1
|
Carnero LAR, Bedinger D, Cocklin S, Li J, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AAR, Ferrara F, Bradbury ARM. Identification of polyreactive antibodies by high throughput enzyme-linked immunosorbent assay and surface Plasmon resonance. J Immunol Methods 2025; 539:113855. [PMID: 40157637 DOI: 10.1016/j.jim.2025.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The assessment of polyreactivity is usually carried out by enzyme linked immunosorbent assay (ELISA) using biochemically diverse target antigens with different biochemical properties, including charge and hydrophobicity, and comprising proteins, carbohydrates, nucleic acids and lipids, some of which are heterogenous in nature. Here we explored polyreactivity ELISAs based on probes of defined molecular weight, which we were also able to directly transition to a polyreactivity assay using surface plasmon resonance (SPR). Using a panel of previously characterized clinical antibodies we obtain results compatible with previous polyreactivity studies, but with potential for high throughput analysis following kinetic measurements in the early discovery process. We find ELISA is more sensitive for the detection of polyreactivity in antibodies, and with potential lower throughput, compared to SPR, but may lack the linear sensitivity of SPR.
Collapse
Affiliation(s)
| | | | - Simon Cocklin
- Specifica Inc, an IQVIA Laboratories Company, Santa Fe 87501, USA
| | - Jianquan Li
- Specifica Inc, an IQVIA Laboratories Company, Santa Fe 87501, USA
| | - M Frank Erasmus
- Specifica Inc, an IQVIA Laboratories Company, Santa Fe 87501, USA
| | - Sara D'Angelo
- Specifica Inc, an IQVIA Laboratories Company, Santa Fe 87501, USA
| | - Camila Leal-Lopes
- New Mexico Consortium, Los Alamos 87504, USA; Sanofi, Large Molecule Research, 02141 Cambridge, USA
| | | | | | | |
Collapse
|
2
|
Liu J, Wu L, Xie A, Liu W, He Z, Wan Y, Mao W. Unveiling the new chapter in nanobody engineering: advances in traditional construction and AI-driven optimization. J Nanobiotechnology 2025; 23:87. [PMID: 39915791 PMCID: PMC11800653 DOI: 10.1186/s12951-025-03169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Nanobodies (Nbs), miniature antibodies consisting solely of the variable region of heavy chains, exhibit unique properties such as small size, high stability, and strong specificity, making them highly promising for disease diagnosis and treatment. The engineering production of Nbs has evolved into a mature process, involving library construction, screening, and expression purification. Different library types, including immune, naïve, and synthetic/semi-synthetic libraries, offer diverse options for various applications, while display platforms like phage display, cell surface display, and non-surface display provide efficient screening of target Nbs. Recent advancements in artificial intelligence (AI) have opened new avenues in Nb engineering. AI's exceptional performance in protein structure prediction and molecular interaction simulation has introduced novel perspectives and tools for Nb design and optimization. Integrating AI with traditional experimental methods is anticipated to enhance the efficiency and precision of Nb development, expediting the transition from basic research to clinical applications. This review comprehensively examines the latest progress in Nb engineering, emphasizing library construction strategies, display platform technologies, and AI applications. It evaluates the strengths and weaknesses of various libraries and display platforms and explores the potential and challenges of AI in predicting Nb structure, antigen-antibody interactions, and optimizing physicochemical properties.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Lei Wu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Anqi Xie
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Zhao He
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, 13850, USA.
- Department of Biomedical Engineering, The Pq Laboratory of BiomeDx/Rx, Binghamton University, Binghamton, NY, 13902, USA.
| | - Wenjun Mao
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi College of Clinical Medicine, Nanjing Medical University, Wuxi, 214023, China.
- Department of Thoracic Surgery, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, No. 299 Qingyang Rd., Wuxi, 214023, China.
| |
Collapse
|
3
|
Xiang Y, Xu J, McGovern BL, Ranzenigo A, Huang W, Sang Z, Shen J, Diaz-Tapia R, Pham ND, Teunissen AJP, Rodriguez ML, Benjamin J, Taylor DJ, van Leent MMT, White KM, García-Sastre A, Zhang P, Shi Y. Adaptive multi-epitope targeting and avidity-enhanced nanobody platform for ultrapotent, durable antiviral therapy. Cell 2024; 187:6966-6980.e23. [PMID: 39447570 PMCID: PMC11748749 DOI: 10.1016/j.cell.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Pathogens constantly evolve and can develop mutations that evade host immunity and treatment. Addressing these escape mechanisms requires targeting evolutionarily conserved vulnerabilities, as mutations in these regions often impose fitness costs. We introduce adaptive multi-epitope targeting with enhanced avidity (AMETA), a modular and multivalent nanobody platform that conjugates potent bispecific nanobodies to a human immunoglobulin M (IgM) scaffold. AMETA can display 20+ nanobodies, enabling superior avidity binding to multiple conserved and neutralizing epitopes. By leveraging multi-epitope SARS-CoV-2 nanobodies and structure-guided design, AMETA constructs exponentially enhance antiviral potency, surpassing monomeric nanobodies by over a million-fold. These constructs demonstrate ultrapotent, broad, and durable efficacy against pathogenic sarbecoviruses, including Omicron sublineages, with robust preclinical results. Structural analysis through cryoelectron microscopy and modeling has uncovered multiple antiviral mechanisms within a single construct. At picomolar to nanomolar concentrations, AMETA efficiently induces inter-spike and inter-virus cross-linking, promoting spike post-fusion and striking viral disarmament. AMETA's modularity enables rapid, cost-effective production and adaptation to evolving pathogens.
Collapse
Affiliation(s)
- Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialu Xu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ngoc Dung Pham
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Abraham J P Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jared Benjamin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Mandy M T van Leent
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Éliás S, Wrzodek C, Deane CM, Tissot AC, Klostermann S, Ros F. Prediction of polyspecificity from antibody sequence data by machine learning. FRONTIERS IN BIOINFORMATICS 2024; 3:1286883. [PMID: 38651055 PMCID: PMC11033685 DOI: 10.3389/fbinf.2023.1286883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 04/25/2024] Open
Abstract
Antibodies are generated with great diversity in nature resulting in a set of molecules, each optimized to bind a specific target. Taking advantage of their diversity and specificity, antibodies make up for a large part of recently developed biologic drugs. For therapeutic use antibodies need to fulfill several criteria to be safe and efficient. Polyspecific antibodies can bind structurally unrelated molecules in addition to their main target, which can lead to side effects and decreased efficacy in a therapeutic setting, for example via reduction of effective drug levels. Therefore, we created a neural-network-based model to predict polyspecificity of antibodies using the heavy chain variable region sequence as input. We devised a strategy for enriching antibodies from an immunization campaign either for antigen-specific or polyspecific binding properties, followed by generation of a large sequencing data set for training and cross-validation of the model. We identified important physico-chemical features influencing polyspecificity by investigating the behaviour of this model. This work is a machine-learning-based approach to polyspecificity prediction and, besides increasing our understanding of polyspecificity, it might contribute to therapeutic antibody development.
Collapse
Affiliation(s)
- Szabolcs Éliás
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Clemens Wrzodek
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Alain C. Tissot
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | - Francesca Ros
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
5
|
Negro S, Lauria F, Stazi M, Tebaldi T, D’Este G, Pirazzini M, Megighian A, Lessi F, Mazzanti CM, Sales G, Romualdi C, Fillo S, Lista F, Sleigh JN, Tosolini AP, Schiavo G, Viero G, Rigoni M. Hydrogen peroxide induced by nerve injury promotes axon regeneration via connective tissue growth factor. Acta Neuropathol Commun 2022; 10:189. [PMID: 36567321 PMCID: PMC9791753 DOI: 10.1186/s40478-022-01495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022] Open
Abstract
Regeneration of the neuromuscular junction (NMJ) leverages on extensive exchange of factors released from motor axon terminals (MATs), muscle fibers and perisynaptic Schwann cells (PSCs), among which hydrogen peroxide (H2O2) is a major pro-regenerative signal. To identify critical determinants of NMJ remodeling in response to injury, we performed temporal transcriptional profiling of NMJs from 2 month-old mice during MAT degeneration/regeneration, and cross-referenced the differentially expressed genes with those elicited by H2O2 in SCs. We identified an enrichment in extracellular matrix (ECM) transcripts, including Connective Tissue Growth Factor (Ctgf), which is usually expressed during development. We discovered that Ctgf levels are increased in a Yes-associated protein (YAP)-dependent fashion in response to rapid, local H2O2 signaling generated by stressed mitochondria in the injured sciatic nerve, a finding highlighting the importance of signals triggered by mechanical force to motor nerve repair. Through sequestration of Ctgf or inactivation of H2O2, we delayed the recovery of neuromuscular function by impairing SC migration and, in turn, axon-oriented re-growth. These data indicate that H2O2 and its downstream effector Ctgf are pro-regenerative factors that enable axonal growth, and reveal a striking ECM remodeling process during nerve regeneration upon local H2O2 signaling. Our study identifies key transcriptomic changes at the regenerating NMJ, providing a rich source of pro-regenerative factors with potential for alleviating the consequences of peripheral nerve injuries.
Collapse
Affiliation(s)
- Samuele Negro
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470U.O.C. Clinica Neurologica, Azienda Ospedale, University of Padua, 35128 Padua, Italy
| | - Fabio Lauria
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Marco Stazi
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Toma Tebaldi
- grid.11696.390000 0004 1937 0351Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Povo, Italy ,grid.47100.320000000419368710Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Giorgia D’Este
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marco Pirazzini
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Myology Center (CIR-Myo), University of Padua, 35129 Padua, Italy
| | - Aram Megighian
- grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy ,grid.5608.b0000 0004 1757 3470Padua Neuroscience Center, University of Padua, 35131 Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Chiara M. Mazzanti
- Laboratory of Genomics, Pisa Science Foundation, 56017 San Giuliano Terme, Italy
| | - Gabriele Sales
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Chiara Romualdi
- grid.5608.b0000 0004 1757 3470Department of Biology, University of Padua, 35131 Padua, Italy
| | - Silvia Fillo
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - Florigio Lista
- grid.470599.60000 0004 1760 920XCenter of Medical and Veterinary Research of the Ministry of Defence, 00184 Rome, Italy
| | - James N. Sleigh
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Andrew P. Tosolini
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK
| | - Giampietro Schiavo
- grid.83440.3b0000000121901201Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UCL Queen Square Motor Neuron Disease Centre, University College London, London, WC1N 3BG UK ,grid.83440.3b0000000121901201UK Dementia Research Institute, University College London, London, WC1E 6BT UK
| | - Gabriella Viero
- grid.419463.d0000 0004 1756 3731Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy. .,Myology Center (CIR-Myo), University of Padua, 35129, Padua, Italy.
| |
Collapse
|
6
|
Harvey EP, Shin JE, Skiba MA, Nemeth GR, Hurley JD, Wellner A, Shaw AY, Miranda VG, Min JK, Liu CC, Marks DS, Kruse AC. An in silico method to assess antibody fragment polyreactivity. Nat Commun 2022; 13:7554. [PMID: 36477674 PMCID: PMC9729196 DOI: 10.1038/s41467-022-35276-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Antibodies are essential biological research tools and important therapeutic agents, but some exhibit non-specific binding to off-target proteins and other biomolecules. Such polyreactive antibodies compromise screening pipelines, lead to incorrect and irreproducible experimental results, and are generally intractable for clinical development. Here, we design a set of experiments using a diverse naïve synthetic camelid antibody fragment (nanobody) library to enable machine learning models to accurately assess polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide quantitative scoring metrics that predict the effect of amino acid substitutions on polyreactivity. We experimentally test our models' performance on three independent nanobody scaffolds, where over 90% of predicted substitutions successfully reduced polyreactivity. Importantly, the models allow us to diminish the polyreactivity of an angiotensin II type I receptor antagonist nanobody, without compromising its functional properties. We provide a companion web-server that offers a straightforward means of predicting polyreactivity and polyreactivity-reducing mutations for any given nanobody sequence.
Collapse
Affiliation(s)
- Edward P Harvey
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jung-Eun Shin
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve R Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph D Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Alon Wellner
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, 92692, USA
| | - Ada Y Shaw
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor G Miranda
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph K Min
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chang C Liu
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA, 92692, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
8
|
Gupta P, Makowski EK, Kumar S, Zhang Y, Scheer JM, Tessier PM. Antibodies with Weakly Basic Isoelectric Points Minimize Trade-offs between Formulation and Physiological Colloidal Properties. Mol Pharm 2022; 19:775-787. [PMID: 35108018 PMCID: PMC9350878 DOI: 10.1021/acs.molpharmaceut.1c00373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The widespread interest in antibody therapeutics has led to much focus on identifying antibody candidates with favorable developability properties. In particular, there is broad interest in identifying antibody candidates with highly repulsive self-interactions in standard formulations (e.g., low ionic strength buffers at pH 5-6) for high solubility and low viscosity. Likewise, there is also broad interest in identifying antibody candidates with low levels of non-specific interactions in physiological solution conditions (PBS, pH 7.4) to promote favorable pharmacokinetic properties. To what extent antibodies that possess both highly repulsive self-interactions in standard formulations and weak non-specific interactions in physiological solution conditions can be systematically identified remains unclear and is a potential impediment to successful therapeutic drug development. Here, we evaluate these two properties for 42 IgG1 variants based on the variable fragments (Fvs) from four clinical-stage antibodies and complementarity-determining regions from 10 clinical-stage antibodies. Interestingly, we find that antibodies with the strongest repulsive self-interactions in a standard formulation (pH 6 and 10 mM histidine) display the strongest non-specific interactions in physiological solution conditions. Conversely, antibodies with the weakest non-specific interactions under physiological conditions display the least repulsive self-interactions in standard formulations. This behavior can be largely explained by the antibody isoelectric point, as highly basic antibodies that are highly positively charged under standard formulation conditions (pH 5-6) promote repulsive self-interactions that mediate high colloidal stability but also mediate strong non-specific interactions with negatively charged biomolecules at physiological pH and vice versa for antibodies with negatively charged Fv regions. Therefore, IgG1s with weakly basic isoelectric points between 8 and 8.5 and Fv isoelectric points between 7.5 and 9 typically display the best combinations of strong repulsive self-interactions and weak non-specific interactions. We expect that these findings will improve the identification and engineering of antibody candidates with drug-like biophysical properties.
Collapse
Affiliation(s)
- Priyanka Gupta
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Emily K Makowski
- Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sandeep Kumar
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Yulei Zhang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Justin M Scheer
- Biotherapeutics Molecule Discovery Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States.,Janssen R&D, South San Francisco, California 94080, United States
| | - Peter M Tessier
- Biochemistry and Biophysics Department, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Dietlin-Auril V, Lecerf M, Depinay S, Noé R, Dimitrov JD. Interaction with 2,4-dinitrophenol correlates with polyreactivity, self-binding, and stability of clinical-stage therapeutic antibodies. Mol Immunol 2021; 140:233-239. [PMID: 34773862 DOI: 10.1016/j.molimm.2021.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Therapeutic antibodies should cover particular physicochemical and functional requirements for successful entry into clinical practice. Numerous experimental and computational approaches have been developed for early identification of different unfavourable features of antibodies. Immune repertoires of healthy humans contain a fraction of antibodies that recognize nitroarenes. These antibodies have been demonstrated to manifest antigen-binding polyreactivity. Here we observed that >20 % of 112 clinical stage therapeutic antibodies show pronounced binding to 2,4-dinitrophenol conjugated to albumin. This interaction predicts a number of unfavourable functional and physicochemical features of antibodies such as polyreactivity, tendency for self-association, stability and expression yields. Based on these findings we proposed a simple approach that may add to the armamentarium of assays for early identification of developability liabilities of antibodies intended for therapeutic use.
Collapse
Affiliation(s)
- Valentin Dietlin-Auril
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Stephanie Depinay
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Rémi Noé
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006, Paris, France.
| |
Collapse
|
10
|
Nicolai O, Pötschke C, Raafat D, van der Linde J, Quosdorf S, Laqua A, Heidecke CD, Berek C, Darisipudi MN, Binder CJ, Bröker BM. Oxidation-Specific Epitopes (OSEs) Dominate the B Cell Response in Murine Polymicrobial Sepsis. Front Immunol 2020; 11:1570. [PMID: 32849533 PMCID: PMC7412885 DOI: 10.3389/fimmu.2020.01570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong increase in serum IgM and IgG antibodies was observed, which reached maximum values 14 days following sepsis induction. The specificity of this antibody response was studied in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed, studies at the single-cell level revealed that IgM antibodies, in particular, were largely polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs), which are known targets of the innate/adaptive immune response. This identifies those self-antigens as the main target of B cell responses in sepsis.
Collapse
Affiliation(s)
- Oliver Nicolai
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Pötschke
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Julia van der Linde
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Quosdorf
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Laqua
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Berek
- German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Murthy N Darisipudi
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Ermakov EA, Nevinsky GA, Buneva VN. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J Mol Sci 2020; 21:ijms21155392. [PMID: 32751323 PMCID: PMC7432551 DOI: 10.3390/ijms21155392] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are known to combine various effector mechanisms of the adaptive and the innate immune system. Classical immunoglobulin functions are associated with antigen recognition and the initiation of innate immune responses. However, in addition to classical functions, antibodies exhibit a variety of non-canonical functions related to the destruction of various pathogens due to catalytic activity and cofactor effects, the action of antibodies as agonists/antagonists of various receptors, the control of bacterial diversity of the intestine, etc. Canonical and non-canonical functions reflect the extreme human antibody repertoire and the variety of antibody types generated in the organism: antigen-specific, natural, polyreactive, broadly neutralizing, homophilic, bispecific and catalytic. The therapeutic effects of intravenous immunoglobulins (IVIg) are associated with both the canonical and non-canonical functions of antibodies. In this review, catalytic antibodies will be considered in more detail, since their formation is associated with inflammatory and autoimmune diseases. We will systematically summarize the diversity of catalytic antibodies in normal and pathological conditions. Translational perspectives of knowledge about natural antibodies for IVIg therapy will be also discussed.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/metabolism
- Antibodies, Catalytic/chemistry
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/metabolism
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Autoimmune Diseases/therapy
- Humans
- Immunity, Innate
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Isotypes/chemistry
- Immunoglobulin Isotypes/classification
- Immunoglobulin Isotypes/genetics
- Immunoglobulin Isotypes/metabolism
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Tests
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/therapy
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
| | - Valentina N. Buneva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.A.E.); (G.A.N.)
- Novosibirsk State University, Department of Natural Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-27; Fax: +7-(383)-363-51-53
| |
Collapse
|
12
|
Dimitrov JD. Harnessing the Therapeutic Potential of 'Rogue' Antibodies. Trends Pharmacol Sci 2020; 41:409-417. [PMID: 32334839 DOI: 10.1016/j.tips.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
Therapeutic antibodies have revolutionized modern medicine. At present, antibodies are successfully used for treatment of diverse human diseases, ranging from cancer to viral infections. All clinically approved antibodies rely on highly specific recognition of their target antigen. Antigen-binding promiscuity, binding to autoantigens, and propensity for self-binding (homophilic interaction) are highly undesirable characteristics of antibody drug candidates. Nevertheless, the immune system of all healthy individuals constantly produces and uses large quantities of antibodies that can be classified as inappropriate for development as drugs. Here, I provide arguments that antibodies with 'aberrant' properties have therapeutic potential. They could be useful in certain complex pathological conditions, thus enriching our armamentarium for treatment of human diseases.
Collapse
Affiliation(s)
- Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France.
| |
Collapse
|
13
|
Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I, Lynaugh H, Zhi X, Xu Y, Walker LM. Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability. Cell Rep 2019; 28:3300-3308.e4. [PMID: 31553901 DOI: 10.1016/j.celrep.2019.08.056] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) have recently emerged as one of the most promising classes of biotherapeutics. A potential advantage of B cell-derived mAbs as therapeutic agents is that they have been subjected to natural filtering mechanisms, which may enrich for B cell receptors (BCRs) with favorable biophysical properties. Here, we evaluated 400 human mAbs for polyreactivity, hydrophobicity, and thermal stability using high-throughput screening assays. Overall, mAbs derived from memory B cells and long-lived plasma cells (LLPCs) display reduced levels of polyreactivity, hydrophobicity, and thermal stability compared with naive B cell-derived mAbs. Somatic hypermutation (SHM) is inversely associated with all three biophysical properties, as well as BCR expression levels. Finally, the developability profiles of the human B cell-derived mAbs are comparable with those observed for clinical mAbs, suggesting their high therapeutic potential. The results provide insight into the biophysical consequences of affinity maturation and have implications for therapeutic antibody engineering and development.
Collapse
|
14
|
McCulloch L, Allan SM, Emsley HC, Smith CJ, McColl BW. Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res 2019; 8:1039. [PMID: 31700615 PMCID: PMC6820822 DOI: 10.12688/f1000research.19308.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Blockade of the cytokine interleukin-1 (IL-1) with IL-1 receptor antagonist (IL-1Ra) is a candidate treatment for stroke entering phase II/III trials, which acts by inhibiting harmful inflammatory responses. Infection is a common complication after stroke that significantly worsens outcome and is related to stroke-induced deficits in systemic immune function thought to be mediated by the sympathetic nervous system. Therefore, immunomodulatory treatments for stroke, such as IL-1Ra, carry a risk of aggravating stroke-associated infection. Our primary objective was to determine if factors associated with antibody-mediated antibacterial defences were further compromised in patients treated with IL-1Ra after stroke. Methods: We assessed plasma concentrations of immunoglobulin isotypes and complement components in stroke patients treated with IL-1Ra or placebo and untreated non-stroke controls using multiplex protein assays. Activation of the sympathetic nervous system (SNS) was determined by measuring noradrenaline, a major SNS mediator. Results: There were significantly lower plasma concentrations of IgM, IgA, IgG1 and IgG4 in stroke-patients compared to non-stroke controls, however there were no differences between stroke patients treated with placebo or IL-1Ra. Concentrations of complement components associated with the classical pathway were increased and those associated with the alternative pathways decreased in stroke patients, neither being affected by treatment with IL-1Ra. Noradrenaline concentrations were increased after stroke in both placebo and IL-1Ra-treated stroke patients compared to non-stroke controls. Conclusion: These data show treatment with IL-1Ra after stroke does not alter circulating immunoglobulin and complement concentrations and is therefore unlikely to further aggravate stroke-associated infection susceptibility through altered availability of these key anti-microbial mediators.
Collapse
Affiliation(s)
- Laura McCulloch
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | - Hedley C. Emsley
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig J. Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Barry W. McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
15
|
McCulloch L, Allan SM, Emsley HC, Smith CJ, McColl BW. Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res 2019; 8:1039. [PMID: 31700615 PMCID: PMC6820822 DOI: 10.12688/f1000research.19308.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 10/15/2023] Open
Abstract
Background: Blockade of the cytokine interleukin-1 (IL-1) with IL-1 receptor antagonist (IL-1Ra) is a candidate treatment for stroke entering phase II/III trials, which acts by inhibiting harmful inflammatory responses. Infection is a common complication after stroke that significantly worsens outcome and is related to stroke-induced deficits in systemic immune function thought to be mediated by the sympathetic nervous system. Therefore, immunomodulatory treatments for stroke, such as IL-1Ra, carry a risk of aggravating stroke-associated infection. Our primary objective was to determine if factors associated with antibody-mediated antibacterial defences were further compromised in patients treated with IL-1Ra after stroke. Methods: We assessed plasma concentrations of immunoglobulin isotypes and complement components in stroke patients treated with IL-1Ra or placebo and untreated non-stroke controls using multiplex protein assays. Activation of the sympathetic nervous system (SNS) was determined by measuring noradrenaline, a major SNS mediator. Results: There were significantly lower plasma concentrations of IgM, IgA, IgG1 and IgG4 in stroke-patients compared to non-stroke controls, however there were no differences between stroke patients treated with placebo or IL-1Ra. Concentrations of complement components associated with the classical pathway were increased and those associated with the alternative pathways decreased in stroke patients, neither being affected by treatment with IL-1Ra. Noradrenaline concentrations were increased after stroke in both placebo and IL-1Ra-treated stroke patients compared to non-stroke controls. Conclusion: These data show treatment with IL-1Ra after stroke does not alter circulating immunoglobulin and complement concentrations and is therefore unlikely to further aggravate stroke-associated infection susceptibility through reduced availability of these key anti-microbial mediators.
Collapse
Affiliation(s)
- Laura McCulloch
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, M13 9PT, UK
| | - Hedley C. Emsley
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig J. Smith
- Division of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PT, UK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, M6 8HD, UK
| | - Barry W. McColl
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
16
|
Liu Q, Lai YT, Zhang P, Louder MK, Pegu A, Rawi R, Asokan M, Chen X, Shen CH, Chuang GY, Yang ES, Miao H, Wang Y, Fauci AS, Kwong PD, Mascola JR, Lusso P. Improvement of antibody functionality by structure-guided paratope engraftment. Nat Commun 2019; 10:721. [PMID: 30760721 PMCID: PMC6374468 DOI: 10.1038/s41467-019-08658-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) represent a promising alternative to antiretroviral drugs for HIV-1 prevention and treatment. Selected antibodies to the CD4-binding site bolster envelope trimer binding via quaternary contacts. Here, we rationally engraft a new paratope, i.e., the extended heavy-chain framework region 3 (FR3) loop of VRC03, which mediates quaternary interaction, onto several potent bNAbs, enabling them to reach an adjacent gp120 protomer. The interactive quaternary surface is delineated by solving the crystal structure of two FR3 loop-chimeric antibodies. Chimerization enhances the neutralizing activity of several potent bNAbs against a majority of global HIV-1 strains. Compared to unmodified antibodies, chimeric antibodies display lower autoreactivity and prolonged in vivo half-life in huFcRn mice and rhesus macaques. Thus, paratope engraftment may be used to expand the epitope repertory of natural antibodies, improving their functionality for disease prevention and treatment. Quaternary contacts mediated by an extended heavy-chain framework region 3 (FR3) have been shown to improve binding to HIV envelope and virus neutralization for a few antibodies. Here, Liu et al. engraft such an FR3 loop onto several potent broadly neutralizing antibodies, resulting in improved neutralization activity and pharmacokinetics.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Yuge Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
|
18
|
Xue J, Zhang J, Wu QY, Lu Y. Sub-chronic inhalation of reclaimed water-induced fibrotic lesion in a mouse model. WATER RESEARCH 2018; 139:240-251. [PMID: 29655095 DOI: 10.1016/j.watres.2018.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
When reclaimed water is used as municipal miscellaneous water, acute exposure of the generated aerosol with high levels of endotoxins can cause severe inflammation in the lungs. However, the potential risks of long-term inhalation of reclaimed water remains unclear. To identify the adverse effects of sub-chronic reclaimed water inhalation and explain the underlying mechanisms, a mouse model of 12-week sub-chronic exposure was established, and wastewater before a membrane bioreactor (MBR, positive control) and the MBR effluent (reclaimed water, which met the quality standard of urban use and was currently used for landscape irrigation) were tested in this study. The exposure dose was set to approach the real working scenarios. Lung lavage and histology were analyzed. Obvious epithelial cell apoptosis in the bronchi was observed, along with the accumulation of myofibroblasts and the collagen deposition both in main bronchi and terminal bronchioles. All these symptoms were persistent after 4 weeks of recovery. Inflammation and induced bronchus-associated lymphoid tissues (iBALT) were also observed but diminished after recovery indicating inflammation may not be the direct cause of the symptom. Furthermore, two fibrogenic cytokines (TNF-α and TGF-β) were constantly high in the lung during the study. They might be the biomarkers of lung damage after the inhalation of reclaimed water. Adaptive immune responses were also detected as elevated levels of IgG and IgA, but not for IgE. Inhalation of reclaimed water causes sustained fibrotic lesions in the lungs, which suggests potential health risks during urban application where aerosols generated.
Collapse
Affiliation(s)
- Jinling Xue
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jinshan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
19
|
Negro S, Lessi F, Duregotti E, Aretini P, La Ferla M, Franceschi S, Menicagli M, Bergamin E, Radice E, Thelen M, Megighian A, Pirazzini M, Mazzanti CM, Rigoni M, Montecucco C. CXCL12α/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals. EMBO Mol Med 2018; 9:1000-1010. [PMID: 28559442 PMCID: PMC5538331 DOI: 10.15252/emmm.201607257] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12α, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by α-latrotoxin. CXCL12α acts via binding to the neuronal CXCR4 receptor. A CXCL12α-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration in vivo Recombinant CXCL12α in vivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons in vitro These findings indicate that the CXCL12α-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Aretini
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Marco La Ferla
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Sara Franceschi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | | | - Elisanna Bergamin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
20
|
Harmon AW, Moitra R, Xu Z, Byrnes AP. Hexons from adenovirus serotypes 5 and 48 differentially protect adenovirus vectors from neutralization by mouse and human serum. PLoS One 2018; 13:e0192353. [PMID: 29401488 PMCID: PMC5798830 DOI: 10.1371/journal.pone.0192353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/22/2018] [Indexed: 11/28/2022] Open
Abstract
Adenovirus vectors are widely used in gene therapy clinical trials, and preclinical studies with these vectors are often conducted in mice. It is therefore critical to understand whether mouse studies adequately predict the behavior of adenovirus vectors in humans. The most commonly-used adenovirus vectors are derived from adenovirus serotype 5 (Ad5). The Ad5 hexon protein can bind coagulation factor X (FX), and binding of FX has a major impact on vector interactions with other blood proteins. In mouse serum, FX protects Ad5 vectors from neutralization by natural antibodies and complement. In the current study, we similarly find that human FX inhibits neutralization of Ad5 vectors by human serum, and this finding is consistent among individual human sera. We show that human IgM and human IgG can each induce complement-mediated neutralization when Ad5 vectors are not protected by FX. Although mouse and human serum had similar effects on Ad5 vectors, we found that this was not true for a chimeric Ad5 vector that incorporated hexon regions from adenovirus serotype 48. Interestingly, this hexon-chimeric vector was neutralized by human serum, but not by mouse serum. These findings indicate that studies in mouse serum accurately predict the behavior of Ad5 vectors in human serum, but mouse serum is not an accurate model system for all adenovirus vectors.
Collapse
Affiliation(s)
- Andrew W. Harmon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Rituparna Moitra
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Zhili Xu
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Andrew P. Byrnes
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Avery LB, Wade J, Wang M, Tam A, King A, Piche-Nicholas N, Kavosi MS, Penn S, Cirelli D, Kurz JC, Zhang M, Cunningham O, Jones R, Fennell BJ, McDonnell B, Sakorafas P, Apgar J, Finlay WJ, Lin L, Bloom L, O'Hara DM. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. MAbs 2018; 10:244-255. [PMID: 29271699 DOI: 10.1080/19420862.2017.1417718] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Implementation of in vitro assays that correlate with in vivo human pharmacokinetics (PK) would provide desirable preclinical tools for the early selection of therapeutic monoclonal antibody (mAb) candidates with minimal non-target-related PK risk. Use of these tools minimizes the likelihood that mAbs with unfavorable PK would be advanced into costly preclinical and clinical development. In total, 42 mAbs varying in isotype and soluble versus membrane targets were tested in in vitro and in vivo studies. MAb physicochemical properties were assessed by measuring non-specific interactions (DNA- and insulin-binding ELISA), self-association (affinity-capture self-interaction nanoparticle spectroscopy) and binding to matrix-immobilized human FcRn (surface plasmon resonance and column chromatography). The range of scores obtained from each in vitro assay trended well with in vivo clearance (CL) using both human FcRn transgenic (Tg32) mouse allometrically projected human CL and observed human CL, where mAbs with high in vitro scores resulted in rapid CL in vivo. Establishing a threshold value for mAb CL in human of 0.32 mL/hr/kg enabled refinement of thresholds for each in vitro assay parameter, and using a combinatorial triage approach enabled the successful differentiation of mAbs at high risk for rapid CL (unfavorable PK) from those with low risk (favorable PK), which allowed mAbs requiring further characterization to be identified. Correlating in vitro parameters with in vivo human CL resulted in a set of in vitro tools for use in early testing that would enable selection of mAbs with the greatest likelihood of success in the clinic, allowing costly late-stage failures related to an inadequate exposure profile, toxicity or lack of efficacy to be avoided.
Collapse
Affiliation(s)
| | - Jason Wade
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mengmeng Wang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Amy Tam
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Amy King
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | | | | - Steve Penn
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA.,c Medicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - David Cirelli
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | | | - Minlei Zhang
- a BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | - Rhys Jones
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA.,f Currently Medicine Design, Pfizer Inc. , La Jolla , CA , USA
| | | | | | - Paul Sakorafas
- d Pharmaceutical Sciences, Pfizer Inc. , Andover , MA , USA
| | - James Apgar
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - William J Finlay
- e Biomedicine Design, Pfizer Inc. , Dublin , Ireland.,g Currently CodeBase , Edinburgh , UK
| | - Laura Lin
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Laird Bloom
- b BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | | |
Collapse
|
22
|
Kelly RL, Le D, Zhao J, Wittrup KD. Reduction of Nonspecificity Motifs in Synthetic Antibody Libraries. J Mol Biol 2017; 430:119-130. [PMID: 29183788 DOI: 10.1016/j.jmb.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022]
Abstract
Successful antibody development requires both functional binding and desirable biophysical characteristics. In the current study, we analyze the causes of one hurdle to clinical development, off-target reactivity, or nonspecificity. We used a high-throughput nonspecificity assay to isolate panels of nonspecific antibodies from two synthetic single-chain variable fragment libraries expressed on the surface of yeast, identifying both individual amino acids and motifs within the complementarity-determining regions which contribute to the phenotype. We find enrichment of glycine, valine, and arginine as both individual amino acids and as a part of motifs, and additionally enrichment of motifs containing tryptophan. Insertion of any of these motifs into the complementarity-determining region H3 of a "clean" antibody increased its nonspecificity, with greatest increases in antibodies containing Trp or Val motifs. We next applied these rules to the creation of a synthetic diversity library based on natural frameworks with significantly decreased incorporation of such motifs and demonstrated its ability to isolate binders to a wide panel of antigens. This work both provides a greater understanding of the drivers of nonspecificity and provides design rules to increase efficiency in the isolation of antibodies with drug-like properties.
Collapse
Affiliation(s)
- Ryan L Kelly
- Department of Biological, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - Doris Le
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - Jessie Zhao
- Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA
| | - K Dane Wittrup
- Department of Biological, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA; Department of Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, 02142, MA, USA.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (ABMR), especially in its chronic manifestation, is increasingly recognized as a leading cause of late graft loss following solid organ transplantation. In recent years, autoantibodies have emerged as a significant component of the humoral response to allografts alongside anti-human leukocyte antigen antibodies. These include polyreactive antibodies also known as natural antibodies (Nabs) secreted by innate B cells. A hallmark of Nabs is their capacity to bind altered self such as oxidized lipids on apoptotic cells. This review provides an overview of these overlooked antibodies and their implication in the pathophysiology of ABMR. RECENT FINDINGS New evidence reported in the past few years support a contribution of immunoglobulin (Ig) G Nabs to ABMR. Serum IgG Nabs levels are significantly higher in patients with ABMR compared with control kidney transplant recipients with stable graft function. Pretransplant IgG Nabs are also associated with ABMR and late graft loss. IgG Nabs are almost exclusively of the IgG1 and IgG3 subclasses and have the capacity to activate complement. SUMMARY In conclusion, Nabs are important elements in host immune responses to solid organ grafts. The recent description of their implication in ABMR and late kidney graft loss warrants further investigation into their pathogenic potential.
Collapse
|
24
|
Bunker JJ, Erickson SA, Flynn TM, Henry C, Koval JC, Meisel M, Jabri B, Antonopoulos DA, Wilson PC, Bendelac A. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 2017; 358:science.aan6619. [PMID: 28971969 DOI: 10.1126/science.aan6619] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Large quantities of immunoglobulin A (IgA) are constitutively secreted by intestinal plasma cells to coat and contain the commensal microbiota, yet the specificity of these antibodies remains elusive. Here we profiled the reactivities of single murine IgA plasma cells by cloning and characterizing large numbers of monoclonal antibodies. IgAs were not specific to individual bacterial taxa but rather polyreactive, with broad reactivity to a diverse, but defined, subset of microbiota. These antibodies arose at low frequencies among naïve B cells and were selected into the IgA repertoire upon recirculation in Peyer's patches. This selection process occurred independent of microbiota or dietary antigens. Furthermore, although some IgAs acquired somatic mutations, these did not substantially influence their reactivity. These findings reveal an endogenous mechanism driving homeostatic production of polyreactive IgAs with innate specificity to microbiota.
Collapse
Affiliation(s)
- Jeffrey J Bunker
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Steven A Erickson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Theodore M Flynn
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Carole Henry
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jason C Koval
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marlies Meisel
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Dionysios A Antonopoulos
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Patrick C Wilson
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA. .,Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
van Delft MAM, Verheul MK, Burgers LE, Derksen VFAM, van der Helm-van Mil AHM, van der Woude D, Huizinga TWJ, Toes REM, Trouw LA. The isotype and IgG subclass distribution of anti-carbamylated protein antibodies in rheumatoid arthritis patients. Arthritis Res Ther 2017; 19:190. [PMID: 28810902 PMCID: PMC5558706 DOI: 10.1186/s13075-017-1392-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Anti-carbamylated protein (anti-CarP) antibodies have recently been reported to occur in around 45% of rheumatoid arthritis (RA) patients and to have prognostic and diagnostic properties. At present, the breadth and molecular make-up of the anti-CarP antibody response is ill defined. To understand the anti-CarP antibody immune response and potential immune effector mechanisms it can recruit, we determined the anti-CarP antibody isotype and IgG-subclass usage in RA patients. METHODS Anti-CarP antibody IgM, IgA, and IgG or IgG subclasses were detected by enzyme-linked immunosorbent assay (ELISA) in sera from 373 unselected RA patients and 196 healthy controls. An additional 114 anti-citrullinated protein antibody (ACPA) and anti-CarP IgG double-positive patients were selected to study the concomitant presence of both antibody systems. RESULTS Anti-CarP IgG was present in around 45% of the patients and comprised all anti-CarP IgG subclasses. The presence of anti-CarP IgG1 particularly associates with radiological damage. Anti-CarP IgM was detected in 16% of RA patients, even in anti-CarP IgG-positive individuals, and is indicative of an actively ongoing immune response. Around 45% of the patients were positive for IgA which included ACPA-positive cases but also 24% of the ACPA-negative cases. In ACPA and anti-CarP double-positive patients, the distribution and number of isotypes and IgG subclasses was similar for both autoantibodies at the group level, but substantial variation was observed within individual patient samples. CONCLUSIONS In RA, the anti-CarP antibody response uses a broad spectrum of isotypes and seems to be an actively ongoing immune reaction. Furthermore, the anti-CarP and ACPA autoantibody responses seems to be differentially regulated.
Collapse
Affiliation(s)
- Myrthe A M van Delft
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Marije K Verheul
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonie E Burgers
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Veerle F A M Derksen
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | | | - Diane van der Woude
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Rheumatology, C1-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
26
|
Effective in vivo therapeutic IgG antibody against VP3 of enterovirus 71 with receptor-competing activity. Sci Rep 2017; 7:46402. [PMID: 28422137 PMCID: PMC5395816 DOI: 10.1038/srep46402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/17/2017] [Indexed: 11/23/2022] Open
Abstract
Passive immunization is an effective option for treatment against hand, foot and mouth disease caused by EV71, especially with cross-neutralizing IgG monoclonal antibodies. In this study, an EV71-specific IgG2a antibody designated 5H7 was identified and characterized. 5H7 efficiently neutralizes the major EV71 genogroups (A, B4, C2, C4). The conformational epitope of 5H7 was mapped to the highly conserved amino acid position 74 on VP3 capsid protein using escape mutants. Neutralization with 5H7 is mediated by the inhibition of viral attachment, as revealed by virus-binding and post-attachment assays. In a competitive pull-down assay with SCARB2, 5H7 blocks the receptor-binding site on EV71 for virus neutralization. Passive immunization of chimeric 5H7 protected 100% of two-week-old AG129 mice from lethal challenge with an EV71 B4 strain for both prophylactic and therapeutic treatments. In contrast, 10D3, a previously reported neutralizing antibody that takes effect after virus attachment, could only confer prophylactic protection. These results indicate that efficient interruption of viral attachment is critical for effective therapeutic activity with 5H7. This report documents a novel universal neutralizing IgG antibody for EV71 therapeutics and reveals the underlying mechanism.
Collapse
|
27
|
Abstract
Antibodies are a highly successful class of biological drugs, with over 50 such molecules approved for therapeutic use and hundreds more currently in clinical development. Improvements in technology for the discovery and optimization of high-potency antibodies have greatly increased the chances for finding binding molecules with desired biological properties; however, achieving drug-like properties at the same time is an additional requirement that is receiving increased attention. In this work, we attempt to quantify the historical limits of acceptability for multiple biophysical metrics of "developability." Amino acid sequences from 137 antibodies in advanced clinical stages, including 48 approved for therapeutic use, were collected and used to construct isotype-matched IgG1 antibodies, which were then expressed in mammalian cells. The resulting material for each source antibody was evaluated in a dozen biophysical property assays. The distributions of the observed metrics are used to empirically define boundaries of drug-like behavior that can represent practical guidelines for future antibody drug candidates.
Collapse
|
28
|
Kelly RL, Yu Y, Sun T, Caffry I, Lynaugh H, Brown M, Jain T, Xu Y, Wittrup KD. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. MAbs 2016; 8:1269-1275. [PMID: 27610650 DOI: 10.1080/19420862.2016.1208330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The importance of the neonatal Fc receptor (FcRn) in extending the serum half-life of monoclonal antibodies (mAbs) is well demonstrated, and has led to the development of multiple engineering approaches designed to alter Fc interactions with FcRn. Recent reports have additionally highlighted the effect of nonspecific interactions on antibody pharmacokinetics (PK), suggesting an FcRn-independent mechanism for mAb clearance. In this report we examine a case study of 2 anti-interleukin-12/23 antibodies, ustekinumab and briakinumab, which share the same target and Fc, but differ in variable region sequences. Ustekinumab displayed near baseline signal in a wide range of early stage developability assays for undesirable protein/protein interactions, while briakinumab showed significant propensity for self- and cross-interactions. This phenotypic difference correlates with faster clearance rates for briakinumab in both human FcRn transgenic and FcRn knockout mice. These findings support a dominant contribution for FcRn-independent clearance for antibodies with high nonspecificity, and highlight a key role for early stage developability screening to eliminate clones with such high nonspecific disposition PK.
Collapse
Affiliation(s)
- Ryan L Kelly
- a Department of Biological Engineering , Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Yao Yu
- b Protein Analytics , Adimab , Lebanon , NH , USA
| | - Tingwan Sun
- b Protein Analytics , Adimab , Lebanon , NH , USA
| | | | | | | | - Tushar Jain
- c Computational Biology , Adimab , Palo Alto , CA , USA
| | - Yingda Xu
- d Department of Chemical Engineering, Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - K Dane Wittrup
- a Department of Biological Engineering , Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge , MA , USA.,d Department of Chemical Engineering, Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
29
|
Djoumerska-Alexieva I, Roumenina L, Pashov A, Dimitrov J, Hadzhieva M, Lindig S, Voynova E, Dimitrova P, Ivanovska N, Bockmeyer C, Stefanova Z, Fitting C, Bläss M, Claus R, von Gunten S, Kaveri S, Cavaillon JM, Bauer M, Vassilev T. Intravenous Immunoglobulin with Enhanced Polyspecificity Improves Survival in Experimental Sepsis and Aseptic Systemic Inflammatory Response Syndromes. Mol Med 2016; 21:1002-1010. [PMID: 26701312 DOI: 10.2119/molmed.2014.00224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as "genomic storm" in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous "danger" signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.
Collapse
Affiliation(s)
- Iglika Djoumerska-Alexieva
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lubka Roumenina
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Anastas Pashov
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jordan Dimitrov
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Maya Hadzhieva
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sandro Lindig
- Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, Jena, Germany
| | - Elisaveta Voynova
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Petya Dimitrova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nina Ivanovska
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Zvetanka Stefanova
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Catherine Fitting
- Cytokines and Inflammation Unit, Institut Pasteur, Paris, France; and
| | - Markus Bläss
- Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ralf Claus
- Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Srini Kaveri
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| | | | - Michael Bauer
- Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, Jena, Germany
| | - Tchavdar Vassilev
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,Center for Sepsis Control and Care, University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
30
|
Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vásquez M, Wittrup KD, Xu Y. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs 2016; 7:770-7. [PMID: 26047159 PMCID: PMC4622737 DOI: 10.1080/19420862.2015.1043503] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although improvements in technology for the isolation of potential therapeutic antibodies have made the process increasingly predictable, the development of biologically active monoclonal antibodies (mAbs) into drugs can often be impeded by developability issues such as poor expression, solubility, and promiscuous cross-reactivity. Establishing early stage developability screening assays capable of predicting late stage behavior is therefore of high value to minimize development risks. Toward this goal, we selected a panel of 16 monoclonal antibodies (mAbs) representing different developability profiles, in terms of self- and cross-interaction propensity, and examined their downstream behavior from expression titer to accelerated stability and pharmacokinetics in mice. Clearance rates showed significant rank-order correlations to 2 cross-interaction related assays, with the closest correlation to a non-specificity assay on the surface of yeast. Additionally, 2 self-association assays correlated with each other but not to mouse clearance rate. This case study suggests that combining assays capable of high throughput screening of self- and cross-interaction early in the discovery stage could significantly lower downstream development risks.
Collapse
Affiliation(s)
- Ryan L Kelly
- a Department of Biological Engineering; Koch Institute for Integrative Cancer Research; Massachusetts Institute of Technology ; Cambridge , MA , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chuang GY, Zhang B, McKee K, O'Dell S, Kwon YD, Zhou T, Blinn J, Lloyd K, Parks R, Von Holle T, Ko SY, Kong WP, Pegu A, Wang K, Baruah K, Crispin M, Mascola JR, Moody MA, Haynes BF, Georgiev IS, Kwong PD. Eliminating antibody polyreactivity through addition of N-linked glycosylation. Protein Sci 2015; 24:1019-30. [PMID: 25800131 DOI: 10.1002/pro.2682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Antibody polyreactivity can be an obstacle to translating a candidate antibody into a clinical product. Standard tests such as antibody binding to cardiolipin, HEp-2 cells, or nuclear antigens provide measures of polyreactivity, but its causes and the means to resolve are often unclear. Here we present a method for eliminating antibody polyreactivity through the computational design and genetic addition of N-linked glycosylation near known sites of polyreactivity. We used the HIV-1-neutralizing antibody, VRC07, as a test case, since efforts to increase VRC07 potency at three spatially distinct sites resulted in enhanced polyreactivity. The addition of N-linked glycans proximal to the polyreactivity-enhancing mutations at each of the spatially distinct sites resulted in reduced antibody polyreactivity as measured by (i) anti-cardiolipin ELISA, (ii) Luminex AtheNA Multi-Lyte ANA binding, and (iii) HEp-2 cell staining. The reduced polyreactivity trended with increased antibody concentration over time in mice, but not with improved overall protein stability as measured by differential scanning calorimetry. Moreover, glycan proximity to the site of polyreactivity appeared to be a critical factor. The results provide evidence that antibody polyreactivity can result from local, rather than global, features of an antibody and that addition of N-linked glycosylation can be an effective approach to reducing antibody polyreactivity.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Julie Blinn
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Krissey Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kavitha Baruah
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
32
|
Direct administration in the respiratory tract improves efficacy of broadly neutralizing anti-influenza virus monoclonal antibodies. Antimicrob Agents Chemother 2015; 59:4162-72. [PMID: 25941218 DOI: 10.1128/aac.00290-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of influenza virus strains resistant to approved neuraminidase inhibitors and the time constrains after infection when these drugs can be effective constitute major drawbacks for this class of drugs. This highlights a critical need to discover new therapeutic agents that can be used for the treatment of influenza virus-infected patients. The use of broadly neutralizing anti-influenza monoclonal antibodies (MAbs) has been sought as an alternative immunotherapy against influenza infection. Here, we tested in mice previously characterized broadly neutralizing anti-hemagglutinin (HA) stalk MAbs prophylactically and therapeutically using different routes of administration. The efficacy of treatment against an influenza H1N1 pandemic virus challenge was compared between two systemic routes of administration, intraperitoneal (i.p.) and intravenous (i.v.), and two local routes, intranasal (i.n.) and aerosol (a.e.). The dose of MAb required for prophylactic protection was reduced by 10-fold in animals treated locally (i.n. or a.e.) compared with those treated systemically (i.p. or i.v.). Improved therapeutic protection was observed in animals treated i.n. on day 5 postinfection (60% survival) compared with those treated via the i.p. route (20% survival). An increase in therapeutic efficacy against other influenza virus subtypes (H5N1) was also observed when a local route of administration was used. Our findings demonstrate that local administration significantly decreases the amount of broadly neutralizing monoclonal antibody required for protection against influenza, which highlights the potential use of MAbs as a therapeutic agent for influenza-associated disease.
Collapse
|
33
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
34
|
O’Shea TJ, Bowen RA, Stanley TR, Shankar V, Rupprecht CE. Variability in seroprevalence of rabies virus neutralizing antibodies and associated factors in a Colorado population of big brown bats (Eptesicus fuscus). PLoS One 2014; 9:e86261. [PMID: 24465996 PMCID: PMC3899234 DOI: 10.1371/journal.pone.0086261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022] Open
Abstract
In 2001–2005 we sampled permanently marked big brown bats (Eptesicus fuscus) at summer roosts in buildings at Fort Collins, Colorado, for rabies virus neutralizing antibodies (RVNA). Seroprevalence was higher in adult females (17.9%, n = 2,332) than males (9.4%, n = 128; P = 0.007) or volant juveniles (10.2%, n = 738; P<0.0001). Seroprevalence was lowest in a drought year with local insecticide use and highest in the year with normal conditions, suggesting that environmental stress may suppress RVNA production in big brown bats. Seroprevalence also increased with age of bat, and varied from 6.2 to 26.7% among adult females at five roosts sampled each year for five years. Seroprevalence of adult females at 17 other roosts sampled for 1 to 4 years ranged from 0.0 to 47.1%. Using logistic regression, the only ranking model in our candidate set of explanatory variables for serological status at first sampling included year, day of season, and a year by day of season interaction that varied with relative drought conditions. The presence or absence of antibodies in individual bats showed temporal variability. Year alone provided the best model to explain the likelihood of adult female bats showing a transition to seronegative from a previously seropositive state. Day of the season was the only competitive model to explain the likelihood of a transition from seronegative to seropositive, which increased as the season progressed. We found no rabies viral RNA in oropharyngeal secretions of 261 seropositive bats or in organs of 13 euthanized seropositive bats. Survival of seropositive and seronegative bats did not differ. The presence of RVNA in serum of bats should not be interpreted as evidence for ongoing rabies infection.
Collapse
Affiliation(s)
- Thomas J. O’Shea
- United States Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas R. Stanley
- United States Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Vidya Shankar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Charles E. Rupprecht
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts, West Indies
- The Global Alliance for Rabies Control, Manhattan, Kansas, United States of America
| |
Collapse
|
35
|
Sedykh MA, Buneva VN, Nevinsky GA. Polyreactivity of natural antibodies: Exchange by HL-fragments. BIOCHEMISTRY (MOSCOW) 2013; 78:1305-1320. [DOI: 10.1134/s0006297913120018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
Implications of continued response after autologous stem cell transplantation for multiple myeloma. Blood 2013; 122:1746-9. [PMID: 23863899 DOI: 10.1182/blood-2013-03-492678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Patients undergoing autologous stem cell transplantation (ASCT) for multiple myeloma (MM) undergo disease assessment approximately 100 days later. Some patients continue to have a decline in their serum or urine monoclonal protein after day 100 in the absence of additional therapy. We evaluated 430 MM patients who underwent ASCT within 12 months of their diagnosis and had not achieved a complete remission at day 100. Of these patients, 167 (39%) had a continued response after day 100 without additional therapy. When compared with patients who did not (n = 263), those who had a continued response had a longer progression-free survival (35 vs 13 months, P < .001), time to next therapy (43 vs 16 months, P < .001), and overall survival (96 vs 57 months, P < .001). This phenomenon of a continued response maintained prognostic value in a multivariable analysis and should be considered when interpreting posttransplant responses.
Collapse
|
37
|
Characterization of an isotype-dependent monoclonal antibody against linear neutralizing epitope effective for prophylaxis of enterovirus 71 infection. PLoS One 2012; 7:e29751. [PMID: 22279543 PMCID: PMC3261156 DOI: 10.1371/journal.pone.0029751] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) is the main causative agent of Hand, Foot and Mouth disease (HFMD) and is associated with severe neurologic complications and mortalities. At present, there is no vaccine or therapeutic available for treatment. METHODOLOGY/PRINCIPAL FINDING In this study, we generated two mAbs, denoted as mAb 51 and 53, both targeting the same linear epitope on VP1 capsid protein, spanning amino acids 215-219. In comparison, mAb 51 belonging to isotype IgM possesses neutralizing activity in vitro, whereas, mAb 53 belonging to isotype IgG1 does not have any neutralizing ability, even towards its homologous strain. When mAb 51 at 10 µg/g of body weight was administered to the 2-week-old AG129 mice one day prior to lethal challenge, 100% in vivo passive protection was observed. In contrast, the isotype control group mice, injected with an irrelevant IgM antibody before the challenge, developed limb paralysis as early as day 6 post-infection. Histological examination demonstrated that mAb 51 was able to protect against pathologic changes such as neuropil vacuolation and neuronal loss in the spinal cord, which were typical in unprotected EV-71 infected mice. BLAST analyses of that epitope revealed that it was highly conserved among all EV71 strains, but not coxsachievirus 16 (CA16). CONCLUSION We have defined a linear epitope within the VP1 protein and demonstrated its neutralizing ability to be isotype dependent. The neutralizing property and highly conserved sequence potentiated the application of mAb 51 and 53 for protection against EV71 infection and diagnosis respectively.
Collapse
|
38
|
Ali Tabei SM, Li Y, Weigert M, Dinner AR. Model for competition from self during passive immunization, with application to broadly neutralizing antibodies for HIV. Vaccine 2011; 30:607-13. [PMID: 22119591 DOI: 10.1016/j.vaccine.2011.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022]
Abstract
We propose a mathematical model to interpret observations concerning the behavior of broadly neutralizing antibodies for chronic HIV in vivo. The model enables us to identify a threshold antibody level that must be achieved to decrease the viral load effectively. Although this threshold has not been reached in existing passive immunization studies, it is within range of humoral immune responses, suggesting that therapeutic vaccines are feasible. In an appendix, we develop a model of passive immunization against influenza, and acute infection.
Collapse
Affiliation(s)
- S M Ali Tabei
- James Franck Institute, The University of Chicago, Chicago, IL 60637, United States
| | | | | | | |
Collapse
|
39
|
Buchanan RM, Popowych Y, Arsic N, Townsend HGG, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL. B-cell activating factor (BAFF) promotes CpG ODN-induced B cell activation and proliferation. Cell Immunol 2011; 271:16-28. [PMID: 21724179 DOI: 10.1016/j.cellimm.2011.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
It is controversial whether naïve B cells are directly activated in response to TLR9 ligand, CpG ODN. Although bovine blood-derived CD21(+) B cells express TLR9 and proliferate in response to CpG in mixed-cell populations, purified bovine B cells do not proliferate significantly in response to CpG ODN, even when the B cell receptor is engaged. When co-cultured with CD14(+) myeloid cells and/or B-cell activating factor (BAFF), a cytokine produced by activated myeloid cells, there was a significant increase in CpG-specific B cell proliferation, and the number of large B cells in general or positive for CD25, all of which are markers for B cell activation. These data suggest that activated myeloid cells and BAFF prime B cells for significant CpG-specific activation. Understanding the signals required to mediate efficient CpG-induced, antigen-independent and T-cell independent activation of B cells has implications for polyclonal B cell activation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Rachelle M Buchanan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sundaram RK, Hurwitz I, Matthews S, Hoy E, Kurapati S, Crawford C, Sundaram P, Durvasula RV. Expression of a functional single-chain antibody via Corynebacterium pseudodiphtheriticum. Eur J Clin Microbiol Infect Dis 2008; 27:617-22. [PMID: 18322717 DOI: 10.1007/s10096-008-0483-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 02/01/2008] [Indexed: 11/24/2022]
Abstract
Antibody-based therapeutics are effective against conditions ranging from acute infections to malignancy. They may prove crucial in combating bioterrorism and responding to drug-resistant and emerging pathogens. At present the cost of producing therapeutic monoclonal antibodies is between $1,000 to $6,000 per gram. The need to administer antibodies parenterally at frequent intervals further drives the cost of this treatment. Here we present an antibody delivery system, termed paratransgenesis, with the potential to overcome these limitations. The paratransgenic approach involves genetically transforming a commensal or symbiont bacterium to express foreign molecules that target pathogens. We describe transformation of Corynebacterium pseudodiptheriticum, a commensal bacterium found in the human respiratory tract, to express a murine single-chain antibody binding progesterone. The antibody was functional and bound specifically to progesterone in a concentration-dependent manner. This marker antibody system is the precursor to development of expression systems producing recombinant humanized single-chain antibodies. Studies are in progress evaluating fitness, transgene stablility, and pathogenecity of the genetically engineered C. pseudodiptheriticum. We anticipate developing a repertoire of expressed molecules targeting infectious agents and surface epitopes of pulmonary mass lesions. If expression systems for anti-pathogen molecules in C. pseudodiptheriticum and other respiratory commensal bacteria can be optimized, these bacteria have the potential for a range of therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- R K Sundaram
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou ZH, Tzioufas AG, Notkins AL. Properties and function of polyreactive antibodies and polyreactive antigen-binding B cells. J Autoimmun 2007; 29:219-28. [PMID: 17888628 PMCID: PMC2100422 DOI: 10.1016/j.jaut.2007.07.015] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of hybridoma technology has made it possible to study in-depth individual antibody molecules. These studies have revealed a number of surprises that have and are continuing to change our view of the immune system. None of these was more surprising than the demonstration that many antibody molecules are polyreactive - that is they can bind to a variety of different and structurally unrelated self- and non-self-foreign antigens. These findings make it clear that self-reactivity is a common and not necessarily forbidden or pathogenic feature of the immune system and that the well-known broad antibacterial activity of natural antibodies is largely due to polyreactive antibodies. In this brief review we will discuss these insights and their impact on basic and clinical immunology.
Collapse
Affiliation(s)
- Zhao-Hua Zhou
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 30, Room 106, 30 Convent Dr., MSC 4322, Bethesda, MD 20892-4322, USA
| | | | | |
Collapse
|
42
|
Tian Q, Beardall M, Xu Y, Li J, Parker DC, Casanova N, Bakke AC, Chen C. B Cells Expressing a Natural Polyreactive Autoantibody Have a Distinct Phenotype and Are Overrepresented in Immunoglobulin Heavy Chain Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:2412-22. [PMID: 16888003 DOI: 10.4049/jimmunol.177.4.2412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite stringent regulation of disease-associated autoantibodies, a substantial proportion of circulating Abs in sera of healthy individuals exhibit self-reactivity. These Abs are referred to as naturally occurring or natural autoantibodies (NAAs). To understand the origin and function of NAAs, we have generated a new site-directed transgenic mouse model in which a prerearranged VDJ gene coding for the H chain of a typical polyreactive NAA, ppc1-5, is inserted into the IgH locus. This H chain, when combined with its original L chain, the lambda1 L chain, yields a NAA that characteristically binds a variety of self and non-self Ags including ssDNA, actin, ubiquitin, and nitrophenyl phosphocholine. Despite their autoreactivity, B cells expressing ppc1-5H/lambda1 NAA are not negatively selected, but rather are overrepresented in the transgenic mice. The shift toward lambda1 expression mainly occurs during the transition of immature to mature B cells in the spleen, suggesting a BCR selection process. The ppc1-5H/lambda1 B cells exhibit a phenotype that is different from those of the known mature B cell populations, and they are located predominantly in the lymphoid follicles of the spleen and the lymph nodes. These B cells are functionally active, producing high levels of Abs in vivo and responding well to BCR stimulation in vitro. The findings indicate that the ppc1-5/lambda1 natural autoantibodies originate from a distinct B cell subset that may be positively selected by virtue of its poly/autoreactivity.
Collapse
Affiliation(s)
- Qi Tian
- Department of Pathology L113, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Djoumerska I, Tchorbanov A, Pashov A, Vassilev T. The Autoreactivity of Therapeutic Intravenous Immunoglobulin (IVIg) Preparations Depends on the Fractionation Methods Used. Scand J Immunol 2005; 61:357-63. [PMID: 15853919 DOI: 10.1111/j.1365-3083.2005.01568.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural immunoglobulin G (IgG) autoantibodies are present in the plasma of healthy individuals and, as a result, in pooled therapeutic intravenous immunoglobulin (IVIg) preparations. The production processes of commercial IVIg preparations involve different fractionation and virus-inactivation steps that include in some cases treatments at extreme conditions. Different physical and chemical treatments are known to augment greatly the reactivity of natural autoantibodies to self-antigens. It is not clear to what extent the self-reactivity of IVIg preparations is due to the presence of natural IgG antibodies in the plasma pools used for fractionation, and to what extent it is due to the treatments that the IgG molecules have been subjected to during the fractionation process. We compared the binding of seven different commercial IVIg preparations to human liver antigens. All studied IVIg's could be clearly separated into two distinct groups: those that possess significant self-reactivity and those with low binding to self-antigens. Increased self-binding was seen in the preparations produced using a fractionation step at low pH. The treatment of IVIg at low pH resulted in increasing the inhibitory effect of the pooled IgG on PHA-induced proliferation of human peripheral blood mononuclear cells. IVIg's with high and low self-binding may have different immunomodulating activities when infused to autoimmune patients.
Collapse
Affiliation(s)
- I Djoumerska
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | |
Collapse
|
44
|
Djoumerska IK, Tchorbanov AI, Donkova-Petrini VD, Pashov AD, Vassilev TL. Serum IgM, IgG and IgA block by F(ab')-dependent mechanism the binding of natural IgG autoantibodies from therapeutic immunoglobulin preparations to self-antigens. Eur J Haematol 2005; 74:101-10. [PMID: 15654899 DOI: 10.1111/j.1600-0609.2004.00350.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyreactive IgG autoantibodies are present in the plasma of healthy individuals and as a result in pooled therapeutic intravenous immunoglobulin (i.v.Ig) preparations. The spectrum of self-antigens to which these autoantibodies bind, their fate after intravenous infusion and their biological activity are not well understood. The identity of serum proteins that mask binding of natural autoantibodies to self-proteins is a matter of controversy. The spectrum of native serum proteins bound by i.v.Ig was analyzed by two-dimensional electrophoresis. The reactivity of i.v.Ig was directed mainly to circulating immunoglobulins. The binding of the IgG autoantibodies from i.v.Ig to native human liver antigens was blocked not only by a F(ab')2-dependent mechanism by circulating IgM and IgG (as has been previously suggested), but also by serum IgA. This control of anti-self reactivity may be inefficient in some autoimmune diseases.
Collapse
Affiliation(s)
- Iglika K Djoumerska
- Department of Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
45
|
Zhou ZH, Notkins AL. Polyreactive antigen-binding B (PAB-) cells are widely distributed and the PAB population consists of both B-1+ and B-1- phenotypes. Clin Exp Immunol 2004; 137:88-100. [PMID: 15196248 PMCID: PMC1809069 DOI: 10.1111/j.1365-2249.2004.02511.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
B cells that make polyreactive antibodies (PAB+ cells) express polyreactive Ig receptors on their surface and can bind a variety of different antigens. The present study shows that PAB+ cells are widely distributed, are present in varying numbers in different lymphoid organs and that their phenotype varies depending on the organs from which they are isolated. Up to 10 times more cells in PAB+ enriched populations bind antigens as compared to PAB- populations. Comparison of PAB+ with B-1+ cells showed that a high percentage of PAB+ cells are B-1+, but that many PAB+ cells do not express B-1 cell surface markers and, in fact, are B-1-. It is concluded that the B cell population consists of PAB+/B-1+, PAB+/B-1-, PAB-/B-1+, and PAB-/B-1- cells. The presence of PAB+ cells in the thymus points to the possibility that PAB+ cells may carry endogenous host antigens from peripheral tissues to the thymus where they may contribute to immunological tolerance.
Collapse
Affiliation(s)
- Z-H Zhou
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4322, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- Abner Louis Notkins
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD 20892-4322, USA.
| |
Collapse
|
47
|
Affiliation(s)
- William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
48
|
Docagne F, Colloc'h N, Bougueret V, Page M, Paput J, Tripier M, Dutartre P, MacKenzie ET, Buisson A, Komesli S, Vivien D. A soluble transforming growth factor-beta (TGF-beta ) type I receptor mimics TGF-beta responses. J Biol Chem 2001; 276:46243-50. [PMID: 11544249 DOI: 10.1074/jbc.m010915200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) signaling requires a ligand-dependent interaction of TGF-beta receptors Tau beta R-I and Tau beta R-II. It has been previously demonstrated that a soluble TGF-beta type II receptor could be used as a TGF-beta antagonist. Here we have generated and investigated the biochemical and signaling properties of a soluble TGF-beta type I receptor (Tau beta RIs-Fc). As reported for the wild-type receptor, the soluble Tau beta R-I does not bind TGF-beta 1 on its own. Surprisingly, in the absence of TGF-beta1, the Tau beta RIs-Fc mimicked TGF-beta 1-induced transcriptional and growth responses in mink lung epithelial cells (Mv1Lu). Signaling induced by the soluble TGF-beta type I receptor is mediated via the obligatory presence of both TGF-beta type I and type II receptors at the cell surface since no signal was observed in Mv1Lu-derivated mutants for TGF-beta receptors R-1B and DR-26. The comparison between the structures of TGF-betas and a three-dimensional model of the extracellular domain of Tau beta RI has shown that five residues of the supposed binding site of TGF-beta 1 (Lys(31), His(34), Glu(5), Tyr(91), and Lys(94)) were found with equivalent biochemical properties and similar spatial positions.
Collapse
Affiliation(s)
- F Docagne
- Université de Caen, UMR CNRS 6551, Centre Cyceron, IFR 47, Bd H. Becquerel, BP 5229, 14074 Caen Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gaca JG, Lee W, Aksoy O, Braedehoeft SJ, Gonzalez-Stawinski GV, Parker W, Davis RD. Evidence for polyreactive xenoreactive antibodies in the repertoire of human anti-swine antibodies: the 'next' humoral barrier to xenotransplantation? Transpl Immunol 2001; 9:19-27. [PMID: 11680568 DOI: 10.1016/s0966-3274(01)00047-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The xenoreactive nature of anti-Galalpha1-3Gal antibodies, and to a lesser extent, polyreactive antibodies, has been characterized by a number of investigators. With the advent of therapies that avoid hyperacute xenograft rejection due to anti-Galalpha1-3Gal antibodies coupled with the possible development of Galalpha1-3Gal deficient swine, the Galalpha1-3Gal antigen may soon cease to be a barrier to xenotransplantation. With this in mind, the potential xenoreactive nature of polyreactive antibodies was investigated using several approaches. The levels of polyreactive antibodies from the serum of newborn (n = 2) and adult (n = 4) baboons undergoing pulmonary xenotransplantation were evaluated. Depletion of 95% and 94% of total serum IgM, without any decrease in albumin levels, was observed in the newborn baboons. This finding indicates that the IgM present at birth and germ line polyreactive IgM was adsorbed by the xenografts. The depletion of polyreactive antibodies (43-83% reduction of anti-DNP IgM) from adult baboons was also observed following pulmonary xenotransplantation or immunoadsorption therapy plus pulmonary xenotransplantation. Additional experiments using human cord serum indicated that most human polyreactive IgM were adsorbed by pig lung homogenate and that the human polyreactive IgM bound approximately two-fold more to immobilized pig lung antigens than to immobilized human lung antigens. These findings indicate that germline polyreactive antibodies are, for the most part, xenoreactive. These data suggest that polyreactive antibodies, although autoreactive, may be more xenoreactive than autoreactive.
Collapse
Affiliation(s)
- J G Gaca
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang Z, Chen ZJ, Wheeler J, Shen S, Notkins AL. Characterization of murine polyreactive antigen-binding B cells: presentation of antigens to T cells. Eur J Immunol 2001; 31:1106-14. [PMID: 11298335 DOI: 10.1002/1521-4141(200104)31:4<1106::aid-immu1106>3.0.co;2-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monoclonal polyreactive antibodies (Ab) can bind, at low affinity, a variety of different self and non-self antigens (Ag). Recent studies in humans showed that polyreactive Ab are expressed on the surface of a subset of peripheral B lymphocytes and clonal analysis revealed that a variety of different Ag can bind to single cells expressing these Ab. To see if these polyreactive Ag-binding B (PAB) cells also are present in mice, fluorescein-conjugated Ag and FACS sorting were used to identify and separate PAB cells from non-polyreactive Ag-binding B cells. Depending on the Ag used for screening, up to one-third of mouse splenic B cells displayed polyreactive Ag-binding properties. Confirmation that the Ag actually bound to surface Ig came from treating PAB cells with anti-Ig which inhibited Ag binding by up to 80 %. Further studies showed that PAB cells could present Ag to Ag-specific T cells, but despite their Ag-presenting ability, PAB cells from normal mice failed to trigger Ag-specific T cells to proliferate. Analysis of the co-stimulatory molecules B7-1 and B7-2 showed that these molecules were not expressed on PAB cells from normal mice. These findings argue that the lack of co-stimulatory molecules on PAB cells is the most likely explanation for their failure to stimulate Ag-specific T cells. The ability of PAB cells from normal mice to bind and present Ag to Ag-specific T cells, without causing them to proliferate, suggests that PAB cells may contribute to the induction and / or maintenance of immunological tolerance.
Collapse
Affiliation(s)
- Z Wang
- Experimental Medicine Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda 20892-4322, USA
| | | | | | | | | |
Collapse
|