collin Polucha
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Alicia J Minor
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
| | - Gaurav Choudhary
- Division of Cardiology, Providence VA Medical Center, Providence, Rhode Island 02908, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| | - Kareen L K Coulombe
- School of Engineering, Institute for Biology, Engineering, and Medicine, Brown University, Providence, Rhode Island 02912, United States
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
10
|
Omran A, Amberg A, Ecker GF. Exploring diverse approaches for predicting interferon-gamma release: utilizing MHC class II and peptide sequences. Brief Bioinform 2025; 26:bbaf101. [PMID: 40067115 PMCID: PMC11894801 DOI: 10.1093/bib/bbaf101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
Therapeutic proteins are in high demand due to their significant potential, driving continuous market growth. However, a critical concern for therapeutic proteins is their ability to trigger an immune response, while some treatments rely on this response for their therapeutic effect. Therefore, to assess the efficacy and safety of the drug, it is pivotal to determine its immunogenicity potential. Various experimental methods, such as cytokine release or T-cell proliferation assays, are used for this purpose. However, these assays can be costly, time-consuming, and often limited in their ability to screen large peptide sets across diverse major histocompatibility complex (MHC) alleles. Hence, this study aimed to develop a computational classification model for predicting the release of interferon-gamma based on the peptide sequence and the MHC class II (MHC-II) allele pseudo-sequence, which represents the binding environment of the MHC-II molecule. The dataset used in this study was obtained from the Immune Epitope Database and labeled as active or inactive. Among the approaches explored, the random forest algorithm combined with letter-based encoding resulted in the overall best-performing model. Consequently, this model's generalizability to other T-cell activities was further evaluated using a T-cell proliferation dataset. Furthermore, feature importance analysis and virtual single-point mutations were conducted to gain insights into the model's decision-making and to improve the interpretability of the model.
Collapse
Affiliation(s)
- Abir Omran
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Alexander Amberg
- Sanofi, Preclinical Safety, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
11
|
Ghosh A, Sharma M, Zhao Y. Intracellular Delivery of Proteins by Protein-Recognizing Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3026-3037. [PMID: 39761120 DOI: 10.1021/acsami.4c18186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Intracellular delivery of proteins can directly impact dysregulated and dysfunctional proteins and is a key step in the fast growing field of protein therapeutics. The vast majority of protein-delivery systems enter cells through endocytic pathways, but endosomal escape is a difficult and inefficient process, demanding fundamentally different methods of delivery. We report ultrasmall cationic molecularly imprinted nanoparticles that bind protein targets with high specificity through their uniquely distributed surface lysine groups. The nanoparticle-protein complexes enter cells even when energy-dependent endocytic pathways are inhibited. The micromolar binding affinities of the nanoparticle for the proteins are strong enough for the cargos to be bound during loading and transportation but weak enough to be released into cytosol for them to interact with the desired cellular targets. The nanoparticles display low cytotoxicity to cells and can be functionalized with fluorescent labels through click chemistry for easy tracking. Both the molecular imprinting and delivery work well for proteins with a range of molecular weights and isoelectric points, affording a convenient method to manipulate cellular functions and intracellular reactions through delivered proteins.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
12
|
Ngo KH, Distler ME, Evangelopoulos M, Ocampo TA, Ma Y, Minorik AJ, Mirkin CA. DNA Dendron Tagging as a Universal Way to Deliver Proteins to Cells. J Am Chem Soc 2025; 147:2129-2136. [PMID: 39812088 PMCID: PMC11755410 DOI: 10.1021/jacs.4c16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted. Indeed, DNA surface density and sequence have been correlated with scavenger-receptor engagement, the first step of cellular internalization. Here, we report how branched DNA dendrons with dibenzocyclooctyne groups and proteins genetically engineered to include the noncanonical amino acid azido-phenylalanine for click chemistry can be used to synthesize hybrid DNA dendron-protein architectures that exhibit outstanding cellular internalization properties, without the need for extensive surface modification. In a head-to-head comparison, protein-DNA dendron structures (where DNA is concentrated in a local area) are taken up by cells more rapidly and to a greater extent than proSNAs (where the DNA is evenly distributed). Also, protein-G-rich dendron structures show enhanced uptake compared to protein-T-rich dendron structures, highlighting the importance of oligonucleotide sequence on nanoconjugate uptake. Finally, a generalizable method for chemically tagging proteins with dendrons that does not require mutagenesis is described. When a range of proteins, spanning 42 to 464 kDa, were modified through surface lysines with this method, a significant increase in their cellular uptake (up to 17-fold) compared to proteins that are not coupled to a DNA dendron was observed.
Collapse
Affiliation(s)
- Kathleen H. Ngo
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Max E. Distler
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Tonatiuh A. Ocampo
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Yinglun Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Andrew J. Minorik
- Department of Neurobiology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| |
Collapse
|
13
|
Caferra P, Fraisse T, Trincavelli ML, Marchetti L, Piras AM. Evaluation of orphan maintained biological medicinal products in the European Union between 2018 to 2023: a regulatory perspective. Expert Opin Biol Ther 2024; 24:1279-1297. [PMID: 39460383 DOI: 10.1080/14712598.2024.2422360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES Orphan medicinal products (OMPs) authorized by the European Union (EU) benefit from market exclusivity, fee waivers, and national incentives. Maintaining orphan status during a marketing authorization application requires meeting eligibility criteria, especially demonstrating significant benefit (SB), which is challenging. This study identifies key features linked to successful orphan status maintenance for biological OMPs approved in the EU between 2018 and 2023. METHODS Data from European public assessment reports and orphan maintenance assessment reports were analyzed. RESULTS Among the 50 biological OMP maintained orphan designations, 68.0% had to demonstrate SB over existing treatments, with 91.2% leveraging the clinically relevant advantage area, utilizing better clinical efficacy (83.9%) and efficacy in subpopulations (38.7%) subdomains. However, 32.0% did not need to demonstrate SB due to a lack of alternative treatments, most of which were ultra-orphan drugs. Advanced therapy medicinal products and monoclonal antibodies were the most numerous OMP categories, whereas oncology and immunomodulation were the preferred therapeutic areas. CONCLUSION The Orphan Regulation is essential in advancing treatments for rare diseases, fostering innovation while addressing unmet medical needs. Nonetheless, the insufficient return on investment criterion remains underused, whereas refining major contribution to patient care guidelines and incorporating real-world evidence may enhance regulatory evaluations.
Collapse
Affiliation(s)
- Paolo Caferra
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Reseach & Development, Sanofi, Amsterdam, the Netherlands
| | - Thomas Fraisse
- Reseach & Development, Sanofi, Amsterdam, the Netherlands
- Faculty of Pharmacy, Montpellier University, Montpellier, France
| | | | | | | |
Collapse
|
14
|
Yu H, Mo H, Gao J, Yao M, Du Y, Liu K, Zhang Q, Yu J, Li Y, Wang L. Fibroblast growth factor 1 (FGF1) improves glucose homeostasis, modulates gut microbial composition, and reduces inflammatory responses in rainbow trout (Oncorhynchus mykiss) fed a high-fat diet. Int J Biol Macromol 2024; 281:136226. [PMID: 39383919 DOI: 10.1016/j.ijbiomac.2024.136226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
High-fat diets (HFDs) are widely used in aquaculture due to their lipid and protein-conserving effects, thereby reducing feed costs. However, prolonged feeding of HFD often leads to metabolic disorders in fish, such as disruption of hepatic lipid homeostasis, liver injury, and disruption of glucose homeostasis. Fibroblast growth factor 1 (FGF1) plays an essential role in controlling glucose levels in the body and dampening immune reactions. However, its impact on teleosts remains poorly researched. The therapeutic potential of recombinant FGF1 (rFGF1) was examined in a 6-week culture experiment involving rainbow trout (Oncorhynchus mykiss) that were fed an HFD. The results revealed that rFGF1 significantly reduced serum glucose levels and hepatic PEPCK and G6PC activities, but improved hepatic glycogen (P < 0.05), compared to the HFD + PBS group. Further experiments indicated that the inhibitory effect of rFGF1 on hepatic gluconeogenesis was mediated by the cAMP signaling pathway and was dependent on the high expression of PDE4D. In addition, rFGF1 increased hepatic glycogen content, which involves the AKT-GSK3β axis. Despite this increase, rFGF1 did not lead to glycogen storage disease, as shown by reduced hepatic inflammation as a result of decreased GOT (glutamic oxaloacetic transaminase), GPT (glutamic pyruvic transaminase), and elevated SOD (superoxide dismutase) in the rFGF1-treated group, accompanied by decreased il-1β, il-6, and xbp-1, and elevated nrf2 and number of hepatocyte autophagosomes. Alterations in gut microbes and short-chain fatty acids (SCFAs) were noted, indicating that rFGF1 caused a notable rise in intestinal Lactobacillus, acetic acid, and butyric acid levels. This study investigated the molecular mechanisms of rFGF1 on glucose metabolism and inflammatory responses in an HFD-fed rainbow trout model, providing new insights to improve the regulation of glucose metabolism in carnivorous fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yang Li
- Northwest A&F University, China.
| | | |
Collapse
|
15
|
Son A, Park J, Kim W, Lee W, Yoon Y, Ji J, Kim H. Integrating Computational Design and Experimental Approaches for Next-Generation Biologics. Biomolecules 2024; 14:1073. [PMID: 39334841 PMCID: PMC11430650 DOI: 10.3390/biom14091073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Therapeutic protein engineering has revolutionized medicine by enabling the development of highly specific and potent treatments for a wide range of diseases. This review examines recent advances in computational and experimental approaches for engineering improved protein therapeutics. Key areas of focus include antibody engineering, enzyme replacement therapies, and cytokine-based drugs. Computational methods like structure-based design, machine learning integration, and protein language models have dramatically enhanced our ability to predict protein properties and guide engineering efforts. Experimental techniques such as directed evolution and rational design approaches continue to evolve, with high-throughput methods accelerating the discovery process. Applications of these methods have led to breakthroughs in affinity maturation, bispecific antibodies, enzyme stability enhancement, and the development of conditionally active cytokines. Emerging approaches like intracellular protein delivery, stimulus-responsive proteins, and de novo designed therapeutic proteins offer exciting new possibilities. However, challenges remain in predicting in vivo behavior, scalable manufacturing, immunogenicity mitigation, and targeted delivery. Addressing these challenges will require continued integration of computational and experimental methods, as well as a deeper understanding of protein behavior in complex physiological environments. As the field advances, we can anticipate increasingly sophisticated and effective protein therapeutics for treating human diseases.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
| | - Jaeho Ji
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (W.L.); (Y.Y.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS (Sciences for Panomics), 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
16
|
Abal-Sanisidro M, De Luca M, Roma S, Ceraolo MG, de la Fuente M, De Monte L, Protti MP. Anakinra-Loaded Sphingomyelin Nanosystems Modulate In Vitro IL-1-Dependent Pro-Tumor Inflammation in Pancreatic Cancer. Int J Mol Sci 2024; 25:8085. [PMID: 39125655 PMCID: PMC11312284 DOI: 10.3390/ijms25158085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Pancreatic cancer is a very aggressive disease with a dismal prognosis. The tumor microenvironment exerts immunosuppressive activities through the secretion of several cytokines, including interleukin (IL)-1. The IL-1/IL-1 receptor (IL-1R) axis is a key regulator in tumor-promoting T helper (Th)2- and Th17-type inflammation. Th2 cells are differentiated by dendritic cells endowed with Th2-polarizing capability by the thymic stromal lymphopoietin (TSLP) that is secreted by IL-1-activated cancer-associated fibroblasts (CAFs). Th17 cells are differentiated in the presence of IL-1 and other IL-1-regulated cytokines. In pancreatic cancer, the use of a recombinant IL-1R antagonist (IL1RA, anakinra, ANK) in in vitro and in vivo models has shown efficacy in targeting the IL-1/IL-1R pathway. In this study, we have developed sphingomyelin nanosystems (SNs) loaded with ANK (ANK-SNs) to compare their ability to inhibit Th2- and Th17-type inflammation with that of the free drug in vitro. We found that ANK-SNs inhibited TSLP and other pro-tumor cytokines released by CAFs at levels similar to ANK. Importantly, inhibition of IL-17 secretion by Th17 cells, but not of interferon-γ, was significantly higher, and at lower concentrations, with ANK-SNs compared to ANK. Collectively, the use of ANK-SNs might be beneficial in reducing the effective dose of the drug and its toxic effects.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
| | - Michele De Luca
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Roma
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Grazia Ceraolo
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain;
- University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029 Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782 Santiago de Compostela, Spain
| | - Lucia De Monte
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy; (M.D.L.); (S.R.); (M.G.C.); (L.D.M.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
17
|
Lev R, Bar-Am O, Saar G, Guardiola O, Minchiotti G, Peled E, Seliktar D. Development of a local controlled release system for therapeutic proteins in the treatment of skeletal muscle injuries and diseases. Cell Death Dis 2024; 15:470. [PMID: 38956034 PMCID: PMC11219926 DOI: 10.1038/s41419-024-06645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 07/04/2024]
Abstract
The present study aims to develop and characterize a controlled-release delivery system for protein therapeutics in skeletal muscle regeneration following an acute injury. The therapeutic protein, a membrane-GPI anchored protein called Cripto, was immobilized in an injectable hydrogel delivery vehicle for local administration and sustained release. The hydrogel was made of poly(ethylene glycol)-fibrinogen (PEG-Fibrinogen, PF), in the form of injectable microspheres. The PF microspheres exhibited a spherical morphology with an average diameter of approximately 100 micrometers, and the Cripto protein was uniformly entrapped within them. The release rate of Cripto from the PF microspheres was controlled by tuning the crosslinking density of the hydrogel, which was varied by changing the concentration of poly(ethylene glycol) diacrylate (PEG-DA) crosslinker. In vitro experiments confirmed a sustained-release profile of Cripto from the PF microspheres for up to 27 days. The released Cripto was biologically active and promoted the in vitro proliferation of mouse myoblasts. The therapeutic effect of PF-mediated delivery of Cripto in vivo was tested in a cardiotoxin (CTX)-induced muscle injury model in mice. The Cripto caused an increase in the in vivo expression of the myogenic markers Pax7, the differentiation makers eMHC and Desmin, higher numbers of centro-nucleated myofibers and greater areas of regenerated muscle tissue. Collectively, these results establish the PF microspheres as a potential delivery system for the localized, sustained release of therapeutic proteins toward the accelerated repair of damaged muscle tissue following acute injuries.
Collapse
Affiliation(s)
- Rachel Lev
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Galit Saar
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, Naples, Italy
| | - Eli Peled
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Rambam Health Care Campus, Haifa, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Zhao H, Liu Y, Zhang X, Liao Y, Zhang H, Han X, Guo L, Fan B, Wang W, Lu C. Identifying novel proteins for suicide attempt by integrating proteomes from brain and blood with genome-wide association data. Neuropsychopharmacology 2024; 49:1255-1265. [PMID: 38317018 PMCID: PMC11224332 DOI: 10.1038/s41386-024-01807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Genome-wide association studies (GWASs) have identified risk loci for suicide attempt (SA), but deciphering how they confer risk for SA remains largely unknown. This study aims to identify the key proteins and gain insights into SA pathogenesis. We integrated data from the brain proteome (N = 376) and blood proteome (N = 35,559) and combined it with the largest SA GWAS summary statistics to date (N = 518,612). A comprehensive set of methods was employed, including Mendelian randomization (MR), Steiger filtering, Bayesian colocalization, proteome‑wide association studies (PWAS), transcript-levels, cell-type specificity, correlation, and protein-protein interaction (PPI) network analysis. Validation was performed using other protein datasets and the SA dataset from FinnGen study. We identified ten proteins (GLRX5, GMPPB, B3GALTL, FUCA2, TTLL12, ADCK1, MMAA, HIBADH, ACP1, DOC2A) associated with SA in brain proteomics. GLRX5, GMPPB, and FUCA2 showed strong colocalization evidence and were supported by PWAS and transcript-level analysis, and were predominantly expressed in glutamatergic neuronal cells. In blood proteomics, one significant protein (PEAR1) and three near-significant proteins (NDE1, EVA1C, B4GALT2) were identified, but lacked colocalization evidence. Moreover, despite the limited correlation between the same protein in brain and blood, the PPI network analysis provided new insights into the interaction between brain and blood in SA. Furthermore, GLRX5 was associated with the GSTP1, the target of Clozapine. The comprehensive analysis provides strong evidence supporting a causal association between three genetically determined brain proteins (GLRX5, GMPPB, and FUCA2) with SA. These findings offer valuable insights into SA's underlying mechanisms and potential therapeutic approaches.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Liu
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xuening Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuhua Liao
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Huimin Zhang
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xue Han
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| | - Beifang Fan
- Department of Psychiatry, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China.
| | - Wanxin Wang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China.
| | - Ciyong Lu
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Çalbaş B, Keobounnam AN, Korban C, Doratan AJ, Jean T, Sharma AY, Wright TA. Protein-polymer bioconjugation, immobilization, and encapsulation: a comparative review towards applicability, functionality, activity, and stability. Biomater Sci 2024; 12:2841-2864. [PMID: 38683585 DOI: 10.1039/d3bm01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.
Collapse
Affiliation(s)
- Berke Çalbaş
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashley N Keobounnam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Christopher Korban
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ainsley Jade Doratan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Tiffany Jean
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aryan Yashvardhan Sharma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Thaiesha A Wright
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Elumalai N, Hussain H, Sampath N, Shamaladevi N, Hajjar R, Druyan BZ, Rashed AB, Ramamoorthy R, Kenyon NS, Jayakumar AR, Paidas MJ. SPIKENET: An Evidence-Based Therapy for Long COVID. Viruses 2024; 16:838. [PMID: 38932130 PMCID: PMC11209161 DOI: 10.3390/v16060838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic has been one of the most impactful events in our lifetime, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple SARS-CoV-2 variants were reported globally, and a wide range of symptoms existed. Individuals who contract COVID-19 continue to suffer for a long time, known as long COVID or post-acute sequelae of COVID-19 (PASC). While COVID-19 vaccines were widely deployed, both unvaccinated and vaccinated individuals experienced long-term complications. To date, there are no treatments to eradicate long COVID. We recently conceived a new approach to treat COVID in which a 15-amino-acid synthetic peptide (SPIKENET, SPK) is targeted to the ACE2 receptor binding domain of SARS-CoV-2, which prevents the virus from attaching to the host. We also found that SPK precludes the binding of spike glycoproteins with the receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) of a coronavirus, murine hepatitis virus-1 (MHV-1), and with all SARS-CoV-2 variants. Further, SPK reversed the development of severe inflammation, oxidative stress, tissue edema, and animal death post-MHV-1 infection in mice. SPK also protects against multiple organ damage in acute and long-term post-MHV-1 infection. Our findings collectively suggest a potential therapeutic benefit of SPK for treating COVID-19.
Collapse
Affiliation(s)
- Nila Elumalai
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Internal Medicine, HCA Florida Kendall Hospital, Miami, FL 33175, USA
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | | | - Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Brian Zachary Druyan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Amirah B. Rashed
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Rajalakshmi Ramamoorthy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Norma S. Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (N.E.); (H.H.); (R.H.); (B.Z.D.); (A.B.R.); (R.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Pangua C, Espuelas S, Martínez-Ohárriz MC, Vizmanos JL, Irache JM. Mucus-penetrating and permeation enhancer albumin-based nanoparticles for oral delivery of macromolecules: Application to bevacizumab. Drug Deliv Transl Res 2024; 14:1189-1205. [PMID: 37880504 PMCID: PMC10984897 DOI: 10.1007/s13346-023-01454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | | | - José Luis Vizmanos
- Department of Biochemistry & Genetics, School of Sciences, University of Navarra, 31008, Pamplona, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
22
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
23
|
Fu R, Xu J, Guo Q, Liu T, Su X, Xu M, Zhao X, Wang F, Ji L, Qian W, Hou S, Li J, Zhang D, Guo H. Highly drug/target-tolerant neutralizing antibody (NAb) assay development through target-based drug depletion and drug-based NAb extraction for an anti-EGFR therapeutic monoclonal antibody. J Pharm Biomed Anal 2024; 241:116006. [PMID: 38309099 DOI: 10.1016/j.jpba.2024.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The reduction of immunogenicity is fundamental for the development of biobetter Erbitux, given that the development of an immune response reduces treatment efficacy and may lead to potential side effects. One of the requirements for the clinical research of a Erbitux biobetter candidate (CMAB009) is to develop a neutralizing antibody (NAb) assay, and sufficient drug and target tolerance for the assay is necessary. Here, we describe the development of a competitive ligand binding (CLB) assay for CMAB009 with high drug and target tolerance through target-based drug depletion and drug-based NAb extraction, the integrated experimental strategy was implemented to simultaneously mitigate drug interference and enhance target tolerance. Following troubleshooting and optimization, the NAb assay was validated for clinical sample analysis with the sensitivity of 92 ng/mL, drug tolerance of 70 μg/mL and target tolerance of 798 ng/mL. The innovative drug depletion and NAb extraction achieved though the combination of drug and target beads would enable the development of reliable NAb assays for many other therapeutics that overcome drug and its target interference for more precise and sensitive NAb assessment.
Collapse
Affiliation(s)
- Rongrong Fu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingcheng Guo
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Taizhou Mabtech Pharmaceuticals Co., Ltd, Taizhou, China
| | - Tao Liu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinyi Su
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China
| | - Mengjiao Xu
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xiang Zhao
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Lusha Ji
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weizhu Qian
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Hou
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Li
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Dapeng Zhang
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huaizu Guo
- State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China; NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China; State key laboratory of macromolecular drugs and large-scale manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; State key laboratory of macromolecular drugs and large-scale manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd, Shanghai, China.
| |
Collapse
|
24
|
Sugimoto K, Karamitros CS, Horiuchi JI, Kumada Y. Identification and characterization of rabbit scFv antibodies suitable for immuno-affinity separation of recombinant human kynureninase from Escherichia coli cell lysate. J Biosci Bioeng 2024; 137:298-303. [PMID: 38296747 DOI: 10.1016/j.jbiosc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
In this study we successfully developed an on-demand affinity chromatographic resin for manufacturing non-Fc-based biopharmaceuticals. Affinity chromatography columns with immobilized rabbit single-chain variable fragments (scFvs) were used for directly purifying the recombinant human kynureninase (KYNase) as a model target therapeutic protein from Escherichia coli cell lysates. Among the 38 different anti-KYNase scFv clones identified, four unique clones were selected as candidates for further characterization owing to their relatively low KYNase binding affinity at pH 4.0, thereby facilitating enzyme elution. Subsequently, all four clones were successfully produced and purified, followed by covalent coupling to NHS-activated HiTrap HP columns. While KYNase was specifically adsorbed to all four scFv-immobilized columns and was eluted at pH 4.0, the respective levels of static binding capacity (SBC) and recovery among the four scFv clones were different at this elution pH. That is, the scFv-immobilized columns captured KYNase with SBC ranging from 1.15 to 2.68 mg/cm3-bed with clone R2-47 exhibiting the highest level of SBC, with a ligand utilization of 39.4 %. Moreover, using the scFv column of R2-47, 90.7 % of the captured human KYNase was recovered in the first elution step at pH 4.0, and approximately 67 % of enzymatic activity was retained. In summary, high-purity human KYNase was obtained from the E. coli cell lysate by one-step affinity purification, and 89.7 % of KYNase was recovered in the first elution step. The methodology demonstrated in the current study could be applied for the purification and development of various therapeutic proteins.
Collapse
Affiliation(s)
- Kaito Sugimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Christos S Karamitros
- Research and Clinical Development, Nestlé Health Science, Lausanne 1000, Switzerland; Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| |
Collapse
|
25
|
Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet 2024; 403:1192-1204. [PMID: 38461842 DOI: 10.1016/s0140-6736(23)02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Recent advances in mRNA technology and its delivery have enabled mRNA-based therapeutics to enter a new era in medicine. The rapid, potent, and transient nature of mRNA-encoded proteins, without the need to enter the nucleus or the risk of genomic integration, makes them desirable tools for treatment of a range of diseases, from infectious diseases to cancer and monogenic disorders. The rapid pace and ease of mass-scale manufacturability of mRNA-based therapeutics supported the global response to the COVID-19 pandemic. Nonetheless, challenges remain with regards to mRNA stability, duration of expression, delivery efficiency, and targetability, to broaden the applicability of mRNA therapeutics beyond COVID-19 vaccines. By learning from the rapidly expanding preclinical and clinical studies, we can optimise the mRNA platform to meet the clinical needs of each disease. Here, we will summarise the recent advances in mRNA technology; its use in vaccines, immunotherapeutics, protein replacement therapy, and genomic editing; and its delivery to desired specific cell types and organs for development of a new generation of targeted mRNA-based therapeutics.
Collapse
Affiliation(s)
- Hamideh Parhiz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Mariconti M, Dechamboux L, Heckmann M, Gros J, Morel M, Escriou V, Baigl D, Hoffmann C, Rudiuk S. Intracellular Delivery of Functional Proteins with DNA-Protein Nanogels-Lipids Complex. J Am Chem Soc 2024; 146:5118-5127. [PMID: 38363821 PMCID: PMC10910493 DOI: 10.1021/jacs.3c08000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 μM) underlines potential interest of this nanoplatform for biomedical applications.
Collapse
Affiliation(s)
- Marina Mariconti
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | | | - Marion Heckmann
- Université
Paris Cité, CNRS, INSERM, UTCBS, Paris 75006, France
| | - Julien Gros
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | - Mathieu Morel
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | | | - Damien Baigl
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| | - Céline Hoffmann
- Université
Paris Cité, CNRS, INSERM, UTCBS, Paris 75006, France
| | - Sergii Rudiuk
- PASTEUR,
UMR8640, Department of Chemistry, PSL University,
Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005 France
| |
Collapse
|
27
|
Wu KE, Yang KK, van den Berg R, Alamdari S, Zou JY, Lu AX, Amini AP. Protein structure generation via folding diffusion. Nat Commun 2024; 15:1059. [PMID: 38316764 PMCID: PMC10844308 DOI: 10.1038/s41467-024-45051-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
The ability to computationally generate novel yet physically foldable protein structures could lead to new biological discoveries and new treatments targeting yet incurable diseases. Despite recent advances in protein structure prediction, directly generating diverse, novel protein structures from neural networks remains difficult. In this work, we present a diffusion-based generative model that generates protein backbone structures via a procedure inspired by the natural folding process. We describe a protein backbone structure as a sequence of angles capturing the relative orientation of the constituent backbone atoms, and generate structures by denoising from a random, unfolded state towards a stable folded structure. Not only does this mirror how proteins natively twist into energetically favorable conformations, the inherent shift and rotational invariance of this representation crucially alleviates the need for more complex equivariant networks. We train a denoising diffusion probabilistic model with a simple transformer backbone and demonstrate that our resulting model unconditionally generates highly realistic protein structures with complexity and structural patterns akin to those of naturally-occurring proteins. As a useful resource, we release an open-source codebase and trained models for protein structure diffusion.
Collapse
Affiliation(s)
- Kevin E Wu
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - James Y Zou
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex X Lu
- Microsoft Research, Cambridge, MA, USA
| | | |
Collapse
|
28
|
Masloh S, Chevrel A, Culot M, Perrocheau A, Kalia YN, Frehel S, Gaussin R, Gosselet F, Huet S, Zeisser Labouebe M, Scapozza L. Enhancing Oral Delivery of Biologics: A Non-Competitive and Cross-Reactive Anti-Leptin Receptor Nanofitin Demonstrates a Gut-Crossing Capacity in an Ex Vivo Porcine Intestinal Model. Pharmaceutics 2024; 16:116. [PMID: 38258126 PMCID: PMC10820293 DOI: 10.3390/pharmaceutics16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Biotherapeutics exhibit high efficacy in targeted therapy, but their oral delivery is impeded by the harsh conditions of the gastrointestinal (GI) tract and limited intestinal absorption. This article presents a strategy to overcome the challenges of poor intestinal permeability by using a protein shuttle that specifically binds to an intestinal target, the leptin receptor (LepR), and exploiting its capacity to perform a receptor-mediated transport. Our proof-of-concept study focuses on the characterization and transport of robust affinity proteins, known as Nanofitins, across an ex vivo porcine intestinal model. We describe the potential to deliver biologically active molecules across the mucosa by fusing them with the Nanofitin 1-F08 targeting the LepR. This particular Nanofitin was selected for its absence of competition with leptin, its cross-reactivity with LepR from human, mouse, and pig hosts, and its shuttle capability associated with its ability to induce a receptor-mediated transport. This study paves the way for future in vivo demonstration of a safe and efficient oral-to-systemic delivery of targeted therapies.
Collapse
Affiliation(s)
- Solene Masloh
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Maxime Culot
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | | | - Yogeshvar N. Kalia
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Samuel Frehel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Rémi Gaussin
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, UR 2465, Rue Jean Souvraz, 62300 Lens, France (M.C.); (F.G.)
| | - Simon Huet
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France (A.P.); (R.G.)
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
29
|
Sonzogni A, Rivero G, Gonzalez V, Abraham G, Calderón M, Minari R. Nano-in-nano enteric protein delivery system: coaxial Eudragit® L100-55 fibers containing poly( N-vinylcaprolactam) nanogels. Biomater Sci 2024; 12:335-345. [PMID: 38014921 DOI: 10.1039/d3bm01422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Oral protein delivery holds significant promise as an effective therapeutic strategy for treating a wide range of diseases. However, effective absorption of proteins faces challenges due to biological barriers such as harsh conditions of the stomach and the low permeability of mucous membranes. To address these challenges, this article presents a novel nano-in-nano platform designed for enteric protein delivery. This platform, obtained by electrospinning, involves a coaxial arrangement comprising poly(N-vinylcaprolactam) nanogels (NGs) enclosed within nanofibers of Eudragit® L100-55 (EU), a pH-responsive polymer. The pH-selective solubility of EU ensures the protection of NGs during their passage through the stomach, where the fibers remain intact at low pH, and releases them in the intestine where EU dissolves. The switchable characteristic of this nano-in-nano platform is confirmed by using NGs loaded with a model protein (ovalbumin), which is selectively released when the intestinal pH is achieved. The versatility of this nano-in-nano delivery platform is demonstrated by the ability to modify the fibers dissolution profile simply by adjusting the concentration of EU used in the electrospinning process. Furthermore, by tuning the properties of NGs, the potential applications of this platform can be further extended, paving the way for diverse therapeutic possibilities.
Collapse
Affiliation(s)
- Ana Sonzogni
- INTEC (UNL-CONICET), Güemes 3450, Santa Fe 3000, Argentina.
| | - Guadalupe Rivero
- INTEMA (UNMDP-CONICET), Av. Colón 10850, B7606BWV Mar del Plata, Argentina
| | | | - Gustavo Abraham
- INTEMA (UNMDP-CONICET), Av. Colón 10850, B7606BWV Mar del Plata, Argentina
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo M. de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Roque Minari
- INTEC (UNL-CONICET), Güemes 3450, Santa Fe 3000, Argentina.
| |
Collapse
|
30
|
Kehrein J, Sotriffer C. Molecular Dynamics Simulations for Rationalizing Polymer Bioconjugation Strategies: Challenges, Recent Developments, and Future Opportunities. ACS Biomater Sci Eng 2024; 10:51-74. [PMID: 37466304 DOI: 10.1021/acsbiomaterials.3c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The covalent modification of proteins with polymers is a well-established method for improving the pharmacokinetic properties of therapeutically valuable biologics. The conjugated polymer chains of the resulting hybrid represent highly flexible macromolecular structures. As the dynamics of such systems remain rather elusive for established experimental techniques from the field of protein structure elucidation, molecular dynamics simulations have proven as a valuable tool for studying such conjugates at an atomistic level, thereby complementing experimental studies. With a focus on new developments, this review aims to provide researchers from the polymer bioconjugation field with a concise and up to date overview of such approaches. After introducing basic principles of molecular dynamics simulations, as well as methods for and potential pitfalls in modeling bioconjugates, the review illustrates how these computational techniques have contributed to the understanding of bioconjugates and bioconjugation strategies in the recent past and how they may lead to a more rational design of novel bioconjugates in the future.
Collapse
Affiliation(s)
- Josef Kehrein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
31
|
Rana P, Singh C, Kaushik A, Saleem S, Kumar A. Recent advances in stimuli-responsive tailored nanogels for cancer therapy; from bench to personalized treatment. J Mater Chem B 2024; 12:382-412. [PMID: 38095136 DOI: 10.1039/d3tb02650g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
To improve the quality of health in a personalized manner, better control over pharmacologically relevant cargo formulation, organ-specific targeted delivery, and on-demand release of therapeutic agents is crucial. Significant work has been put into designing and developing revolutionary nanotherapeutics approaches for the effective monitoring and personalized treatment of disease. Nanogel (NG) has attracted significant interest because of its tremendous potential in cancer therapy and its environmental stimuli responsiveness. NG is considered a next-generation delivery technology due to its benefits like as size tunability, high loading, stimuli responsiveness, prolonged drug release via in situ gelling mechanisms, stability, and its potential to provide personalized therapy from the investigation of human genes and the genes in various types of cancers and its association with a selective anticancer drug. Stimuli-responsive NGs can be used as smart nanomedicines to detect and treat cancer and can be tuned as personalized medicine as well. This comprehensive review article's major objectives include the challenges of NGs' clinical translation for cancer treatment as well as its early preclinical successes and prospects.
Collapse
Affiliation(s)
- Prinsy Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Uttarakhand-246174, India
| | - Ajeet Kaushik
- NanoBiotech Lab, Department of Environmental Engineering, Florida Polytechnic University (FPU), Lakeland, FL, 33805-8531, USA
- School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, P. O. Box 93499, Riyadh 11673, Saudi Arabia
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India.
| |
Collapse
|
32
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
33
|
Kulshrestha S, Goel A. Protein therapeutics as an emerging strategy to deal with skin cancer: A short review. Exp Dermatol 2024; 33:e14981. [PMID: 37983960 DOI: 10.1111/exd.14981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Cancer has turned into a global menace with an exponential increase in the rate of death every year. Amongst all forms of cancers, skin cancer is the one becoming more common day by day because of the increased exposure to ultraviolet rays, chemicals, pollutants, etc. Skin cancer is of three types namely basal cell, squamous cell and melanoma which is one of the most aggressive forms of cancer with a low survival rate and easy relapse. Melanoma is also notorious for being multi-drug resistant which accounts for its low survival rates in it. Many kinds of therapeutics are been practiced in the contemporary world, but among them, protein therapeutics is been emerging as a promising field with multiple molecular pathway targets that have revolutionized the science of oncology. Proteins acts as small-molecule targets for cancer cells by binding to the cell surface receptors. Proteins including bromodomain and extra-terminal domain (BET) and some toxin proteins are been tried on for dealing with melanoma targeting the major pathways including MAPK, NF-κB and PI3K/AKT. The protein therapeutics also targets the tumour microenvironment including myofibrils, lymphatic vessels etc., thus inducing tumour cell death. In the review, several kinds of proteins and their function toward cell death will be highlighted in the context of skin cancer. In addition to this, the review will look into the inhibition of the function of other inflammatory pathways by inflammasomes and cytokines, both of which have a role in preventing cancer.
Collapse
Affiliation(s)
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
34
|
Balafouti A, Forys A, Trzebicka B, Gerardos AM, Pispas S. Anionic Hyperbranched Amphiphilic Polyelectrolytes as Nanocarriers for Antimicrobial Proteins and Peptides. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7702. [PMID: 38138846 PMCID: PMC10745097 DOI: 10.3390/ma16247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
This manuscript presents the synthesis of hyperbranched amphiphilic poly (lauryl methacrylate-co-tert-butyl methacrylate-co-methacrylic acid), H-P(LMA-co-tBMA-co-MAA) copolymers via reversible addition fragmentation chain transfer (RAFT) copolymerization of tBMA and LMA, and their post-polymerization modification to anionic amphiphilic polyelectrolytes. The focus is on investigating whether the combination of the hydrophobic characters of LMA and tBMA segments, as well as the polyelectrolyte and hydrophilic properties of MAA segments, both distributed within a unique hyperbranched polymer chain topology, would result in intriguing, branched copolymers with the potential to be applied in nanomedicine. Therefore, we studied the self-assembly behavior of these copolymers in aqueous media, as well as their ability to form complexes with cationic proteins, namely lysozyme (LYZ) and polymyxin (PMX). Various physicochemical characterization techniques, including size exclusion chromatography (SEC) and proton nuclear magnetic resonance (1H-NMR), verified the molecular characteristics of these well-defined copolymers, whereas light scattering and fluorescence spectroscopy techniques revealed promising nanoparticle (NP) self- and co-assembly properties of the copolymers in aqueous media.
Collapse
Affiliation(s)
- Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 ul. M. Curie-Skłodowskiej, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (A.B.); (A.M.G.)
| |
Collapse
|
35
|
Browne D, Briggs F, Asuri P. Role of Polymer Concentration on the Release Rates of Proteins from Single- and Double-Network Hydrogels. Int J Mol Sci 2023; 24:16970. [PMID: 38069293 PMCID: PMC10707672 DOI: 10.3390/ijms242316970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.
Collapse
Affiliation(s)
| | | | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA; (D.B.); (F.B.)
| |
Collapse
|
36
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
37
|
Greschner AA, Brahiti N, Auger M, Hu L, Soleymani Abyaneh H, Barbeau X, Parent V, Gaillet B, Guay D, Soultan AH, Gauthier MA. PEGylation of a Peptide-Based Amphiphilic Delivery Agent and Influence on Protein Delivery to Cells. Biomacromolecules 2023; 24:4890-4900. [PMID: 37862236 DOI: 10.1021/acs.biomac.3c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The cell membrane is a restrictive biological barrier, especially for large, charged molecules, such as proteins. The use of cell-penetrating peptides (CPPs) can facilitate the delivery of proteins, protein complexes, and peptides across the membrane by a variety of mechanisms that are all limited by endosomal sequestration. To improve CPP-mediated delivery, we previously reported the rapid and effective cytosolic delivery of proteins in vitro and in vivo by their coadministration with the peptide S10, which combines a CPP and an endosomal leakage domain. Amphiphilic peptides with hydrophobic properties, such as S10, can interact with lipids to destabilize the cell membrane, thus promoting cargo internalization or escape from endosomal entrapment. However, acute membrane destabilization can result in a dose-limiting cytotoxicity. In this context, the partial or transient deactivation of S10 by modification with methoxy poly(ethylene glycol) (mPEG; i.e., PEGylation) may provide the means to alter membrane destabilization kinetics, thereby attenuating the impact of acute permeabilization on cell viability. This study investigates the influence of PEGylation parameters (molecular weight, architecture, and conjugation chemistry) on the delivery efficiency of a green fluorescent protein tagged with a nuclear localization signal (GFP-NLS) and cytotoxicity on cells in vitro. Results suggest that PEGylation mostly interferes with adsorption and secondary structure formation of S10 at the cell membrane, and this effect is exacerbated by the mPEG molecular weight. This effect can be compensated for by increasing the concentration of conjugates prepared with lower molecular weight mPEG (5 to ∼20 kDa) but not for conjugates prepared with higher molecular weight mPEG (40 kDa). For conjugates prepared with moderate-to-high molecular weight mPEG (10 to 20 kDa), partial compensation of inactivation could be achieved by the inclusion of a reducible disulfide bond, which provides a mechanism to liberate the S10 from the polymer. Grafting multiple copies of S10 to a high-molecular-weight multiarmed PEG (40 kDa) improved GFP-NLS delivery efficiency. However, these constructs were more cytotoxic than the native peptide. Considering that PEGylation could be harnessed for altering the pharmacokinetics and biodistribution profiles of peptide-based delivery agents in vivo, the trends observed herein provide new perspectives on how to manipulate the membrane permeabilization process, which is an important variable for achieving delivery.
Collapse
Affiliation(s)
- Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Maud Auger
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - Lei Hu
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Xavier Barbeau
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Victor Parent
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - David Guay
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
38
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
39
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
40
|
Chapa-Villarreal FA, Miller M, Rodriguez-Cruz JJ, Pérez-Carlos D, Peppas NA. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Biomaterials 2023; 300:122191. [PMID: 37295223 DOI: 10.1016/j.biomaterials.2023.122191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Protein therapeutics have guided a transformation in disease treatment for various clinical conditions. They have been successful in numerous applications, but administration of protein therapeutics has been limited to parenteral routes which can decrease patient compliance as they are invasive and painful. In recent years, the synergistic relationship of novel biomaterials with modern protein therapeutics has been crucial in the treatment of diseases that were once thought of as incurable. This has guided the development of a variety of alternative administration routes, but the oral delivery of therapeutics remains one of the most desirable due to its ease of administration. This review addresses important aspects of micellar structures prepared by self-assembled processes with applications for oral delivery. These two characteristics have not been placed together in previous literature within the field. Therefore, we describe the barriers for delivery of protein therapeutics, and we concentrate in the oral/transmucosal pathway where drug carriers must overcome several chemical, physical, and biological barriers to achieve a successful therapeutic effect. We critically discuss recent research on biomaterials systems for delivering such therapeutics with an emphasis on self-assembled synthetic block copolymers. Polymerization methods and nanoparticle preparation techniques are similarly analyzed as well as relevant work in this area. Based on our own and others' research, we analyze the use of block copolymers as therapeutic carriers and their promise in treating a variety of diseases, with emphasis on self-assembled micelles for the next generation of oral protein therapeutic systems.
Collapse
Affiliation(s)
- Fabiola A Chapa-Villarreal
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Matthew Miller
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - J Jesus Rodriguez-Cruz
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Diego Pérez-Carlos
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA; Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
41
|
Li C, Zhang D, Pan Y, Chen B. Human Serum Albumin Based Nanodrug Delivery Systems: Recent Advances and Future Perspective. Polymers (Basel) 2023; 15:3354. [PMID: 37631411 PMCID: PMC10459149 DOI: 10.3390/polym15163354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the success of several clinical trials of products based on human serum albumin (HSA) and the rapid development of nanotechnology, HSA-based nanodrug delivery systems (HBNDSs) have received extensive attention in the field of nanomedicine. However, there is still a lack of comprehensive reviews exploring the broader scope of HBNDSs in biomedical applications beyond cancer therapy. To address this gap, this review takes a systematic approach. Firstly, it focuses on the crystal structure and the potential binding sites of HSA. Additionally, it provides a comprehensive summary of recent progresses in the field of HBNDSs for various biomedical applications over the past five years, categorized according to the type of therapeutic drugs loaded onto HSA. These categories include small-molecule drugs, inorganic materials and bioactive ingredients. Finally, the review summarizes the characteristics and current application status of HBNDSs in drug delivery, and also discusses the challenges that need to be addressed for the clinical transformation of HSA formulations and offers future perspectives in this field.
Collapse
Affiliation(s)
- Changyong Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Dagui Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Yujing Pan
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China;
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
42
|
Oh CY, Henderson ER. In vitro transcription of self-assembling DNA nanoparticles. Sci Rep 2023; 13:12961. [PMID: 37563161 PMCID: PMC10415316 DOI: 10.1038/s41598-023-39777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Nucleic acid nanoparticles are playing an increasingly important role in biomolecular diagnostics and therapeutics as well as a variety of other areas. The unique attributes of self-assembling DNA nanoparticles provide a potentially valuable addition or alternative to the lipid-based nanoparticles that are currently used to ferry nucleic acids in living systems. To explore this possibility, we have assessed the ability of self-assembling DNA nanoparticles to be constructed from complete gene cassettes that are capable of gene expression in vitro. In the current report, we describe the somewhat counter-intuitive result that despite extensive crossovers (the stereochemical analogs of Holliday junctions) and variations in architecture, these DNA nanoparticles are amenable to gene expression as evidenced by T7 RNA polymerase-driven transcription of a reporter gene in vitro. These findings, coupled with the vastly malleable architecture and chemistry of self-assembling DNA nanoparticles, warrant further investigation of their utility in biomedical genetics.
Collapse
Affiliation(s)
- Chang Yong Oh
- Department of Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Eric R Henderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
43
|
Shi M, McHugh KJ. Strategies for overcoming protein and peptide instability in biodegradable drug delivery systems. Adv Drug Deliv Rev 2023; 199:114904. [PMID: 37263542 PMCID: PMC10526705 DOI: 10.1016/j.addr.2023.114904] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
The global pharmaceutical market has recently shifted its focus from small molecule drugs to peptide, protein, and nucleic acid drugs, which now comprise a majority of the top-selling pharmaceutical products on the market. Although these biologics often offer improved drug specificity, new mechanisms of action, and/or enhanced efficacy, they also present new challenges, including an increased potential for degradation and a need for frequent administration via more invasive administration routes, which can limit patient access, patient adherence, and ultimately the clinical impact of these drugs. Controlled-release systems have the potential to mitigate these challenges by offering superior control over in vivo drug levels, localizing these drugs to tissues of interest (e.g., tumors), and reducing administration frequency. Unfortunately, adapting controlled-release devices to release biologics has proven difficult due to the poor stability of biologics. In this review, we summarize the current state of controlled-release peptides and proteins, discuss existing techniques used to stabilize these drugs through encapsulation, storage, and in vivo release, and provide perspective on the most promising opportunities for the clinical translation of controlled-release peptides and proteins.
Collapse
Affiliation(s)
- Miusi Shi
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Liu C. High-throughput MS for intact protein analysis. Bioanalysis 2023; 15:1017-1019. [PMID: 37584366 DOI: 10.4155/bio-2023-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
|
45
|
Garcia-Villen F, Gallego I, Sainz-Ramos M, Ordoyo-Pascual J, Ruiz-Alonso S, Saenz-del-Burgo L, O’Mahony C, Pedraz JL. Stability of Monoclonal Antibodies as Solid Formulation for Auto-Injectors: A Pilot Study. Pharmaceutics 2023; 15:2049. [PMID: 37631263 PMCID: PMC10459033 DOI: 10.3390/pharmaceutics15082049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Drug adherence is a significant medical issue, often responsible for sub-optimal outcomes during the treatment of chronic diseases such as rheumatoid or psoriatic arthritis. Monoclonal antibodies (which are exclusively given parenterally) have been proven to be an effective treatment in these cases. The use of auto-injectors is an effective strategy to improve drug adherence in parenteral treatments since these pen-like devices offer less discomfort and increased user-friendliness over conventional syringe-based delivery. This study aims to investigate the feasibility of including a monoclonal antibody as a solid formulation inside an auto-injector pen. Specifically, the objective was to evaluate the drug stability after a concentration (to reduce the amount of solvent and space needed) and freeze-drying procedure. A preliminary screening of excipients to improve stability was also performed. The nano-DSC results showed that mannitol improved the stability of the concentrated, freeze-dried antibody in comparison to its counterpart without it. However, a small instability of the CH2 domain was still found for mannitol samples, which will warrant further investigation. The present results serve as a stepping stone towards advancing future drug delivery systems that will ultimately improve the patient experience and associated drug adherence.
Collapse
Affiliation(s)
- Fatima Garcia-Villen
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Myriam Sainz-Ramos
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Jorge Ordoyo-Pascual
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| | - Conor O’Mahony
- Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland;
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain (L.S.-d.-B.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Resarch Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
46
|
Allen D, Hanumantharao SN, McDonell R, Irvine KA, Sahbaie P, Clark D, Blum P. Preclinical characterization of the efficacy and safety of biologic N-001 as a novel pain analgesic for post-operative acute pain treatment. Sci Rep 2023; 13:11778. [PMID: 37479740 PMCID: PMC10362049 DOI: 10.1038/s41598-023-38618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Inhibition of actin remodeling in nerves modulates action potential propagation and therefore could be used to treat acute pain. N-001 is a novel protein analgesic engineered from several C. Botulinum toxins. N-001 targets sensory neurons through ganglioside GT1b binding and ADP-ribosylates G-actin reducing actin remodeling. The activity and efficacy of N-001 was evaluated previously in vitro and in a mouse inflammatory pain model. To assess the relevance of N-001 for treatment of acute post-surgical pain, the current study evaluated the efficacy of N-001 in a mouse hind-paw incision model by peri-incisional and popliteal nerve block administration combined with mechanical testing. N-001 provided relief of pain-like behavior over 3 days and 2 days longer than the conventional long-acting anesthetic bupivacaine. Preclinical safety studies of N-001 indicated the drug produced no toxic or adverse immunological reactions over multiple doses in mice. These results combined with past targeting results encourage further investigation of N-001 as an analgesic for post-operative pain management with the potential to function as a differential nociceptor-specific nerve block.
Collapse
Affiliation(s)
- Derek Allen
- Neurocarrus Inc, Monterey, CA, USA
- Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, CA, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Rylie McDonell
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Peyman Sahbaie
- Stanford University School of Medicine, Stanford, CA, USA
| | - David Clark
- Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Health Care, Palo Alto, CA, USA
| | - Paul Blum
- Neurocarrus Inc, Monterey, CA, USA.
- Microbiology and Environmental Toxicology, University of California-Santa Cruz, Santa Cruz, CA, USA.
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
47
|
Lu Y, Yang Y, Zhu G, Zeng H, Fan Y, Guo F, Xu D, Wang B, Chen D, Ge G. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Int J Biol Sci 2023; 19:3360-3382. [PMID: 37496997 PMCID: PMC10367563 DOI: 10.7150/ijbs.83026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
Targeted therapies in cancer treatment can improve in vivo efficacy and reduce adverse effects by altering the tissue exposure of specific biomolecules. However, there are still large number of target proteins in cancer are still undruggable, owing to the following factors including (1) lack of ligand-binding pockets, (2) function based on protein-protein interactions (PPIs), (3) the highly specific conserved active sites among protein family members, and (4) the variability of tertiary docking structures. The current status of undruggable targets proteins such as KRAS, TP53, C-MYC, PTP, are carefully introduced in this review. Some novel techniques and drug designing strategies have been applicated for overcoming these undruggable proteins, and the most classic and well-known technology is proteolysis targeting chimeras (PROTACs). In this review, the novel drug development strategies including targeting protein degradation, targeting PPI, targeting intrinsically disordered regions, as well as targeting protein-DNA binding are described, and we also discuss the potential of these strategies for overcoming the undruggable targets. Besides, intelligence-assisted technologies like Alpha-Fold help us a lot to predict the protein structure, which is beneficial for drug development. The discovery of new targets and the development of drugs targeting them, especially those undruggable targets, remain a huge challenge. New drug development strategies, better extraction processes that do not disrupt protein-protein interactions, and more precise artificial intelligence technologies may provide significant assistance in overcoming these undruggable targets.
Collapse
Affiliation(s)
- Yuqing Lu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Yuewen Yang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guanghao Zhu
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Hairong Zeng
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| | - Yiming Fan
- Dalian Harmony Medical Testing Laboratory Co., Ltd, 116620 Dalian City, Liaoning Province, China
| | - Fujia Guo
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dongshu Xu
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Boya Wang
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Dapeng Chen
- Dalian Medical University, 116044 Dalian City, Liaoning Province, China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, 201203 Shanghai City, China
| |
Collapse
|
48
|
Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, Buerger C, Huang S, Chamcheu JC. The PI3K-Akt-mTOR and Associated Signaling Pathways as Molecular Drivers of Immune-Mediated Inflammatory Skin Diseases: Update on Therapeutic Strategy Using Natural and Synthetic Compounds. Cells 2023; 12:1671. [PMID: 37371141 PMCID: PMC10297376 DOI: 10.3390/cells12121671] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The dysregulated phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling pathway has been implicated in various immune-mediated inflammatory and hyperproliferative dermatoses such as acne, atopic dermatitis, alopecia, psoriasis, wounds, and vitiligo, and is associated with poor treatment outcomes. Improved comprehension of the consequences of the dysregulated PI3K/Akt/mTOR pathway in patients with inflammatory dermatoses has resulted in the development of novel therapeutic approaches. Nonetheless, more studies are necessary to validate the regulatory role of this pathway and to create more effective preventive and treatment methods for a wide range of inflammatory skin diseases. Several studies have revealed that certain natural products and synthetic compounds can obstruct the expression/activity of PI3K/Akt/mTOR, underscoring their potential in managing common and persistent skin inflammatory disorders. This review summarizes recent advances in understanding the role of the activated PI3K/Akt/mTOR pathway and associated components in immune-mediated inflammatory dermatoses and discusses the potential of bioactive natural products, synthetic scaffolds, and biologic agents in their prevention and treatment. However, further research is necessary to validate the regulatory role of this pathway and develop more effective therapies for inflammatory skin disorders.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Mohammad B. Uddin
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Division for Research and Innovation, POHOFI Inc., Madison, WI 53744, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA 71203, USA
| | - Rajesh K. Yadav
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Chelsea R. Bock
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Joy T. Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, P.O. Box 218, Pretoria 0208, South Africa;
| | - Anthony L. Walker
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
| | - Judy A. King
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
- College of Medicine, Belmont University, 900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Claudia Buerger
- Department of Dermatology, Venerology and Allergology, Clinic of the Goethe University, 60590 Frankfurt am Main, Germany;
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA;
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA; (T.R.); (S.T.B.); (S.B.-M.); (R.K.Y.); (C.R.B.); (J.T.F.); (A.L.W.)
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103, USA;
| |
Collapse
|
49
|
Taharabaru T, Kihara T, Onodera R, Kogo T, Wen Y, Li J, Motoyama K, Higashi T. Versatile delivery platform for nucleic acids, negatively charged protein drugs, and genome-editing ribonucleoproteins using a multi-step transformable polyrotaxane. Mater Today Bio 2023; 20:100690. [PMID: 37441133 PMCID: PMC10333717 DOI: 10.1016/j.mtbio.2023.100690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
Various biopharmaceuticals, such as nucleic acids, proteins, and genome-editing molecules, have been developed. Generally, carriers are prepared for each biopharmaceutical to deliver it intracellularly; thus, the applications of individual carriers are limited. Moreover, the development of carriers is laborious and expensive. Therefore, in the present study, versatile and universal delivery carriers were developed for various biopharmaceuticals using aminated polyrotaxane libraries. Step-by-step and logical screening revealed that aminated polyrotaxane, including the carbamate bond between the axile molecule and endcap, is suitable as a backbone polymer. Movable and flexible properties of the amino groups modified on polyrotaxane facilitated efficient complexation with various biopharmaceuticals, such as small interfering RNA, antisense oligonucleotides, messenger RNA, β-galactosidase, and genome-editing ribonucleoproteins. Diethylenetriamine and cystamine modifications of polyrotaxane provided endosomal-escape abilities and drug-release properties in the cytosol, allowing higher delivery efficacies than commercially available high-standard carriers without cytotoxicity. Thus, the resulting polyrotaxane might serve as a versatile and universal delivery platform for various biopharmaceuticals.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Takuya Kihara
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tetsuya Kogo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuting Wen
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore, 119276, Singapore
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
50
|
Mathews J, Chang A(J, Devlin L, Levin M. Cellular signaling pathways as plastic, proto-cognitive systems: Implications for biomedicine. PATTERNS (NEW YORK, N.Y.) 2023; 4:100737. [PMID: 37223267 PMCID: PMC10201306 DOI: 10.1016/j.patter.2023.100737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Many aspects of health and disease are modeled using the abstraction of a "pathway"-a set of protein or other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering the members of this network or the up-/down-regulation links between them-rewiring the molecular hardware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabilities such as trainability (memory) and information processing in a context-sensitive manner. Specifically, they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral science). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic physiological "software" implemented by pathways and gene-regulatory networks. Here, we briefly review clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the perspective of basal cognition and argue that a broader understanding of pathways and how they process contextual information across scales will catalyze progress in many areas of physiology and neurobiology. We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a focus on the mechanistic details of protein and drug structure to encompass their physiological history as well as their embedding within higher levels of organization in the organism, with numerous implications for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of today's pharmacological strategies and for inferring future therapeutic interventions for a wide range of disease states.
Collapse
Affiliation(s)
- Juanita Mathews
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | | | - Liam Devlin
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| |
Collapse
|