1
|
Farrell L, Bonnet C, Tang A, Peneva S, Williams NG, Dolwani S, Parry L, Dyson P. Organoids with a Type 1 Collagen Scaffold to Model Bacterial Cancer Therapy. Cells 2025; 14:524. [PMID: 40214478 PMCID: PMC11989105 DOI: 10.3390/cells14070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Bacterial cancer therapy (BCT) is emerging as an important option for the treatment of solid tumours, with promising outcomes in preclinical trials. Further progress is hampered by an incomplete understanding of how oncotropic bacteria, such as attenuated strains of Salmonella enterica serovar Typhimurium, colonise tumours and the responses of both the bacteria and tumour cells to this colonisation. To model this, we developed organoids that are permissive for bacterial colonisation, replacing the conventional commercially available extracellular matrix (e.g., Matrigel) with a type I collagen matrix scaffold. A comparison of the two extracellular matrices indicated that type 1 collagen permitted an initial infection efficiency more than 5-times greater than with Matrigel. In addition, subsequent growth within type 1 collagen expanded bacterial cell numbers by over 10-fold within 4 days of infection. These organoids allow for the visualisation of bacterial chemoattraction, cell invasion and subsequent population of the interior lumen, and will permit the future optimisation of BCT. In addition, by establishing patient-derived organoids, we demonstrate a platform for developing future personalised treatments exploiting BCT.
Collapse
Affiliation(s)
- Lydia Farrell
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (L.F.); (C.B.); (A.T.); (S.P.)
| | - Cleo Bonnet
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (L.F.); (C.B.); (A.T.); (S.P.)
| | - Alethea Tang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (L.F.); (C.B.); (A.T.); (S.P.)
| | - Severina Peneva
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (L.F.); (C.B.); (A.T.); (S.P.)
| | - Non G. Williams
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK;
| | - Sunil Dolwani
- School of Medicine, Cardiff University, Cardiff and Vale University Health Board, Cardiff CF14 4XN, UK;
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK;
| | - Paul Dyson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (L.F.); (C.B.); (A.T.); (S.P.)
| |
Collapse
|
2
|
Rodrigues-Junior DM, Tsirigoti C, Psatha K, Kletsas D, Aivaliotis M, Heldin CH, Moustakas A. TGF-β induces cholesterol accumulation to regulate the secretion of tumor-derived extracellular vesicles. J Exp Clin Cancer Res 2025; 44:42. [PMID: 39910665 PMCID: PMC11800471 DOI: 10.1186/s13046-025-03291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Cancer cells are avid extracellular vesicle (EV) producers. EVs transport transforming growth factor-β (TGF-β), which is commonly activated under late stages of cancer progression. Nevertheless, whether TGF-β signaling coordinates EV biogenesis is a relevant topic that remains minimally explored. METHOD We sought after specific TGF-β pathway mediators that could regulate EV release. To this end, we used a large number of cancer cell models, coupled to EV cell biological assays, unbiased proteomic and transcriptomic screens, followed by signaling and cancer biology analyses, including drug resistance assays. RESULTS We report that TGF-β, by activating its type I receptor and MEK-ERK1/2 signaling, increased the numbers of EVs released by human cancer cells. Upon examining cholesterol as a mediator of EV biogenesis, we delineated a pathway whereby ERK1/2 acted by phosphorylating sterol regulatory element-binding protein-2 that transcriptionally induced 7-dehydrocholesterol reductase expression, thus raising cholesterol abundance at both cellular and EV levels. Notably, inhibition of MEK or cholesterol synthesis, which impaired TGF-β-induced EV secretion, sensitized cancer cells to chemotherapeutic drugs. Furthermore, proteomic profiling of two distinct EV populations revealed that EVs secreted by TGF-β-stimulated cells were either depleted or enriched for different sets of cargo proteins. Among these, latent-TGF-β1 present in the EVs was not affected by TGF-β signaling, while TGF-β pathway-related molecules (e.g., matrix metalloproteinases, including MMP9) were either uniquely enriched on EVs or strongly enhanced after TGF-β stimulation. EV-associated latent-TGF-β1 activated SMAD signaling, even when EV uptake was blocked by heparin, indicating competent signaling capacity from target cell surface receptors. MMP inhibitor or proteinase treatment blocked EV-mediated SMAD signaling, suggesting that EVs require MMP activity to release the active TGF-β from its latent complex, a function also linked to the EV-mediated transfer of pro-migratory potential and ability of cancer cells to survive in the presence of cytotoxic drugs. CONCLUSION Hence, we delineated a novel signaling cascade that leads to high rates of EV generation by cancer cells in response to TGF-β, with cholesterol being a key intermediate step in this mechanism.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
- Astra Zeneca, Pepparedsleden 1, Mölndal, SE-431 83, Sweden
| | - Konstantina Psatha
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation & Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos', Athens, GR-153 10, Greece
| | - Michalis Aivaliotis
- Laboratory of Biochemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-751 23, Sweden.
| |
Collapse
|
3
|
Kavishahi NN, Khojini JY, Duruh MK, Babaei B, Sheikhha MH. Association between P53 Gene Mutations and Colorectal Cancer in the Iranian Population: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2025; 54:309-320. [PMID: 40225261 PMCID: PMC11992903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/19/2024] [Indexed: 04/15/2025]
Abstract
Background Colorectal cancer (CRC) is the fourth most common cancer and one of the most significant cancers affecting the Iranian population. This systematic review aimed to investigate the association between mutations in the P53 gene and CRC. Methods We conducted a search of six databases, including; Scopus, PubMed, Web of Science, Cochrane Library, SID, and Magiran up to Aug 10, 2024. Concepts in the search strategy were Iran, P53, and "Colorectal cancer". Original articles written in English or Persian that investigated the association between P53 gene mutations and CRC in the Iranian population were included. Results Out of 313 articles, 17 articles were included in the study. Six case-control studies investigated the association between the codon 72 polymorphism of the P53 gene and colorectal cancer. Three studies found a significant difference in genotype frequencies of this polymorphism between CRC patients and healthy individuals. Exon 6 was shown to be one of the most common mutated exons in colorectal cancer. Mutations in exon 7 were associated with poor prognosis. The most common type of mutation was G to A mutation from exons 5 to 8 CpG sites. Conclusion The present study suggests a potential association between the presence of the Arg allele at codon 72 within the P53 gene and a heightened susceptibility for developing and metastasizing CRC within the Iranian population. Furthermore, exons 5 to 8 of the P53 gene suggests that mutations localized at these sites may portend a poor prognosis.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrazin Khamespanah Duruh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Benjamin Babaei
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hasan Sheikhha
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Branco H, Xavier CPR, Riganti C, Vasconcelos MH. Hypoxia as a critical player in extracellular vesicles-mediated intercellular communication between tumor cells and their surrounding microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189244. [PMID: 39672279 DOI: 10.1016/j.bbcan.2024.189244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
In the past years, increasing attention has been paid to the role of extracellular vesicles (EVs) as mediators of intercellular communication in cancer. These small size particles mediate the intercellular transfer of important bioactive molecules involved in malignant initiation and progression. Hypoxia, or low partial pressure of oxygen, is recognized as a remarkable feature of solid tumors and has been demonstrated to exert a profound impact on tumor prognosis and therapeutic efficacy. Indeed, the high-pitched growth rate and chaotic neovascular architecture that embodies solid tumors results in a profound reduction in oxygen pressure within the tumor microenvironment (TME). In response to oxygen-deprived conditions, tumor cells and their surrounding milieu develop homeostatic adaptation mechanisms that contribute to the establishment of a pro-tumoral phenotype. Latest evidence suggests that the hypoxic microenvironment that surrounds the tumor bulk may be a clincher for the observed elevated levels of circulating EVs in cancer patients. Thus, it is proposed that EVs may play a role in mediating intercellular communication in response to hypoxic conditions. This review focuses on the EVs-mediated crosstalk that is established between tumor cells and their surrounding immune, endothelial, and stromal cell populations, within the hypoxic TME.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal.
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10126 Torino, Italy; Interdepartmental Research Center for Molecular Biotechnology "G. Tarone", University of Torino, 10126 Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
5
|
Kestecher BM, Németh K, Ghosal S, Sayour NV, Gergely TG, Bodnár BR, Försönits AI, Sódar BW, Oesterreicher J, Holnthoner W, Varga ZV, Giricz Z, Ferdinandy P, Buzás EI, Osteikoetxea X. Reduced circulating CD63 + extracellular vesicle levels associate with atherosclerosis in hypercholesterolaemic mice and humans. Cardiovasc Diabetol 2024; 23:368. [PMID: 39420340 PMCID: PMC11487797 DOI: 10.1186/s12933-024-02459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
AIMS The association and co-isolation of low-density lipoproteins (LDL) and extracellular vesicles (EVs) have been shown in blood plasma. Here we explore this relationship to better understand the role of EVs in atherogenesis. METHODS AND RESULTS Wild type (WT), PCSK9-/-, and LDLR-/- C57BL/6 mice were used in this study. Eleven week-old male mice were fed high-fat diet (HFD) for 12 weeks or kept on normal diet until old age (22-months). Cardiac function was assessed by ultrasound, cholesterol was quantified with a colorimetric kit and circulating EVs were measured using flow cytometry. Plaques were analysed post-mortem using Oil-Red-O staining of the aortic arch. EVs were measured from platelet free blood plasma samples of normal and hypercholesterolaemic clinical patients. Based on annexin V and CD63 staining, we found a significant increase in EV levels in LDLR-/- and PCSK9-/- mice after HFD, but CD81 showed no significant change in either group. There was no significant change in plaque formation after HFD. PCSK9-/- mice show a favourable cardiac function after HFD. Blood cholesterol levels progressively increased during HFD, with LDLR-/- mice showing high levels while PCSK9-/- were significantly lowered compared to WT animals. In mice at old age, similar cholesterol levels were observed as in young mice. In old age, LDLR-/- mice showed significantly increased plaques. At old age, ejection fraction was decreased in all groups of mice, as were CD63+ EVs. Similarly to mice, in patients with hypercholesterolaemia, CD63+ EVs were significantly depleted. CONCLUSIONS This research demonstrates an inverse relationship between circulating EVs and cholesterol, making EVs a potential marker for cardiovascular disease (CVD). HFD causes reduced cardiac function, but atherosclerotic development is slowly progressing in hypercholesterolaemic models and only observed with old animals. These results also bring further evidence for the benefit of using of PCSK9 inhibitors as therapeutic agents in CVD.
Collapse
Affiliation(s)
- Brachyahu M Kestecher
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Krisztina Németh
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tamás G Gergely
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bernadett R Bodnár
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - András I Försönits
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Johannes Oesterreicher
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Edit I Buzás
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Xabier Osteikoetxea
- Institute of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary.
| |
Collapse
|
6
|
Smirnova O, Efremov Y, Klyucherev T, Peshkova M, Senkovenko A, Svistunov A, Timashev P. Direct and cell-mediated EV-ECM interplay. Acta Biomater 2024; 186:63-84. [PMID: 39043290 DOI: 10.1016/j.actbio.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.
Collapse
Affiliation(s)
- Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| | - Alexey Senkovenko
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Taniguchi Y, Tamiya A, Osuga M, Harada D, Isa SI, Nakamura K, Mizumori Y, Shinohara T, Yanai H, Nakatomi K, Oki M, Mori M, Kuwako T, Yamazaki K, Tamura A, Ando M, Koh Y. Baseline genetic abnormalities and effectiveness of osimertinib treatment in patients with chemotherapy-naïve EGFR-mutated NSCLC based on performance status. BMC Pulm Med 2024; 24:407. [PMID: 39182046 PMCID: PMC11344331 DOI: 10.1186/s12890-024-03212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND/AIM For patients treated with osimertinib as first-line therapy, there have been no studies comparing both progression-free survival (PFS) and overall survival (OS) according to performance status (PS). Furthermore, no studies have examined differences in baseline genetic abnormalities between patients with poor and good PS. Therefore, we aimed to investigate differences in baseline genetic abnormalities and treatment effects between patients with poor and good PS who received osimertinib as the primary treatment. PATIENTS AND METHODS This is a secondary analysis of the ELUCIDATOR study, which is a multi-center prospective observational study in Japan that assessed mechanisms underlying resistance to osimertinib as first-line treatment for advanced non-small cell lung cancer with epidermal growth factor receptor mutations. RESULTS There were 153 and 25 patients in the good and poor PS groups, respectively. Multivariate analysis revealed no significant between-group differences in PFS (hazards ratio [HR]: 0.98, 95% confidence interval [CI]: 0.52-1.72, p = 0.946). Multivariate analysis of OS revealed that poor PS was a poor prognostic factor (HR: 2.67, 95% CI: 1.43-4.73, p = 0.003). Regarding baseline genetic abnormalities, there was a significant increase in APC-positive cases (20.0% vs. 2.2%, p = 0.009) and a trend toward more CTNNB1-positive cases in the poor PS group than in the good PS group (14.3% vs. 2.9%, p = 0.062). CONCLUSION There was no between-group difference in PFS, although OS was significantly inferior in the poor PS group. Additionally, there was a significant increase in APC-positive cases and a trend toward more CTNNB1-positive cases in the poor PS group.
Collapse
Affiliation(s)
- Yoshihiko Taniguchi
- Department of Internal Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, 591-8555, Osaka, Japan.
| | - Akihiro Tamiya
- Department of Internal Medicine, NHO Kinki Chuo Chest Medical Center, 1180 Nagasone-cho, Kita-ku, Sakai City, 591-8555, Osaka, Japan
| | - Mitsuo Osuga
- Center for Biomedical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Daijiro Harada
- Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Shun-Ichi Isa
- Clinical Research Center, NHO Kinki Chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Keiichi Nakamura
- Department of Respiratory Medicine, NHO Asahikawa Medical Center, Asahikawa, Hokkaido, Japan
| | - Yasuyuki Mizumori
- Department of Respiratory Medicine, NHO Himeji Medical Center, Himeji, Hyogo, Japan
| | - Tsutomu Shinohara
- Department of Respiratory Medicine, NHO Kochi Hospital, Kochi, Japan
| | - Hidetoshi Yanai
- Department of Respiratory Medicine, NHO Mito Medical Center, Ibaraki, Japan
| | - Katsumi Nakatomi
- Department of Respiratory Medicine, NHO Ureshino Medical Center, Ureshino, Saga, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, NHO Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Masahide Mori
- Department of Thoracic Oncology, NHO Osaka Toneyama Medical Center, Toyonaka, Osaka, Japan
| | - Tomohito Kuwako
- Department of Respiratory Medicine, NHO Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, NHO Kyushu Medical Center, Fukuoka, Kyushu, Japan
| | - Atsuhisa Tamura
- Department of Respiratory Medicine, NHO Tokyo National Hospital, Tokyo, Japan
| | - Masahiko Ando
- Department of Advanced Medicine, Nagoya University Hospital, Aichi, Japan
| | - Yasuhiro Koh
- Department of Thoracic Oncology and Medicine, NHO Shikoku Cancer Center, Matsuyama, Ehime, Japan
- Internal Medicine III, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
8
|
Yang H, Niu S, Guo M, Xue Y. Applications of 3D organoids in toxicological studies: a comprehensive analysis based on bibliometrics and advances in toxicological mechanisms. Arch Toxicol 2024; 98:2309-2330. [PMID: 38806717 DOI: 10.1007/s00204-024-03777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
A mechanism exploration is an important part of toxicological studies. However, traditional cell and animal models can no longer meet the current needs for in-depth studies of toxicological mechanisms. The three-dimensional (3D) organoid derived from human embryonic stem cells (hESC) or induced pluripotent stem cells (hiPSC) is an ideal experimental model for the study of toxicological effects and mechanisms, which further recapitulates the human tissue microenvironment and provides a reliable method for studying complex cell-cell interactions. This article provides a comprehensive overview of the state of the 3D organoid technology in toxicological studies, including a bibliometric analysis of the existing literature and an exploration of the latest advances in toxicological mechanisms. The use of 3D organoids in toxicology research is growing rapidly, with applications in disease modeling, organ-on-chips, and drug toxicity screening being emphasized, but academic communications among countries/regions, institutions, and research scholars need to be further strengthened. Attempts to study the toxicological mechanisms of exogenous chemicals such as heavy metals, nanoparticles, drugs and organic pollutants are also increasing. It can be expected that 3D organoids can be better applied to the safety evaluation of exogenous chemicals by establishing a standardized methodology.
Collapse
Affiliation(s)
- Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Park HS, Bang JH, Jung WH, Yang JY, Shin HJ, Son JH, Han JW, Lee SH, Chung KH, Kim K, Chang HS, Park TK. Development of Non-Invasive miRNA Markers for Assessing the Quality of Human Induced Pluripotent Stem Cell-Derived Retinal Organoids. Int J Mol Sci 2024; 25:8011. [PMID: 39125582 PMCID: PMC11312389 DOI: 10.3390/ijms25158011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into 'superior' and 'inferior' groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods.
Collapse
Affiliation(s)
- Hyo Song Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Ji-Hong Bang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
| | - Wook Hyun Jung
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Jin Young Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Hee Jeong Shin
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Ji-Hye Son
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Jung Woo Han
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Si Hyung Lee
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
| | - Kyung Hwun Chung
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| | - Kyunggon Kim
- Department of Digital Medicine, Brain Korea 21 plus, College of Medicine, University of Ulsan and Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea;
| | - Tae Kwann Park
- Divisions of Ophthalmology, Soonchunhyang University Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon 14584, Republic of Korea; (H.S.P.); (W.H.J.); (J.W.H.); (S.H.L.)
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea; (J.-H.B.); (H.J.S.)
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 31538, Republic of Korea; (J.Y.Y.); (K.H.C.)
| |
Collapse
|
10
|
Gonçalves PP, da Silva CL, Bernardes N. Advancing cancer therapeutics: Integrating scalable 3D cancer models, extracellular vesicles, and omics for enhanced therapy efficacy. Adv Cancer Res 2024; 163:137-185. [PMID: 39271262 DOI: 10.1016/bs.acr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cancer remains as one of the highest challenges to human health. However, anticancer drugs exhibit one of the highest attrition rates compared to other therapeutic interventions. In part, this can be attributed to a prevalent use of in vitro models with limited recapitulative potential of the in vivo settings. Three dimensional (3D) models, such as tumor spheroids and organoids, offer many research opportunities to address the urgent need in developing models capable to more accurately mimic cancer biology and drug resistance profiles. However, their wide adoption in high-throughput pre-clinical studies is dependent on scalable manufacturing to support large-scale therapeutic drug screenings and multi-omic approaches for their comprehensive cellular and molecular characterization. Extracellular vesicles (EVs), which have been emerging as promising drug delivery systems (DDS), stand to significantly benefit from such screenings conducted in realistic cancer models. Furthermore, the integration of these nanomedicines with 3D cancer models and omics profiling holds the potential to deepen our understanding of EV-mediated anticancer effects. In this chapter, we provide an overview of the existing 3D models used in cancer research, namely spheroids and organoids, the innovations in their scalable production and discuss how omics can facilitate the implementation of these models at different stages of drug testing. We also explore how EVs can advance drug delivery in cancer therapies and how the synergy between 3D cancer models and omics approaches can benefit in this process.
Collapse
Affiliation(s)
- Pedro P Gonçalves
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Bernardes
- Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
11
|
Kwak S, Song CL, Lee J, Kim S, Nam S, Park YJ, Lee J. Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials 2024; 307:122522. [PMID: 38428092 DOI: 10.1016/j.biomaterials.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.
Collapse
Affiliation(s)
- Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho Lok Song
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Young-Jun Park
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
12
|
Huang Y, Liu H, Liu B, Chen X, Li D, Xue J, Li N, Zhu L, Yang L, Xiao J, Liu C. Quantified pathway mutations associate epithelial-mesenchymal transition and immune escape with poor prognosis and immunotherapy resistance of head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:49. [PMID: 38331768 PMCID: PMC10854145 DOI: 10.1186/s12920-024-01818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Pathway mutations have been calculated to predict the poor prognosis and immunotherapy resistance in head and neck squamous cell carcinoma (HNSCC). To uncover the unique markers predicting prognosis and immune therapy response, the accurate quantification of pathway mutations are required to evaluate epithelial-mesenchymal transition (EMT) and immune escape. Yet, there is a lack of score to accurately quantify pathway mutations. MATERIAL AND METHODS Firstly, we proposed Individualized Weighted Hallmark Gene Set Mutation Burden (IWHMB, https://github.com/YuHongHuang-lab/IWHMB ) which integrated pathway structure information and eliminated the interference of global Tumor Mutation Burden to accurately quantify pathway mutations. Subsequently, to further elucidate the association of IWHMB with EMT and immune escape, support vector machine regression model was used to identify IWHMB-related transcriptomic features (IRG), while Adversarially Regularized Graph Autoencoder (ARVGA) was used to further resolve IRG network features. Finally, Random walk with restart algorithm was used to identify biomarkers for predicting ICI response. RESULTS We quantified the HNSCC pathway mutation signatures and identified pathway mutation subtypes using IWHMB. The IWHMB-related transcriptomic features (IRG) identified by support vector machine regression were divided into 5 communities by ARVGA, among which the Community 1 enriching malignant mesenchymal components promoted EMT dynamically and regulated immune patterns associated with ICI responses. Bridge Hub Gene (BHG) identified by random walk with restart was key to IWHMB in EMT and immune escape, thus, more predictive for ICI response than other 70 public signatures. CONCLUSION In summary, the novel pathway mutation scoring-IWHMB suggested that the elevated malignancy mediated by pathway mutations is a major cause of poor prognosis and immunotherapy failure in HNSCC, and is capable of identifying novel biomarkers to predict immunotherapy response.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Bo Liu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, China
| | - Xiaoyan Chen
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Danya Li
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Junyuan Xue
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Nan Li
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lei Zhu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Liu Yang
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China
| | - Jing Xiao
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
| | - Chao Liu
- Department of Oral Pathology, Dalian Medical University School of Stomatology, Dalian, China.
- Academician Laboratory of Immunology and Oral Development & Regeneration, Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Liu W, Wang Q, Bai Y, Xiao H, Li Z, Wang Y, Wang Q, Yang J, Sun H. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev Rep 2024; 20:124-137. [PMID: 37938407 DOI: 10.1007/s12015-023-10651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.
Collapse
Affiliation(s)
- Wenxiu Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Qian Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhunduo Li
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Qi Wang
- Lanzhou Huazhitiancheng Biotechnologies Co., Ltd, Lanzhou, 730000, Gansu, China.
| | - Jing Yang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
14
|
Li J, Liu J, Xia W, Yang H, Sha W, Chen H. Deciphering the Tumor Microenvironment of Colorectal Cancer and Guiding Clinical Treatment With Patient-Derived Organoid Technology: Progress and Challenges. Technol Cancer Res Treat 2024; 23:15330338231221856. [PMID: 38225190 PMCID: PMC10793199 DOI: 10.1177/15330338231221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors of the digestive tract worldwide. Despite notable advancements in CRC treatment, there is an urgent requirement for preclinical model systems capable of accurately predicting drug efficacy in CRC patients, to identify more effective therapeutic options. In recent years, substantial strides have been made in the field of organoid technology, patient-derived organoid models can phenotypically replicate the original intra-tumor and inter-tumor heterogeneity of CRC, reflecting cellular interactions of the tumor microenvironment. Patient-derived organoid models have become an indispensable tool for investigating the pathogenesis of CRC and facilitating translational research. This review focuses on the application of organoid technology in CRC modeling, tumor microenvironment, and guiding clinical treatment, particularly in drug screening and personalized medicine. It also examines the existing challenges encountered in clinical organoid research and provides a prospective outlook on the future development directions of clinical organoid research, encompassing the standardization of organoid culture technology and the application of tissue engineering technology.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wuzheng Xia
- Department of Organ Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongwei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Liu H, Su J. Organoid extracellular vesicle-based therapeutic strategies for bone therapy. BIOMATERIALS TRANSLATIONAL 2023; 4:199-212. [PMID: 38282702 PMCID: PMC10817793 DOI: 10.12336/biomatertransl.2023.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024]
Abstract
With the rapid development of population ageing, bone-related diseases seriously affecting the life of the elderly. Over the past few years, organoids, cell clusters with specific functions and structures that are self-induced from stem cells after three-dimensional culture in vitro, have been widely used for bone therapy. Moreover, organoid extracellular vesicles (OEVs) have emerging as promising cell-free nanocarriers due to their vigoroso physiological effects, significant biological functions, stable loading capacity, and great biocompatibility. In this review, we first provide a comprehensive overview of biogenesis, internalisation, isolation, and characterisation of OEVs. We then comprehensively highlight the differences between OEVs and traditional EVs. Subsequently, we present the applications of natural OEVs in disease treatment. We also summarise the engineering modifications of OEVs, including engineering parental cells and engineering OEVs after isolation. Moreover, we provide an outlook on the potential of natural and engineered OEVs in bone-related diseases. Finally, we critically discuss the advantages and challenges of OEVs in the treatment of bone diseases. We believe that a comprehensive discussion of OEVs will provide more innovative and efficient solutions for complex bone diseases.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Benke M, Zeöld A, Kittel Á, Khamari D, Hritz I, Horváth M, Keczer B, Borka K, Szücs Á, Wiener Z. MiR-200b categorizes patients into pancreas cystic lesion subgroups with different malignant potential. Sci Rep 2023; 13:19820. [PMID: 37963969 PMCID: PMC10646105 DOI: 10.1038/s41598-023-47129-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Extracellular vesicles (EV) carry their cargo in a membrane protected form, however, their value in early diagnostics is not well known. Although pancreatic cysts are heterogeneous, they can be clustered into the larger groups of pseudocysts (PC), and serous and mucinous pancreatic cystic neoplasms (S-PCN and M-PCN, respectively). In contrast to PCs and S-PCNs, M-PCNs may progress to malignant pancreatic cancers. Since current diagnostic tools do not meet the criteria of high sensitivity and specificity, novel methods are urgently needed to differentiate M-PCNs from other cysts. We show that cyst fluid is a rich source of EVs that are positive and negative for the EV markers CD63 and CD81, respectively. Whereas we found no difference in the EV number when comparing M-PCN with other pancreatic cysts, our EV-based biomarker identification showed that EVs from M-PCNs had a higher level of miR-200b. We also prove that not only EV-derived, but also total cyst fluid miR-200b discriminates patients with M-PCN from other pancreatic cysts with a higher sensitivity and specificity compared to other diagnostic methods, providing the possibility for clinical applications. Our results show that measuring miR-200b in cyst fluid-derived EVs or from cyst fluid may be clinically important in categorizing patients.
Collapse
Affiliation(s)
- Márton Benke
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Anikó Zeöld
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, and HUN-REN-SU Translational Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary
| | - István Hritz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Miklós Horváth
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Bánk Keczer
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ákos Szücs
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary.
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
17
|
Lucchetti D, Colella F, Artemi G, Haque S, Sgambato A, Pellicano R, Fagoonee S. Smart nano-sized extracellular vesicles for cancer therapy: Potential theranostic applications in gastrointestinal tumors. Crit Rev Oncol Hematol 2023; 191:104121. [PMID: 37690633 DOI: 10.1016/j.critrevonc.2023.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/27/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Extracellular vesicles (EVs) have gained tremendous interest in the search for next-generation therapeutics for the treatment of a range of pathologies, including cancer, especially due to their small size, biomolecular cargo, ability to mediate intercellular communication, high physicochemical stability, low immunogenicity and biocompatibility. The theranostic potential of EVs have been enhanced by adopting several strategies such as genetic or metabolic engineering, parental cell modification or direct functionalization to incorporate therapeutic compounds into these nanoplatforms. The smart nano-sized EVs indeed offer huge opportunities in the field of cancer, and current research is set at overcoming the existing pitfalls. Smart EVs are already being applied in the clinics despite the challenges faced. We provide, herein, an update on the technologies employed for EV functionalization in order to achieve optimal tumor cell targeting and EV tracking in vivo with bio-imaging modalities, as well as the preclinical and clinical studies making use of these modified EVs, in the context of gastrointestinal tumors.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filomena Colella
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy
| | - Giulia Artemi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab Emirates
| | - Alessandro Sgambato
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCCS, Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Rinaldo Pellicano
- Gastroenterology Unit, Città della salute e della Scienza Hospital, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| |
Collapse
|
18
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
19
|
Zhang Y, Lu A, Zhuang Z, Zhang S, Liu S, Chen H, Yang X, Wang Z. Can Organoid Model Reveal a Key Role of Extracellular Vesicles in Tumors? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5511-5527. [PMID: 37791321 PMCID: PMC10544113 DOI: 10.2147/ijn.s424737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles that are released by cells into the extracellular environment. The role of EVs in tumors has been extensively studied, and they have been shown to play a crucial role in tumor growth, progression, and metastasis. Past research has mainly used 2D-cultured cell line models to investigate the role of EVs in tumors, which poorly simulate the tumor microenvironment. Organoid technology has gradually matured in recent years. Organoids are similar in composition and behavior to physiological cells and have the potential to recapitulate the architecture and function of the original tissue. It has been widely used in organogenesis, drug screening, gene editing, precision medicine and other fields. The integration of EVs and organoids has the potential to revolutionize the field of cancer research and represents a promising avenue for advancing our understanding of cancer biology and the development of novel therapeutic strategies. Here, we aimed to present a comprehensive overview of studies using organoids to study EVs in tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Anqing Lu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Central Transportation, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zixuan Zhuang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Sicheng Liu
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Haining Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuyang Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ziqiang Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
20
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
21
|
Soós AÁ, Kelemen A, Orosz A, Szvicsek Z, Tölgyes T, Dede K, Bursics A, Wiener Z. High CD142 Level Marks Tumor-Promoting Fibroblasts with Targeting Potential in Colorectal Cancer. Int J Mol Sci 2023; 24:11585. [PMID: 37511344 PMCID: PMC10381019 DOI: 10.3390/ijms241411585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal cancer (CRC) has a high incidence and is one of the leading causes of cancer-related death. The accumulation of cancer-associated fibroblasts (CAF) induces an aggressive, stem-like phenotype in tumor cells, and it indicates a poor prognosis. However, cellular heterogeneity among CAFs and the targeting of both stromal and CRC cells are not yet well resolved. Here, we identified CD142high fibroblasts with a higher stimulating effect on CRC cell proliferation via secreting more hepatocyte growth factor (HGF) compared to CD142low CAFs. We also found that combinations of inhibitors that had either a promising effect in other cancer types or are more active in CRC compared to normal colonic epithelium acted synergistically in CRC cells. Importantly, heat shock protein 90 (HSP90) inhibitor selected against CD142high fibroblasts, and both CRC cells and CAFs were sensitive to a BCL-xL inhibitor. However, targeting mitogen-activated protein kinase kinase (MEK) was ineffective in fibroblasts, and an epigenetic inhibitor selected for a tumor cell population with markers of aggressive behavior. Thus, we suggest BCL-xL and HSP90 inhibitors to eliminate cancer cells and decrease the tumor-promoting CD142high CAF population. This may be the basis of a strategy to target both CRC cells and stromal fibroblasts, resulting in the inhibition of tumor relapse.
Collapse
Affiliation(s)
- András Áron Soós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Andrea Kelemen
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Adrián Orosz
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Zsuzsanna Szvicsek
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| | - Tamás Tölgyes
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Kristóf Dede
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Attila Bursics
- Uzsoki Teaching Hospital, H-1145 Budapest, Hungary; (T.T.); (K.D.); (A.B.)
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Hungary; (A.Á.S.); (A.K.); (A.O.); (Z.S.)
| |
Collapse
|
22
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
23
|
Li B, Zhang G, Xu X. APC mutation correlated with poor response of immunotherapy in colon cancer. BMC Gastroenterol 2023; 23:95. [PMID: 36977982 PMCID: PMC10053134 DOI: 10.1186/s12876-023-02725-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE APC (adenomatous polyposis coli) gene mutation is a central initialization in colon cancer tumorigenesis. However, the connection between APC gene mutation and immunotherapy efficacy for colon cancer remains unknown. This study aimed to explore the impact of APC mutation on immunotherapy efficacy for colon cancer. METHODS Colon cancer data from The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC) were used for the combined analysis. Survival analysis was performed to evaluate the association between APC mutation and immunotherapy efficacy in colon cancer patients. The expressions of immune check point molecules, tumor mutation burden (TMB), CpG methylation level, tumor purity (TP), microsatellite instability (MSI) status and tumor-infiltrating lymphocyte (TIL) in the two APC status were compared to evaluate the associations between APC mutation and immunotherapy efficacy indicators. Gene set enrichment analysis (GSEA) was performed to identify signaling pathways related to APC mutation. RESULTS APC was the most frequently mutated gene in colon cancer. The survival analysis demonstrated that APC mutation was correlated with a worse immunotherapy outcome. APC mutation was associated with lower TMB, lower expression of immune check point molecules (PD-1/PD-L1/PD-L2), higher TP, lower MSI-High proportion and less CD8 + T cells and follicular helper T cells infiltration. GSEA indicated that APC mutation up-regulated mismatch repair pathway, which may play a negative role in evoking an antitumor immune response. CONCLUSION APC mutation is associated with worse immunotherapy outcome and inhibition of antitumor immunity. It can be used as a negative biomarker to predict immunotherapy response.
Collapse
Affiliation(s)
- Bing Li
- Department of Medical Oncology, The Affiliated Hospital of Putian University, No. 999 Dongzhen Road, Licheng District, Putian, Fujian, 351100, China
| | - Guoliang Zhang
- Department of Thyroid Surgery, The Affiliated Hospital of Putian University, Fujian, 351100, China
| | - Xuejie Xu
- Department of Medical Oncology, The Affiliated Hospital of Putian University, No. 999 Dongzhen Road, Licheng District, Putian, Fujian, 351100, China.
| |
Collapse
|
24
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
25
|
Nikonorova VG, Chrishtop VV, Mironov VA, Prilepskii AY. Advantages and Potential Benefits of Using Organoids in Nanotoxicology. Cells 2023; 12:cells12040610. [PMID: 36831277 PMCID: PMC9954166 DOI: 10.3390/cells12040610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Organoids are microtissues that recapitulate the complex structural organization and functions of tissues and organs. Nanoparticles have several specific properties that must be considered when replacing animal models with in vitro studies, such as the formation of a protein corona, accumulation, ability to overcome tissue barriers, and different severities of toxic effects in different cell types. An increase in the number of articles on toxicology research using organoid models is related to an increase in publications on organoids in general but is not related to toxicology-based publications. We demonstrate how the quantitative assessment of toxic changes in the structure of organoids and the state of their cell collections provide more valuable results for toxicological research and provide examples of research methods. The impact of the tested materials on organoids and their differences are also discussed. In conclusion, we highlight the main challenges, the solution of which will allow researchers to approach the replacement of in vivo research with in vitro research: biobanking and standardization of the structural characterization of organoids, and the development of effective screening imaging techniques for 3D organoid cell organization.
Collapse
|
26
|
Arjmand B, Rabbani Z, Soveyzi F, Tayanloo-Beik A, Rezaei-Tavirani M, Biglar M, Adibi H, Larijani B. Advancement of Organoid Technology in Regenerative Medicine. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023; 9:83-96. [PMID: 35968268 PMCID: PMC9360642 DOI: 10.1007/s40883-022-00271-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022]
Abstract
Purpose Organoids are three-dimensional cultures of stem cells in an environment similar to the body's extracellular matrix. This is also a novel development in the realm of regenerative medicine. Stem cells can begin to develop into 3D structures by modifying signaling pathways. To form organoids, stem cells are transplanted into the extracellular matrix. Organoids have provided the required technologies to reproduce human tissues. As a result, it might be used in place of animal models in scientific study. The key goals of these investigations are research into viral and genetic illnesses, malignancies, and extracellular vesicles, pharmaceutical discovery, and organ transplantation. Organoids can help pave the road for precision medicine through genetic editing, pharmaceutical development, and cell therapy. Methods PubMed, Google Scholar, and Scopus were used to search for all relevant papers written in English (1907-2021). The study abstracts were scrutinized. Studies on the use of stem-cell-derived organoids in regenerative medicine, organoids as 3D culture models for EVs analysis, and organoids for precision medicine were included. Articles with other irrelevant aims, meetings, letters, commentaries, congress and conference abstracts, and articles with no available full texts were excluded. Results According to the included studies, organoids have various origins, types, and applications in regenerative and precision medicine, as well as an important role in studying extracellular vesicles. Conclusion Organoids are considered a bridge that connects preclinical studies to clinical ones. However, the lack of a standardized protocol and other barriers addressed in this review, hinder the vast use of this technology. Lay Summary Organoids are 3D stem cell propagations in biological or synthetic scaffolds that mimic ECM to allow intercellular or matrix-cellular crosstalk. Because these structures are similar to organs in the body, they can be used as research models. Organoids are medicine's future hope for organ transplantation, tumor biobank formation, and the development of precision medicine. Organoid models can be used to study cell-to-cell interactions as well as effective factors like inflammation and aging. Bioengineering technologies are also used to define the size, shape, and composition of organoids before transforming them into precise structures. Finally, the importance of organoid applications in regenerative medicine has opened a new window for a better understanding of biological research, as discussed in this study.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rabbani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Soveyzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Kuhn M, Zhang Y, Favate J, Morita M, Blucher A, Das S, Liang S, Preet R, Parham LR, Williams KN, Molugu S, Armstrong RJ, Zhang W, Yang J, Hamilton KE, Dixon DA, Mills G, Morgan TK, Shah P, Andres SF. IMP1/IGF2BP1 in human colorectal cancer extracellular vesicles. Am J Physiol Gastrointest Liver Physiol 2022; 323:G571-G585. [PMID: 36194131 PMCID: PMC9678429 DOI: 10.1152/ajpgi.00121.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.
Collapse
Affiliation(s)
- Madeline Kuhn
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Yang Zhang
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Mayu Morita
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Aurora Blucher
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sukanya Das
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Shun Liang
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Louis R Parham
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathy N Williams
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sudheer Molugu
- Electron Microscopy Resource Lab, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Randall J Armstrong
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Wei Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiegang Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Gordon Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Terry K Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sarah F Andres
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
28
|
Focus on organoids: cooperation and interconnection with extracellular vesicles - Is this the future of in vitro modeling? Semin Cancer Biol 2022; 86:367-381. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023]
Abstract
Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.
Collapse
|
29
|
Glass SE, Coffey RJ. Recent Advances in the Study of Extracellular Vesicles in Colorectal Cancer. Gastroenterology 2022; 163:1188-1197. [PMID: 35724732 PMCID: PMC9613516 DOI: 10.1053/j.gastro.2022.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022]
Abstract
There has been significant progress in the study of extracellular vesicles (EVs) since the 2017 American Gastroenterological Association-sponsored Freston Conference "Extracellular Vesicles: Biology, Translation and Clinical Application in GI Disorders." The burgeoning interest in this field stems from the increasing recognition that EVs represent an understudied form of cell-to-cell communication and contain cargo replete with biomarkers and therapeutic targets. This short review will highlight recent advances in the field, with an emphasis on colorectal cancer. After a brief introduction to secreted particles, we will describe how our laboratory became interested in EVs, which led to refined methods of isolation and identification of 2 secreted nanoparticles. We will then summarize the cargo found in small EVs released from colorectal cancer cells and other cells in the tumor microenvironment, as well as those found in the circulation of patients with colorectal cancer. Finally, we will consider the continuing challenges and future opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Sarah E Glass
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
30
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
31
|
Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022; 11:54. [PMID: 36109501 PMCID: PMC9477829 DOI: 10.1038/s41389-022-00431-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExosomes belong to a subpopulation of extracellular vesicles secreted by the dynamic multistep endocytosis process and carry diverse functional molecular cargoes, including proteins, lipids, nucleic acids (DNA, messenger and noncoding RNA), and metabolites to promote intercellular communication. Proteins and noncoding RNA are among the most abundant contents in exosomes; they have biological functions and are selectively packaged into exosomes. Exosomes derived from tumor, stromal and immune cells contribute to the multiple stages of cancer progression as well as resistance to therapy. In this review, we will discuss the biogenesis of exosomes and their roles in cancer development. Since specific contents within exosomes originate from their cells of origin, this property allows exosomes to function as valuable biomarkers. We will also discuss the potential use of exosomes as diagnostic and prognostic biomarkers or predictors for different therapeutic strategies for multiple cancers. Furthermore, the applications of exosomes as direct therapeutic targets or engineered vehicles for drugs are an important field of exosome study. Better understanding of exosome biology may pave the way to promising exosome-based clinical applications.
Collapse
|
32
|
Hattori K, Goda Y, Yamashita M, Yoshioka Y, Kojima R, Ota S. Droplet Array-Based Platform for Parallel Optical Analysis of Dynamic Extracellular Vesicle Secretion from Single Cells. Anal Chem 2022; 94:11209-11215. [PMID: 35797226 DOI: 10.1021/acs.analchem.2c01609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are essential intercellular communication tools, but the regulatory mechanisms governing heterogeneous EV secretion are still unclear due to the lack of methods for precise analysis. Monitoring the dynamics of secretion from individually isolated cells is crucial because in bulk analysis, secretion activity can be perturbed by cell-cell interactions, and a cell population rarely performs secretion in a magnitude- or duration-synchronized manner. Although various microfluidic techniques have been adopted to evaluate the abundance of single-cell-derived EVs, none can track their secretion dynamics continually for extended periods. Here, we have developed a droplet array-based method that allowed us to optically quantify the EV secretion dynamics of >300 single cells every 2 h for 36 h, which covers the cell doubling time of many cell types. The experimental results clearly show the highly heterogeneous nature of single-cell EV secretion and suggest that cell division facilitates EV secretion, showing the usefulness of this platform for discovering EV regulation machinery.
Collapse
Affiliation(s)
- Kazuki Hattori
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yuki Goda
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Minato Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| |
Collapse
|
33
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
34
|
CD44 Expression Intensity Marks Colorectal Cancer Cell Subpopulations with Different Extracellular Vesicle Release Capacity. Int J Mol Sci 2022; 23:ijms23042180. [PMID: 35216292 PMCID: PMC8879498 DOI: 10.3390/ijms23042180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EV) are released by virtually all cells and they transport biologically important molecules from the release site to target cells. Colorectal cancer (CRC) is a leading cause of cancer-related death cases, thus, it represents a major health issue. Although the EV cargo may reflect the molecular composition of the releasing cells and thus, EVs may hold a great promise for tumor diagnostics, the impact of intratumoral heterogeneity on the intensity of EV release is still largely unknown. By using CRC patient-derived organoids that maintain the cellular and molecular heterogeneity of the original epithelial tumor tissue, we proved that CD44high cells produce more organoids with a higher proliferation intensity, as compared to CD44low cells. Interestingly, we detected an increased EV release by CD44high CRC cells. In addition, we found that the miRNA cargos of CD44high and CD44low cell derived EVs largely overlapped and only four miRNAs were specific for one of the above subpopulations. We observed that EVs released by CD44high cells induced the proliferation and activation of colon fibroblasts more strongly than CD44low cells. However, this effect was due to the higher EV number rather than to the miRNA cargo of EVs. Collectively, we identified CRC subpopulations with different EV releasing capabilities and we proved that CRC cell-released EVs have a miRNA-independent effect on fibroblast proliferation and activation.
Collapse
|
35
|
Wang J, Feng X, Li Z, Chen Y, Huang W. Patient-derived organoids as a model for tumor research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:259-326. [PMID: 35595351 DOI: 10.1016/bs.pmbts.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer represents a leading cause of death, despite the rapid progress of cancer research, leading to urgent need for accurate preclinical model to further study of tumor mechanism and accelerate translational applications. Cancer cell lines cannot fully recapitulate tumors of different patients due to the lack of tumor complexity and specification, while the high technical difficulty, long time, and substantial cost of patient-derived xenograft model makes it unable to be used extensively for all types of tumors and large-scale drug screening. Patient-derived organoids can be established rapidly with a high success rate from many tumors, and precisely replicate the key histopathological, genetic, and phenotypic features, as well as therapeutic response of patient tumor. Therefore, they are extensively used in cancer basic research, biobanking, disease modeling and precision medicine. The combinations of cancer organoids with other advanced technologies, such as 3D bio-printing, organ-on-a-chip, and CRISPR-Cas9, contributes to the more complete replication of complex tumor microenvironment and tumorigenesis. In this review, we discuss the various methods of the establishment and the application of patient-derived organoids in diverse tumors as well as the limitations and future prospects of these models. Further advances of tumor organoids are expected to bridge the huge gap between bench and bedside and provide the unprecedented opportunities to advance cancer research.
Collapse
Affiliation(s)
- Jia Wang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Xiaoying Feng
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Zhichao Li
- Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China
| | - Yongsong Chen
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China
| | - Weiren Huang
- The First Affiliated Hospital of Shantou University, Shantou University Medical College, Shantou, China; Department of Urology, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China; International Cancer Center of Shenzhen University, Shenzhen, China; Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
36
|
Khalyfa AA, Punatar S, Aslam R, Yarbrough A. Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases 2021; 9:79. [PMID: 34842660 PMCID: PMC8628792 DOI: 10.3390/diseases9040079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed cancers worldwide. Traditionally, mechanisms of colorectal cancer formation have focused on genetic alterations including chromosomal damage and microsatellite instability. In recent years, there has been a growing body of evidence supporting the role of inflammation in colorectal cancer formation. Multiple cytokines, immune cells such T cells and macrophages, and other immune mediators have been identified in pathways leading to the initiation, growth, and metastasis of colorectal cancer. Outside the previously explored mechanisms and pathways leading to colorectal cancer, initiatives have been shifted to further study the role of inflammation in pathogenesis. Inflammatory pathways have also been linked to some traditional risk factors of colorectal cancer such as obesity, smoking and diabetes, as well as more novel associations such as the gut microbiome, the gut mycobiome and exosomes. In this review, we will explore the roles of obesity and diet, smoking, diabetes, the microbiome, the mycobiome and exosomes in colorectal cancer, with a specific focus on the underlying inflammatory and metabolic pathways involved. We will also investigate how the study of colon cancer from an inflammatory background not only creates a more holistic and inclusive understanding of this disease, but also creates unique opportunities for prevention, early diagnosis and therapy.
Collapse
Affiliation(s)
- Ahamed A Khalyfa
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA; (S.P.); (R.A.)
| | | | | | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health, Olympia Fields, IL 60461, USA; (S.P.); (R.A.)
| |
Collapse
|
37
|
Kelemen A, Carmi I, Oszvald Á, Lőrincz P, Petővári G, Tölgyes T, Dede K, Bursics A, Buzás EI, Wiener Z. IFITM1 expression determines extracellular vesicle uptake in colorectal cancer. Cell Mol Life Sci 2021; 78:7009-7024. [PMID: 34609520 PMCID: PMC8558170 DOI: 10.1007/s00018-021-03949-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The majority of colorectal cancer (CRC) patients carry mutations in the APC gene, which lead to the unregulated activation of the Wnt pathway. Extracellular vesicles (EV) are considered potential therapeutic tools. Although CRC is a genetically heterogeneous disease, the significance of the intra-tumor heterogeneity in EV uptake of CRC cells is not yet known. By using mouse and patient-derived organoids, the currently available best model of capturing cellular heterogeneity, we found that Apc mutation induced the expression of interferon-induced transmembrane protein 1 (Ifitm1), a membrane protein that plays a major role in cellular antiviral responses. Importantly, organoids derived from IFITM1high CRC cells contained more proliferating cells and they had a markedly reduced uptake of fibroblast EVs as compared to IFITM1low/- cells. In contrast, there was no difference in the intensity of EV release between CRC subpopulations with high and low IFITM1 levels. Importantly, the difference in cell proliferation between these two subpopulations disappeared in the presence of fibroblast-derived EVs, proving the functional relevance of the enhanced EV uptake by IFITM1low CRC cells. Furthermore, inactivating IFITM1 resulted in an enhanced EV uptake, highlighting the importance of this molecule in establishing the cellular difference for EV effects. Collectively, we identified CRC cells with functional difference in their EV uptake ability that must be taken into consideration when using EVs as therapeutic tools for targeting cancer cells.
Collapse
Affiliation(s)
- Andrea Kelemen
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Idan Carmi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Budapest, Hungary.,Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,ELKH-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary.,HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
38
|
da Costa VR, Araldi RP, Vigerelli H, D’Ámelio F, Mendes TB, Gonzaga V, Policíquio B, Colozza-Gama GA, Valverde CW, Kerkis I. Exosomes in the Tumor Microenvironment: From Biology to Clinical Applications. Cells 2021; 10:2617. [PMID: 34685596 PMCID: PMC8533895 DOI: 10.3390/cells10102617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.
Collapse
Affiliation(s)
- Vitor Rodrigues da Costa
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Rodrigo Pinheiro Araldi
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Hugo Vigerelli
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Fernanda D’Ámelio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
| | - Thais Biude Mendes
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Vivian Gonzaga
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Bruna Policíquio
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| | - Gabriel Avelar Colozza-Gama
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Irina Kerkis
- Programa de Pós-Graduação em Biologia Estrutural e Funcional, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFES), São Paulo 04039-032, Brazil; (V.R.d.C.); (T.B.M.); (G.A.C.-G.)
- Genetics Laboratory, Instituto Butantan, São Paulo 05508-010, Brazil; (H.V.); (F.D.); (V.G.); (B.P.)
- Cellavita Pesquisas Científicas Ltd.a., Valinhos 13271-650, Brazil;
| |
Collapse
|
39
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
40
|
Ren Z, Lv M, Yu Q, Bao J, Lou K, Li X. MicroRNA-370-3p shuttled by breast cancer cell-derived extracellular vesicles induces fibroblast activation through the CYLD/Nf-κB axis to promote breast cancer progression. FASEB J 2021; 35:e21383. [PMID: 33629796 DOI: 10.1096/fj.202001430rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Breast cancer is a malignancy arising in the mammary epithelial tissues. Recent studies have indicated the abundance of microRNAs (miRNAs) in extracellular vesicles (EVs), and their interactions have been illustrated to exert crucial roles in the cell-to-cell communication. The present study focused on investigating whether EV-delivered miR-370-3p affects breast cancer. Initially, the miR-370-3p expression pattern was examined in the cancer-associated fibroblasts (CAFs), normal fibroblasts (NFs), and cancerous cells-derived EVs. The relation of miR-370-3p to CYLD was assessed using luciferase activity assay. Afterwards, based on ectopic expression and depletion experiments in the MCF-7 breast cancer cells, we evaluated stemness, migration, invasion, and sphere formation ability, and EMT, accompanied with measurement on the expression patterns of pro-inflammatory factors and nuclear factor-kappa B (NF-κB) signaling-related genes. Finally, tumorigenesis and proliferation were analyzed in vivo using a nude mouse xenograft model. The in vitro experiments revealed that breast cancer cell-derived EVs promoted NF activation, while activated fibroblasts contributed to enhanced stemness, migration, invasion, as well as EMT of cancerous cells. In addition, EVs could transfer miR-370-3p from breast cancer cells to NFs, and EV-encapsulated miR-370-3p was also found to facilitate fibroblast activation. Mechanistically, EV-encapsulated miR-370-3p downregulated the expression of CYLD through binding to its 3'UTR and activated the NF-κB signaling pathway, thereby promoting the cellular functions in vitro and in vivo in breast cancer. Taken together, EVs secreted by breast cancer cells could carry miR-370-3p to aggravate breast cancer through downregulating CYLD expression and activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhaojun Ren
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jun Bao
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kexin Lou
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiujuan Li
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research &, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
41
|
Bahrami A, Moradi Binabaj M, A Ferns G. Exosomes: Emerging modulators of signal transduction in colorectal cancer from molecular understanding to clinical application. Biomed Pharmacother 2021; 141:111882. [PMID: 34218003 DOI: 10.1016/j.biopha.2021.111882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes are small cell derived membrane nano-vesicles that carry various components including lipids, proteins and nucleic acids. There is accumulating evidence that exosomes have a role in tumorigenesis, tumor invasiveness and metastasis. Furthermore, oncogene mutation may influence exosome release from tumor cells. Exosomes may induce colorectal cancer by altering signaling cascades such as the Wnt/β-catenin and KRAS pathways that are involved in cell proliferation, apoptosis, dissemination, angiogenesis, and drug resistance. The aim of this review was to overview recent findings evaluating the association between tumor cells-derived exosomes and their content in modulating signaling pathways in colorectal cancer.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
42
|
Sándor GO, Soós AÁ, Lörincz P, Rojkó L, Harkó T, Bogyó L, Tölgyes T, Bursics A, Buzás EI, Moldvay J, Wiener Z. Wnt Activity and Cell Proliferation Are Coupled to Extracellular Vesicle Release in Multiple Organoid Models. Front Cell Dev Biol 2021; 9:670825. [PMID: 34249925 PMCID: PMC8264557 DOI: 10.3389/fcell.2021.670825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EV) are considered as a potential tool for early disease diagnosis; however, factors modifying EV release remain partially unknown. By using patient-derived organoids that capture the cellular heterogeneity of epithelial tissues, here we studied the connection between the Wnt-producing microniche and EV secretion in multiple tissues. Although nearly all cells in pancreatic ductal (PD) and pancreatic ductal adenocarcinoma (PDAC) samples expressed porcupine (PORCN), an enzyme critical for Wnt secretion, only a subpopulation of lung bronchiolar (NL) and lung adenocarcinoma (LUAD) organoid cells produced active Wnt. The microniche for proliferating cells was shaped not only by PORCN + cells in NL and LUAD organoids but also by fibroblast-derived EVs. This effect could be blocked by using Wnt secretion inhibitors. Whereas inhibiting Wnt secretion in PD NL or LUAD organoids critically changed both cell proliferation and EV release, these were uncoupled from each other in PDAC. Sorting for CD133 identified a cell population in the LUAD microniche that produced organoids with a high percentage of PORCN + and proliferating cells and an elevated EV secretion, which may explain that CD133 marks LUAD cells with malignant behavior. Collectively, we show here that high cell proliferation rate, induced by Wnt pathway activation, is coupled to a higher EV release, a critical finding that may be considered when developing EV-based diagnostic tools.
Collapse
Affiliation(s)
| | - András Áron Soós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Péter Lörincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University of Sciences, Budapest, Hungary.,Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lívia Rojkó
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Tünde Harkó
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Levente Bogyó
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,Department of Thoracic Surgery, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Tamás Tölgyes
- Department of General Surgery and Surgical Oncology, Uzsoki Hospital, Budapest, Hungary
| | - Attila Bursics
- Department of General Surgery and Surgical Oncology, Uzsoki Hospital, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.,ELKH-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, Budapest, Hungary.,HCEMM-SE Extracellular Vesicle Research Group, Budapest, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary.,SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zoltán Wiener
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Surman M, Kędracka-Krok S, Jankowska U, Drożdż A, Stępień E, Przybyło M. Proteomic Profiling of Ectosomes Derived from Paired Urothelial Bladder Cancer and Normal Cells Reveals the Presence of Biologically-Relevant Molecules. Int J Mol Sci 2021; 22:ijms22136816. [PMID: 34202855 PMCID: PMC8268130 DOI: 10.3390/ijms22136816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Protein content of extracellular vesicles (EVs) can modulate different processes during carcinogenesis. Novel proteomic strategies have been applied several times to profile proteins present in exosomes released by urothelial bladder cancer (UBC) cells. However, similar studies have not been conducted so far on another population of EVs, i.e., ectosomes. In the present study we used a shotgun nanoLC-MS/MS proteomic approach to investigate the protein content of ectosomes released in vitro by T-24 UBC cells and HCV-29 normal ureter epithelial cells. In addition, cancer-promoting effects exerted by UBC-derived ectosomes on non-invasive cells in terms of cell proliferation and migratory properties were assessed. In total, 1158 proteins were identified in T-24-derived ectosomes, while HCV-29-derived ectosomes contained a lower number of 259 identified proteins. Qualitative analysis revealed 938 proteins present uniquely in T-24-derived ectosomes, suggesting their potential applications in bladder cancer management as diagnostic and prognostic biomarkers. In addition, T-24-derived ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. The present study provided a focused identification of biologically relevant proteins in UBC-derived ectosomes, confirming their role in UBC development and progression, and their applicability for further biomarker-oriented studies in preclinical or clinical settings.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Anna Drożdż
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348 Kraków, Poland; (A.D.); (E.S.)
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348 Kraków, Poland; (A.D.); (E.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-664-6462
| |
Collapse
|
44
|
Organoids and Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13112657. [PMID: 34071313 PMCID: PMC8197877 DOI: 10.3390/cancers13112657] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids were first established as a three-dimensional cell culture system from mouse small intestine. Subsequent development has made organoids a key system to study many human physiological and pathological processes that affect a variety of tissues and organs. In particular, organoids are becoming very useful tools to dissect colorectal cancer (CRC) by allowing the circumvention of classical problems and limitations, such as the impossibility of long-term culture of normal intestinal epithelial cells and the lack of good animal models for CRC. In this review, we describe the features and current knowledge of intestinal organoids and how they are largely contributing to our better understanding of intestinal cell biology and CRC genetics. Moreover, recent data show that organoids are appropriate systems for antitumoral drug testing and for the personalized treatment of CRC patients.
Collapse
|
45
|
Tatischeff I. Current Search through Liquid Biopsy of Effective Biomarkers for Early Cancer Diagnosis into the Rich Cargoes of Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22115674. [PMID: 34073560 PMCID: PMC8199101 DOI: 10.3390/ijms22115674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
There exist many different human cancers, but regardless of the cancer type, an early diagnosis is a necessary condition for further optimal outcomes from the disease. Therefore, efficient specific and sensitive cancer biomarkers are urgently needed. This is especially true for the cancers depicting a silent progression, and those only diagnosed in an already metastatic state with a poor survival prognostic. After a rapid overview of the previous methods for cancer diagnosis, the outstanding characteristics of extracellular vesicles (EVs) will be presented, as new interesting candidates for early cancer diagnosis in human biofluid non-invasive liquid biopsy. The present review aims to give the state-of-the-art of the numerous searches of efficient EV-mediated cancer diagnosis. The corresponding literature quest was performed by means of an original approach, using a powerful Expernova Questel big data platform, which was specifically adapted for a literature search on EVs. The chosen collected scientific papers are presented in two parts, the first one drawing up a picture of the current general status of EV-mediated cancer diagnosis and the second one showing recent applications of such EV-mediated diagnosis for six important human-specific cancers, i.e., lung, breast, prostate, colorectal, ovary and pancreatic cancers. However, the promising perspective of finally succeeding in the worldwide quest for the much-needed early cancer diagnosis has to be moderated by the many remaining challenges left to solve before achieving the efficient clinical translation of the constantly increasing scientific knowledge.
Collapse
Affiliation(s)
- Irène Tatischeff
- Honorary CNRS and UPMC Research Director, Founder of RevInterCell, a Scientific Consulting Service, 91400 Orsay, France
| |
Collapse
|
46
|
Handa T, Kuroha M, Nagai H, Shimoyama Y, Naito T, Moroi R, Kanazawa Y, Shiga H, Kakuta Y, Kinouchi Y, Masamune A. Liquid Biopsy for Colorectal Adenoma: Is the Exosomal miRNA Derived From Organoid a Potential Diagnostic Biomarker? Clin Transl Gastroenterol 2021; 12:e00356. [PMID: 33979310 PMCID: PMC8116025 DOI: 10.14309/ctg.0000000000000356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/05/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) can serve as tumor biomarkers; however, their role in evaluating colorectal adenoma (CRA) is unclear. Recently, the organoid culture system enabled long-term expansion of human colon epithelium. This study aimed to examine the potential of exosomal miRNAs extracted from CRA organoids as biomarkers in the clinical liquid biopsy CRA test. METHODS We established organoid cultures from normal colon and CRA using resected specimens. Exosomes were isolated from the conditioned medium organoids. MiRNAs were isolated from the exosomes, and their expression profiles were compared using microarray analysis. To identify miRNA candidates for liquid biopsy, we prospectively compared changes in their expression in serum and exosomes before and after endoscopic resection in 26 patients with CRA. RESULTS Seven exosomal miRNAs were overexpressed in CRA organoids: miR-4323, miR-4284, miR-1268a, miR-1290, miR-6766-3p, miR-21-5p, and miR-1246. The expression levels of 4 exosomal miRNAs (miR-4323, miR-4284, miR-1290, and miR-1246) and 2 serum miRNAs (miR-1290 and miR-1246) were significantly lower in posttreatment sera. The combined expression of 4 exosomal miRNAs could identify both CRA and large-size (>12.6 cm2) CRA with respective areas under the curve of 0.698 (95% confidence interval [CI] = 0.536-0.823) and 0.834 (95% CI = 0.660-0.929). Combinations of 2-serum miRNA expression values could identify both CRA and large-size CRA with respective area under the curves of 0.691 (95% CI = 0.528-0.817) and 0.834 (95% CI = 0.628-0.938). DISCUSSION We found that exosomal miRNAs derived from the CRA organoid culture could be potential diagnostic biomarkers for CRA.
Collapse
Affiliation(s)
- Tomoyuki Handa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masatake Kuroha
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Nagai
- Department of Gastroenterology, Shirakawa Kosei General Hospital, Fukushima, Japan
| | - Yusuke Shimoyama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Naito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rintaro Moroi
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitake Kanazawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisashi Shiga
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Kinouchi
- Health Administration Center, Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
47
|
Visualizing Extracellular Vesicles and Their Function in 3D Tumor Microenvironment Models. Int J Mol Sci 2021; 22:ijms22094784. [PMID: 33946403 PMCID: PMC8125158 DOI: 10.3390/ijms22094784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.
Collapse
|
48
|
Kitano Y, Aoki K, Ohka F, Yamazaki S, Motomura K, Tanahashi K, Hirano M, Naganawa T, Iida M, Shiraki Y, Nishikawa T, Shimizu H, Yamaguchi J, Maeda S, Suzuki H, Wakabayashi T, Baba Y, Yasui T, Natsume A. Urinary MicroRNA-Based Diagnostic Model for Central Nervous System Tumors Using Nanowire Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17316-17329. [PMID: 33793202 DOI: 10.1021/acsami.1c01754] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There are no accurate mass screening methods for early detection of central nervous system (CNS) tumors. Recently, liquid biopsy has received a lot of attention for less-invasive cancer screening. Unlike other cancers, CNS tumors require efforts to find biomarkers due to the blood-brain barrier, which restricts molecular exchange between the parenchyma and blood. Additionally, because a satisfactory way to collect urinary biomarkers is lacking, urine-based liquid biopsy has not been fully investigated despite the fact that it has some advantages compared to blood or cerebrospinal fluid-based biopsy. Here, we have developed a mass-producible and sterilizable nanowire-based device that can extract urinary microRNAs efficiently. Urinary microRNAs from patients with CNS tumors (n = 119) and noncancer individuals (n = 100) were analyzed using a microarray to yield comprehensive microRNA expression profiles. To clarify the origin of urinary microRNAs of patients with CNS tumors, glioblastoma organoids were generated. Glioblastoma organoid-derived differentially expressed microRNAs (DEMs) included 73.4% of the DEMs in urine of patients with parental tumors but included only 3.9% of those in urine of noncancer individuals, which suggested that many CNS tumor-derived microRNAs could be identified in urine directly. We constructed the diagnostic model based on the expression of the selected microRNAs and found that it was able to differentiate patients and noncancer individuals at a sensitivity and specificity of 100 and 97%, respectively, in an independent dataset. Our findings demonstrate that urinary microRNAs extracted with the nanowire device offer a well-fitted strategy for mass screening of CNS tumors.
Collapse
Affiliation(s)
- Yotaro Kitano
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Neurosurgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kosuke Aoki
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shintaro Yamazaki
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kuniaki Tanahashi
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masaki Hirano
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Naganawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tomohide Nishikawa
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroyuki Shimizu
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Natsume
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
49
|
Auger C, Christou N, Brunel A, Perraud A, Verdier M. Autophagy and Extracellular Vesicles in Colorectal Cancer: Interactions and Common Actors? Cancers (Basel) 2021; 13:cancers13051039. [PMID: 33801266 PMCID: PMC7958126 DOI: 10.3390/cancers13051039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic process involved in the degradation of disabled proteins and organelles using lysosomes. This mechanism requires the recruitment of specialized proteins for vesicle trafficking, that may also be involved in other types of machinery such as the biogenesis and secretion of extracellular vesicles (EVs), and particularly small EVs called exosomes. Among these proteins, Rab-GTPases may operate in both pathways, thus representing an interesting avenue for further study regarding the interaction between autophagy and extracellular vesicle machinery. Both mechanisms are involved in the development of colorectal cancer (CRC), particularly in cancer stem cell (CSC) survival and communication, although they are not specific to CRC or CSCs. This highlights the importance of studying the crosstalk between autophagy and EVs biogenesis and release.
Collapse
Affiliation(s)
- Clément Auger
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| | - Niki Christou
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
- Endocrine, General and Digestive Surgery Department, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges CEDEX, France
- Correspondence: ; Tel.: +33-36-8456-9392
| | - Aude Brunel
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| | - Aurélie Perraud
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
- Endocrine, General and Digestive Surgery Department, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges CEDEX, France
| | - Mireille Verdier
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| |
Collapse
|
50
|
AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med 2021; 11:e308. [PMID: 33635003 PMCID: PMC7868082 DOI: 10.1002/ctm2.308] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinomas are complex heterocellular systems containing epithelial cancer cells, stromal fibroblasts, and multiple immune cell-types. Cell-cell communication between these tumor microenvironments (TME) and cells drives cancer progression and influences response to existing therapies. In order to provide better treatments for patients, we must understand how various cell-types collaborate within the TME to drive cancer and consider the multiple signals present between and within different cancer types. To investigate how tissues function, we need a model to measure both how signals are transferred between cells and how that information is processed within cells. The interplay of collaboration between different cell-types requires cell-cell communication. This article aims to review the current in vitro and in vivo mono-cellular and multi-cellular cultures models of colorectal cancer (CRC), and to explore how they can be used for single-cell multi-omics approaches for isolating multiple types of molecules from a single-cell required for cell-cell communication to distinguish cancer cells from normal cells. Integrating the existing single-cell signaling measurements and models, and through understanding the cell identity and how different cell types communicate, will help predict drug sensitivities in tumor cells and between- and within-patients responses.
Collapse
Affiliation(s)
- Shaikha AlMusawi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| | - Mehreen Ahmed
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
- Department of Laboratory Medicine, Division of Translational Cancer ResearchLund UniversityLundSweden
| | - Abdolrahman S. Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Division of Cancer & Stem Cells, School of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|