1
|
Naguib MM, Höper D, Elkady MF, Afifi MA, Erfan A, Abozeid HH, Hasan WM, Arafa AS, Shahein M, Beer M, Harder TC, Grund C. Comparison of genomic and antigenic properties of Newcastle Disease virus genotypes II, XXI and VII from Egypt do not point to antigenic drift as selection marker. Transbound Emerg Dis 2021; 69:849-863. [PMID: 33955204 DOI: 10.1111/tbed.14121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023]
Abstract
Newcastle disease (ND), caused by avian orthoavulavirus type-1 (NDV), is endemic in poultry in many regions of the world and causes continuing outbreaks in poultry populations. In the Middle East, genotype XXI, used to be present in poultry in Egypt but has been replaced by genotype VII. We investigated whether virus evolution contributed to superseding and focussed on the antigenic sites within the hemagglutinin-neuraminidase (HN) spike protein. Full-length sequences of an NDV genotype VII isolate currently circulating in Egypt was compared to a genotype XXI isolate that was present as co-infection with vaccine-type viruses (II) in a historical virus isolated in 2011. Amino acid differences in the HN glycoprotein for both XXI and VII viruses amounted to 11.7% and 11.9%, respectively, compared to the La Sota vaccine type. However, mutations within the globular head (aa 126-570), bearing relevant antigenic sites, were underrepresented (a divergence of 8.8% and 8.1% compared to 22.4% and 25.6% within the protein domains encompassing cytoplasmic tail, transmembrane part and stalk regions (aa 1-125) for genotypes XXI and VII, respectively). Nevertheless, reaction patterns of HN-specific monoclonal antibodies inhibiting receptor binding revealed differences between vaccine-type viruses and genotype XXI and VII viruses for epitopes located in the head domain. Accordingly, compared to Egyptian vaccine-type isolates and the La Sota vaccine reference strain, single aa substitutions in 6 of 10 described neutralizing epitopes of HN were found. However, the same alterations in neutralization sensitive epitopes were present in old genotype XXI as well as in newly emerged genotype VII isolates. In addition, isolates were indistinguishable by polyclonal chicken sera raised against different genotypes including vaccine viruses. These findings suggest that factors other than antigenic differences within the HN protein account for facilitating the spread of genotype VII versus genotype XXI viruses in Egypt.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald Insel-Riems, Germany
| | - Magdy F Elkady
- Department of poultry Diseases, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Manal A Afifi
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Hassanein H Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Wafaa M Hasan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdel-Satar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Momtaz Shahein
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald Insel-Riems, Germany
| | - Timm C Harder
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald Insel-Riems, Germany
| | - Christian Grund
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Greifswald Insel-Riems, Germany
| |
Collapse
|
2
|
Al-Garib S, Gielkens A, Gruys E, Kochi G. Review of Newcastle disease virus with particular references to immunity and vaccination. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20030011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S.O. Al-Garib
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Al-Fateh University, P.O. Box 13662 Tripoli, Libya
| | - A.L.J. Gielkens
- Institute for Animal Science and Health (ID-Lelystad), P.O. Box 65, 8200 AB, Lelystad, The Netherlands
| | - E. Gruys
- Department of Pathology, Faculty of Veterinary Medicine, University of Utrecht, P.O. Box 80158, 3508 TD, Utrecht, The Netherlands
| | - G. Kochi
- Central Institute Disease Control (CIDC-Lelystad), P.O. Box 2004, 8203 AA Lelystad, The Netherlands
| |
Collapse
|
3
|
Moharam I, Razik AAE, Sultan H, Ghezlan M, Meseko C, Franzke K, Harder T, Beer M, Grund C. Investigation of suspected Newcastle disease (ND) outbreaks in Egypt uncovers a high virus velogenic ND virus burden in small-scale holdings and the presence of multiple pathogens. Avian Pathol 2019; 48:406-415. [PMID: 31090444 DOI: 10.1080/03079457.2019.1612852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Highly contagious Newcastle disease (ND) is associated with devastating outbreaks with highly variable clinical signs among gallinaceous birds. In this study we aimed to verify clinical ND suspicions in poultry holdings in Egypt suffering from respiratory distress and elevated mortality, comparing two groups of ND-vaccinated poultry holdings in three governorates. Besides testing for Newcastle disease virus (NDV), samples were screened for infectious bronchitis virus (IBV) and avian influenza virus (AIV) by RT-qPCR as well as by non-directed cell-culture approach on LMH-cells. Virulent NDV was confirmed only in group A (n = 16) comprising small-scale holdings. Phylogenetic analysis of the fusion protein gene of 11 NDV-positive samples obtained from this group assigned all viruses to genotype 2.VIIb and point to four different virus populations that were circulating at the same time in one governorate, indicating independent epidemiological events. In group B, comprising large commercial broiler farms (n = 10), virulent NDV was not present, although in six farms NDV vaccine-type virus (genotype 2.II) was detected. Besides, in both groups, co-infections by IBV (n = 10), AIV H9 (n = 3) and/or avian reovirus (ARV) (n = 5) and avian astrovirus (AastVs) (n = 1) could be identified. Taken together, the study confirmed clinical ND suspicion in small scale holdings, pointing to inefficient vaccination practices in this group A. However, it also highlighted that, even in an endemic situation like ND in Egypt, in cases of suspected ND vaccine failure, clinical ND suspicion has to be verified by pathotype-specific diagnostic tests. RESEARCH HIGHLIGHTS Velogenic NDV circulates in small-scale poultry holdings in Egypt. Viral transmission occurred among neighbouring farms and over long distances. Co-infections with multiple pathogens were identified. Pathotype specific diagnostic tests are essential to verify ND suspicions.
Collapse
Affiliation(s)
- Ibrahim Moharam
- Institute of Diagnostic Virology; Friedrich Loeffler-Institut , Greifswald - Insel Riems , Germany.,Department of poultry disease, University of Sadat City , Sadat City , Egypt
| | - Alaa Abd El Razik
- Department of poultry disease, University of Sadat City , Sadat City , Egypt
| | - Hesham Sultan
- Department of poultry disease, University of Sadat City , Sadat City , Egypt
| | | | - Clement Meseko
- Virology Department, National Veterinary Research Institute , Vom , Nigeria
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut , Greifswald - Insel Riems , Germany
| | - Timm Harder
- Institute of Diagnostic Virology; Friedrich Loeffler-Institut , Greifswald - Insel Riems , Germany
| | - Martin Beer
- Institute of Diagnostic Virology; Friedrich Loeffler-Institut , Greifswald - Insel Riems , Germany
| | - Christian Grund
- Institute of Diagnostic Virology; Friedrich Loeffler-Institut , Greifswald - Insel Riems , Germany
| |
Collapse
|
4
|
Ellakany HF, Gado AR, Elbestawy AR, Abd El-Hamid HS, Hafez HM, Abd El-Hack ME, Swelum AA, Al-Owaimer A, Saadeldin IM. Interaction between avian influenza subtype H9N2 and Newcastle disease virus vaccine strain (LaSota) in chickens. BMC Vet Res 2018; 14:358. [PMID: 30458777 PMCID: PMC6245631 DOI: 10.1186/s12917-018-1689-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND H9N2 avian influenza virus is endemic in Egyptian poultry flocks. The role of the live viral vaccines such as LaSota in exaggeration of the clinical picture of H9N2 infection under field conditions is significantly important leading to severe economic losses due to higher mortality and lower growth performance. This experiment was designed to identify the possible interaction between experimental infection with H9N2 virus and NDV live vaccine (LaSota strain) in broiler chickens. Six groups each of 20 broiler chicks were used. Three groups (G1-3) were infected with H9N2 and vaccinated with LaSota, 3 days before, at the same day or 3 days post vaccination (dpv), while the remaining groups (G4-6) were non-vaccinated infected, vaccinated non-infected and non-vaccinated non-infected. RESULTS The highest mortality rate (37.5%) was noticed in chickens of G1 (H9N2 infected 3 days prior LaSota vaccination). Also, this bird group had the most severe clinical signs, histopathological lesions and the longest viral shedding for 9 days post infection (dpi). In the 2nd and 3rd groups, the mortality rate was the similar (31.2%) with less pronounced clinical signs, histopathological lesions and H9N2 shedding was for only 6 dpi with the least shedding quantity in chickens of G3. The control non-vaccinated infected chickens (G4) had 18.7% mortality with the least degree of clinical signs, lesions and the highest viral shedding quantity but only for 6 dpi. At 35 days of age, there was a statistical significant decrease (P < 0.05) in chicken's body weight of all H9N2 infected groups from G1 to G4 compared to non-infected control groups, G5 and G6 respectively. CONCLUSION It was clear that laSota vaccination significantly affect H9N2 infection in broiler chickens regarding clinical signs, mortality rate, lesions, performance and viral shedding.
Collapse
Affiliation(s)
- Hany F Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Ahmed R Gado
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt.
| | - Hatem S Abd El-Hamid
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Elgomhoria st, 63, Damanhour, Elbehira, 22511, Egypt
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Königsweg, 63, 14163, Berlin, Germany
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia. .,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdullah Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
5
|
Fazel P, Mehrabanpour MJ. Evaluation of the Viral Interference between Lentogenic Newcastle Disease Virus (Lasota) and Avian Influenza Virus (H9N2) using Real-Time Reverse Transcription Polymerase Chain Reaction in SPF Chicken. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Fazel
- Islamic Azad University, Iran; Islamic Azad University, Iran
| | | |
Collapse
|
6
|
Ismail ZM, El-Deeb AH, El-Safty MM, Hussein HA. Enhanced pathogenicity of low-pathogenic H9N2 avian influenza virus after vaccination with infectious bronchitis live attenuated vaccine. Vet World 2018; 11:977-985. [PMID: 30147269 PMCID: PMC6097558 DOI: 10.14202/vetworld.2018.977-985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Aim In the present study, two experiments were carried out for studying the pathogenicity of H9N2 avian influenza virus (AIV) in broiler chickens after vaccination with different live respiratory viral vaccines. Materials and Methods One-day-old specific pathogen-free (SPF) chicks were divided into four groups in each experiment. In experiment 1, Groups 1 and 2 were inoculated with H9N2 AIV through nasal route in 1 day old, Groups 1 and 3 were vaccinated with live infectious bronchitis coronavirus (IBV) vaccine in 5 days old, and Group 4 was left as a negative control. In experiment 2, Groups 5 and 6 were inoculated with AIV subtype H9N2 through nasal route in 1 day old, Group 5 was vaccinated with live IBV vaccine and live Newcastle disease virus (NDV) vaccine in 5 and 18 days old, respectively, Groups 6 and 7 were vaccinated with live NDV vaccine in 18 days old, and Group 8 was left as a negative control. Chicks were kept in isolators for 18 days in the first experiment and 35 days in the second experiment. Tracheal and cloacal swabs were collected from 3, 5, 7, 10, 12, and 15 day's old chicks from all groups in experiment 1 and 21, 23, 25, and 28 days old from all groups in experiment 2. Quantitative real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) was applied on the collected tracheal swabs for detecting RNA copies of H9N2 AIV. Cloacal swabs and the positive rRT-PCR tracheal swabs were inoculated in 10-day-old SPF embryonated chicken eggs (ECE) to confirm rRT-PCR results. Internal organs (kidney, trachea, and spleen) from all chicken groups were collected weekly for histopathological examination to determine severity of the lesions. Serum samples were collected on a weekly basis for the detection of humoral immune response against H9N2, NDV, and IBV from all chicken groups. Results rRT-PCR results with virus titration in ECEs revealed a significant increase in H9N2 AIV titer with extension in the period of viral shedding in Groups 1 and 5. Severe lesion score was observed for Groups 1 and 5. The humoral immune response against H9N2 AIV, NDV, and IBV revealed a significant increase in H9N2 AIV titer in Groups 1 and 5, NDV titer showed a significant increase in Group 7, and IBV titer increased in Groups 1, 3, and 5. Conclusion Results demonstrated the increase in pathogenicity of H9N2 AIV, especially when H9N2-infected chicks vaccinated with live IBV vaccine.
Collapse
Affiliation(s)
- Zainab Mohamed Ismail
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman Hanea El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hussein Aly Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Alexander DJ, Aldous EW, Fuller CM. The long view: a selective review of 40 years of Newcastle disease research. Avian Pathol 2014; 41:329-35. [PMID: 22834545 DOI: 10.1080/03079457.2012.697991] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review is written for the series celebrating the 40th year since the first issue of Avian Pathology. The aim of the authors was to cover the developments in Newcastle disease (ND) research over the last 40 years that they considered significant. During those 40 years there have been several panzootics of this serious disease in poultry and for the last 30 years there has been a continuing panzootic in domestic pigeons, which has spread to wild birds and poultry. The 40-year period began with worldwide outbreaks of severe ND, which served as an important impetus for ND research work. Although early work was concerned with controlling the disease, specifically by improving and developing new vaccines and vaccine regimens, even prior to the 1970s ND virus was seen as a useful laboratory virus for replication and virulence studies. This review covers the historical developments in the following areas: understanding the molecular basis of virulence; epidemiology and relatedness of different ND strains, both antigenically and genetically; the emergence of virulent strains and their relationship with viruses of low virulence; sequencing and understanding the viral genome and genes; the development of rapid molecular-based diagnostic tests; and the phylogeny and molecular taxonomy of ND virus. The authors suggest areas in which future research could or should be undertaken.
Collapse
Affiliation(s)
- Dennis J Alexander
- Virology Department, Animal Health and Veterinary Laboratories Agency, Weybridge, Addlestone, Surrey, KT15 3NB, UK
| | | | | |
Collapse
|
8
|
Virus interference between H7N2 low pathogenic avian influenza virus and lentogenic Newcastle disease virus in experimental co-infections in chickens and turkeys. Vet Res 2014; 45:1. [PMID: 24393488 PMCID: PMC3890543 DOI: 10.1186/1297-9716-45-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/05/2013] [Indexed: 02/04/2023] Open
Abstract
Low pathogenicity avian influenza virus (LPAIV) and lentogenic Newcastle disease virus (lNDV) are commonly reported causes of respiratory disease in poultry worldwide with similar clinical and pathobiological presentation. Co-infections do occur but are not easily detected, and the impact of co-infections on pathobiology is unknown. In this study chickens and turkeys were infected with a lNDV vaccine strain (LaSota) and a H7N2 LPAIV (A/turkey/VA/SEP-67/2002) simultaneously or sequentially three days apart. No clinical signs were observed in chickens co-infected with the lNDV and LPAIV or in chickens infected with the viruses individually. However, the pattern of virus shed was different with co-infected chickens, which excreted lower titers of lNDV and LPAIV at 2 and 3 days post inoculation (dpi) and higher titers at subsequent time points. All turkeys inoculated with the LPAIV, whether or not they were exposed to lNDV, presented mild clinical signs. Co-infection effects were more pronounced in turkeys than in chickens with reduction in the number of birds shedding virus and in virus titers, especially when LPAIV was followed by lNDV. In conclusion, co-infection of chickens or turkeys with lNDV and LPAIV affected the replication dynamics of these viruses but did not affect clinical signs. The effect on virus replication was different depending on the species and on the time of infection. These results suggest that infection with a heterologous virus may result in temporary competition for cell receptors or competent cells for replication, most likely interferon-mediated, which decreases with time.
Collapse
|
9
|
Abstract
Over the past two decades, enormous advances have occurred in the structural and biological characterization of Newcastle disease virus (NDV). As a result, not only the complete sequence of the viral genome has been fully determined, but also a clearer understanding of the viral proteins and their respective roles in the life cycle has been achieved. This article reviews the progress in the molecular biology of NDV with emphasis on the new technologies. It also identifies the fundamental problems that need to be addressed and attempts to predict some research opportunities in NDV that can be realized in the near future for the diagnosis, prevention and treatment of disease(s).
Collapse
|
10
|
Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response. Mol Syst Biol 2012; 8:584. [PMID: 22617958 PMCID: PMC3377992 DOI: 10.1038/msb.2012.17] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/24/2012] [Indexed: 12/12/2022] Open
Abstract
The cellular recognition of viruses evokes the secretion of type-I interferons (IFNs) that induce an antiviral protective state. By live-cell imaging, we show that key steps of virus-induced signal transduction, IFN-β expression, and induction of IFN-stimulated genes (ISGs) are stochastic events in individual cells. The heterogeneity in IFN production is of cellular-and not viral-origin, and temporal unpredictability of IFN-β expression is largely due to cell-intrinsic noise generated both upstream and downstream of the activation of nuclear factor-κB and IFN regulatory factor transcription factors. Subsequent ISG induction occurs as a stochastic all-or-nothing switch, where the responding cells are protected against virus replication. Mathematical modelling and experimental validation show that reliable antiviral protection in the face of multi-layered cellular stochasticity is achieved by paracrine response amplification. Achieving coherent responses through intercellular communication is likely to be a more widely used strategy by mammalian cells to cope with pervasive stochasticity in signalling and gene expression.
Collapse
|
11
|
Cai S, Li J, Wong MT, Jiao P, Fan H, Liu D, Liao M, Jiang J, Shi M, Lam TTY, Ren T, Leung FCC. Genetic characterization and evolutionary analysis of 4 Newcastle disease virus isolate full genomes from waterbirds in South China during 2003–2007. Vet Microbiol 2011; 152:46-54. [DOI: 10.1016/j.vetmic.2011.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 04/03/2011] [Accepted: 04/14/2011] [Indexed: 11/28/2022]
|
12
|
Aldous EW, Alexander DJ. Detection and differentiation of Newcastle disease virus (avian paramyxovirus type 1). Avian Pathol 2010; 30:117-28. [DOI: 10.1080/03079450120044515] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- E. W. Aldous
- a Avian Virology , VLA Weybridge , Addlestone , Surrey , KT15 3NB , UK
| | - D. J. Alexander
- a Avian Virology , VLA Weybridge , Addlestone , Surrey , KT15 3NB , UK
| |
Collapse
|
13
|
Yadin H. Aerosol vaccination against Newcastle disease: virus levels in different organs. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 2010; 28:249-56. [PMID: 7282182 DOI: 10.1111/j.1439-0450.1981.tb01758.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Miller PJ, Kim LM, Ip HS, Afonso CL. Evolutionary dynamics of Newcastle disease virus. Virology 2009; 391:64-72. [PMID: 19564032 DOI: 10.1016/j.virol.2009.05.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/27/2009] [Accepted: 05/22/2009] [Indexed: 12/26/2022]
Abstract
A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution.
Collapse
Affiliation(s)
- Patti J Miller
- Southeast Poultry Research Laboratories, USDA ARS, Southeast Poultry Research Laboratory, Athens, GA 30605, USA
| | | | | | | |
Collapse
|
15
|
Chapter 7 Orthomyxovirus infections. PERSPECTIVES IN MEDICAL VIROLOGY 2008; 1:255-343. [PMID: 32287580 PMCID: PMC7134264 DOI: 10.1016/s0168-7069(08)70015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The earth is a unity for influenza A virus in a manner not yet found for probably any other parasite and epidemics occur in all inhabited parts of the globe regardless of latitude, longitude, altitude, climate, rainfall, temperature, humidity, race and sex. Influenza A is the classic pandemic virus infection of man and influenza B virus also can cause sharp outbreaks, resulting in significant mortality. An overwhelming amount of data has accumulated on the biochemistry, cell biology, and epidemiology of influenza, but prospects of control of epidemics in the near future are dim. Meanwhile, a holding operation can be achieved using inactivated vaccine and rimantadine (100 mg/daily) in special risk groups in the population until new more effective vaccines and broad spectrum antivirals (active against influenza A and B virus) are developed. Research work is centered on biotechnology to produce immunogenic peptides and proteins and more logical searches for antivirals using amino acid sequence data and also virus specific enzymes such as the virion transcriptase as targets.
Collapse
|
16
|
Abolnik C. Molecular Characterization of H5N2 Avian Influenza Viruses Isolated from South African Ostriches in 2006. Avian Dis 2007; 51:873-9. [DOI: 10.1637/7953-022107-regr.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) to review Newcastle disease focussing on vaccination worldwide in order to determine its optimal use for disease control purposes. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
18
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related with animal health and welfare risks associated with the import of wild birds other than poultry into the European Union. EFSA J 2006; 4:410. [PMID: 32313576 PMCID: PMC7163484 DOI: 10.2903/j.efsa.2006.410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
19
|
Shengqing Y, Kishida N, Ito H, Kida H, Otsuki K, Kawaoka Y, Ito T. Generation of velogenic Newcastle disease viruses from a nonpathogenic waterfowl isolate by passaging in chickens. Virology 2002; 301:206-11. [PMID: 12359423 DOI: 10.1006/viro.2002.1539] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A benign Newcastle disease virus (NDV) recently became highly virulent during replication in domestic chickens. It is still unclear whether NDVs circulating among wild waterfowl also have the potential to become highly pathogenic (velogenic) in chickens. To demonstrate experimentally the generation of velogenic NDV from a nonpathogenic waterfowl isolate, we passaged an avirulent goose isolate in chickens. After nine consecutive passages by air-sac inoculation, followed by five passages in chick brain, the virus became highly virulent in chickens, producing a 100% mortality rate, and demonstrating typical velogenic properties in pathogenicity tests. Sequence analysis at the fusion protein cleavage site showed that the original isolate contained the typical avirulent type sequence, E-R-Q-E-R/L, which progressed incrementally to a typical virulent type, K-R-Q-K-R/F, during repeated passage in chickens. These results demonstrate that avirulent viruses, maintained in wild waterfowl in nature and bearing the consensus avirulent type sequence, have the potential to become velogenic after transmission to and circulation in chicken populations. The results also suggest that chickens provide a mechanism for the selection of virulent viruses from an avirulent background.
Collapse
Affiliation(s)
- Yu Shengqing
- Department of Veterinary Public Health, Faculty of Agriculture, Tottori University, Tottori, 680 8553, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Brown EG, Liu H, Kit LC, Baird S, Nesrallah M. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: identification of functional themes. Proc Natl Acad Sci U S A 2001; 98:6883-8. [PMID: 11371620 PMCID: PMC34447 DOI: 10.1073/pnas.111165798] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The genetic basis for virulence in influenza virus is largely unknown. To explore the mutational basis for increased virulence in the lung, the H3N2 prototype clinical isolate, A/HK/1/68, was adapted to the mouse. Genomic sequencing provided the first demonstration, to our knowledge, that a group of 11 mutations can convert an avirulent virus to a virulent variant that can kill at a minimal dose. Thirteen of the 14 amino acid substitutions (93%) detected among clonal isolates were likely instrumental in adaptation because of their positive selection, location in functional regions, and/or independent occurrence in other virulent influenza viruses. Mutations in virulent variants repeatedly involved nuclear localization signals and sites of protein and RNA interaction, implicating them as novel modulators of virulence. Mouse-adapted variants with the same hemagglutinin mutations possessed different pH optima of fusion, indicating that fusion activity of hemagglutinin can be modulated by other viral genes. Experimental adaptation resulted in the selection of three mutations that were in common with the virulent human H5N1 isolate A/HK/156/97 and that may be instrumental in its extreme virulence. Analysis of viral adaptation by serial passage appears to provide the identification of biologically relevant mutations.
Collapse
Affiliation(s)
- E G Brown
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
21
|
Abstract
1. In this paper several historical and contemporary aspects of Newcastle disease (ND) are reviewed, with particular reference to the greater understanding which modern techniques have allowed. 2. Virulent ND viruses were generally thought to have emerged in 1926 as a result of transfer from a wild bird host reservoir but there is evidence that the virulent virus may have existed in poultry before 1926. Recent findings suggest that the virulent virus may emerge in poultry as a result of mutations in viruses of low virulence. 3. The history of ND in Great Britain reflects the four known panzootics that have occurred and serves as a model for the impact this disease may have on poultry populations. 4. Attempts to control and eradicate ND are not as straightforward as it may appear; in particular vaccination, while preventing deaths and disease, on challenge may not prevent virus replication and could therefore lead to the virulent virus becoming endemic. 5. Village chickens are extremely important assets in most developing countries, representing a significant source of protein in the form of eggs and meat but endemic ND can cause mortality of up to 60% in village chickens.
Collapse
|
22
|
Kido H, Beppu Y, Imamura Y, Chen Y, Murakami M, Oba K, Towatari T. The human mucus protease inhibitor and its mutants are novel defensive compounds against infection with influenza A and Sendai viruses. Biopolymers 2000; 51:79-86. [PMID: 10380355 DOI: 10.1002/(sici)1097-0282(1999)51:1<79::aid-bip9>3.0.co;2-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tryptase Clara, a trypsin-like protease localized exclusively in and secreted by Clara cells of the bronchial epithelium, is a prime host factor that processes viral envelope glycoproteins and determines the infectivity of influenza A and Sendai viruses (H. Kido, Y. Yokogoshi, K. Sakai, M. Tashiro, Y. Kishino, A. Fukutomi, and N. Katunuma, The Journal of Biological Chemistry, 1992, Vol. 267, pp. 13573-13579). We report here that human mucus protease inhibitor (MPI), a major inhibitor of granulocyte elastase in the lining fluid of the human respiratory tract, significantly inhibited induction of the infectivity of influenza A and Sendai viruses by tryptase Clara in vitro and multicycles of mouse-adapted influenza A virus replication in rat lungs in vivo. Recombinant MPI and the C- but not the N-terminal domain of MPI inhibited both the activity of tryptase Clara and the induction of virus infection by tryptase Clara. The 50% inhibitory concentrations of MPI and the C-terminal domain peptide (Pro50-Ala107) of MPI for tryptase Clara were 7.4 and 61.6 nM, respectively, with Sendai virus envelope glycoproteins as the substrate. Studies on deletion mutants of the C-terminal domain of MPI revealed that the minimal size of MPI required for the inhibition of tryptase Clara is the peptide Lys60-Ala107. Studies involving site-directed mutagenesis of the C-terminal domain of MPI indicated that the Leu72-Met73 site of MPI is the inhibitory site for tryptase Clara. Substitution of residue Leu72 with a basic amino acid significantly increased in the inhibitory activity of the C-terminal domain of MPI, but further substitution of residue Met73 with various amino acids in these mutants reduced the inhibitory activity. Since there is evidence suggesting that the concentration of MPI in respiratory fluid is insufficient for prevention of virus infection, the administration of MPI, the recombinant C-terminal domain of MPI, and their mutants, with residue Leu72 substituted with residues Arg72 and Lys72, may be useful for treatment of such pneumotropic virus infections.
Collapse
Affiliation(s)
- H Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Shiota M, Ohuchi M, Towatari T, Tashiro J, Murakami M, Yano M, Yang B, Kido H. Mast cell tryptase from pig lungs triggers infection by pneumotropic Sendai and influenza A viruses. Purification and characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3189-97. [PMID: 10824103 DOI: 10.1046/j.1432-1327.2000.01346.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel trypsin-type serine proteinase, which processes the precursors of the envelope fusion glycoproteins of pneumotropic Sendai and human influenza A viruses, was purified to homogeneity from pig lungs. On SDS/PAGE, the purified enzyme gave a protein band corresponding to about 32 kDa, and has an apparent molecular mass of 120 kDa, as determined by gel permeation chromatography. Immunohistochemical staining with antibodies against this enzyme revealed that the enzyme is located in pig lung mast cells. The N-terminal 44-amino-acid sequence of the enzyme exhibits about 80% identity with those of mast cell tryptases from other species. Of the inhibitors tested, di-isopropyl fluorophosphate, antipain, leupeptin, benzamidine and a few proteinaceous inhibitors, such as mucus protease inhibitor and aprotinin, inhibited this enzyme activity. Heparin stabilized the enzyme, but high-ionic-strength conditions did not, unlike for human mast cell tryptase. The purified enzyme efficiently processed the fusion glycoprotein precursor of Sendai virus and slowly processed hemagglutinin of human influenza A virus, and triggered the infectivity of Sendai virus in a dose-dependent manner, although human mast cell tryptase beta and rat mast cell tryptase (rat MCP-7) from lungs did not process these fusion glycoproteins at all. These results suggest that mast cell tryptase in pig lungs is the possible trigger of the pneumotropic virus infections.
Collapse
Affiliation(s)
- Y Chen
- Division of Enzyme Chemistry, Institute for Enzyme Research, University of Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Significant progress has been made in understanding the process of influenza A virus replication in cell culture; however, much less is known about the genetic control of virus-host interactions in disease. This review provides an overview of the genetic analysis of influenza virus biology. The functional map of the individual genes of influenza A virus is presented as well as the status of our current understanding of pathogenesis. Influenza has a segmented genome so it is possible to obtain reassortants that contain novel combinations of genome segments derived from different viruses. This is a very useful genetic tool and is also an important aspect of influenza evolution and biology. Human influenza viruses originate from avian strains of influenza virus so that influenza infection is at its basis a zoonosis. Influenza virus strains are host-restricted, however, and avian strains must be adapted to the human host. So questions of host-range and interaction with host factors are important determinants of the ability of influenza virus to cause disease in humans. Host-range is restricted primarily due to host-specific interactions of the ribonucleocapsid and the viral receptor. There are two classes of drugs for inhibiting influenza infection, amantadine HCl and neuraminidase inhibitors. The mode of action and basis for resistance to these drugs are presented. Prospective targets for antiviral therapy are also discussed.
Collapse
Affiliation(s)
- E G Brown
- Dept. of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Brown EG, Bailly JE. Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 1999; 61:63-76. [PMID: 10426210 DOI: 10.1016/s0168-1702(99)00027-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adaptation of the prototype A/FM/1/47 H1N1 strain to mice resulted in selection of the A/FM/1/47-MA variant with increased virulence. Earlier analysis identified mutations in the HA and M1 genes that increase virulence in the mouse. Complete sequence analysis identified mutations in the PB1, PB2, HA, NA, and M1 genes. Reassortants were produced between the parental FM and FM-MA strains to obtain viruses that differ due to combinations of mutant genes. To assess the relationship between virulence and replication, the median lethal dose was determined for mice and growth properties were assessed in mouse lung, MDCK cells and chicken embryo. Not only were all five mutations shown to control virulence but also the replicative capacity in the mouse. The HA, NA and M1 mutations increased yield in all three hosts whereas in combination the PB1 and PB2 mutations were host restrictive changing the virus to a mouse specific strain. For the NA and M1 mutations the increase in growth in mouse lung was proportional to a 2-fold (log10) increase in virulence however the HA mutation increased virulence largely independent of increased growth indicating a change in pathological properties that damage the host. Thus mutations that affect virulence can be classified according to host-dependent and independent ability to increase growth as well as changes in pathological properties. Each of the PB1, PB2, NA, HA, and M1 genes acquired gain-of-function mutations for mouse infection that involve structural motifs that may serve as markers for virulence or targets for antiviral therapy.
Collapse
Affiliation(s)
- E G Brown
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ont., Canada.
| | | |
Collapse
|
26
|
Ku AS, Chan LT. The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye's syndrome. J Paediatr Child Health 1999; 35:207-9. [PMID: 10365363 DOI: 10.1046/j.1440-1754.1999.t01-1-00329.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian influenza virus was not known to cause systemic infection in humans before. We report a 3-year-old boy with good past health who developed pneumonia caused by H5N1 avian influenza A virus (A/Hong Kong/156/97). The virus was isolated from a tracheal aspirate. There were complications of Reye's syndrome, adult respiratory distress syndrome, and multiple organ system failure. He had a history of receiving aspirin. His adult respiratory distress syndrome did not respond to endotracheal surfactant replacement therapy. He died 6 days after admission. Clinicians should be alert to the importance of a new human influenza strain.
Collapse
Affiliation(s)
- A S Ku
- Department of Paediatrics, Queen Elizabeth Hospital, Hong Kong
| | | |
Collapse
|
27
|
Abstract
Newcastle disease (ND) is a worldwide problem with severe economic implications, affecting chickens, turkeys and other birds. Newcastle disease virus (NDV), a member of the Paramyxoviridae group can cause disease of diverse severity in accordance with environmental factors. NDV strains are classified according to their virulence into three categories. The lentogenic strains are very mild and naturally inhabit healthy flocks. They can be used as live vaccines even for young chicks. Killed vaccines can be produced from the same viruses following inactivation. Mesogenic ND viruses, which cause mild or inapparent respiratory infections, have recently been banned in many countries even for killed vaccine production due to fears of disease emergence. Velogenic strains are the causative agents of the disease and can be used for the purpose of vaccine challenge test. Production and use of Newcastle disease vaccines are discussed in this review.
Collapse
Affiliation(s)
- G E Gallili
- B.L.T. Biological Laboratories Teva, Teva Pharmaceutical Industries Ltd. (Abic Vet.), P.O.B. 27047, Jerusalem, Israel
| | | |
Collapse
|
28
|
Kido H, Beppu Y, Sakai K, Towatari T. Molecular basis of proteolytic activation of Sendai virus infection and the defensive compounds for infection. Biol Chem 1997; 378:255-63. [PMID: 9165079 DOI: 10.1515/bchm.1997.378.3-4.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It has been proposed that the pathogenicity of Sendai virus is primarily determined by a host cellular protease(s) that activates viral infectivity by proteolytic cleavage of envelope fusion glycoproteins. We isolated a trypsin-like serine protease, tryptase Clara, localized in and secreted from Clara cells of the bronchial epithelium of rats. The enzyme specifically cleaved the precursor of fusion glycoprotein F0 of Sendai virus at residue Arg116 in the consensus cleavage motif, Gln(Glu)-X-Arg, resulting in the presentation of the membrane fusion domain in the amino-terminus of the F1 subunit. Administration of an antibody against tryptase Clara in the airway significantly inhibited the activation of progeny virus and multiple cycles of viral replication, thus reducing the mortality rate. These findings indicate that tryptase Clara in the airway is a primary determinant of Sendai virus infection and that proteolytic activation occurs extracellularly. We identified two cellular inhibitory compounds against tryptase Clara in bronchial lavage. One was a mucus protease inhibitor, a major serine protease inhibitor of granulocyte elastase in the lining fluids of the human respiratory tract, and the other was a pulmonary surfactant which may adsorb the enzyme, resulting in its inactivation. These compounds inhibited virus activation by tryptase Clara in vitro and in vivo, but did not themselves affect the hemagglutination and the infectivity of the virus. The functional domain of the mucus protease inhibitor against the enzyme, which is organized in two homologous N- and C-terminal domains, is located in the C-terminal. Administration of these compounds in the airway may be useful for preventing infection with Sendai virus.
Collapse
Affiliation(s)
- H Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, kuramoto-cho, Japan
| | | | | | | |
Collapse
|
29
|
Smeenk CA, Wright KE, Burns BF, Thaker AJ, Brown EG. Mutations in the hemagglutinin and matrix genes of a virulent influenza virus variant, A/FM/1/47-MA, control different stages in pathogenesis. Virus Res 1996; 44:79-95. [PMID: 8879138 DOI: 10.1016/0168-1702(96)01329-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mouse adapted strain of influenza A/FM/1/47 virus, FM-MA, has increased virulence due to mutations in HA, M1 and at least one other, unmapped, genome segment. Genetic reassortants that differ due to the HA or M1 mutations were used to define the role of these mutations in pathogenesis. Pathological changes in lungs of infected mice were assessed by hematoxylin phloxine saffron (HPS) staining, and viral infection was measured by fluorescent antibody staining of thin sections and flow cytometry of lung parenchymal cells. HA played a role in bronchiolar pathology by increasing necrosis of bronchiolar epithelium, peribronchiolar lymphocytes, and airway obstruction. The HA mutation was shown to be responsible for a 0.2 unit decreased in the pH optimum of fusion and controlled resistance to alpha and beta inhibitors of hemagglutination. Both these changes in biology may confer a replicative advantage in bronchioles seen in the first day of infection. Thus the HA mutation may have conferred a survival advantage in the extracellular lung environment. The M1 mutation resulted in improved growth in the lung and cultured cells and was associated with increases in recruitment of macrophages, spread of infection into the alveoli of the lung and interstitial pneumonia. Sequence analysis indicated that the unmapped mutation in the control of FM-MA virulence is either the K482-->R substitution in the PB2 protein or the D538-->G substitution in the PB1 protein. One or other of these mutations results in a growth advantage in infected lung but not in cultured cells as well as a further increased recruitment and infection of macrophages in the lung. Infection with virulent strains of influenza that induced increases in macrophage recruitment caused hypothermia in the mouse.
Collapse
Affiliation(s)
- C A Smeenk
- Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Kido H, Towatari T, Niwa Y, Okumura Y, Beppu Y. Cellular proteases involved in the pathogenicity of human immunodeficiency and influenza viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 389:233-40. [PMID: 8861016 DOI: 10.1007/978-1-4613-0335-0_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Kido
- Division of Enzyme Chemistry, Institute of Enzyme Research, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
31
|
Kido H, Niwa Y, Beppu Y, Towatari T. Cellular proteases involved in the pathogenicity of enveloped animal viruses, human immunodeficiency virus, influenza virus A and Sendai virus. ADVANCES IN ENZYME REGULATION 1996; 36:325-47. [PMID: 8869754 DOI: 10.1016/0065-2571(95)00016-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In enveloped viruses, post-translational proteolytic activation is a critical step for the fusion activity and thus for the infectivity of the virus. In addition to the membrane receptors for the viruses, proteolytic activation is indispensable for effective virus spread in the infected host and it is a prime determinant for pathogenicity. Here we described the host cellular processing proteases, tryptase Clara and tryptase TL2, which proteolytically activate the infectivity of influenza A and Sendai viruses in the respiratory tract and HIV-1 in human CD4+ T cells, respectively. A novel trypsin-like protease, designated tryptase Clara, was purified from rat lung. The enzyme is localized in Clara cells of the bronchial epithelium and is secreted into the airway lumen. The enzyme specifically recognizes the consensus cleavage motif Gln(Glu)-X-Arg of influenza A and Sendai viruses and proteolytically activates the envelope fusion glycoproteins of the progeny viruses extracellularly in the airway lumen. Human mucus protease inhibitor and pulmonary surfactant in airway fluid inhibited the proteolytic activation of these viruses and also suppressed multiple cycles of viral replication in vitro. These results suggest that an imbalance between the amount of tryptase Clara and that of endogenous inhibitors in airway fluid is a prime determinant for pneumopathogenicity of the viruses. Therefore supplementing an endogenous inhibitor at therapeutic doses may protect against virus infection. In HIV-1 infection, binding of the gp120 envelope glycoprotein to the CD4 receptor is not sufficient in itself to allow virus entry, and an additional component(s) in the membrane is required for cell infection as a cofactor. We isolated a serine protease named tryptase TL2, in the membrane of CD4+ lymphocytes, which specifically binds to the V3 loop of HIV-1 gp120 as a cofactor. After binding, tryptase TL2 proteolytically processed gp120 into two protein species of 70 and 50 kDa and the cleavage was suppressed by a neutralizing antibody against the V3 loop. The amino acids that constitute the cleavage sites in the V3 loop of almost all HIV isolates are variable, but they are restricted to those which are susceptible to chymotryptic and/or tryptic enzyme. The multi-substrate specificity of tryptase TL2, which has tryptic and chymotryptic specificities, may correspond tot he variability of the V3 loop. The selective cleavage of the V3 loop by tryptase TL2 may lead to a conformational change of gp120, resulting in the dissociation of gp120 from gp41, exposing the fusogenic domain of the transmembrane protein gp41 following virus-host cell fusion.
Collapse
Affiliation(s)
- H Kido
- Division of Enzyme Chemistry, University of Tokushima, Japan
| | | | | | | |
Collapse
|
32
|
Tzadok-David Y, Metzkin-Eizenberg M, Zakay-Rones Z. The effect of a mesogenic and a lentogenic Newcastle disease virus strain on Burkitt lymphoma Daudi cells. J Cancer Res Clin Oncol 1995; 121:169-74. [PMID: 7713989 DOI: 10.1007/bf01198099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The destructive effect of Newcastle disease virus (NDV) strains on Burkitt lymphoma Daudi cells was investigated. Interaction of an active and UV-inactivated mesogenic strain (Roakin), as well as an active attenuated lentogenic strain (B1), grown in the allantoic sac of embryonated eggs, at high multiplicity, caused inhibition in cellular DNA synthesis and arrest in cell multiplication, eventually killing of the cells. The lentogenic strain cultivated in chicken fibroblasts exhibited only a moderate activity. The mechanism of the cytolytic effect is presumably linked to the increase in cell membrane permeability indicated by the elevation in 51Cr release. Thus it appears that the massive adsorption and/or penetration of viral particles, active or UV-inactivated (or possibly a toxic component that resides in the virion), damages the plasma membrane and may be responsible for the killing of the cells.
Collapse
Affiliation(s)
- Y Tzadok-David
- Department of Virology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Cobaleda C, García-Sastre A, Villar E. Fusion between Newcastle disease virus and erythrocyte ghosts using octadecyl Rhodamine B fluorescence assay produces dequenching curves that fit the sum of two exponentials. Biochem J 1994; 300 ( Pt 2):347-54. [PMID: 8002938 PMCID: PMC1138168 DOI: 10.1042/bj3000347] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The kinetics of fusion between Newcastle disease virus and erythrocyte ghosts has been investigated with the octadecyl Rhodamine B chloride assay [Hoekstra, De Boer, Klappe, and Wilschut (1984) Biochemistry 23, 5675-5681], and the data from the dequenching curves were fitted by non-linear regression to currently used kinetic models. We used direct computer-assisted fitting of the dequenching curves to the mathematical equations. Discrimination between models was performed by statistical analysis of different fits. The experimental data fit the exponential model previously published [Nir, Klappe, and Hoekstra (1986) Biochemistry 25, 2155-2161] but we describe for the first time that the best fit was achieved for the sum of two exponential terms: A1[1-exp(-k1t)]+A2[1-exp(-k2t)]. The first exponential term represents a fast reaction and the second a slow dequenching reaction. These findings reveal the existence of two independent, but simultaneous, processes during the fusion assay. In order to challenge the model and to understand the meaning of both equation, fusion experiments were carried out under different conditions well known to affect viral fusion (changes in pH, temperature and ghost concentration, and the presence of disulphide-reducing agents or inhibitors of viral neuraminidase activity), and the same computer fitting scheme was followed. The first exponential equation represents the viral protein-dependent fusion process itself, because it is affected by the assay conditions. The second exponential equation accounts for a nonspecific reaction, because it is completely independent of the assay conditions and hence of the viral proteins. An interpretation of this second process is discussed in terms of probe transfer between vesicles.
Collapse
Affiliation(s)
- C Cobaleda
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
34
|
Wood GW, Banks J, McCauley JW, Alexander DJ. Deduced amino acid sequences of the haemagglutinin of H5N1 avian influenza virus isolates from an outbreak in turkeys in Norfolk, England. Arch Virol 1994; 134:185-94. [PMID: 7506519 DOI: 10.1007/bf01379117] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The deduced amino acid sequences of the haemagglutinins of avian influenza viruses, isolated from an outbreak in turkeys in Norfolk, England in 1991/92, were determined by PCR amplification and cycle sequencing. Both the highly pathogenic and avirulent isolates had the same cleavage site sequence with multiple-basic amino acids, which normally would be expected only for the former. Clones derived by plaque picking from the highly pathogenic isolate ranged from low to very high pathogenicity in vivo and these, and the original isolates, showed nucleotide and amino acid variation at one or more of five possible sites, none of which were at the cleavage site. None of these site variations correlated with pathogenicity, suggesting that the factor responsible for the suppression of the expected effects of the multiple-basic amino acid haemagglutinin cleavage site in the avirulent isolate may not have been part of the haemagglutinin amino acid sequence.
Collapse
Affiliation(s)
- G W Wood
- Central Veterinary Laboratory, Addlestone, Surrey, U.K
| | | | | | | |
Collapse
|
35
|
Wood GW, McCauley JW, Bashiruddin JB, Alexander DJ. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol 1993; 130:209-17. [PMID: 8503786 DOI: 10.1007/bf01319010] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The amino acid sequences at the haemagglutinin cleavage sites of 9 avian influenza A viruses of H5 subtype (5 high and 4 low pathogenicity for chickens) and 21 of H7 subtype (13 high and 8 low pathogenicity for chickens) were determined by direct RNA sequencing, PCR amplification sequencing or both. None of the viruses of low pathogenicity had multiple basic amino acids at the cleavage site. All highly pathogenic viruses had an insert of basic amino acids at the cleavage site, except A/chicken/Scotland/59 (H5N1) for which the multiple basic amino acids appeared as substitutions and not insertions. All highly pathogenic viruses examined conformed to the amino acid motif of R-X-R/K-R at the cleavage site which is considered to be essential for high pathogenicity in chickens, with the notable exception of highly pathogenic virus A/turkey/England/50-92/91 (H5N1) which had the sequence R-K-R-K-T-R adjacent to the cleavage site.
Collapse
Affiliation(s)
- G W Wood
- Central Veterinary Laboratory, Weybridge, Surrey, United Kingdom
| | | | | | | |
Collapse
|
36
|
Abstract
This chapter focuses on the interaction of viruses with epithelial cells. The role of specific pathways of virus entry and release in the pathogenesis of viral infection is examined together with the mechanisms utilized by viruses to circumvent the epithelial barrier. Polarized epithelial cells in culture, which can be grown on permeable supports, provide excellent systems for investigating the events in virus entry and release at the cellular level, and much information is being obtained using such systems. Much remains to be learned about the precise routes by which many viruses traverse the epithelial barrier to initiate their natural infection processes, although important information has been obtained in some systems. Another area of great interest for future investigation is the process of virus entry and release from other polarized cell types, including neuronal cells.
Collapse
Affiliation(s)
- S P Tucker
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
37
|
Tashiro M, Yokogoshi Y, Tobita K, Seto JT, Rott R, Kido H. Tryptase Clara, an activating protease for Sendai virus in rat lungs, is involved in pneumopathogenicity. J Virol 1992; 66:7211-6. [PMID: 1331518 PMCID: PMC240423 DOI: 10.1128/jvi.66.12.7211-7216.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tryptase Clara is an arginine-specific serine protease localized exclusively in and secreted from Clara cells of the bronchial epithelium of rats (H. Kido, Y. Yokogoshi, K. Sakai, M. Tashiro, Y. Kishino, A. Fukutomi, and N. Katunuma, J. Biol. Chem. 267:13573-13579, 1992). The purified protease was shown in vitro to behave similarly to trypsin, cleaving the precursor glycoprotein F of Sendai virus at residue Arg-116 and activating viral infectivity in a dose-dependent manner. Anti-tryptase Clara antibody inhibited viral activation by the protease in vitro in lung block cultures and in vivo in infected rats. When the enzyme-specific antibody was administered intranasally to rats that were also infected intranasally with Sendai virus, activation of progeny virus in the lungs was significantly inhibited. Thus, multiple cycles of viral replication were suppressed, resulting in a reduction in lung lesions and in the mortality rate. These findings indicate that tryptase Clara is an activating protease for Sendai virus in rat lungs and is therefore involved in pulmonary pathogenicity of the virus in rats.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Tashiro M, Seto JT, Choosakul S, Yamakawa M, Klenk HD, Rott R. Budding site of Sendai virus in polarized epithelial cells is one of the determinants for tropism and pathogenicity in mice. Virology 1992; 187:413-22. [PMID: 1312267 DOI: 10.1016/0042-6822(92)90443-s] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wild-type Sendai virus fusion (F) glycoprotein requires trypsin or a trypsin-like protease for cleavage-activation in vitro and in vivo, respectively. The virus is pneumotropic in mice and buds at the apical domain of bronchial epithelial cells. On the other hand, the F protein of the protease-activation host range mutant, F1-R, is cleaved by ubiquitous proteases present in different cell lines and in various organs of mice. F1-R causes a systemic infection in mice and the mutant buds bipolarly at the apical and basolateral domains of infected epithelial cells. The enhanced cleavability of the F protein of F1-R has been shown to be a primary determinant for pantropism. Additionally, it has been postulated that bipolar budding of F1-R is required for the systemic spread of the virus and it has been attributed to mutations in the matrix (M) protein of F1-R (Tashiro et al., Virology 184, 227-234, 1991). In this study protease-activation mutants (KD series) were isolated from wild-type virus. They were revealed to bud at the apical domain, and the F protein was cleaved by ubiquitous proteases in mouse organs. The KD mutants were exclusively pneumotropic in mice following intranasal infection, whereas they caused a generalized infection when inoculated directly into the circulatory system. Comparative nucleotide sequence analysis of the F gene of the KD mutants revealed that the deduced amino acid substitutions responsible for enhanced cleavability of the F protein occurred removed from the cleavage site. Mutations were not at all found in the M gene of the KD mutants analyzed, in support of the role of the M protein of F1-R and of a revertant T-9 derived from the latter in bipolar budding. These results suggest that bipolar budding is necessary for the systemic spread of F1-R from the lungs and that apical budding by wild-type virus and the KD mutants leads to respiratory infections. Differential budding at the primary target of infection, in addition to the cleavage-activation of the F protein in mouse organs, is therefore also a determinant for tropism and pathogenicity of Sendai virus in mice.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi-ken, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Tashiro M, James I, Karri S, Wahn K, Tobita K, Klenk HD, Rott R, Seto JT. Pneumotropic revertants derived from a pantropic mutant, F1-R, of Sendai virus. Virology 1991; 184:227-34. [PMID: 1651590 DOI: 10.1016/0042-6822(91)90839-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Revertants were isolated from the protease activation mutant of Sendai virus, F1-R, which causes a systemic infection in mice. The fusion (F) glycoprotein of F1-R is susceptible to activation cleavage by ubiquitous cellular proteases and is thus responsible for pantropism in mice (Tashiro et al., 1988. Virology 165, 577-583). The revertants regained several phenotypes of wild-type virus; they required exogenous trypsin for activation of the F protein in cell cultures and in nonpulmonary mouse tissues and they were exclusively pneumotropic in mice. On the other hand, phenotypes of F1-R that remained unchanged by the revertants were bipolar budding in polarized epithelial cells, enhanced electrophoretic migration of the matrix protein, and the lack of a glycosylation site in the F2 subunit of the F protein. Comparative RNA sequence analysis of the F gene of the revertants revealed that the reduced cleavability of the F protein of the revertants was the result of the predicted single amino acid reversion (Pro to Ser) at residue 115 adjacent to the cleavage site. Thus the sequence at the cleavage site of the revertants was Ser-Lys compared with Pro-Lys for F1-R and Ser-Arg for wild-type virus. The results indicate that enhanced cleavability of the glycoprotein, a feature often associated with multiple basic residues within the cleavage site of paramyxovirus F proteins and influenza virus hemagglutinins, can also be determined by a single basic amino acid following proline. Additionally, the revertants were less susceptible to the activator for wild-type virus present in mouse lungs and less pathogenic for this organ than wild-type virus. These results provide further evidence that proteolytic activation of the F protein by host proteases is the primary determinant for organ tropism and pathogenicity of Sendai virus in mice. One of the revertants was also temperature sensitive (ts); the ts lesion in the nucleoprotein gene was identical to that found in ts-f1, the ts host range mutant from which F1-R was derived.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hamburger D, Griot C, Zurbriggen A, Orvell C, Vandevelde M. Loss of virulence of canine distemper virus is associated with a structural change recognized by a monoclonal antibody. EXPERIENTIA 1991; 47:842-5. [PMID: 1717309 DOI: 10.1007/bf01922469] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The monoclonal antibody (mAB) L1, which binds to the nucleocapsid protein of canine distemper virus (CDV), was shown to bind to avirulent CDV obtained after serial passages in Vero cells, but not to two different virulent demyelinating CDV-strains propagated in dog glial cell cultures. However, when both virulent CDV-strains were passaged through Vero cells they expressed, after a number of passages, an epitope recognized by mAB L1. The occurrence of the L1 epitope appeared to coincide with loss of virulence in animal inoculation experiments.
Collapse
Affiliation(s)
- D Hamburger
- Institute of Animal Neurology, University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Chambers TM, Webster RG. Protection of chickens from lethal influenza virus infection by influenza A/chicken/Pennsylvania/1/83 virus: characterization of the protective effect. Virology 1991; 183:427-32. [PMID: 2053293 DOI: 10.1016/0042-6822(91)90160-d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influenza A/chicken/Pennsylvania/1/83 (H5N2) virus is the first known example of an influenza virus isolated from a natural infection which contained primarily defective interfering particles (T. M. Chambers and R. G. Webster, J. Virol. 61, 1517-1523, 1987). In chickens, coinoculation of this virus together with the closely related but highly virulent influenza A/chicken/Pennsylvania/1370/83 virus results in reduced mortality compared to virulent virus infection alone (Bean et al., J. Virol. 54, 151-160, 1985). The biological basis of this protective effect has not been established. Protective activity required greater than or equal to 100-fold excess input of protecting virus over virulent virus, functioned effectively during the first generations of virulent virus multiplication, and also functioned against an antigenically heterologous (H7N7) virulent influenza virus. Protection was correlated with the complete inhibition of virulent virus spread to the brain of infected chickens. Plaque-purified chicken/Pennsylvania/1/83 virus depleted of defective interfering particles, and beta-propiolactone-inactivated virus, had no protective effect. These characteristics are consistent with the hypothesis that protection was the result of defective interfering particle-mediated interference with virulent virus multiplication within the respiratory tract of the chicken.
Collapse
Affiliation(s)
- T M Chambers
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101
| | | |
Collapse
|
42
|
Baum LG, Paulson JC. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology 1991; 180:10-5. [PMID: 1984642 DOI: 10.1016/0042-6822(91)90003-t] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A survey of 10 human influenza A viruses of the N2 serotype, isolated between 1957 and 1987, has revealed a drift in neuraminidase linkage specificity. While the earliest N2 strains examined exhibit strict specificity for cleavage of the NeuAc alpha 2,3Gal sequence, N2 isolates from 1967 to 1968 also show limited activity towards the NeuAc alpha 2,6Gal linkage. In strains isolated in 1972 and later, the N2 neuraminidase has approximately equal activity towards both types of linkages. The NeuAc alpha 2,6Gal linkage cleaved by the later N2 neuraminidases is the preferred receptor determinant of human H2 and H3 hemagglutinins. Thus, the acquired neuraminidase specificity of the later isolates allows elution of bound virus from erythrocytes derivatized to contain the NeuAc alpha 2,6Gal linkage, while earlier isolates, which cleave only the NeuAc alpha 2,3Gal sequence, fail to elute from these erythrocytes. These results suggest that the observed drift in N2 neuraminidase specificity in the direction of the preferred H2 and H3 receptor determinant may facilitate release of progeny virus from host cells.
Collapse
Affiliation(s)
- L G Baum
- Department of Pathology, UCLA School of Medicine 90024
| | | |
Collapse
|
43
|
Brown EG. Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8. J Virol 1990; 64:4523-33. [PMID: 2117072 PMCID: PMC247923 DOI: 10.1128/jvi.64.9.4523-4533.1990] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To cause disease, influenza virus must possess several genetically determined abilities that mediate stages in pathogenesis. The virulent mouse-adapted variant A/FM/1/47-MA (FM-MA), derived from the avirulent A/FM/1/47 (FM) strain, had acquired mutations in genes that control virulence. The purpose of this study was to identify those genes that had mutated to result in increased virulence and to obtain viruses that differed in virulence because of differences in individual genome segments. The genes that had mutated to increase virulence were initially identified by genetic analysis of reassortants obtained by crossing FM-MA with the avirulent strain A/HK/1/68 (HK). FM-MA genome segments 4, 5, 7, and 8 were significantly associated with virulence, as determined by using the Wilcoxon ranked sum analysis. The role of FM-MA segments 4, 7, and 8 was confirmed by reintroduction of these genes into the parental strain, which also provided virus strains that differed in virulence because of mutations in individual genome segments. Segments 4, 7, and 8 were responsible for a 10(3.6)-fold increase in virulence that was proportioned 10(2.2)-, 10(0.7)-, and 10(0.8)-fold, respectively. The role of segment 5 could not be confirmed on transfer back into the parental strain because of reversion during preparation of such reassortants. The incidence of reversion was shown to be significantly associated with culturing of FM-MA in chicken embryo cells but was not associated with growth in MDCK cells. The genetic analysis of FM-MA suggests that adaptation to increased virulence is an incremental process that involves the acquisition of mutations in multiple genes, each of which plays an individual role in pathogenesis. The structural and functional properties of segments 4, 7, and 8 that control the virulence of FM-MA can now be determined by using viruses that differ in virulence because of mutations in these individual genome segments.
Collapse
Affiliation(s)
- E G Brown
- Laboratory Centre for Disease Control, Health and Welfare Canada, Ottawa, Ontario
| |
Collapse
|
44
|
Matsumura H, Futaesaku Y, Kohno S, Sugiura A, Kohase M. A temperature-sensitive mutant of Newcastle disease virus defective in intracellular processing of fusion protein. J Virol 1990; 64:1410-3. [PMID: 2304149 PMCID: PMC249268 DOI: 10.1128/jvi.64.3.1410-1413.1990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.
Collapse
Affiliation(s)
- H Matsumura
- Department of Measles Virus, National Institute of Health, Tokyo, Japan
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Atassi MZ, Torres JV, Wyde PR. Cytotoxic and helper T-lymphocyte responses to antibody recognition regions on influenza virus hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1989; 251:49-63. [PMID: 2532857 DOI: 10.1007/978-1-4757-2046-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously localized and synthesized twelve antibody recognition sites on influenza virus hemagglutinin (HA). These peptides correspond to exposed surface areas in the 3-D structure of HA. Using intact X31 virus as the immunogen, we have determined the recognition of these synthetic peptides by proliferative T-helper lymphocytes (ThL), delayed type hypersensitivity (DTH), and cytotoxic T-lymphocytes (CTL) responses. The responses to the individual determinants in each of these immune compartments were under separate Ir gene control. Conversely, using the peptides as immunogens, we have determined the ability of various peptide-specific antibodies (in outbred mice) and ThLs (in H-2k, H-2d, H-2s and H-2b mice) to recognize intact virus. Whereas most of the peptides primed the mice for an anti-peptide proliferative ThL response, only very few of these cross-reacted with the virus. The identity of the peptide(s) eliciting virus cross-reactive ThLs varied with the strain. The importance of antibody, ThL, CTL and DTH responses in protection against viral infection and in vaccine design is discussed.
Collapse
Affiliation(s)
- M Z Atassi
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
47
|
Cyr-Coats KS, Payne HR, Storz J. The influence of the host cell and trypsin treatment on bovine coronavirus infectivity. ZENTRALBLATT FUR VETERINARMEDIZIN. REIHE B. JOURNAL OF VETERINARY MEDICINE. SERIES B 1988; 35:752-9. [PMID: 3218397 DOI: 10.1111/j.1439-0450.1988.tb00555.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Torres JV, Wyde PR, Atassi MZ. Cytotoxic T lymphocyte recognition sites on influenza virus hemagglutinin. Immunol Lett 1988; 19:49-53. [PMID: 3263948 DOI: 10.1016/0165-2478(88)90118-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
When influenza virus infection occurs, part of the cytotoxic T lymphocyte responses induced are directed to the major surface molecule of the virus, the hemagglutinin. However, despite their potential use as a peptide vaccine, little information is available concerning the submolecular areas in the hemagglutinin that are responsible for its immunologic recognition by cytotoxic T lymphocytes. The primary goal of this study is to determine whether submolecular areas recognized by antibodies and helper T cells are also important in the virus-specific, T lymphocyte-mediated cytotoxic responses generated towards virus-infected cells. A panel of synthetic peptides representing areas of the hemagglutinin, homologous to those in influenza AX-31 virus which have previously been shown to bind anti-influenza virus antibodies and provoke proliferation of virus-primed T-helper lymphocytes, was tested in two different cytotoxicity assays. In the experiments presented here, it was found that when selected peptides were incubated with appropriate L929 target cells, lysis by virus-specific cytotoxic T cells was observed. In addition, AX-31-primed lymphocytes preincubated with these synthetic peptides (both individually and as an equimolar mixture) exhibited enhanced lysis of virus-infected syngeneic targets. The cytotoxic responses showed dose-response characteristics in all cases, and in each of the two assays used the same patterns of cytotoxic induction were observed. The recognition of peptides was MHC-restricted since virus-specific cytotoxic T cells from C3H/He mice (H-2k) lysed L929 (H-2k) target cells after incubation with peptides or viruses, but did not lyse P815 (H-2d) targets under the same conditions.
Collapse
Affiliation(s)
- J V Torres
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
49
|
Brown EG. Genetic variants of influenza A/Taiwan/1/86 cocirculating in Canada during the winter of 1986 to 1987. J Clin Microbiol 1988; 26:313-8. [PMID: 3343326 PMCID: PMC266274 DOI: 10.1128/jcm.26.2.313-318.1988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The first isolate of influenza virus in Canada during the winter of 1986 to 1987 was a genetic variant of A/Taiwan/1/86. This genetic variant type was the predominant strain obtained from several of the western provinces. The variant strains were antigenically indistinguishable from A/Taiwan/1/86 but were remarkably distinct by T1 oligonucleotide mapping. T1 mapping of individual genome segments indicated that the variants evolved from an A/Taiwan/1/86-like virus through the accumulation of point mutation or deletion or insertion events and probably do not contain foreign genes. The relative distribution of genetic variation was approximately equal among the individual genes, with the possible exception of segments 1 or 2 that were analyzed in combination and thus could not be individually associated with the observed variation.
Collapse
Affiliation(s)
- E G Brown
- Influenza Section, Laboratory Centre for Disease Control, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
|