1
|
Peng FJ, Lin CA, Wada R, Bodinier B, Iglesias-González A, Palazzi P, Streel S, Guillaume M, Vuckovic D, Chadeau-Hyam M, Appenzeller BMR. Association of hair polychlorinated biphenyls and multiclass pesticides with obesity, diabetes, hypertension and dyslipidemia in NESCAV study. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132637. [PMID: 37788552 DOI: 10.1016/j.jhazmat.2023.132637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Obesity, diabetes, hypertension and dyslipidemia are well-established risk factors for cardiovascular diseases (CVDs), and have been associated with exposure to persistent organic pollutants. However, studies have been lacking as regards effects of non-persistent pesticides on CVD risk factors. Here, we investigated whether background chronic exposure to polychlorinated biphenyls (PCBs) and multiclass pesticides were associated with the prevalence of these CVD risk factors in 502 Belgian and 487 Luxembourgish adults aged 18-69 years from the Nutrition, environment and cardiovascular health (NESCAV) study 2007-2013. We used hair analysis to evaluate the chronic internal exposure to three PCBs, seven organochlorine pesticides (OCs) and 18 non-persistent pesticides. We found positive associations of obesity with hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH) and chlorpyrifos, diabetes with pentachlorophenol (PCP), fipronil and fipronil sulfone, hypertension with PCB180 and chlorpyrifos, and dyslipidemia with diflufenican and oxadiazon, among others. However, we also found some inverse associations, such as obesity with PCP, diabetes with γ-HCH, hypertension with diflufenican, and dyslipidemia with chlorpyrifos. These results add to the existing evidence that OC exposure may contribute to the development of CVDs. Additionally, the present study revealed associations between CVD risk factors and chronic environmental exposure to currently used pesticides such as organophosphorus and pyrethroid pesticides.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Chia-An Lin
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rin Wada
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Sylvie Streel
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Michèle Guillaume
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Dragana Vuckovic
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc Chadeau-Hyam
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| |
Collapse
|
2
|
Gao X, Yan D, Li G, Wei Y, He H, Zhai J. Polychlorinated biphenyls and risk of metabolic syndrome and comparison with the risk of diabetes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165773. [PMID: 37506918 DOI: 10.1016/j.scitotenv.2023.165773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
With the increasing incidence of metabolic syndrome (MetS) worldwide and no consistent results on PCBs and MetS. A meta-analysis to explore their relationship was conducted. Given the high correlation and overlap of MetS with diabetes, analysis of diabetes risk, was used as a supplement to compare with MetS. Seven studies included MetS, 15 studies for diabetes, and one study included both outcomes. It was found that PCBs may not be a risk factor for MetS, but their high heterogeneity indicates that they are under-represented. In addition, our results showed that total PCBs might be a protective factor against diabetes. In the whole blood subgroup, which can reflect the accumulation of more than one body load, heterogeneity was reduced, and its OR value suggested that PCBs increased the risk of MetS in the whole blood biomaterial. DL-PCBs were positively associated with MetS and diabetes, while NDL-PCBs were negatively associated with diabetes. In the subgroup analysis of PCBs homologs, DL-PCB-126 and DL-PCB-118 were risk factors for MetS and diabetes, respectively. In addition, PCB-153 and 180 showed a dose-response relationship between them and diabetes mellitus, respectively. The results of total analysis of MetS and diabetes mellitus and subgroup analysis of PCBs were mixed, and this reason might be attributed to the different mechanisms of action and effect sizes of different PCBs, so based on subgroup results and in vivo and in vitro experiments, we considered PCBs to be a risk factor for MetS and diabetes. Due to various reasons, there are still many shortcomings in the evaluation of PCBs impact on human health, and more high-quality research are needed to further explore the role of PCBs of different species and congeners in MetS and diabetes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China.
| |
Collapse
|
3
|
Li P, Xu Y, Li Z, Cheng X, Jia C, Zhang S, An J, Zhang X, Yan Y, He M. Association between polychlorinated biphenyls exposure and incident type 2 diabetes mellitus: A nested case-control study. ENVIRONMENTAL RESEARCH 2023; 228:115743. [PMID: 37001846 DOI: 10.1016/j.envres.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Previous epidemiological studies indicated that the association between polychlorinated biphenyls (PCB) and type 2 diabetes mellitus (T2DM) was inconclusive. OBJECTIVE We investigated the association between PCBs exposure and incident T2DM in a nested case-control study, and further explored the relationship between PCBs and 5-year fasting blood glucose (FBG) changes. METHODS Baseline concentrations of seven indicator-PCB (PCB-28, 52, 101, 118, 138, 153, 180) were measured in 1006 pairs of incident T2DM cases and matched controls nested within the Dongfeng-Tongji cohort. Conditional logistic regression models and pre-adjusted residuals method were used to assess the associations between PCBs and incident T2DM. We further computed beta coefficients (βs) of 5-year FBG changes using multivariable generalized linear regression. RESULTS Non-dioxin-like PCBs (NDL-PCBs) were significantly associated with higher T2DM incidence after adjustment for all covariates. Significant differences were observed for extreme quartiles comparisons (Q4 vs. Q1) of PCBs except PCB-138, and the incidence of T2DM were 1- to 3-fold higher among those in the highest versus lowest PCBs quartiles. Serum NDL-PCBs were positively associated with changes in FBG (P for overall association ≤0.01). Additionally, triglycerides mediated the associations between PCBs and T2DM incidence. CONCLUSION Our findings showed positive associations of NDL-PCBs with incident T2DM and 5-year FBG changes. PCBs increased incident T2DM via lipid metabolic pathways.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Lee S, Lim Y, Kang Y, Jung K, Jee S. The Association between Blood Concentrations of PCDD/DFs, DL-PCBs and the Risk of Type 2 Diabetes Mellitus and Thyroid Cancer in South Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148745. [PMID: 35886598 PMCID: PMC9320419 DOI: 10.3390/ijerph19148745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Epidemiological studies have inconsistently shown an association between dioxin and risk of type 2 diabetes mellitus (T2DM) and cancer. This study aims to examine the effects of blood concentration of dioxin-like polychlorinated biphenyls (DL-PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DFs) on T2DM and thyroid cancer. Methods: We conducted a nested case–control study within the Korean cancer prevention study-II (KCPS-II) consisting of 15 thyroid cancer cases, 30 T2DM cases, and 55 controls. A total of 500 samples were used in 100 pooling samples. An average value of a pooled sample was calculated weighted by the blood volume of each sample. Results: The study population included 100 participants from the KCPS-II (median (IQR) baseline age, 54.06 [21.04] years; 48 women). The toxic equivalents of PCDD/DFs showed a significant positive association with T2DM and thyroid cancer, after adjustments for potential confounders (T2DM ORs = 1.23; 95% CI = 1.05–1.43; thyroid cancer ORs = 1.34; 95% CI = 1.12–1.61). Conclusion: In this study, both T2DM and thyroid cancer were associated with the blood concentrations of PCDD/DFs. The association between PCDD/DFs and T2D was found among women but not among men. Our findings suggest that further biochemical in vivo research and epidemiologic studies are needed to clarify the association between dioxins concentrations and diseases.
Collapse
Affiliation(s)
- SuHyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Korea
| | - YoungWook Lim
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - YounSeok Kang
- Environment Testing Division, Eurofins Korea Ltd., Gunpo 15849, Korea;
| | - KeumJi Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Correspondence:
| | - SunHa Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul 03722, Korea; (S.L.); (S.J.)
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. FRONTIERS IN TOXICOLOGY 2022; 3:685840. [PMID: 35295132 PMCID: PMC8915902 DOI: 10.3389/ftox.2021.685840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The potential for persistent organic pollutants (POPs), including dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs), to increase the risk of incident diabetes in adults has been extensively studied. However, there is substantial variability in the reported associations both between and within studies. Emerging data from rodent studies suggest that dioxin disrupts glucose homeostasis in a sex-specific manner. Thus, we performed a review and meta-analysis of relevant epidemiological studies to investigate sex differences in associations between dioxin or DL-PCB exposure and type 2 diabetes incidence. Articles that met our selection criteria (n = 81) were organized into the following subcategories: data stratified by sex (n = 13), unstratified data (n = 45), and data from only 1 sex (n = 13 male, n = 10 female). We also considered whether exposure occurred either abruptly at high concentrations through a contamination event (“disaster exposure”) or chronically at low concentrations (“non-disaster exposure”). There were 8 studies that compared associations between dioxin/DL-PCB exposure and diabetes risk in males versus females within the same population. When all sex-stratified or single-sex studies were considered in the meta-analysis (n = 18), the summary relative risk (RR) for incident diabetes among those exposed relative to reference populations was 1.78 (95% CI = 1.37–2.31) and 1.95 (95% CI = 1.56–2.43) for female and males, respectively. However, when we restricted the meta-analysis to disaster-exposed populations, the RR was higher in females than males (2.86 versus 1.59, respectively). In contrast, in non-disaster exposed populations the RR for females was lower than males (1.40 and 2.02, respectively). Our meta-analysis suggests that there are sex differences in the associations between dioxin/DL-PCBs exposure and incident diabetes, and that the mode of exposure modifies these differences.
Collapse
Affiliation(s)
- Noa Gang
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Heather MacDonald
- Health and Biosciences Librarian, MacOdrum Library, Carleton University, Ottawa, ON, Canada
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Jennifer E. Bruin,
| |
Collapse
|
8
|
Ramalingam S, Narayanan R, Muthusamy S, Veronika M, Sankaran R, Toscano W. Persistent organic pollutants-environmental risk factors for diabetes mellitus? - A population-based study. Indian J Occup Environ Med 2021; 25:157-162. [PMID: 34759603 PMCID: PMC8559882 DOI: 10.4103/ijoem.ijoem_337_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/16/2020] [Accepted: 07/03/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Globally, type-2 diabetes mellitus is increasing in epidemic proportions. A major cause of concern in India is the increasing incidence of cases, especially troubling is the observed increase in younger age groups with no risk factors. New evidence suggests that many environmental factors, such as air pollution, persistent organic pollutants (POPs), and environmental estrogens are implicated as risk factors for type-2 diabetes mellitus. Animal and human epidemiological studies have shown ubiquitous lipophilic substances, including POPs, are frequently associated with type-2 diabetes mellitus. Such studies have not been undertaken in Indian youth. METHODS This is a cross-sectional study that explored the association between POPs and type-2 diabetes mellitus in Indian urban and rural population. About 7 ml of venous blood was collected from all consenting patients and serum was separated immediately and was transported to the lab for further analysis. Serum levels of POPs, including organochlorine (OC) compounds and organophosphorus pesticides, were estimated using sample gas chromatography-mass spectrometry (GC-MS). The fasting blood sugar values and the serum levels of POPS were tested using Pearson correlation coefficient. The magnitude of increase in blood sugar corresponding to increase in POPs was analyzed using linear regression analysis. The odds ratios (ORs) were expressed at 95% confidence intervals (CIs). RESULTS Three OC pesticides and one organophosphate pesticide were strongly associated with increasing blood sugar levels after adjusting for age, sex, and body mass index - lindane (OR 4.95, 95% CI 1.03-23.73), DDT o, p' (OR 3.50, 95% CI 1.04-11.73), dimethoate (OR 19.31, 95% CI 4.22-88.37), and dichlorvas (OR 6.33, 95% CI 1.28-31.18).
Collapse
Affiliation(s)
- Sudha Ramalingam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
- Department of Community Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - Ramanujam Narayanan
- Department of Pharmacology, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - Sivaselvakumar Muthusamy
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - Merlin Veronika
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - Ramalingam Sankaran
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
- Department of Pharmacology, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India
| | - William Toscano
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Tyagi S, Siddarth M, Mishra BK, Banerjee BD, Urfi AJ, Madhu SV. High levels of organochlorine pesticides in drinking water as a risk factor for type 2 diabetes: A study in north India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116287. [PMID: 33388674 DOI: 10.1016/j.envpol.2020.116287] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Organochlorine pesticides (OCPs) are well known synthetic pesticides widely used in agricultural practices and public health program. Higher toxicity, slow degradation, and bioaccumulation are the significant challenges of OCPs. Due to its uses in agricultural and public health, contamination of drinking water and water table also increases day by day. Contaminated drinking water has become a significant issue and alarming signal for public health globally. The purpose of this study was to assess the recent trend of organochlorine pesticides (OCPs) level in drinking water and blood samples of the North Indian population and also to find out its association with glucose intolerance, lipid metabolism, and insulin resistance, which are known risk factors of type 2 diabetes mellitus (T2DM). A case-control study was conducted on 130 Non-Glucose intolerance (NGT), 130 pre-diabetes and 130 recently diagnosed T2DM subjects of the age group of 30-70 years. Patients consuming drinking water from the same source for at least ten years were included in this study for blood and water samples collection. Significantly higher levels of α-HCH, β-HCH, γ-HCH, p,p'-DDE, and o,p'-DDT were found in groundwater samples. However, in tap water samples, the level of α-HCH was found to be slightly higher than the permissible limit of 0.001. Among all recruited subjects consuming contaminated groundwater, 42% had T2DM, 38% pre-diabetes, and the remaining 20% were found normal. We also observed that OCP contamination in groundwater is higher than tap and filter water. The levels of β-HCH, p,p'-DDE, and o,p'-DDT were higher in the pre-diabetes and T2DM group than the NGT group. With an increase of OCPs level in groundwater, the blood OCPs level tends to increase T2DM risk. It depicts that the elevated OCPs level in consumed groundwater may contribute to increased risk for the development of T2DM after a certain period of exposure.
Collapse
Affiliation(s)
- Shipra Tyagi
- Department of Environmental Studies, University of Delhi, North Campus, Delhi, 110007, India
| | - Manushi Siddarth
- Multidisciplinary Research Unit and Central Research Laboratory, Department of Biochemistry, UCMS (University of Delhi), Dilshad Garden, Delhi, 110095, India
| | - Brijesh Kumar Mishra
- Department of Endocrinology, UCMS (University of Delhi), Dilshad Garden, Delhi, 110095, India
| | - Basu Dev Banerjee
- Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, UCMS (University of Delhi), Dilshad Garden, Delhi, 110095, India.
| | - Abdul Jamil Urfi
- Department of Environmental Studies, University of Delhi, North Campus, Delhi, 110007, India
| | - Sri Venkata Madhu
- Department of Endocrinology, UCMS (University of Delhi), Dilshad Garden, Delhi, 110095, India
| |
Collapse
|
10
|
Gupta S, Mishra BK, Banerjee BD, Jhamb R, Aslam M, Madhu SV. Effect of postprandial triglycerides on DDT/ppDDE levels in subjects with varying degree of glucose intolerance. Eur J Pharm Sci 2021; 157:105635. [PMID: 33160045 DOI: 10.1016/j.ejps.2020.105635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Organochlorine pesticides such as DDT as well as postprandial hypertriglyceridemia have been linked with insulin resistance and diabetes mellitus. The cardiometabolic risk of PPhTg could also be due to its potential to increase the serum levels of this highly lipophilic pesticide. We studied the effect of postprandial triglyceride responses to a standard oral fat challenge on the levels of DDT and its metabolites in subjects with varying degree of glucose intolerance METHODS: A standard fat challenge was performed in 60 subjects who were categorized as NGT, prediabetes, and NDDM based on an earlier OGTT. Fasting and postprandial levels of serum triglycerides, plasma DDT and its metabolites were estimated and compared in the 3 groups and their association with each other, and measures of glycemia and insulin resistance were also determined. RESULTS Peak Tg and TgAUC levels were significantly higher in NDDM group as compared to NGT and PD groups. TgAUC showed positive correlation with fasting plasma glucose (r=0.33, p=0.01), postprandial plasma glucose (r=0.39, p=0.002) and HOMA IR(r=0.63, p=0.001). ppDDE levels were found to be significantly higher in NDDM subjects compared with NGT group. ppDDE-AUC was significantly higher in the NDDM group compared with the other two study groups. Mean ppDDE levels also showed strong positive correlation with peak Tg (r=0.295 p=0.022), TgAUC (r=0.303 p=0.018), iPPTgAUC(r=0.57 p≤0.001) and iPPpeakTg(r=0.51 p≤0.001) as well as with FPG (r=0.269 p=0.038) PPPG (r=0.424 p=0.001) and HbA1c (r=0.321 p=0.012). CONCLUSION The findings of this study support the concept that the cardiometabolic risk associated with PPhTg may at least in part be related to the associated increase in serum levels of lipophilic OCPs like DDT.
Collapse
Affiliation(s)
- S Gupta
- Department of Medicine, University College of Medical Sciences & GTB Hospital, University of Delhi.
| | - B K Mishra
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi.
| | - B D Banerjee
- Department of Biochemistry, University College of Medical Sciences & GTB Hospital, University of Delhi..
| | - R Jhamb
- Department of Medicine, University College of Medical Sciences & GTB Hospital, University of Delhi
| | - M Aslam
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi.
| | - S V Madhu
- Department of Endocrinology, University College of Medical Sciences & GTB Hospital, University of Delhi.
| |
Collapse
|
11
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
12
|
Zhang J, Powell CA, Kay MK, Park MH, Meruvu S, Sonkar R, Choudhury M. A moderate physiological dose of benzyl butyl phthalate exacerbates the high fat diet-induced diabesity in male mice. Toxicol Res (Camb) 2020; 9:353-370. [PMID: 32905190 DOI: 10.1093/toxres/tfaa037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022] Open
Abstract
Exposure to endocrine disrupting chemicals (EDCs) used in plastic manufacturing processes may be contributing to the current increase in metabolic disorders. Here, we determined that benzyl butyl phthalate (BBP), a common EDC and food packaging plasticizer, mixed into chow diet (CD) and high fat diets (HFD) at varying concentrations (4 μg/kg body weight (bw)/day, 169 μg/kg bw/day, 3 mg/kg bw/day, 50 mg/kg bw/day) produced a number of detrimental and sex-specific metabolic effects in C57BL/6 male and female mice after 16 weeks. Male mice exposed to moderate (3 mg/kg bw/day) concentrations of BBP in an HFD were especially affected, with significant increases in body weight due to significant increases in weight of liver and adipose tissue. Other doses did not show any significant changes when compared to only CD or HFD alone. HFD in the presence of 3 mg/kg bw/day BBP showed significant increases in fasting blood glucose, glucose intolerance, and insulin intolerance when compared to HFD alone. Furthermore, this group significantly alters transcriptional regulators involved in hepatic lipid synthesis and its downstream pathway. Interestingly, most of the BBP doses had no phenotypic effect when mixed with CD and compared to CD alone. The female mice did not show a similar response as the male population even though they consumed a similar amount of food. Overall, these data establish a dose which can be used for a BBP-induced metabolic research model and suggest that a moderate dosage level of EDC exposure can contribute to widely ranging metabolic effects.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Matthew K Kay
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Min Hi Park
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Sunitha Meruvu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Ravi Sonkar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, 312 REYN, MS 1114, College Station, TX 77843, USA
| |
Collapse
|
13
|
Singh VK, Sarkar SK, Saxena A, Koner BC. Effect of Subtoxic DDT Exposure on Glucose Uptake and Insulin Signaling in Rat L6 Myoblast-Derived Myotubes. Int J Toxicol 2019; 38:303-311. [DOI: 10.1177/1091581819850577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to persistent organic pollutants including dichlorodiphenyltrichloroethane (DDT) induces insulin resistance. But the mechanism is not clearly known. The present study was designed to explore the effect of subtoxic DDT exposure on (1) insulin-stimulated glucose uptake, (2) malondialdehyde (MDA) level and total antioxidant content, (3) activation of redox sensitive kinases (RSKs), and (4) insulin signaling in rat L6 myoblast-derived myotubes. Exposure to 30 mg/L and 60 mg/L of DDT for 18 hours dose dependently decreased glucose uptake and antioxidant content in myotubes and increased MDA levels. The exposures did not alter tumor necrosis factor α (TNF-α) level as determined by enzyme-linked immunosorbent assay, despite decreased messenger RNA expression following DDT exposures. Phosphorylation of c-Jun N-terminal kinases and IκBα, an inhibitory component of nuclear factor κB (NFκB), was increased, suggesting activation of RSKs. The level of tyrosine phosphorylation of insulin receptor substrate 1 and serine phosphorylation of protein kinase B (Akt) on insulin stimulation decreased in myotubes with exposure to subtoxic concentrations of DDT, but there was no change in tyrosine phosphorylation level of insulin receptors. We conclude that subtoxic DDT exposure impairs insulin signaling and thereby induces insulin resistance in muscle cells. Data show that oxidative stress-induced activation of RSKs is responsible for impairment of insulin signaling on DDT exposure.
Collapse
Affiliation(s)
- Vijay Kumar Singh
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Sajib Kumar Sarkar
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
| | | |
Collapse
|
14
|
Mahmoudi A, Hadrich F, Feki I, Ghorbel H, Bouallagui Z, Marrekchi R, Fourati H, Sayadi S. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol A-treated rats. Food Funct 2018; 9:3220-3234. [PMID: 29781491 DOI: 10.1039/c8fo00248g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the present study, we investigated the protective effects of oleuropein- and hydroxytyrosol-rich extracts obtained from olive leaves against bisphenol A (BPA)-induced hyperlipidemia and liver injury in male rats. For this purpose, four groups of male rats (8 per group) were used: control group (Control), rats treated with BPA, rats treated with both BPA and oleuropein (OLE-BPA), and rats treated with both BPA and hydroxytyrosol (HYT-BPA). After 60 days of treatment, the results obtained using the DXA technique showed that treatment with BPA (10 mg per kg b.w.) increased the body weight and adipose tissue mass in male rats. Moreover, plasma levels of triglycerides, total cholesterol, LDL-cholesterol, AST, ALT, LDH, and TNF-α increased. The immunohistochemical analysis revealed a significant increase in the expression of COX-2 and p53 and a decrease in the expression of Bcl-2 related to liver inflammation. Oral administration of oleuropein and hydroxytyrosol-rich extracts obtained from olive leaves at 16 mg kg-1 reduced both the body weight and adipose tissue mass. These extracts were able to ameliorate liver damage and improve the elevated levels of TG and liver enzymes of BPA-treated rats possibly through enhancing CAT and SOD activities. Western blot results revealed that administration of the abovementioned extracts decreased the protein expression of NF-κB and TNF-α through the p38 signaling pathway. Overall, the findings suggest that the olive leaf extracts possess hypolipidemic and hepatoprotective effects against BPA-induced metabolic disorders through enhancing the antioxidative defense system and regulating the important signaling pathway activities.
Collapse
Affiliation(s)
- Asma Mahmoudi
- Environmental Bioprocesses Laboratory, Center of Biotechnology of Sfax, University of Sfax, P.O.Box 1177, 3038 Sfax, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Daniels SI, Chambers JC, Sanchez SS, La Merrill MA, Hubbard AE, Macherone A, McMullin M, Zhang L, Elliott P, Smith MT, Kooner J. Elevated Levels of Organochlorine Pesticides in South Asian Immigrants Are Associated With an Increased Risk of Diabetes. J Endocr Soc 2018; 2:832-841. [PMID: 30019022 PMCID: PMC6041775 DOI: 10.1210/js.2017-00480] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Rates of diabetes mellitus are higher in South Asians than in other populations and persist after migration. One unexplored cause may be higher exposure to persistent organic pollutants associated with diabetes in other populations. We compared organochlorine (OC) pesticide concentrations in South Asian immigrants and European whites to determine whether the disease was positively associated with OC pesticides in South Asians. RESEARCH DESIGN AND METHODS South Asians of Tamil or Telugu descent (n = 120) and European whites (n = 72) were recruited into the London Life Sciences Population Study cohort. Blood samples as well as biometric, clinical, and survey data were collected. Plasma levels of p,p'-dichlorodiphenyldichloroethylene (DDE), p,p'- dichlorodiphenyltrichloroethane, β-hexachlorohexane (HCH), and polychlorinated biphenyl-118 were analyzed by gas chromatography-mass spectrometry. South Asian cases and controls were categorized by binary exposure (above vs below the 50th percentile) to perform logistic regression. RESULTS Tamils had approximately threefold to ninefold higher levels of OC pesticides, and Telugus had ninefold to 30-fold higher levels compared with European whites. The odds of exposure to p,p'-DDE above the 50th percentile was significantly greater in South Asian diabetes cases than in controls (OR: 7.00; 95% CI: 2.22, 22.06). The odds of exposure to β-HCH above the 50th percentile was significantly greater in the Tamil cases than in controls (OR: 9.35; 95% CI: 2.43, 35.97). CONCLUSIONS South Asian immigrants have a higher body burden of OC pesticides than European whites. Diabetes mellitus is associated with higher p,p'-DDE and β-HCH concentrations in this population. Additional longitudinal studies of South Asian populations should be performed.
Collapse
Affiliation(s)
- Sarah I Daniels
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College, London, United Kingdom
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
| | - Sylvia S Sanchez
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, California
| | - Alan E Hubbard
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Anthony Macherone
- Agilent Technologies, Inc., Santa Clara, California
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Luoping Zhang
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Imperial College, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
| | - Martyn T Smith
- Superfund Research Center, School of Public Health, University of California, Berkeley, California
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
- MRC-PHE Centre for Environment and Health, Imperial College, London, United Kingdom
- National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
16
|
Ghosh S, Loffredo CA, Mitra PS, Trnovec T, Palkovicova Murinova L, Sovcikova E, Hoffman EP, Makambi KH, Dutta SK. PCB exposure and potential future cancer incidence in Slovak children: an assessment from molecular finger printing by Ingenuity Pathway Analysis (IPA®) derived from experimental and epidemiological investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16493-16507. [PMID: 29143255 PMCID: PMC5953777 DOI: 10.1007/s11356-017-0149-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 05/20/2023]
Abstract
The risk of cancer due to PCB exposure in humans is highly debated. In eastern Slovakia, high exposure of the population to organochlorines (especially PCBs) was associated with various disease and disorder pathways, viz., endocrine disruption, metabolic disorder & diabetes, and cancer, thereby disturbing several cellular processes, including protein synthesis, stress response, and apoptosis. We have evaluated a Slovak cohort (45-month children, at lower and higher levels of PCB exposure from the environment) for disease and disorder development to develop early disease cancer biomarkers that could shed new light on possible mechanisms for the genesis of cancers under such chemical exposures, and identify potential avenues for prevention.Microarray studies of global gene expression were conducted from the 45-month-old children on the Affymetrix platform followed by Ingenuity Pathway Analysis (IPA®) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR TaqMan low-density array (TLDA) was performed to further validate the selected genes on the whole blood cells of the most highly exposed children from the study cohort (n = 71). TP53, MYC, BCL2, and LRP12 differential gene expressions suggested strong relationships between potential future tumor promotion and PCB exposure in Slovak children. The IPA analysis further detected the most important signaling pathways, including molecular mechanism of cancers, prostate cancer signaling, ovarian cancer signaling, P53 signaling, oncostatin M signaling, and their respective functions (viz., prostate cancer, breast cancer, progression of tumor, growth of tumor, and non-Hodgkin's disease). The results suggest that PCB exposures, even at the early age of these children, may have lifelong consequences for the future development of chronic diseases.
Collapse
Affiliation(s)
- Somiranjan Ghosh
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA.
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington, DC, 20059, USA.
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, 20057, USA
| | - Partha S Mitra
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA
| | - Tomas Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Eva Sovcikova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovak Republic
| | - Eric P Hoffman
- School of Pharmacy and Pharmaceutical Science, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Kepher H Makambi
- Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC, 20057, USA
| | - Sisir K Dutta
- Molecular Genetics Laboratory, Department of Biology, Howard University, 415 College Street, NW, Room 408, EE Just Hall, Washington, DC, 20059, USA
| |
Collapse
|
17
|
Sun Q, Clark JM, Park Y. Environmental pollutants and type 2 diabetes: a review of human studies. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2017; 99:1283-1303. [DOI: 10.1080/02772248.2017.1393818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/14/2017] [Indexed: 01/03/2025]
Affiliation(s)
- Quancai Sun
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| | - John Marshall Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The rising prevalence of obesity and diabetes cannot be fully explained by known risk factors, such as unhealthy diet, a sedentary lifestyle, and family history. This review summarizes the available studies linking persistent organic pollutants (POPs) to obesity and diabetes and discusses plausible underlying mechanisms. RECENT FINDINGS Increasing evidence suggest that POPs may act as obesogens and diabetogens to promote the development of obesity and diabetes and induce metabolic dysfunction. POPs are synthesized chemicals and are used widely in our daily life. These chemicals are resistant to degradation in chemical or biological processes, which enable them to exist in the environment persistently and to be bio-accumulated in animal and human tissue through the food chain. Increasingly, epidemiologic studies suggest a positive association between POPs and risk of developing diabetes. Understanding the relationship of POPs with obesity and diabetes may shed light on preventive strategies for obesity and diabetes.
Collapse
Affiliation(s)
- Chunxue Yang
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China
| | - Alice Pik Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Zongwei Cai
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China.
- HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Arthur C K Chung
- Partner, State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224, Waterloo Road, Kowloon Tong, Hong Kong, China.
- HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
19
|
Jackson E, Shoemaker R, Larian N, Cassis L. Adipose Tissue as a Site of Toxin Accumulation. Compr Physiol 2017; 7:1085-1135. [PMID: 28915320 DOI: 10.1002/cphy.c160038] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We examine the role of adipose tissue, typically considered an energy storage site, as a potential site of toxicant accumulation. Although the production of most persistent organic pollutants (POPs) was banned years ago, these toxicants persist in the environment due to their resistance to biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, and water). As a result, human exposure to these toxicants is inevitable. Largely due to their lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we (i) highlight the physical characteristics of toxicants that enable them to partition into and remain stored in adipose tissue, (ii) discuss the specific mechanisms of action by which these toxicants act to influence adipocyte function, and (iii) review associations between POP exposures and the development of obesity and diabetes. An area of controversy relates to the relative potential beneficial versus hazardous health effects of toxicant sequestration in adipose tissue. © 2017 American Physiological Society. Compr Physiol 7:1085-1135, 2017.
Collapse
Affiliation(s)
- Erin Jackson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Robin Shoemaker
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Nika Larian
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
20
|
Ghosh S, Trnovec T, Palkovicova L, Hoffman EP, Washington K, Dutta SK. Status of LEPR Gene in PCB-exposed Population: A Quick Look. INT J HUM GENET 2017; 13:27-32. [PMID: 23741107 DOI: 10.1080/09723757.2013.11886193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Earlier, we have reported that Polychlorinated Biphenyls (PCBs) exposure in Slovak population has made differential gene expression that has linked to the possibilities of some diseases and disorder development in the studied population. Here we report that down-regulation of LEPR (Leptin receptor) gene in the 45-month children may have been following consequences in developing obesity later in life. A pilot high-throughput qRT-PCR [Taqman Low Density Array (TLDA)] study in a small population also corroborated the gene-expression results, and their pathways underlying the consequences of the diseases, amid further detailed large-scale population validation. The study shows the opportunity of predicting long-term effects of chemical exposures using selected genomic classifiers may reflect exposure effect and risk from environmental toxicants.
Collapse
|
21
|
Permethrin alters glucose metabolism in conjunction with high fat diet by potentiating insulin resistance and decreases voluntary activities in female C57BL/6J mice. Food Chem Toxicol 2017; 108:161-170. [PMID: 28757463 DOI: 10.1016/j.fct.2017.07.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/10/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Permethrin, a type 1 pyrethroid insecticide, was previously reported to promote adipogenesis in 3T3-L1 adipocytes and insulin resistance in C2C12 muscle cells; however, the effects of permethrin exposure on glucose and lipid metabolisms in vivo remain unknown. The purpose of this study was to investigate the effects of permethrin exposure on glucose and lipid homeostasis as well as voluntary movement in female mice in response to dietary fat. We tested three doses of permethrin (50, 500, & 5000 μg/kg body weight/day) in low fat diet-fed (4% w/w of diet) and high fat diet-fed (20% w/w of diet) female C57BL/6 J mice for twelve weeks. Our results demonstrated that permethrin treatment potentiated high fat diet-induced insulin resistance as indicated by insulin tolerance tests, glucose tolerance tests, and homeostasis model assessment - insulin resistance (HOMA-IR) without altering weight or fat mass. Permethrin treatment significantly decreased voluntary movement and elevated blood glucose and insulin levels. Western blot results further showed that permethrin impaired insulin signaling via the Akt signaling pathway in the gastrocnemius muscle. Taken together, these results suggest that oral administration of permethrin potentiated high fat diet-induced insulin resistance, possibly increasing the risk of type 2 diabetes without altering weight gain in female C57BL/6 J mice.
Collapse
|
22
|
Xiao X, Clark JM, Park Y. Potential contribution of insecticide exposure and development of obesity and type 2 diabetes. Food Chem Toxicol 2017; 105:456-474. [PMID: 28487232 DOI: 10.1016/j.fct.2017.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/18/2022]
Abstract
The introduction of insecticides has greatly improved agricultural productivity and human nutrition; however, the wide use of insecticides has also sparked growing concern over their health impacts. Increased rate of cancers, neurodegenerative disorders, reproductive dysfunction, birth defects, respiratory diseases, cardiovascular diseases and aging have been linked with insecticide exposure. Meanwhile, a growing body of evidence is suggesting that exposure to insecticides can also potentiate the risk of obesity and type 2 diabetes. This review summarizes the relationship between insecticide exposure and development of obesity and type 2 diabetes using epidemiological and rodent animal studies, including potential mechanisms. The evidence as a whole suggests that exposure to insecticides is linked to increased risk of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, MA, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol 2017; 91:549-599. [PMID: 27722929 DOI: 10.1007/s00204-016-1849-x] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/08/2016] [Indexed: 12/12/2022]
Abstract
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology Interest Group, Universal Scientific Education and Research Network, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
In Vitro effect of DDE exposure on the regulation of lipid metabolism and secretion in McA-RH7777 hepatocytes: A potential role in dyslipidemia which may increase the risk of type 2 diabetes mellitus. Toxicol In Vitro 2016; 37:9-14. [DOI: 10.1016/j.tiv.2016.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022]
|
25
|
Eslami B, Naddafi K, Rastkari N, Rashidi BH, Djazayeri A, Malekafzali H. Association between serum concentrations of persistent organic pollutants and gestational diabetes mellitus in primiparous women. ENVIRONMENTAL RESEARCH 2016; 151:706-712. [PMID: 27640070 DOI: 10.1016/j.envres.2016.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/28/2016] [Accepted: 09/05/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND There is growing evidence that persistent organic pollutants (POPs) may play an important role in increasing the risk of gestational diabetes mellitus (GDM). OBJECTIVES The aim of this study was to examine the association between polychlorinated biphenyls (PCBs, 10 congeners) and polybrominated diphenyl ethers (PBDEs, 8 congeners) and GDM in primiparous women with no family history of diabetes in first-degree relatives during the third trimester of pregnancy. METHODS This case-control study was performed among the three university hospitals of Tehran University of Medical Sciences. Serum samples were collected from cases (n=70) that were diagnosed with GDM and from controls (n=70) with a normal pregnancy that attended the same hospital for a routine prenatal visit. Pollutant levels were analyzed by Gas Chromatography Mass Spectrometry (GC/MS). RESULTS Logistic regression analyses manifested the positive association between total POPs (sum of total PCBs and PBDEs) (Odds ratio (OR)=1.61, 95% CI: 1.31-1.97, p-value <0.0001) and total PCBs (OR=1.75, 95% CI: 1.35-2.27, p-value<0.0001) and GDM considering confounding variables (age, gestational age, pre-pregnancy body mass index (BMI), and total maternal serum lipid). In addition, we found a positive association between total PBDEs and GDM (OR =2.21; 95% CI: 1.48-3.30, p-value <0.0001). Finally, we found a positive association between Ln PCB 187, 118 and Ln PBDE 99, 28 with GDM. Meanwhile a negative association between Ln PCB 28 and GDM was established. CONCLUSION Our data suggest that exposure to certain POPs (PCBs and PBDEs) could be a potential modifying risk factor for GDM.
Collapse
Affiliation(s)
- Bita Eslami
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Batool Hossein Rashidi
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolghasem Djazayeri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Malekafzali
- Vali-e-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Aminov Z, Haase R, Rej R, Schymura MJ, Santiago-Rivera A, Morse G, DeCaprio A, Carpenter DO, the Akwesasne Task Force on the Environment. Diabetes Prevalence in Relation to Serum Concentrations of Polychlorinated Biphenyl (PCB) Congener Groups and Three Chlorinated Pesticides in a Native American Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1376-83. [PMID: 27035469 PMCID: PMC5010411 DOI: 10.1289/ehp.1509902] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/08/2015] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) is known to increase risk of diabetes. OBJECTIVE To determine which POPs are most associated with prevalence of diabetes in 601 Akwesasne Native Americans. METHODS Multiple logistic regression analysis was used to assess associations between quartiles of concentrations of 101 polychlorinated biphenyl (PCBs) congeners, congener groups and three chlorinated pesticides [dichlorodiphenyldichloroethylene (DDE), hexachlorobenzene (HCB) and mirex] with diabetes. In Model 1, the relationship between quartiles of exposure and diabetes were adjusted only for sex, age, body mass index (BMI), and total serum lipids. Model 2 included additional adjustment for either total PCBs or total pesticides. RESULTS Total serum PCB and pesticide concentrations were each significantly associated with prevalence of diabetes when adjusted only for covariates (Model 1), but neither showed a significant OR for highest to lowest quartiles after additional adjustment for the other (Model 2). When applying Model 2 to PCB congener groups and individual pesticides, there were significant omnibus differences between the four quartiles (all ps < 0.042) for most groups, with the exception of penta- and hexachlorobiphenyls, DDE and mirex. However, when comparing highest to lowest quartiles only non- and mono-ortho PCBs [OR = 4.55 (95% CI: 1.48, 13.95)], tri- and tetrachloro PCBs [OR = 3.66 (95% CI: 1.37, -9.78)] and HCB [OR = 2.64 (95% CI: 1.05, 6.61)] showed significant associations with diabetes. Among the non- and mono-ortho congeners, highest to lowest quartile of dioxin TEQs was not significant [OR = 1.82 (95% CI: 0.61, 5.40)] but the OR for the non-dioxin-like congeners was [OR = 5.01 (95% CI: 1.76, 14.24)]. CONCLUSION The associations with diabetes after adjustment for other POPs were strongest with the more volatile, non-dioxin-like, low-chlorinated PCB congeners and HCB. Because low-chlorinated congeners are more volatile, these observations suggest that inhalation of vapor-phase PCBs is an important route of exposure. CITATION Aminov Z, Haase R, Rej R, Schymura MJ, Santiago-Rivera A, Morse G, DeCaprio A, Carpenter DO, and the Akwesasne Task Force on the Environment. 2016. Diabetes prevalence in relation to serum concentrations of polychlorinated biphenyl (PCB) congener groups and three chlorinated pesticides in a Native American population. Environ Health Perspect 124:1376-1383; http://dx.doi.org/10.1289/ehp.1509902.
Collapse
Affiliation(s)
- Zafar Aminov
- Department of Environmental Health Sciences, School of Public Health, and
- Institute for Health and the Environment, University at Albany, State University of New York (SUNY), Rensselaer, New York, USA
| | - Richard Haase
- Institute for Health and the Environment, University at Albany, State University of New York (SUNY), Rensselaer, New York, USA
- Department of Counseling Psychology, University at Albany, SUNY, Albany, New York, USA
| | - Robert Rej
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Rensselaer, New York, USA
| | - Maria J. Schymura
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, SUNY, Rensselaer, New York, USA
| | - Azara Santiago-Rivera
- Department of Counseling Psychology, University at Albany, SUNY, Albany, New York, USA
| | - Gayle Morse
- Department of Counseling Psychology, University at Albany, SUNY, Albany, New York, USA
| | - Anthony DeCaprio
- Department of Environmental Health Sciences, School of Public Health, and
| | - David O. Carpenter
- Department of Environmental Health Sciences, School of Public Health, and
- Institute for Health and the Environment, University at Albany, State University of New York (SUNY), Rensselaer, New York, USA
| | | |
Collapse
|
27
|
Song Y, Chou EL, Baecker A, You NCY, Song Y, Sun Q, Liu S. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: A systematic review and meta-analysis. J Diabetes 2016; 8:516-32. [PMID: 26119400 DOI: 10.1111/1753-0407.12325] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Elevated blood or urinary concentrations of endocrine-disrupting chemicals (EDCs) may be related to increased risk of type 2 diabetes (T2D). The aim of the present study was to assess the role of EDCs in affecting risk of T2D and related metabolic traits. METHODS MEDLINE was searched for cross-sectional and prospective studies published before 8 March 2014 into the association between EDCs (dioxin, polychlorinated biphenyl [PCB], chlorinated pesticide, bisphenol A [BPA], phthalate) and T2D and related metabolic traits. Three investigators independently extracted information on study design, participant characteristics, EDC types and concentrations, and association measures. RESULTS Forty-one cross-sectional and eight prospective studies from ethnically diverse populations were included in the analysis. Serum concentrations of dioxins, PCBs, and chlorinated pesticides were significantly associated with T2D risk; comparing the highest to lowest concentration category, the pooled relative risks (RR) were 1.91 (95% confidence interval [CI] 1.44-2.54) for dioxins, 2.39 (95% CI 1.86-3.08) for total PCBs, and 2.30 (95% CI 1.81-2.93) for chlorinated pesticides. Urinary concentrations of BPA and phthalates were also associated with T2D risk; comparing the highest to lowest concentration categories, the pooled RR were 1.45 (95% CI 1.13-1.87) for BPA and 1.48 (95% CI 0.98-2.25) for phthalates. Further, EDC concentrations were associated with indicators of impaired fasting glucose and insulin resistance. CONCLUSIONS Persistent and non-persistent EDCs may affect the risk of T2D. There is an urgent need for further investigation of EDCs, especially non-persistent ones, and T2D risk in large prospective studies.
Collapse
Affiliation(s)
- Yan Song
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
- Department of Epidemiology, School of Public Health, Providence, Rhode Island, USA
| | - Elizabeth L Chou
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aileen Baecker
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Nai-Chieh Y You
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California, USA
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Providence, Rhode Island, USA
- Department of Medicine, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
28
|
The use of the lymphocyte cytokinesis-block micronucleus assay for monitoring pesticide-exposed populations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:183-203. [PMID: 27894686 DOI: 10.1016/j.mrrev.2016.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/22/2022]
Abstract
Pesticides are widely used around the world, and hundreds of millions of people are exposed annually in occupational and environmental settings. Numerous studies have demonstrated relationships between pesticide exposure and increased risk of cancers, neurodegenerative and neurodevelopmental disorders, respiratory diseases and diabetes. Assessment of genotoxicity of pesticides and biomonitoring their effect in exposed populations is critical for a better regulation and protection, but it can be complicated because pesticides are often used as complex mixtures. The cytokinesis-block micronucleus assay in human lymphocytes (L-CBMN) is a validated method of assessment of DNA damage induced by clastogenic and aneuploidogenic mechanisms. The goal of this review is to provide an updated summary of publications on biomonitoring studies using this assay in people exposed to pesticides in different settings, and to identify gaps in knowledge, and future directions. A literature search was conducted through MedLine/PubMed and TOXLINE electronic databases up to December 2015. A total of 55 full-text articles, related to 49 studies, excluding reviews, were selected for in depth analysis, divided by the settings where exposures occurred, such as chemical plant workers, pesticide sprayers, floriculturists, agricultural workers and non-occupationally exposed groups. Majority of studies (36 out of 49) reported positive findings with L-CBMN assay. However, most of the studies of professional applicators that used single pesticide or few compounds in the framework of specific programs did not show significant increases in MN frequency. A decreased level of pesticide-induced genotoxicity was associated with the proper use of personal protection. In contrast, subjects working in greenhouses or during intensive spraying season and having acute exposure, showed consistent increases in MN frequency. Overall, this analysis confirmed that L-CBMN is an excellent tool for pesticide biomonitoring, and can validate the effects of educational and intervention programs on reducing exposure and genetic damage.
Collapse
|
29
|
Shapiro GD, Dodds L, Arbuckle TE, Ashley-Martin J, Ettinger AS, Fisher M, Taback S, Bouchard MF, Monnier P, Dallaire R, Morisset AS, Fraser W. Exposure to organophosphorus and organochlorine pesticides, perfluoroalkyl substances, and polychlorinated biphenyls in pregnancy and the association with impaired glucose tolerance and gestational diabetes mellitus: The MIREC Study. ENVIRONMENTAL RESEARCH 2016; 147:71-81. [PMID: 26852007 DOI: 10.1016/j.envres.2016.01.040] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/06/2016] [Accepted: 01/26/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND Studies report increases in rates of gestational diabetes mellitus (GDM) over recent decades. Environmental chemicals may increase the risk of diabetes through impacts on glucose metabolism, mitochondrial dysfunction, and endocrine-disrupting mechanisms including effects on pancreatic β-cell function and adiponectin release. OBJECTIVES To determine the associations between pesticides, perfluoroalkyl substances (PFASs) and polychlorinated biphenyls (PCBs) measured in early pregnancy and impaired glucose tolerance (IGT) and GDM in a Canadian birth cohort. METHODS Women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study were included if they had a singleton delivery and did not have pre-existing diabetes. Exposure variables included three organophosphorus (OP) pesticide metabolites detected in first-trimester urine samples, as well as three organochlorine (OC) pesticides, three PFASs, and four PCBs in first-trimester blood samples. Gestational IGT and GDM were assessed by chart review in accordance with published guidelines. Adjusted logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals (CI) for the association between quartiles of environmental chemicals and both gestational IGT and GDM. RESULTS Of the 2001 women recruited into the MIREC cohort, 1274 met the inclusion criteria and had outcome and biomonitoring data available. Significantly lower odds of GDM were observed in the third and fourth quartiles of dimethylphosphate (DMP) and in the fourth quartile of dimethylthiophosphate (DMTP) in adjusted analyses (DMP Q3: OR=0.2, 95% CI=0.1-0.7; DMP Q4: OR=0.3, 95% CI=0.1-0.8; DMTP: OR=0.3, 95% CI=0.1-0.9). Significantly elevated odds of gestational IGT was observed in the second quartile of perfluorohexane sulfonate (PFHxS) (OR=3.5, 95% CI=1.4-8.9). No evidence of associations with GDM or IGT during pregnancy was observed for PCBs or OC pesticides. CONCLUSIONS We did not find consistent evidence for any positive associations between the chemicals we examined and GDM or IGT during pregnancy. We observed statistical evidence of inverse relationships between urine concentrations of DMP and DMTP with GDM. We cannot rule out the influence of residual confounding due to unmeasured protective factors, such as nutritional benefits from fruit and vegetable consumption, also associated with pesticide exposure, on the observed inverse associations between maternal OP pesticide metabolites and GDM. These findings require further investigation.
Collapse
Affiliation(s)
- Gabriel D Shapiro
- McGill University, Montreal, QC, Canada; CHU Sainte-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | | | | - Maryse F Bouchard
- CHU Sainte-Justine Research Centre, Université de Montréal, Montreal, QC, Canada
| | | | | | | | - William Fraser
- CHU Sainte-Justine Research Centre, Université de Montréal, Montreal, QC, Canada; Centre de recherche du CHUS, Sherbrooke, QC, Canada; Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernández AF, Ntzani EE, Tzoulaki I. Exposure to pesticides and diabetes: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2016; 91:60-8. [PMID: 26909814 DOI: 10.1016/j.envint.2016.02.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Diabetes mellitus has a multifactorial pathogenesis with a strong genetic component as well as many environmental and lifestyle influences. Emerging evidence suggests that environmental contaminants, including pesticides, might play an important role in the pathogenesis of diabetes. OBJECTIVES We performed a systematic review and meta-analysis of observational studies that assessed the association between exposure to pesticides and diabetes and we examined the presence of heterogeneity and biases across available studies. METHODS A comprehensive literature search of peer-reviewed original research pertaining to pesticide exposure and diabetes, published until 30st May 2015, with no language restriction, was conducted. Eligible studies were those that investigated potential associations between pesticides and diabetes without restrictions on diabetes type. We included cohort studies, case-control studies and cross-sectional studies. We extracted information on study characteristics, type of pesticide assessed, exposure assessment, outcome definition, effect estimate and sample size. RESULTS We identified 22 studies assessing the association between pesticides and diabetes. The summary OR for the association of top vs. bottom tertile of exposure to any type of pesticide and diabetes was 1.58 (95% CI: 1.32-1.90, p=1.21×10(-6)), with large heterogeneity (I(2)=66.8%). Studies evaluating Type 2 diabetes in particular (n=13 studies), showed a similar summary effect comparing top vs. bottom tertiles of exposure: 1.61 (95% CI 1.37-1.88, p=3.51×10(-9)) with no heterogeneity (I(2)=0%). Analysis by type of pesticide yielded an increased risk of diabetes for DDE, heptachlor, HCB, DDT, and trans-nonachlor or chlordane. CONCLUSIONS The epidemiological evidence, supported by mechanistic studies, suggests an association between exposure to organochlorine pesticides and Type 2 diabetes.
Collapse
Affiliation(s)
- Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece; Department of Biostatistics and Epidemiology, Imperial College London, London, UK
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Maria Chondrogiorgi
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Fotini K Kavvoura
- Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Evangelia E Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ioanna Tzoulaki
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece; Department of Biostatistics and Epidemiology, Imperial College London, London, UK; MRC-PHE Centre for Environment and Health, Imperial College London, UK.
| |
Collapse
|
31
|
Eden PR, Meek EC, Wills RW, Olsen EV, Crow JA, Chambers JE. Association of type 2 diabetes mellitus with plasma organochlorine compound concentrations. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:207-213. [PMID: 25335866 DOI: 10.1038/jes.2014.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/30/2014] [Indexed: 06/04/2023]
Abstract
The increased prevalence of type 2 diabetes mellitus (T2DM) is associated with obesity, age, and sedentary lifestyle, but exposure to some organochlorine (OC) compounds has also been recently implicated. The hypothesis tested is that higher concentrations of bioaccumulative OC compounds are associated with T2DM. Plasma samples were obtained from a cross-section of adult male and female Caucasians and African Americans, either with or without T2DM from two US Air Force medical facilities. A method of extracting OC compounds from human plasma using solid phase extraction was developed, and three OC compounds [p,p'-DDE (DDE), trans-nonachlor, and oxychlordane] were quantified by gas chromatography/mass spectrometry. Multivariable logistic regression modeling indicated that increasing body mass index (BMI) was associated with T2DM in Caucasians but not in African Americans, and African Americans were more likely to have T2DM than Caucasians with decreasing odds ratios as BMI increased. An association between T2DM and increasing plasma DDE (adjusted for age, base, race, and BMI) was observed. Increasing DDE concentrations were associated with T2DM in older individuals and those with lower BMIs. Thus, in this study sample there was a higher risk of T2DM with increasing DDE concentrations in older people of normal weight and relatively lower risk associated with increasing DDE concentrations in those who are overweight or obese.
Collapse
Affiliation(s)
- Paul R Eden
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Edward C Meek
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert W Wills
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Eric V Olsen
- 81st Medical Group, Clinical Research Laboratory, Keesler AFB, Mississippi, USA
| | - J Allen Crow
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
32
|
Kan H, Zhao F, Zhang XX, Ren H, Gao S. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11894-11902. [PMID: 26378342 DOI: 10.1021/acs.est.5b02990] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Goldfish (Carassius auratus) were exposed to 0-100 μg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.
Collapse
Affiliation(s)
- Haifeng Kan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| |
Collapse
|
33
|
Roh E, Kwak SH, Jung HS, Cho YM, Pak YK, Park KS, Kim SY, Lee HK. Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes. Acta Diabetol 2015; 52:489-95. [PMID: 25385058 DOI: 10.1007/s00592-014-0674-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
AIMS Dioxin or dioxin-like compounds are ligands of the aryl hydrocarbon receptor (AhR), which is a ligand-activated nuclear transcription factor. There are limited studies about the association of serum AhR ligand activities and T2DM. Our objective was to investigate the association of serum AhR ligand activities with T2DM and its related metabolic parameters. METHODS This case-control study involved 83 subjects with T2DM as well as age-, sex-, and body mass index (BMI)-matched subjects with impaired glucose tolerance (IGT, n = 130) and normal glucose tolerance (NGT, n = 83). Serum AhR ligand activities were measured using a cell-based AhR ligand assay and standardized as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDDeq, pmol/l). RESULTS The T2DM group had the highest AhR ligand activities compared to the IGT and NGT groups [median (interquartile range), 68.1 (53.1, 81.5), 60.2 (45.8, 75.1), and 53.3 (46.1, 63.7) pmol/l, respectively; P = 0.003]. In the multivariate analysis, the log2-transformed TCDDeq levels were significantly associated with the risk of T2DM after adjusting for age, sex, and BMI (odds ratio 2.26, 95 % confidence interval 1.34-3.82; P = 0.002). In nondiabetic subjects, serum AhR ligand activities showed a positive correlation with fasting glucose and insulin concentrations and the homeostasis model assessment of insulin resistance, but showed a negative correlation with adiponectin concentrations. CONCLUSIONS Serum AhR ligand activities were higher in the T2DM group and were correlated with the parameters of insulin resistance. Further investigation is required to elucidate the causal relationship between AhR ligand activity and T2DM.
Collapse
Affiliation(s)
- Eun Roh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ngwa EN, Kengne AP, Tiedeu-Atogho B, Mofo-Mato EP, Sobngwi E. Persistent organic pollutants as risk factors for type 2 diabetes. Diabetol Metab Syndr 2015; 7:41. [PMID: 25987904 PMCID: PMC4435855 DOI: 10.1186/s13098-015-0031-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/02/2015] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major and fast growing public health problem. Although obesity is considered to be the main driver of the pandemic of T2DM, a possible contribution of some environmental contaminants, of which persistent organic pollutants (POPs) form a particular class, has been suggested. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes which enable them to persist in the environment, to be capable of long-range transport, bio accumulate in human and animal tissue, bio accumulate in food chains, and to have potential significant impacts on human health and the environment. Several epidemiological studies have reported an association between persistent organic pollutants and diabetes risk. These findings have been replicated in experimental studies both in human (in-vitro) and animals (in-vivo and in-vitro), and patho-physiological derangements through which these pollutants exercise their harmful effect on diabetes risk postulated. This review summarizes available studies, emphasises on limitations so as to enable subsequent studies to be centralized on possible pathways and bring out clearly the role of POPs on diabetes risk.
Collapse
Affiliation(s)
- Elvis Ndonwi Ngwa
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Andre-Pascal Kengne
- />Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- />Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Barbara Tiedeu-Atogho
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Edith-Pascale Mofo-Mato
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
| | - Eugene Sobngwi
- />Laboratory of Molecular Medicine and Metabolism, Biotechnology Centre Nkolbisson, Biotechnology Centre Nkolbisson, Yaounde, Cameroon
- />Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- />National Obesity Center, Yaoundé Central Hospital and Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, P.O. Box 7535, Yaoundé, Cameroon
| |
Collapse
|
35
|
Ghosh S, Mitra PS, Loffredo CA, Trnovec T, Murinova L, Sovcikova E, Ghimbovschi S, Zang S, Hoffman EP, Dutta SK. Transcriptional profiling and biological pathway analysis of human equivalence PCB exposure in vitro: indicator of disease and disorder development in humans. ENVIRONMENTAL RESEARCH 2015; 138:202-16. [PMID: 25725301 PMCID: PMC4739739 DOI: 10.1016/j.envres.2014.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS Our earlier gene-expression studies with a Slovak PCBs-exposed population have revealed possible disease and disorder development in accordance with epidemiological studies. The present investigation aimed to develop an in vitro model system that can provide an indication of disrupted biological pathways associated with developing future diseases, well in advance of the clinical manifestations that may take years to appear in the actual human exposure scenario. METHODS We used human Primary Blood Mononuclear Cells (PBMC) and exposed them to a mixture of human equivalence levels of PCBs (PCB-118, -138, -153, -170, -180) as found in the PCBs-exposed Slovak population. The microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR Taqman Low Density Array (TLDA) was done to further validate the selected 6 differentially expressed genes of our interest, viz., ARNT, CYP2D6, LEPR, LRP12, RRAD, TP53, with a small population validation sample (n=71). RESULTS Overall, we revealed a discreet gene expression profile in the experimental model that resembled the diseases and disorders observed in PCBs-exposed population studies. The disease pathways included endocrine system disorders, genetic disorders, metabolic diseases, developmental disorders, and cancers, strongly consistent with the evidence from epidemiological studies. INTERPRETATION These gene finger prints could lead to the identification of populations and subgroups at high risk for disease, and can pose as early disease biomarkers well ahead of time, before the actual disease becomes visible.
Collapse
Affiliation(s)
- Somiranjan Ghosh
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| | - Partha S Mitra
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | - Tomas Trnovec
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Lubica Murinova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Eva Sovcikova
- Department of Environmental Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - Svetlana Ghimbovschi
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shizhu Zang
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA
| | - Eric P Hoffman
- Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sisir K Dutta
- Molecular Genetics Laboratory, Department of Biology, Howard University, Washington, DC 20059, USA.
| |
Collapse
|
36
|
Jensen TK, Timmermann AG, Rossing LI, Ried-Larsen M, Grøntved A, Andersen LB, Dalgaard C, Hansen OH, Scheike T, Nielsen F, Grandjean P. Polychlorinated biphenyl exposure and glucose metabolism in 9-year-old Danish children. J Clin Endocrinol Metab 2014; 99:E2643-51. [PMID: 25093617 PMCID: PMC4255114 DOI: 10.1210/jc.2014-1683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT Human exposure to polychlorinated biphenyls (PCBs) has been associated to type 2 diabetes in adults. OBJECTIVE We aimed to determine whether concurrent plasma PCB concentration was associated with markers of glucose metabolism in healthy children. SETTING AND DESIGN Cross-sectional study of 771 healthy Danish third grade school children ages 8-10 years in the municipality of Odense were recruited in 1997 through a two-stage cluster sampling from 25 schools stratified according to location and socioeconomic character; 509 (9.7 ± 0.8 y, 53% girls) had adequate amounts available for PCB analyses. OUTCOME MEASURES Fasting serum glucose and insulin were measured and a homeostasis assessment model of insulin resistance (HOMA-IR) and β-cell function (HOMA-B) calculated. Plasma PCB congeners and other persistent compounds were measured and ΣPCB calculated. RESULTS PCBs were present in plasma at low concentrations, median, 0.19 μg/g lipid (interquartile range, 0.12-0.31). After adjustment for putative confounding factors, the second, third, fourth, and fifth quintiles of total PCB were significantly inversely associated with serum insulin (-14.6%, -21.7%, -18.9%, -23.1%, P trend < .01), compared with the first quintile, but not with serum glucose (P = .45). HOMA-IR and HOMA-B were affected in the same direction due to the declining insulin levels with increasing PCB exposure. Similar results were found for individual PCB congeners, for βHCB (hexachlorobenzen) and pp-DDE (dichlorodiphenyldichloroethylene). CONCLUSIONS A strong inverse association between serum insulin and PCB exposure was found while fasting glucose remained within the expected narrow range. Our findings suggest that PCB may not exert effect through decreased peripheral insulin sensitivity, as seen in obese and low-fit children, but rather through a toxicity to β-cells. It remains to be demonstrated whether lower HOMA-B is caused by destruction of β-cell-reducing peripheral insulin resistance and thereby increase fasting glucose as previously found.
Collapse
Affiliation(s)
- Tina K Jensen
- Department of Environmental Medicine (T.K.J., A.G.T., L.I.R., C.D., F.N., P.G.), Department of Sports Science and Clinical Biomechanics (M.R.L., A.G., L.B.A.), Institute of Public Health, University of Southern Denmark, DK-5000 Odense C, Denmark; and Department of Biostatistics (O.H.H., T.S.), University of Copenhagen, DK-1165 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tang M, Chen K, Yang F, Liu W. Exposure to organochlorine pollutants and type 2 diabetes: a systematic review and meta-analysis. PLoS One 2014; 9:e85556. [PMID: 25329153 PMCID: PMC4198076 DOI: 10.1371/journal.pone.0085556] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 04/23/2014] [Indexed: 01/10/2023] Open
Abstract
Objective Though exposure to organochlorine pollutants (OCPs) is considered a risk factor for type 2 diabetes (T2DM), epidemiological evidence for the association remains controversial. A systematic review and meta-analysis was applied to quantitatively evaluate the association between exposure to OCPs and incidence of T2DM and pool the inconsistent evidence. Design and Methods Publications in English were searched in MEDLINE and WEB OF SCIENCE databases and related reference lists up to August 2013. Quantitative estimates and information regarding study characteristics were extracted from 23 original studies. Quality assessments of external validity, bias, exposure measurement and confounding were performed, and subgroup analyses were conducted to examine the heterogeneity sources. Results We retrieved 23 eligible articles to conduct this meta-analysis. OR (odds ratio) or RR (risk ratio) estimates in each subgroup were discussed, and the strong associations were observed in PCB-153 (OR, 1.52; 95% CI, 1.19–1.94), PCBs (OR, 2.14; 95% CI, 1.53–2.99), and p,p′-DDE (OR, 1.33; 95% CI, 1.15–1.54) based on a random-effects model. Conclusions This meta-analysis provides quantitative evidence supporting the conclusion that exposure to organochlorine pollutants is associated with an increased risk of incidence of T2DM.
Collapse
Affiliation(s)
- Mengling Tang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Kun Chen
- Department of Epidemiology & Health Statistics, School of Public Health, Zhejiang University, Hangzhou, China
| | - Fangxing Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
38
|
Burgio E, Lopomo A, Migliore L. Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep 2014; 42:799-818. [DOI: 10.1007/s11033-014-3751-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Lee DH, Porta M, Jacobs DR, Vandenberg LN. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr Rev 2014; 35:557-601. [PMID: 24483949 PMCID: PMC5393257 DOI: 10.1210/er.2013-1084] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures-including organochlorine pesticides and polychlorinated biphenyls-can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans.
Collapse
Affiliation(s)
- Duk-Hee Lee
- Department of Preventive Medicine (D.-H.L.), School of Medicine, Kyungpook National University, Daegu 700-422, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science (D.-H.L.), Kyungpook National University, Korea; Hospital del Mar Institute of Medical Research (M.P.), School of Medicine, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Barcelona 08193, Spain; Division of Epidemiology (D.R.J.), School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455; Department of Nutrition (D.R.J.), University of Oslo, 0313 Oslo, Norway; and University of Massachusetts-Amherst (L.N.V.), School of Public Health, Division of Environmental Health Sciences, Amherst, Massachusetts 01003
| | | | | | | |
Collapse
|
40
|
Everett CJ, Thompson OM. Dioxins, furans and dioxin-like PCBs in human blood: causes or consequences of diabetic nephropathy? ENVIRONMENTAL RESEARCH 2014; 132:126-131. [PMID: 24769561 DOI: 10.1016/j.envres.2014.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Nephropathy, or kidney disease, is a major, potential complication of diabetes. We assessed the association of 6 chlorinated dibenzo-p-dioxins, 9 chlorinated dibenzofurans and 8 polychlorinated biphenyls (PCBs) in blood with diabetic nephropathy in the 1999-2004 National Health and Nutrition Examination Survey (unweighted N=2588, population estimate=117,658,357). Diabetes was defined as diagnosed or undiagnosed (glycohemoglobin ≥ 6.5%) and nephropathy defined as urinary albumin to creatinine ratio >30 mg/g, representing microalbuminuria or macroalbuminuria. For the 8 chemicals analyzed separately, values above the 75th percentile were considered elevated, whereas for the other 15 compounds values above the maximum limit of detection were considered elevated. Seven of 8 dioxins and dioxin-like compounds, analyzed separately, were found to be associated with diabetic nephropathy. The chemicals associated with diabetic nephropathy were: 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin; 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin; 2,3,4,7,8-Pentachlorodibenzofuran; PCB 126; PCB 169; PCB 118; and PCB 156. Three of the 8 dioxins and dioxin-like compounds; 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin; 2,3,4,7,8-Pentachlorodibenzofuran and PCB 118; expressed as log-transformed continuous variables; were associated with diabetes without nephropathy. When 4 or more of the 23 chemicals were elevated the odds ratios were 7.00 (95% CI=1.80-27.20) for diabetic nephropathy and 2.13 (95% CI=0.95-4.78) for diabetes without nephropathy. Log-transformed toxic equivalency (TEQ) was associated with both diabetic nephropathy, and diabetes without nephropathy, the odds ratios were 2.35 (95% CI=1.57-3.52) for diabetic nephropathy, and 1.44 (95% CI=1.11-1.87) for diabetes without nephropathy. As the kidneys function to remove waste products from the blood, diabetic nephropathy could be either the cause or the consequence (or both) of exposure to dioxins, furans and dioxin-like PCBs.
Collapse
Affiliation(s)
- Charles J Everett
- Master of Environmental Studies Program, College of Charleston, Charleston, SC, USA.
| | - Olivia M Thompson
- Public Health Program, Department of Health and Human Performance, School of Education, Health and Human Performance, College of Charleston, Charleston, SC, USA
| |
Collapse
|
41
|
Affiliation(s)
- Hong Kyu Lee
- Bumsuk Professor of Medicine
Eulji University College of Medicine and Eulji Hospital,
Seoul, Korea
E-mail:
| |
Collapse
|
42
|
Persistent organic pollutants and diabetes: A review of the epidemiological evidence. DIABETES & METABOLISM 2014; 40:1-14. [DOI: 10.1016/j.diabet.2013.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023]
|
43
|
Trnovec T, Jusko TA, Šovčíková E, Lancz K, Chovancová J, Patayová H, Palkovičová L, Drobná B, Langer P, Van den Berg M, Dedik L, Wimmerová S. Relative effect potency estimates of dioxin-like activity for dioxins, furans, and dioxin-like PCBs in adults based on two thyroid outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:886-92. [PMID: 23665575 PMCID: PMC3734489 DOI: 10.1289/ehp.1205739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/01/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Toxic equivalency factors (TEFs) are an important component in the risk assessment of dioxin-like human exposures. At present, this concept is based mainly on in vivo animal experiments using oral dosage. Consequently, the current human TEFs derived from mammalian experiments are applicable only for exposure situations in which oral ingestion occurs. Nevertheless, these "intake" TEFs are commonly-but incorrectly-used by regulatory authorities to calculate "systemic" toxic equivalents (TEQs) based on human blood and tissue concentrations, which are used as biomarkers for either exposure or effect. OBJECTIVES We sought to determine relative effect potencies (REPs) for systemic human concentrations of dioxin-like mixture components using thyroid volume or serum free thyroxine (FT4) concentration as the outcomes of interest. METHODS We used a benchmark concentration and a regression-based approach to compare the strength of association between each dioxin-like compound and the thyroid end points in 320 adults residing in an organochlorine-polluted area of eastern Slovakia. RESULTS REPs calculated from thyroid volume and FT4 were similar. The regression coefficient (β)-derived REP data from thyroid volume and FT4 level were correlated with the World Health Organization (WHO) TEF values (Spearman r = 0.69, p = 0.01 and r = 0.62, p = 0.03, respectively). The calculated REPs were mostly within the minimum and maximum values for in vivo REPs derived by other investigators. CONCLUSIONS Our REPs calculated from thyroid end points realistically reflect human exposure scenarios because they are based on chronic, low-dose human exposures and on biomarkers reflecting body burden. Compared with previous results, our REPs suggest higher sensitivity to the effects of dioxin-like compounds.
Collapse
|
44
|
Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, Jacobs D, Köhrle J, Lee DH, Rylander L, Rignell-Hydbom A, Tornero-Velez R, Turyk ME, Boyles AL, Thayer KA, Lind L. Evaluation of the association between persistent organic pollutants (POPs) and diabetes in epidemiological studies: a national toxicology program workshop review. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:774-83. [PMID: 23651634 PMCID: PMC3701910 DOI: 10.1289/ehp.1205502] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/01/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Diabetes is a major threat to public health in the United States and worldwide. Understanding the role of environmental chemicals in the development or progression of diabetes is an emerging issue in environmental health. OBJECTIVE We assessed the epidemiologic literature for evidence of associations between persistent organic pollutants (POPs) and type 2 diabetes. METHODS Using a PubMed search and reference lists from relevant studies or review articles, we identified 72 epidemiological studies that investigated associations of persistent organic pollutants (POPs) with diabetes. We evaluated these studies for consistency, strengths and weaknesses of study design (including power and statistical methods), clinical diagnosis, exposure assessment, study population characteristics, and identification of data gaps and areas for future research. CONCLUSIONS Heterogeneity of the studies precluded conducting a meta-analysis, but the overall evidence is sufficient for a positive association of some organochlorine POPs with type 2 diabetes. Collectively, these data are not sufficient to establish causality. Initial data mining revealed that the strongest positive correlation of diabetes with POPs occurred with organochlorine compounds, such as trans-nonachlor, dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCBs), and dioxins and dioxin-like chemicals. There is less indication of an association between other nonorganochlorine POPs, such as perfluoroalkyl acids and brominated compounds, and type 2 diabetes. Experimental data are needed to confirm the causality of these POPs, which will shed new light on the pathogenesis of diabetes. This new information should be considered by governmental bodies involved in the regulation of environmental contaminants.
Collapse
Affiliation(s)
- Kyla W Taylor
- Office of Health Assessment and Translation, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709 , USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zani C, Donato F, Magoni M, Feretti D, Covolo L, Vassallo F, Speziani F, Scarcella C, Bergonzi R, Apostoli P. Polychlorinated Biphenyls, Glycaemia and Diabetes in a Population Living in a Highly Polychlorinated Biphenyls-Polluted Area in Northern Italy: a Cross-sectional and Cohort Study. J Public Health Res 2013; 2:2-8. [PMID: 25170473 PMCID: PMC4140329 DOI: 10.4081/jphr.2013.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/08/2013] [Indexed: 11/22/2022] Open
Abstract
Conflicts of interests: the authors declare no potential conflict of interests.
Collapse
Affiliation(s)
- Claudia Zani
- Department of Experimental and Applied Medicine, Section of Hygiene, Epidemiology and Public Health, University of Brescia , Italy
| | - Francesco Donato
- Department of Experimental and Applied Medicine, Section of Hygiene, Epidemiology and Public Health, University of Brescia , Italy
| | - Michele Magoni
- Brescia Local Health Authority, University of Brescia , Italy
| | - Donatella Feretti
- Department of Experimental and Applied Medicine, Section of Hygiene, Epidemiology and Public Health, University of Brescia , Italy
| | - Loredana Covolo
- Department of Experimental and Applied Medicine, Section of Hygiene, Epidemiology and Public Health, University of Brescia , Italy
| | | | | | | | - Roberto Bergonzi
- Institute of Occupational Health and Industrial Hygiene, University of Brescia , Italy
| | - Pietro Apostoli
- Institute of Occupational Health and Industrial Hygiene, University of Brescia , Italy
| |
Collapse
|
46
|
Islam MR, Arslan I, Attia J, McEvoy M, McElduff P, Basher A, Rahman W, Peel R, Akhter A, Akter S, Vashum KP, Milton AH. Is serum zinc level associated with prediabetes and diabetes?: a cross-sectional study from Bangladesh. PLoS One 2013; 8:e61776. [PMID: 23613929 PMCID: PMC3629219 DOI: 10.1371/journal.pone.0061776] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/13/2013] [Indexed: 12/17/2022] Open
Abstract
AIMS To determine serum zinc level and other relevant biological markers in normal, prediabetic and diabetic individuals and their association with Homeostasis Model Assessment (HOMA) parameters. METHODS This cross-sectional study was conducted between March and December 2009. Any patient aged ≥ 30 years attending the medicine outpatient department of a medical university hospital in Dhaka, Bangladesh and who had a blood glucose level ordered by a physician was eligible to participate. RESULTS A total of 280 participants were analysed. On fasting blood sugar results, 51% were normal, 13% had prediabetes and 36% had diabetes. Mean serum zinc level was lowest in prediabetic compared to normal and diabetic participants (mean differences were approximately 65 ppb/L and 33 ppb/L, respectively). In multiple linear regression, serum zinc level was found to be significantly lower in prediabetes than in those with normoglycemia. Beta cell function was significantly lower in prediabetes than normal participants. Adjusted linear regression for HOMA parameters did not show a statistically significant association between serum zinc level, beta cell function (P = 0.07) and insulin resistance (P = 0.08). Low serum zinc accentuated the increase in insulin resistance seen with increasing BMI. CONCLUSION Participants with prediabetes have lower zinc levels than controls and zinc is significantly associated with beta cell function and insulin resistance. Further longitudinal population based studies are warranted and controlled trials would be valuable for establishing whether zinc supplementation in prediabetes could be a useful strategy in preventing progression to Type 2 diabetes.
Collapse
Affiliation(s)
- Md. Rafiqul Islam
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Iqbal Arslan
- Department of Biochemistry, Bangobondhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - John Attia
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Mark McEvoy
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Patrick McElduff
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ariful Basher
- Department of Medicine, Mymensingh Medical College, Ministry of Health and Family Welfare, Government of Bangladesh, Mymensingh, Bangladesh
| | - Waliur Rahman
- Department of Biochemistry, Bangobondhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Roseanne Peel
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ayesha Akhter
- Department of Obstetrics and Gynaecology, Tairunnessa Memorial Medical College, Gazipur, Dhaka, Bangladesh
| | - Shahnaz Akter
- Department of Paediatrics, Institute of Child and Mother Health (ICMH), Dhaka, Bangladesh
| | - Khanrin P. Vashum
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Abul Hasnat Milton
- Centre for Clinical Epidemiology and Biostatistics (CCEB), School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
47
|
Inadera H. Developmental origins of obesity and type 2 diabetes: molecular aspects and role of chemicals. Environ Health Prev Med 2013; 18:185-97. [PMID: 23382021 PMCID: PMC3650171 DOI: 10.1007/s12199-013-0328-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/08/2013] [Indexed: 12/14/2022] Open
Abstract
Obesity is a leading risk factor for impaired glucose tolerance and type 2 diabetes (T2D). Although the cause of the obesity epidemic is multi-factorial and not entirely clear, the recent acceleration in incidence is too rapid to be accounted for only by genetics, the wide availability of calorie-rich foods, and increasingly sedentary lifestyles. Accumulating data suggest that the important causes of the obesity epidemic may be related to developmental and early life environmental conditions. The concept of the developmental origins of health and disease (DOHaD) suggests that adverse influences early in development, particularly during intrauterine life, may result in permanent changes in the physiology and metabolism of the infant, which in turn result in an increased risk of non-communicable diseases in adulthood. For example, undernutrition during pregnancy and rapid postnatal weight gain are associated with obesity and T2D in the adult offspring. Moreover, increasing evidence suggests that early-life exposure to a wide range of chemicals has a significant impact on the causes of metabolic disorders. Although the underlying molecular mechanisms remain to be determined, these factors can affect epigenetic processes, such as DNA methylation, allowing the developmental environment to modulate gene transcription. The objective of this review article was to summarize recent progress in the biomedical implications of the DOHaD concept, focusing on the pathogenesis of obesity and T2D, and to discuss a future direction for preventive strategies from a public health perspective.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
48
|
Wu H, Bertrand KA, Choi AL, Hu FB, Laden F, Grandjean P, Sun Q. Persistent organic pollutants and type 2 diabetes: a prospective analysis in the nurses' health study and meta-analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:153-61. [PMID: 23131992 PMCID: PMC3569682 DOI: 10.1289/ehp.1205248] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/05/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Prospective data regarding persistent organic pollutants (POPs) and risk of type 2 diabetes (T2D) are limited, and the results for individual POPs are not entirely consistent across studies. OBJECTIVES We prospectively examined plasma POP concentrations in relation to incident T2D and summarized existing evidence in a meta-analysis. METHODS Plasma polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and hexachlorobenzene (HCB) concentrations were measured in 1,095 women who were free of diabetes at blood draw in 1989-1990 and participated in two case-control studies in the Nurses' Health Study. We identified 48 incident T2D cases through 30 June 2008. We conducted a literature search in PubMed and EMBASE through December 2011 to identify prospective studies on POPs in relation to diabetes. We used a fixed-effects model to summarize results. RESULTS After multivariable adjustment, plasma HCB concentration was positively associated with incident T2D [pooled odds ratio (OR) 3.59 (95% CI: 1.49, 8.64, ptrend = 0.003) comparing extreme tertiles]. Other POPs were not significantly associated with diabetes. After pooling our results with those of six published prospective studies that included 842 diabetes cases in total, we found that HCB and total PCBs both were associated with diabetes: the pooled ORs were 2.00 (95% CI: 1.13, 3.53; I2 = 21.4%, pheterogeneity = 0.28) and 1.70 (95% CI: 1.28, 2.27; I2 = 16.3%, pheterogeneity = 0.30) for HCB and total PCBs, respectively. CONCLUSIONS These findings support an association between POP exposure and the risk of T2D.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Midtbø LK, Ibrahim MM, Myrmel LS, Aune UL, Alvheim AR, Liland NS, Torstensen BE, Rosenlund G, Liaset B, Brattelid T, Kristiansen K, Madsen L. Intake of farmed Atlantic salmon fed soybean oil increases insulin resistance and hepatic lipid accumulation in mice. PLoS One 2013; 8:e53094. [PMID: 23301026 PMCID: PMC3534660 DOI: 10.1371/journal.pone.0053094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022] Open
Abstract
Background To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. Methodology/principal findings Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n−3 polyunsaturated fatty acid (PUFA) content and increased n−6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. Conclusion/Significance Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.
Collapse
Affiliation(s)
- Lisa Kolden Midtbø
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Mohammad Madani Ibrahim
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Institute of Biomedicine, University of Bergen, Bergen, NorwayStavanger, Norway
| | - Lene Secher Myrmel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Ulrike Liisberg Aune
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Nina S. Liland
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | | | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Trond Brattelid
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (LM); (KK)
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- * E-mail: (LM); (KK)
| |
Collapse
|
50
|
Everett CJ, Thompson OM. Associations of dioxins, furans and dioxin-like PCBs with diabetes and pre-diabetes: is the toxic equivalency approach useful? ENVIRONMENTAL RESEARCH 2012; 118:107-111. [PMID: 22818202 DOI: 10.1016/j.envres.2012.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
Toxic equivalency factors for dioxins and dioxin-like compounds have been established by the World Health Organization. Toxic equivalency (TEQ) was derived using 6 chlorinated dibenzo-p-dioxins, 9 chlorinated dibenzofurans and 8 polychlorinated biphenyls, in blood, from the 1999-2004 National Health and Nutrition Examination Survey. Relationships of 8 individual chemicals, the number of compounds elevated, and TEQ with pre-diabetes and total diabetes (diagnosed and undiagnosed) were investigated using logistic regressions. For the 8 chemicals analyzed separately, values above the 75th percentile were considered elevated, whereas for the other 15 compounds, values above the maximum limit of detection were considered elevated. Pre-diabetes with glycohemoglobin (A1c) 5.9-6.4% was associated with PCB 126, PCB 118 and having one or more compounds elevated (odds ratio 2.47, 95% CI 1.51-4.06). Pre-diabetes with A1c 5.7-5.8% was not associated with any individual chemical or the number of compounds elevated. Total diabetes was associated with 6 of the 8 individual compounds tested, and was associated with having 4 or more compounds elevated. Toxic equivalency ≥81.58 TEQ fg/g was associated with total diabetes (odds ratio 3.08, 95% CI 1.20-7.90), but was not associated with A1c 5.9-6.4%. Having multiple compounds elevated appeared to be important for total diabetes, whereas for pre-diabetes with A1c 5.9-6.4%, having a single compound elevated appeared most important. Diabetes plus A1c ≥5.9% was associated with 34.16-81.57 TEQ fg/g (odds ratio 2.00, 95% CI 1.06-3.77) and with ≥81.58 TEQ fg/g (odds ratio 2.48, 95% CI 1.21-5.11), indicating that half the population has elevated risk for this combination of conditions.
Collapse
Affiliation(s)
- Charles J Everett
- Master of Environmental Studies Program, College of Charleston, Charleston, SC 29403, USA.
| | | |
Collapse
|