1
|
Liu Z, Wang J, Yue Z, Wang J, Dou T, Chen T, Li J, Dai H, Yu J. Study of cabbage antioxidant system response on early infection stage of Xanthomonas campestris pv. campestris. BMC PLANT BIOLOGY 2024; 24:324. [PMID: 38658831 PMCID: PMC11040805 DOI: 10.1186/s12870-024-04994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jie Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Zhibin Yue
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jue Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Tingting Dou
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Tongyan Chen
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jinbao Li
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Haojie Dai
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
2
|
Sabry MM, El-Halawany AM, Fahmy WG, Eltanany BM, Pont L, Benavente F, Attia AS, Sherbiny FF, Ibrahim RM. Evidence on the inhibitory effect of Brassica plants against Acinetobacter baumannii lipases: phytochemical analysis, in vitro, and molecular docking studies. BMC Complement Med Ther 2024; 24:164. [PMID: 38641582 PMCID: PMC11027383 DOI: 10.1186/s12906-024-04460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Infections caused by Acinetobacter baumannii are becoming a rising public health problem due to its high degree of acquired and intrinsic resistance mechanisms. Bacterial lipases penetrate and damage host tissues, resulting in multiple infections. Because there are very few effective inhibitors of bacterial lipases, new alternatives for treating A. baumannii infections are urgently needed. In recent years, Brassica vegetables have received a lot of attention since their phytochemical compounds have been directly linked to diverse antimicrobial actions by inhibiting the growth of various Gram-positive and Gram-negative bacteria, yeast, and fungi. Despite their longstanding antibacterial history, there is currently a lack of scientific evidence to support their role in the management of infections caused by the nosocomial bacterium, A. baumannii. This study aimed to address this gap in knowledge by examining the antibacterial and lipase inhibitory effects of six commonly consumed Brassica greens, Chinese cabbage (CC), curly and Tuscan kale (CK and TK), red and green Pak choi (RP and GP), and Brussels sprouts (BR), against A. baumannii in relation to their chemical profiles. METHODS The secondary metabolites of the six extracts were identified using LC-QTOF-MS/MS analysis, and they were subsequently correlated with the lipase inhibitory activity using multivariate data analysis and molecular docking. RESULTS In total, 99 metabolites from various chemical classes were identified in the extracts. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed the chemical similarities and variabilities among the specimens, with glucosinolates and phenolic compounds being the major metabolites. RP and GP showed the highest antibacterial activity against A. baumannii, followed by CK. Additionally, four species showed a significant effect on the bacterial growth curves and demonstrated relevant inhibition of A. baumannii lipolytic activity. CK showed the greatest inhibition (26%), followed by RP (21%), GP (21%), and TK (15%). Orthogonal partial least squares-discriminant analysis (OPLS-DA) pinpointed 9 metabolites positively correlated with the observed bioactivities. Further, the biomarkers displayed good binding affinities towards lipase active sites ranging from -70.61 to -30.91 kcal/mol, compared to orlistat. CONCLUSION This study emphasizes the significance of Brassica vegetables as a novel natural source of potential inhibitors of lipase from A. baumannii.
Collapse
Affiliation(s)
- Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Walaa G Fahmy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, 08028, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, 08028, Spain
| | - Ahmed S Attia
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- School of Pharmacy, Newgiza University, Giza, 12577, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr city, Cairo, 11884, Egypt
| | - Rana M Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
3
|
Hua H, Liu L, Zhu T, Cheng F, Qian H, Shen F, Liu Y. Healthy regulation of Tibetan Brassica rapa L. polysaccharides on alleviating hyperlipidemia: A rodent study. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100171. [PMID: 37179738 PMCID: PMC10172908 DOI: 10.1016/j.fochms.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Hyperlipidemia is a common metabolic disorder, which can lead to obesity, hypertension, diabetes, atherosclerosis and other diseases. Studies have shown that polysaccharides absorbed by the intestinal tract can regulate blood lipids and facilitate the growth of intestinal flora. This article aims to investigate whether Tibetan turnip polysaccharide (TTP) plays a protective role in blood lipid and intestinal health via hepatic and intestinal axes. Here we show that TTP helps to reduce the size of adipocytes and the accumulation of liver fat, playing a dose-dependent effect on ADPN levels, suggesting an effect on lipid metabolism regulation. Meantime, TTP intervention results in the downregulation of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and serum inflammatory factors (interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α)), implying that TTP suppresses the progression of inflammation in the body. The expression of key enzymes associated with cholesterol and triglyceride synthesis, such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptors γ (PPARγ), acetyl-CoA carboxylase (ACC), fatty acid synthetase (FAS) and sterol-regulatory element binding proteins-1c (SREBP-1c), can be modulated by TTP. Furthermore, TTP also alleviates the damage to intestinal tissues caused by high-fat diet, restores the integrity of the intestinal barrier, improves the composition and abundance of the intestinal flora and increases the levels of SCFAs. This study provides a theoretical basis for the regulation of body rhythm by functional foods and potential intervention in patients with hyperlipidemia.
Collapse
Affiliation(s)
- Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Lin Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Tao Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Fengyue Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Fanglin Shen
- Fudan University, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yu Liu
- Departments of Orthopaedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, China
- Corresponding author at: School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Sinapicacid Inhibits Group IIA Secretory Phospholipase A2 and Its Inflammatory Response in Mice. Antioxidants (Basel) 2022; 11:antiox11071251. [PMID: 35883742 PMCID: PMC9312209 DOI: 10.3390/antiox11071251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Human Group IIA secreted phospholipase A2 (sPLA2-IIA) enzyme plays a crucial role in several chronic inflammatory diseases such asasthma, atherosclerosis, gout, bronchitis, etc. Several studies showed that the antioxidants exert an anti-inflammatory function by inhibiting the sPLA2-IIA enzyme. Hence, the present study evaluated an antioxidant molecule, sinapic acid, for sPLA2-IIA inhibition as an anti-inflammatory function. Initially, the antioxidant efficacy of sinapic acid was evaluated, and it showed greater antioxidant potency. Further, sinapic acid inhibited 94.4 ± 4.83% of sPLA2-IIA activity with an IC50 value of 4.16 ± 0.13 µM. The mode of sPLA2-IIA inhibition was examined by increasing the substrate concentration from 30 to 120nM and the calcium concentration from 2.5 to 15 mM, which did not change the level of inhibition. Further, sinapic acid altered the intrinsic fluorescence and distorted the far UltraViolet Circular Dichroism (UV-CD) spectra of the sPLA2-IIA, indicating the direct enzyme-inhibitor interaction. Sinapic acid reduced the sPLA2-IIA mediated hemolytic activity from 94 ± 2.19% to 12.35 ± 2.57% and mouse paw edema from 171.75 ± 2.2% to 114.8 ± 1.98%, demonstrating the anti-inflammatory efficiency of sinapic acid by in situ and in vivo methods, respectively. Finally, sinapic acid reduced the hemorrhagic effect of Vipera russelli venom hemorrhagic complex-I (VR-HC-I) as an anti-hemorrhagic function. Thus, the above experimental results revealed the sinapic acid potency to be an antioxidant, anti-inflammatory and anti-hemorrhagic molecule, and therefore, it appears to be a promising therapeutic agent.
Collapse
|
5
|
Jose S, Gupta M, Sharma U, Quintero-Saumeth J, Dwivedi M. Potential of phytocompounds from Brassica oleracea targeting S2-domain of SARS-CoV-2 spike glycoproteins: Structural and molecular insights. J Mol Struct 2022; 1254:132369. [PMID: 35034979 PMCID: PMC8742220 DOI: 10.1016/j.molstruc.2022.132369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023]
Abstract
By 24th Sep. 2021, there are more than 229 million COVID-19 cases worldwide, the researchers are tirelessly working to discover and develop an efficient drug molecule against this devastative viral infection. This study aims to evaluate the inhibitory efficiency of the organic acids and phenolic compounds present in Brassica oleracea (Tronchuda Cabbage) against spike glycoprotein in SARS-CoV-2. Thirty-seven phytocompounds are screened on the basis of their molecular weight (<500 g/mol) and 14 ligands are docked using Autodock Vina and Autodock4 (version 4.2.6). The stability of the top five docked complexes was analyzed using classical molecular dynamics (MD) simulation. ADMET analysis is performed for the top five compounds and their targets are identified using SwissTargetPrediction. Phytoactives from B. oleracea namely Astragalin, 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid and sinapoyl-D-glucoside showed high binding affinities and free energy of binding during molecular docking and MD simulation studies (∼ 8.5-9.0 kcal/mol) for the spike glycoprotein trimer of SARS-CoV2. The ADMET analysis revealed that these phytocompounds have good solubility in the aqueous phase and that they don't penetrate the blood brain barrier. Moreover, there is no P-gp substrate inhibition, CYP1A2 inhibition, CYP2C19 inhibition, CYP2C9 inhibition, CYP2D6 inhibition and CYP3A4 inhibition observed for these compounds. Additionally, zero PAINS alerts were reported. These findings from molecular docking and MD simulation studies suggest that astragalin and coumaroylquinic acids from Tronchuda cabbage possess potential inhibitory capacity against spike glycoprotein trimer of SARS-CoV-2 and could be further taken up as lead targets for drug discovery.
Collapse
Affiliation(s)
- Sandra Jose
- Vels Institute of Science, Technology and Advanced Studies, Chennai, India
| | - Megha Gupta
- Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Urvashi Sharma
- Institute of bioinformatics and applied biotechnology (IBAB), Biotech Park, Electronic city phase I, Bangalore 560100, India
| | - Jorge Quintero-Saumeth
- University of Pamplona, Faculty of Basic Sciences, Km 1 Vía Bucaramanga, Ciudad Universitaria, Pamplona, Colombia
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
6
|
Optimization of Ultrasound-Assisted Extraction via Sonotrode of Phenolic Compounds from Orange By-Products. Foods 2021; 10:foods10051120. [PMID: 34070065 PMCID: PMC8158112 DOI: 10.3390/foods10051120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel is the main by-product from orange juice industry. It is a known source of bioactive compounds, mostly phenolic compounds, and it has been widely studied for its healthy activities. Thus, this research focuses on the establishment of ultrasound-assisted extraction of phenolic compounds in orange peel using a sonotrode. For this purpose, a Box–Behnken design of 27 experiments was carried out with four independent factors—ratio ethanol/water (v/v), time (min), amplitude (%), and pulse (%). Quantitative analyses of phenolic compounds were performed and the antioxidant activity was measured by ABTS and DPPH methods. The validity of the experimental design was confirmed by ANOVA and the optimal sonotrode extraction conditions were obtained by response surface methodology (RSM). The extracts obtained in the established conditions were analyzed by High Performance Liquid Chromatography (HPLC) coupled to mass spectrometer detector and 74 polar compounds were identified. The highest phenolic content and antioxidant activity were obtained using 45/55 ethanol/water (v/v), 35 min, amplitude 90% (110 W), and pulse 100%. The established method allows an increment of phenolics recovery up to 60% higher than a conventional extraction. Moreover, the effect of drying on phenolic content was also evaluated.
Collapse
|
7
|
Hua H, Zhu H, Liu C, Zhang W, Li J, Hu B, Guo Y, Cheng Y, Pi F, Xie Y, Yao W, Qian H. Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway. Food Funct 2021; 12:2901-2913. [PMID: 33710186 DOI: 10.1039/d0fo03190a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral stroke, a common clinical problem, is the predominant cause of disability and death worldwide. Its prevalence increases and infarctions exacerbate with age. A Tibetan plant, Brassica rapa L., possesses multiple medicinal effects, such as anti-altitude sickness, anti-hyperlipidemia and anti-fatigue, as mentioned in the noted ancient Tibet pharmacopeia "The Four Medical Tantras". Our preliminary studies also showed the anti-hypoxia protection mechanism of B. rapa L., implying its possible relationship with anti-ischemic neuroprotection. However, the potential molecular mechanism of the active constituent of turnip against cerebral ischemia/reperfusion remains unclear. In our study, oxidative stress markers, including LDH, ROS, SOD, GPx and CAT were assayed. In controlled in vitro assays, we found that the turnip's active constituent had remarkable anti-hypoxia capability. We further showed the profound effects of the active constituent of turnip on the levels of apoptosis-related proteins, including Bax, Bcl-2 and caspase-3, which contributed to its anti-inflammatory activity. Western blot analysis results also implied that active-constituent pretreatment reversed the diminished expression of the PI3K/Akt/mTOR pathway mediated by oxygen glucose deprivation/reperfusion (OGD/R); further experimental evidence showed that the protective role was limited in the PI3K inhibitor (LY294002) treatment group. Our results demonstrated that the functional monomer of B. rapa L. exerted a neuroprotective effect against OGD/R-induced HT22 cell injury, and its potential mechanism provides a scientific basis for future clinical applications and its use as a functional food.
Collapse
Affiliation(s)
- Hanyi Hua
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hua H, Zhang W, Li J, Li J, Liu C, Guo Y, Cheng Y, Pi F, Xie Y, Yao W, Gao Y, Qian H. Neuroprotection against cerebral ischemia/reperfusion by dietary phytochemical extracts from Tibetan turnip (Brassica rapa L.). JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113410. [PMID: 32980487 DOI: 10.1016/j.jep.2020.113410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tibetan turnip (Brassica rapa L.) has a wide array of medicine properties including heat-clearing, detoxifying and anti-hypoxia as listed in the famous centuries-old Tibetan medicine classic "The Four Medical Tantras". Evidence-based medicine also indicated the anti-hypoxic effect of turnips, suggesting a potential link to neuroprotective effect on ischemic stroke. This thereby enables turnips to serve as a novel nontoxic agent in related treatment. AIM OF THE STUDY This study aimed to investigate the neuroprotective effect and elucidate the mechanism of aqueous extract of turnip (AET) on cerebral ischemia/reperfusion. MATERIALS AND METHODS The experimental models of cerebral ischemia included transient middle cerebral artery occlusion/reperfusion (MCAO) in C57BL/6J mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in HT-22 cells. Long-term effect of AET on infarct volume was evaluated by microtubule-associated protein 2 (MAP2) immunofluorescence 28 days after MCAO, and on neurofunctional outcomes determined by rotarod, grid walking, and cylinder tests in the meantime. Efficacy of AET was determined by the cell viability, the release of lactate dehydrogenase (LDH) and reactive oxygen species (ROS) in neurons. The underlying mechanism of AET rescued OGD/R cells were characterized by PI3K, Akt and mTOR expressions, which were further used to validate AET's role in the pathway. RESULTS AET can reduce cerebral infarct volume and ameliorate behavioral deficits of MCAO/R mice dose-dependently. In vitro experiment further demonstrated that suitable concentrations of AET inhibited ROS, LDH production and restored mitochondrial expression induced by OGD/R. AET pretreatment can reverse the OGD/R-induced decreased level of phosphorylation of PI3K, Akt, mTOR, whereas this effect was blocked in the LY294002 (PI3K inhibitor) treatment group. CONCLUSIONS AET improved the survival of OGD/R-injured HT-22 cells by activating the PI3K/Akt/mTOR pathway. Based on the results above, aqueous extract of turnip has a protective effect on focal cerebral ischemic injury.
Collapse
Affiliation(s)
- Hanyi Hua
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenyi Zhang
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Li
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Chang Liu
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Guo
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Cheng
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yunfei Xie
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Weirong Yao
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - He Qian
- Department of School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Phenolic and Carotenoid Profile of Lamb's Lettuce and Improvement of the Bioactive Content by Preharvest Conditions. Foods 2021; 10:foods10010188. [PMID: 33477681 PMCID: PMC7831921 DOI: 10.3390/foods10010188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
This study characterizes the phenolic, carotenoid and chlorophyll profile of lamb's lettuce, a vegetable whose consumption in salads and ready-to-eat products is constantly growing. The MS/MS analysis allowed the identification of thirty-five phenolic compounds including hydroxybenzoic and hydroxycinnamic acids, flavanones, flavanols and flavanones, many of which are reported here in lamb's lettuce for the first time. Chlorogenic acid was the principal phenolic compound found (57.1% of the total phenolic concentration) followed by its isomer cis-5-caffeoylquinic. Other major phenolic compounds were also hydroxycinnamic acids (coumaroylquinic, dicaffeoylquinic and feruloylquinic acids) as well as the flavones luteolin-7-rutinoside, diosmetin-apiosylglucoside and diosmin. Regarding carotenoids, seven xanthophyll and four carotenes, among which β-carotene and lutein were the major compounds, were detected from their UV-Vis absorption spectrum. In addition, chlorophylls a and b, their isomers and derivatives (pheophytin) were identified. Preharvest factors such as reduced fertilization levels or salinity increased some secondary metabolites, highlighting the importance of these factors on the final nutritional value of plant foods. Lamb's lettuce was seen to be a good potential source of bioactive compounds, and fertilization management might be considered a useful tool for increasing its nutritional interest.
Collapse
|
10
|
Brito TBN, R S Lima L, B Santos MC, A Moreira RF, Cameron LC, C Fai AE, S L Ferreira M. Antimicrobial, antioxidant, volatile and phenolic profiles of cabbage-stalk and pineapple-crown flour revealed by GC-MS and UPLC-MS E. Food Chem 2020; 339:127882. [PMID: 32889131 DOI: 10.1016/j.foodchem.2020.127882] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Unconventional parts of vegetables represent a rich source of health-promoting phytochemicals. The phenolic profile of cabbage-stalk flour (CSF), pineapple-crown flour (PCF), and their essential oils were characterized via UPLC-ESI-QTOF-MSE and GC-FID/MS. Antimicrobial activity was tested against five strains, and antioxidant activities were determined in free and bound extracts. Globally, 177 phenolics were tentatively identified in PCF (major p-coumaric acid, ferulic acid, and 4-hydroxybenzaldehyde) and 56 in CSF (major chlorogenicacid, quercetin 3-O-glucuronide, and p-coumaric acid). PCF exhibited a distinguished profile (lignans, stilbenes) and antioxidant capacity, especially in bound extracts (1.3 g GAE.100 g-1; 0.6 g catechin eq.100 g-1; DPPH: 244.7; ABTS: 467.8; FRAP: 762.6 µg TE.g-1, ORAC: 40.9 mg TE.g-1). The main classes of volatile compounds were fatty acids, their esters, and terpenes in CSF (30) and PCF (41). A comprehensive metabolomic approach revealed CSF and PCF as a promising source of PC, showing great antioxidant and discrete antimicrobial activities.
Collapse
Affiliation(s)
- T B N Brito
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L R S Lima
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - M C B Santos
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - R F A Moreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - L C Cameron
- Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil
| | - A E C Fai
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Nutrition Institute, University of State of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - M S L Ferreira
- Food and Nutrition Graduate Program (PPGAN), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Laboratory of Protein Biochemistry, Center of Innovation in Mass Spectrometry, UNIRIO, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Song S, Arora S, Laserna AKC, Shen Y, Thian BWY, Cheong JC, Tan JKN, Chiam Z, Fong SL, Ghosh S, Ok YS, Li SFY, Tan HTW, Dai Y, Wang CH. Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138742. [PMID: 32498194 DOI: 10.1016/j.scitotenv.2020.138742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
With possible food crises looming in the near future, urban farming, including small-scale community and home gardens for home consumption, presents a promising option to improve food security in cities. These small-scale farms and gardens often use planter boxes and raised beds filled with lightweight soil or potting mixes. While previous studies on biochar focused on its application on large-scale contiguous farmlands, this study aimed to evaluate the suitability of biochar as a partial soil substitute to produce a durable and lightweight soil-biochar mix for small-scale urban farms. The effects of biochar on the chemical properties of the soil-biochar mix, crop yield and, particularly, crop nutrients and metabolic content were assessed. A germination test using pak choi seeds (Brassica rapa L. cultivar group Pak choi, Green-Petioled Form) showed that the biochar contained phytostimulants. Through a nursery pot experiment over four growth cycles, biochar treatments performed better than pure soil at retaining water-soluble NO3- and K+ ions, but were worse at retaining PO43- ions. Nonetheless, despite its positive effect on soil NO3- retention, biochar application did not improve crop yield significantly when the application rate varied from 0% to 60% (v/v). Untargeted metabolomic analyses showed that biochar application may increase the production of carbohydrates and certain flavonoids and glucosinolates. The results of this study showed that biochar can potentially be used to improve pak choi nutritional values and applied in large quantity to obtain a lightweight soil mix for urban farming.
Collapse
Affiliation(s)
- Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Srishti Arora
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Republic of Singapore
| | - Anna Karen C Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Ye Shen
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Republic of Singapore
| | - Brian W Y Thian
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Jia Chin Cheong
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Jonathan K N Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Zhongyu Chiam
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Siew Lee Fong
- Agri-technology & Food Innovation Department, Singapore Food Agency, Sembawang Research Station, Lorong Chencharu, Singapore 769194, Republic of Singapore
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology (Research), National Parks Board, Republic of Singapore; School of Environmental & Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center & APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Republic of Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Republic of Singapore.
| |
Collapse
|
12
|
Karamać M, Gai F, Peiretti P. Effect of the Growth Stage of False Flax (Camelina sativa L.) on the Phenolic Compound Content and Antioxidant Potential of the Aerial Part of the Plant. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/119719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
13
|
Miceli N, Cavò E, Ragusa M, Cacciola F, Mondello L, Dugo L, Acquaviva R, Malfa GA, Marino A, D’Arrigo M, Taviano MF. Brassica incana Ten. (Brassicaceae): Phenolic Constituents, Antioxidant and Cytotoxic Properties of the Leaf and Flowering Top Extracts. Molecules 2020; 25:E1461. [PMID: 32213889 PMCID: PMC7145283 DOI: 10.3390/molecules25061461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
Brassica incana Ten. is an edible plant belonging to the Brassicaceae family. In this work, the phenolic composition and the antioxidant and cytotoxic properties of the hydroalcoholic extracts obtained from the leaves and the flowering tops of B. incana grown wild in Sicily (Italy) were studied for the first time. A total of 17 and 20 polyphenolic compounds were identified in the leaf and in the flowering top extracts, respectively, by HPLC-PDA-ESI-MS analysis. Brassica incana extracts showed in vitro antioxidant properties; the leaf extract displayed greater radical scavenging activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test than the flowering top extract (IC50 = 1.306 ± 0.049 mg/mL and 2.077 ± 0.011 mg/mL), which in turn had a stronger ferrous ion chelating ability than the other (IC50 = 0.232 ± 0.002 mg/mL and 1.147 ± 0.016 mg/mL). The cytotoxicity of the extracts against human colorectal adenocarcinoma (CaCo-2) and breast cancer (MCF-7) cell lines was evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the lactic dehydrogenase (LDH) release determination. The extracts showed cytotoxic efficacy against Caco-2 cells, with the flowering top extract being the most effective (about 90% activity at the highest concentration tested). In the brine shrimp lethality bioassay, the extracts exhibited no toxicity, indicating their potential safety.
Collapse
Affiliation(s)
- Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Emilia Cavò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Monica Ragusa
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy;
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Àlvaro del Portillo 21, 00128 Rome, Italy;
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy
| | - Laura Dugo
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, via Àlvaro del Portillo 21, 00128 Rome, Italy;
| | - Rosaria Acquaviva
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Giuseppe Antonio Malfa
- Department of Drug Science, Biochemistry Section, University of Catania, Viale Andrea Doria 6, 95123 Catania, Italy; (R.A.); (G.A.M.)
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Manuela D’Arrigo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; (E.C.); (L.M.); (A.M.); (M.D.); (M.F.T.)
| |
Collapse
|
14
|
Gharehbeglou P, Jafari SM. Antioxidant Components of Brassica Vegetables Including Turnip and the Influence of Processing and Storage on their Anti-oxidative Properties. Curr Med Chem 2019; 26:4559-4572. [PMID: 30430937 DOI: 10.2174/0929867325666181115111040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
Abstract
Brassica vegetables, particularly turnip, contain many natural antioxidants. This review focuses on antioxidant components and the influence of different processing and storage conditions on antioxidant activities of some Brassica vegetables including turnip. Long storage times had an adverse effect on antioxidant value of turnip. Also, the activity of antioxidants in cruciferous vegetables could be influenced by antioxidant breakdown and leaching during cooking. Heat treatment has a major impact on the antioxidant activity of Brassica vegetables and it has been perceived minor antioxidant ability in processed vegetables compared with uncooked samples. Food processing operations in terms of blanching, canning, sterilizing and freezing, in addition to cooking methods perhaps can have a major influence on the yield, chemical structure and bioavailability of antioxidants in Brassica family. Cooking methods such as steaming and microwaving are proper methods for a short time. Consumption of raw or slightly blanched turnip is an appropriate way to maximize its health benefits.
Collapse
Affiliation(s)
- Pouria Gharehbeglou
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
15
|
|
16
|
Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M, Ritieni A, De Pascale S, Rouphael Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem 2018; 277:107-118. [PMID: 30502125 DOI: 10.1016/j.foodchem.2018.10.098] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/03/2023]
Abstract
Compositional variation was examined across 13 microgreens species/subspecies representing Brassicaceae, Chenopodiaceae, Lamiaceae, Malvaceae and Apiaceae, grown in controlled environment. Macro-mineral concentrations were determined by ion chromatography, chlorophyll and ascorbate concentrations, and hydrophilic/lipophilic antioxidant potentials by spectrophotometry, and major carotenoids by HPLC-DAD. Nitrate hyper-accumulators and wide genotypic differences in Na, K and S concentrations were identified. Antioxidant capacity was highest in brassicaceous microgreens and significant genotypic variation was demonstrated in chlorophyll and carotenoid concentrations. High phenolic content was confirmed in Lamiaceae microgreens, with significant varietal differences, and alternative phenolics-rich microgreens from the Apiaceae were identified. Twenty-eight phenolic compounds were variably detected and quantitated through Orbitrap LC-MS/MS with flavonol glycosides, flavones and flavone glycosides, and hydroxycinnamic acids representing 67.6, 24.8 and 7.6% of the mean total phenolic content across species, respectively. The obtained information is critical for selecting new species/varieties of microgreens that may satisfy demand for both taste and health.
Collapse
Affiliation(s)
- Marios C Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Georgios A Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| |
Collapse
|
17
|
Armesto J, Gómez-Limia L, Carballo J, Martínez S. Effects of different cooking methods on the antioxidant capacity and flavonoid, organic acid and mineral contents of Galega Kale (Brassica oleracea var. acephala cv. Galega). Int J Food Sci Nutr 2018; 70:136-149. [PMID: 30037287 DOI: 10.1080/09637486.2018.1482530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Brassica spp. are good sources of bioactive substances, which are known to have beneficial health effects. The objective of this work was to evaluate the effect of different cooking methods (boiling, steaming, microwaving, pressure cooking and vacuum cooking) on the antioxidant capacity and on the flavonoid, organic acid and mineral contents of Galega kale. Results indicate that this vegetable has a high antioxidant capacity and high contents of total flavonoids, organic acids, and minerals such as potassium and calcium. All of the cooking methods yielded losses of antioxidant capacity and of total flavonoids, organic acids and minerals, relative to the contents in fresh kale. Steaming proved to be the best method of preserving the antioxidant capacity and bioactive compounds. Although cooking did not cause large losses of oxalic acid, the resulting oxalate:calcium ratio was rather low (<2). The present data demonstrate that the different cooking methods have different effects on the bioactive compounds in kale, and that it is important the optimisation of such methods in order to minimise losses of the nutritional properties.
Collapse
Affiliation(s)
- Jorge Armesto
- a Área de Tecnología de los Alimentos, Facultad de Ciencias , Universidad de Vigo , Ourense , Spain
| | - Lucía Gómez-Limia
- a Área de Tecnología de los Alimentos, Facultad de Ciencias , Universidad de Vigo , Ourense , Spain
| | - Javier Carballo
- a Área de Tecnología de los Alimentos, Facultad de Ciencias , Universidad de Vigo , Ourense , Spain
| | - Sidonia Martínez
- a Área de Tecnología de los Alimentos, Facultad de Ciencias , Universidad de Vigo , Ourense , Spain
| |
Collapse
|
18
|
Faustino MV, Pinto DC, Gonçalves MJ, Salgueiro L, Silveira P, Silva AM. Calendula L. species polyphenolic profile and in vitro antifungal activity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
19
|
Fraige K, Dametto AC, Zeraik ML, de Freitas L, Saraiva AC, Medeiros AI, Castro-Gamboa I, Cavalheiro AJ, Silva DHS, Lopes NP, Bolzani VS. Dereplication by HPLC-DAD-ESI-MS/MS and Screening for Biological Activities of Byrsonima Species (Malpighiaceae). PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:196-204. [PMID: 28990237 DOI: 10.1002/pca.2734] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Byrsonima species have been used in the treatment of gastrointestinal and gynecological inflammations, skin infections and snakebites. Based on their biological activities, it is important to study other organisms from this genus and to identify their metabolites. OBJECTIVES To determine the metabolic fingerprinting of methanol and ethyl acetate extracts of four Byrsonima species (B. intermedia, B. coccolobifolia, B. verbascifolia and B. sericea) by HPLC-DAD-ESI-MS/MS and evaluate their in vitro antioxidant, anti-glycation, anti-inflammatory and cytotoxic activities. MATERIALS AND METHODS Antioxidant activity was determined by DPPH˙, ABTS˙+ and ROO˙ scavenging assays. Anti-glycation activity was evaluated by the ability to inhibit the formation of advanced glycation endproducts (AGEs). Anti-inflammatory activity was evaluated using a murine macrophage cell line (RAW 264-7) in the presence of lipopolysaccharide (LPS). Tumour necrosis factor alpha (TNF-α) and nitrite (NO2- ) production were measured by ELISA and the Griess reaction, respectively. The compounds present in the extracts were tentatively identified by HPLC-DAD-ESI-MS/MS. RESULTS The evaluation of the biological activities showed the potential of the extracts. The activities were assigned to the presence of glycoside flavonoids mainly derived from quercetin, quinic acid derivatives, gallic acid derivatives, galloylquinic acids and proanthocyanidins. Two isomers of sinapic acid-O-hexoside were described for the first time in a Byrsonima species. CONCLUSION This research contributes to the study of the genus, it is the first report of the chemical composition of B. sericea and demonstrates the importance of the dereplication process, allowing the identification of known compounds without time-consuming procedures. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Karina Fraige
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Alessandra Cristina Dametto
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Maria Luiza Zeraik
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
- Departamento de Química, Universidade Estadual de Londrina (UEL), 86051-990, Londrina, PR, Brazil
| | - Larissa de Freitas
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Amanda Correia Saraiva
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, 14800-903, Araraquara, SP, Brazil
| | - Alexandra Ivo Medeiros
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Araraquara, 14800-903, Araraquara, SP, Brazil
| | - Ian Castro-Gamboa
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Alberto José Cavalheiro
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Dulce Helena S Silva
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Universidade de São Paulo (USP), 14040-903, Ribeirão Preto, Brazil
| | - Vanderlan S Bolzani
- Departamento de Química Orgânica, Instituto de Química de Araraquara, Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NUBBE), Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
20
|
Saka B, Djouahri A, Djerrad Z, Terfi S, Aberrane S, Sabaou N, Baaliouamer A, Boudarene L. Chemical Variability and Biological Activities ofBrassica rapavar.rapiferaParts Essential Oils Depending on Geographic Variation and Extraction Technique. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Boualem Saka
- Laboratory of Functional Organic Analysis; Department of Chemistry; Faculty of Chemistry; Houari Boumediene University of Sciences and Technology (U.S.T.H.B); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
| | - Abderrahmane Djouahri
- Laboratory of Functional Organic Analysis; Department of Chemistry; Faculty of Chemistry; Houari Boumediene University of Sciences and Technology (U.S.T.H.B); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
| | - Zineb Djerrad
- Laboratory of Vegetal Ecology and Environment; Department of Ecology and Environment; Faculty of Biological Sciences; Houari Boumediene University of Sciences and Technology (USTHB); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
| | - Souhila Terfi
- Laboratory of Electrochemistry-Corrosion, Metallurgy and Mineral Chemistry; Faculty of Chemistry; University of Sciences and Technology (USTHB); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
| | - Sihem Aberrane
- Laboratory of Functional Organic Analysis; Department of Chemistry; Faculty of Chemistry; Houari Boumediene University of Sciences and Technology (U.S.T.H.B); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
| | - Nasserdine Sabaou
- Laboratory of Biology of the Microbial Systems; Department of Biology; Ecole Normale Supérieure El Bachir El Ibrahimi (E.N.S); BP 92 Kouba-Alger Algeria
| | - Aoumeur Baaliouamer
- Laboratory of Functional Organic Analysis; Department of Chemistry; Faculty of Chemistry; Houari Boumediene University of Sciences and Technology (U.S.T.H.B); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC); BP 248, Alger RP 16004 Algiers Algeria
| | - Lynda Boudarene
- Laboratory of Functional Organic Analysis; Department of Chemistry; Faculty of Chemistry; Houari Boumediene University of Sciences and Technology (U.S.T.H.B); El Alia, BP 32, Bab Ezzouar 16111 Algiers Algeria
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC); BP 248, Alger RP 16004 Algiers Algeria
| |
Collapse
|
21
|
Vale A, Santos J, Melia N, Peixoto V, Brito N, Oliveira MBP. Phytochemical composition and antimicrobial properties of four varieties of Brassica oleracea sprouts. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Maia ML, Correia-Sá L, Coelho A, Barroso MF, Domingues VF, Delerue-Matos C. Eruca sativa: Benefits as antioxidants source versus risks of already banned pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:338-345. [PMID: 25826102 DOI: 10.1080/03601234.2015.1000178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Eruca sativa (rocket salad) has been intensely consumed all over the world, insomuch as, this work was undertaken to evaluate the antioxidant status and the environmental contamination (positive and negative nutritional contribution) of leaves and stems from this vegetable. Antioxidant capacity of rocket salad was assessed by mean of optical methods, such as the total phenolic content (TPC), reducing power assay and DPPH radical scavenging activity. The extent of the environmental contamination was reached through the quantification of thirteen organochlorine pesticides (OCP) by using gas chromatography coupled with electron-capture detector (GC-ECD) and compound confirmations employing gas chromatography tandem mass-spectrometry (GC-MS/MS). The OCP residues were extracted by using Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methodology.The extent of the environmental contamination was reached through the quantification of thirteen OCP by using gas chromatography coupled with electron-capture detector (GC-ECD) and compound confirmations employing GC-MS/MS. The OCP residues were extracted by using Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) methodology. This demonstrated that leaves presented more antioxidant activity than stems, emphasizing that leaves contained six times more polyphenolic compounds than stems. In what concerns the OCP occurrence, the average recoveries obtained at the three levels tested (40, 60 and 80 µg kg(-1)) ranged from 55% to 149% with a relative standard deviation of 11%, (except hexachrorobenzene). Three vegetables samples were collected from supermarkets and analysed following this study. According to data, only one sample achieved 16.21 of β-hexachlorocyclohexane, confirmed by GC-MS/MS. About OCP quantification, the data indicated that only one sample achieved 16.21 µg kg(-1) of β-hexachlorocyclohexane, confirmed by GC-MS/MS, being the QuEChERS a good choice for the of OCPs extraction. Furthermore, the leaves consumption guaranty higher levels of antioxidants than stems.
Collapse
Affiliation(s)
- M Luz Maia
- a REQUIMTE/LAQV, Superior Institute of Engineering of Porto, Polytechnic Institute of Porto R. Dr. António Bernardino de Almeida , Porto , Portugal
| | | | | | | | | | | |
Collapse
|
23
|
Francisco M, Ali M, Ferreres F, Moreno DA, Velasco P, Soengas P. Organ-Specific Quantitative Genetics and Candidate Genes of Phenylpropanoid Metabolism in Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2015; 6:1240. [PMID: 26858727 PMCID: PMC4729930 DOI: 10.3389/fpls.2015.01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/20/2015] [Indexed: 05/21/2023]
Abstract
Phenolic compounds are proving to be increasingly important for human health and in crop development, defense and adaptation. In spite of the economical importance of Brassica crops in agriculture, the mechanisms involved in the biosynthesis of phenolic compounds presents in these species remain unknown. The genetic and metabolic basis of phenolics accumulation was dissected through analysis of total phenolics concentration and its individual components in leaves, flower buds, and seeds of a double haploid (DH) mapping population of Brassica oleracea. The quantitative trait loci (QTL) that had an effect on phenolics concentration in each organ were integrated, resulting in 33 consensus QTLs controlling phenolics traits. Most of the studied compounds had organ-specific genomic regulation. Moreover, this information allowed us to propose candidate genes and to predict the function of genes underlying the QTL. A number of previously unknown potential regulatory regions involved in phenylpropanoid metabolism were identified and this study illustrates how plant ontogeny can affect a biochemical pathway.
Collapse
Affiliation(s)
- Marta Francisco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
| | - Mahmoud Ali
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
- Department of Horticulture, Faculty of Agriculture, Ain Shams UniversityCairo, Egypt
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| | - Diego A. Moreno
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, Centro de Edafología y Biología Aplicada del Segura - Consejo Superior de Investigaciones Científicas (CEBAS-CSIC)Murcia, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia - Consejo Superior de Investigaciones Científicas (MBG-CSIC)Pontevedra, Spain
- *Correspondence: Pilar Soengas
| |
Collapse
|
24
|
Eco-Friendly Corrosion Inhibition of Pipeline Steel UsingBrassica oleracea. INTERNATIONAL JOURNAL OF CORROSION 2015. [DOI: 10.1155/2015/404139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibition capacity ofBrassica oleracea(BO) extract on the corrosion of pipeline steel in 0.5 M H2SO4was evaluated using electrochemical techniques. The results showed an excellent inhibition efficiency which increased with initial increase in extract concentration and temperature to a point and decreased with further increase in BO extract concentration and temperature. Mixed inhibition behaviour was proposed for the action of BO. The unique behaviour of BO was attributed to the organic entities present in the extract.
Collapse
|
25
|
Domínguez-Perles R, Mena P, García-Viguera C, Moreno DA. Brassica foods as a dietary source of vitamin C: a review. Crit Rev Food Sci Nutr 2014; 54:1076-91. [PMID: 24499123 DOI: 10.1080/10408398.2011.626873] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brassica genus includes known horticultural vegetables with major economical importance worldwide, and involves vegetables of economical importance being part of the diet and source of oils for industry in many countries. Brassicales own a broad array of health-promoting compounds, emphasized as healthy rich sources of vitamin C. The adequate management of pre- and postharvest factors including crop varieties, growth conditions, harvesting, handling, storage, and final consumer operations would lead to increase or preserve of the vitamin C content or reduced losses by interfering in the catalysis mechanisms that remains largely unknown, and should be reviewed. Likewise, the importance of the food matrix on the absorption and metabolism of vitamin C is closely related to the range of the health benefits attributed to its intake. However, less beneficial effects were derived when purified compounds were administered in comparison to the ingestion of horticultural products such as Brassicas, which entail a closely relation between this food matrix and the bioavailability of its content in vitamin C. This fact should be here also discussed. These vegetables of immature flowers or leaves are used as food stuffs all over the world and represent a considerable part of both western and non-Western diets, being inexpensive crops widely spread and reachable to all social levels, constituting an important source of dietary vitamin C, which may work synergistically with the wealth of bioactive compounds present in these foods.
Collapse
Affiliation(s)
- R Domínguez-Perles
- a Phytochemistry Lab. Department of Food Science and Technology , Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC) , Espinardo , Murcia , 30100 , Spain
| | | | | | | |
Collapse
|
26
|
Nićiforović N, Abramovič H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr Rev Food Sci Food Saf 2013; 13:34-51. [DOI: 10.1111/1541-4337.12041] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Neda Nićiforović
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| | - Helena Abramovič
- Dept. of Food Science and Technology; Biotechnical Faculty, Univ. of Ljubljana; 1000 Ljubljana Slovenia
| |
Collapse
|
27
|
Application of ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method for the characterization of phenolic compounds of Lepidium sativum L. sprouts. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-1925-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Park WT, Kim JK, Park S, Lee SW, Li X, Kim YB, Uddin MR, Park NI, Kim SJ, Park SU. Metabolic profiling of glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in kohlrabi (Brassica oleracea var. gongylodes). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8111-8116. [PMID: 22742768 DOI: 10.1021/jf301667j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We profiled and quantified glucosinolates, anthocyanins, carotenoids, and other secondary metabolites in the skin and flesh of pale green and purple kohlrabis. Analysis of these distinct kohlrabis revealed the presence of 8 glucosinolates, 12 anthocyanins, 2 carotenoids, and 7 phenylpropanoids. Glucosinolate contents varied among the different parts and types of kohlrabi. Glucoerucin contents were 4-fold higher in the flesh of purple kohlrabi than those in the skin. Among the 12 anthocyanins, cyanidin 3-(feruloyl)(sinapoyl) diglucoside-5-glucoside levels were the highest. Carotenoid levels were much higher in the skins than the flesh of both types of kohlrabi. The levels of most phenylpropanoids were higher in purple kohlrabi than in pale green ones. trans-Cinnamic acid content was 12.7-fold higher in the flesh of purple kohlrabi than that in the pale green ones. Thus, the amounts of glucosinolates, anthocyanins, carotenoids, and phenylpropanoids varied widely, and the variations in these compounds between the two types of kohlrabi were significant.
Collapse
Affiliation(s)
- Woo Tae Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Effects of yeast extract and different amino acids on the dynamics of some components in cabbage juice during fermentation with Bifidobacterium lactis BB-12. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0090-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
30
|
Soengas P, Cartea ME, Francisco M, Sotelo T, Velasco P. New insights into antioxidant activity of Brassica crops. Food Chem 2012; 134:725-33. [PMID: 23107684 DOI: 10.1016/j.foodchem.2012.02.169] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 11/16/2022]
Abstract
Antioxidant activity of six Brassica crops-broccoli, cabbage, cauliflower, kale, nabicol and tronchuda cabbage-was measured at four plant stages with DPPH and FRAP assays. Samples taken three months after sowing showed the highest antioxidant activity. Kale crop possessed the highest antioxidant activity at this plant stage and also at the adult plant stage, while cauliflower showed the highest antioxidant activity in sprouts and in leaves taken two months after sowing. Brassica by-products could be used as sources of products with high content of antioxidants. Phenolic content and composition varied, depending on the crop under study and on the plant stage; sprout samples were much higher in hydroxycinnamic acids than the rest of samples. Differences in antioxidant activity of Brassica crops were related to differences in total phenolic content but also to differences in phenolic composition for most samples.
Collapse
Affiliation(s)
- P Soengas
- Department of Plant Genetics, Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, E-36080 Pontevedra, Spain.
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Velasco P, Francisco M, Moreno DA, Ferreres F, García-Viguera C, Cartea ME. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. PHYTOCHEMICAL ANALYSIS : PCA 2011; 22:144-52. [PMID: 21259374 DOI: 10.1002/pca.1259] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Brassica vegetables have been related to the prevention of cancer and degenerative diseases, owing to their glucosinolate and phenolic content. OBJECTIVE Identification of glucosinolates, flavonoids and hydroxycinnamic acids in representative varieties of kale, cabbage and leaf rape. METHODOLOGY One local variety of each crop was evaluated in this study using a multi-purpose chromatographic method that simultaneously separates glucosinolates and phenolics. Chromatograms were recorded at 330 nm for flavonoid glycosides and acylated derivatives and 227 nm for glucosinolates. RESULTS Eight glucosinolates were identified in kale and cabbage, which exhibited the same glucosinolate profile, and 11 glucosinolates were identified in leaf rape. Furthermore, 20 flavonoids and 10 hydroxycinnamic acids were detected in kale and cabbage, while 17 flavonoids and eight hydroxycinnamic acids were found in leaf rape. CONCLUSIONS This study has provided a deeper and comprehensive identification of health-promoting compounds in kale, cabbage and leaf rape, thus showing that they are a good source of glucosinolates and phenolic antioxidants.
Collapse
Affiliation(s)
- Pablo Velasco
- Misión Biológica de Galicia (CSIC), PO Box 28, E-36080 Pontevedra, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules 2010; 16:251-80. [PMID: 21193847 PMCID: PMC6259264 DOI: 10.3390/molecules16010251] [Citation(s) in RCA: 507] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/06/2010] [Accepted: 12/28/2010] [Indexed: 12/18/2022] Open
Abstract
Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.
Collapse
Affiliation(s)
- María Elena Cartea
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 28, 36080 Pontevedra, Spain.
| | | | | | | |
Collapse
|
34
|
Martínez S, Losada P, Franco I, Carballo J. Protein, amino acid, ash and mineral contents in Brassica spp. grown in Northwest Spain. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02463.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Dopico-García MS, Castro-López MM, López-Vilariño JM, González-Rodríguez MV, Valentão P, Andrade PB, García-Garabal S, Abad MJ. Natural extracts as potential source of antioxidants to stabilize polyolefins. J Appl Polym Sci 2010. [DOI: 10.1002/app.33022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
|
37
|
Francisco M, Velasco P, Moreno DA, García-Viguera C, Cartea ME. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.04.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Martínez S, Olmos I, Carballo J, Franco I. Quality parameters of Brassica spp. grown in northwest Spain. Int J Food Sci Technol 2010. [DOI: 10.1111/j.1365-2621.2010.02198.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Direct identification of phenolic constituents in Boldo Folium (Peumus boldus Mol.) infusions by high-performance liquid chromatography with diode array detection and electrospray ionization tandem mass spectrometry. J Chromatogr A 2010; 1217:443-9. [DOI: 10.1016/j.chroma.2009.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/14/2009] [Accepted: 11/02/2009] [Indexed: 12/21/2022]
|
40
|
Francisco M, Moreno DA, Cartea ME, Ferreres F, García-Viguera C, Velasco P. Simultaneous identification of glucosinolates and phenolic compounds in a representative collection of vegetable Brassica rapa. J Chromatogr A 2009; 1216:6611-9. [PMID: 19683241 DOI: 10.1016/j.chroma.2009.07.055] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/15/2009] [Accepted: 07/29/2009] [Indexed: 11/26/2022]
Abstract
Brassica raparapa group is widely distributed and consumed in northwestern Spain. The consumption of Brassica vegetables has been related to human health due to their phytochemicals, such as glucosinolates and phenolic compounds that induce a variety of physiological functions including antioxidant activity, enzymes regulation and apoptosis control and the cell cycle. For first time in Brassica crops, intact glucosinolates and phenolic compounds were simultaneously identified and characterized. Twelve intact glucosinolates, belonging to the three chemical classes, and more than 30 phenolic compounds were found in B. rapa leaves and young shoots (turnip greens and turnip tops) by LC-UV photodiode array detection (PAD)-electrospray ionization (ESI). The main naturally occurring phenolic compounds identified were flavonoids and derivatives of hydroxycinnamic acids. The majority of the flavonoids were kaempferol, quercetin and isorhamnetin glycosylated and acylated with different hydroxycinnamic acids. Quantification of the main compounds by HPLC-PAD showed significant differences for most of compounds between plant organs. Total glucosinolate content value was 26.84 micromol g(-1) dw for turnip greens and 29.11 micromol g(-1) dw for turnip tops; gluconapin being the predominant glucosinolate (23.2 micromol g(-1) dw). Phenolic compounds were higher in turnip greens 51.71 micromol g(-1) dw than in turnip tops 38.99 micromol g(-1) dw, in which flavonols were always the major compounds.
Collapse
Affiliation(s)
- Marta Francisco
- Misión Biológica de Galicia (CSIC), PO Box 28, E-36080 Pontevedra, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Identification of phenolic compounds from the fruits of the mountain papaya Vasconcellea pubescens A. DC. grown in Chile by liquid chromatography–UV detection–mass spectrometry. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.12.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Sousa C, Pontes H, Carmo H, Dinis-Oliveira RJ, Valentão P, Andrade PB, Remião F, Bastos ML, Carvalho F. Water extracts of Brassica oleracea var. costata potentiate paraquat toxicity to rat hepatocytes in vitro. Toxicol In Vitro 2009; 23:1131-8. [PMID: 19486935 DOI: 10.1016/j.tiv.2009.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/02/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Tronchuda cabbage extracts have been proven to have antioxidant potential against various oxidative species in cell free systems, though its antioxidant potential in cellular models remained to be demonstrated. In the present study, we used primary cultures of rat hepatocytes for the cellular assay system and paraquat PQ exposure as a pro-oxidant model agent, to test whether tronchuda cabbage hydrolysed water extracts provide protective or aggravating effects towards PQ-induced oxidative stress and cell death. For this purpose cellular parameters related to oxidative stress were measured, namely the generation of superoxide anion, glutathione oxidation, lipid peroxidation, intracellular ATP levels, activation of nuclear factor-kappaB (NF-kappaB), activity of antioxidant enzymes, and cell death. The obtained results demonstrated that the studied hydrolysed water extracts of tronchuda cabbage, especially rich in kaempferol (84%) and other polyphenols, namely hydroxycinnamic acids and traces of quercetin, can potentiate the toxicity of PQ in primary cultures of rat hepatocytes. These results highlight that prospective antioxidant effects of plant extracts, observed in vitro, using non-cellular systems, are not always confirmed in cellular models, in which the concentrations required to scavenge pro-oxidant species may be highly detrimental to the cells.
Collapse
Affiliation(s)
- C Sousa
- REQUIMTE, Toxicology Department, Faculty of Pharmacy, University of Porto, 4099-030 Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sousa C, Pereira DM, Valentão P, Ferreres F, Pereira JA, Seabra RM, Andrade PB. Pieris brassicae inhibits xanthine oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:2288-2294. [PMID: 19227975 DOI: 10.1021/jf803831v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The antioxidant potential of an aqueous extract obtained from Pieris brassicae larvae reared on Brassica oleracea L. var. costata DC was evaluated against 2,2-diphenyl-1-picrylhydrazyl radical and several reactive oxygen species. The results revealed an effective concentration-dependent protective activity against superoxide and hydroxyl radicals, being superior to that of the host plant. In addition, the larvae extract also exhibited a strong inhibitory effect on xanthine oxidase that was not observed for B. oleracea var. costata. A weak scavenging ability was noticed for hypochlorous acid. Several phenolic compounds with complex chemical structures that are hard to synthesize in the laboratory were found in P. brassicae extract. This is the first time that an insect has been tested for its xanthine oxidase inhibitory capacity, which proved to be very high. These findings are interesting considering that they can be used by food or pharmaceutical industries to prevent the oxidation of their products, to increase the dietary supply of antioxidants, or for prevention of free radical-mediated diseases, namely, gout.
Collapse
Affiliation(s)
- Carla Sousa
- REQUIMTE/Servico de Farmacognosia, Faculdade de Farmacia, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
44
|
Pereira DM, Ferreres F, Oliveira J, Valentão P, Andrade PB, Sottomayor M. Targeted metabolite analysis of Catharanthus roseus and its biological potential. Food Chem Toxicol 2009; 47:1349-54. [PMID: 19298840 DOI: 10.1016/j.fct.2009.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/18/2022]
Abstract
Catharanthus roseus is nowadays one of the most studied medicinal plants. In this work, further knowledge on different parts of this species (leaves, stems, seeds and petals) was achieved, namely phenolics by HPLC-DAD and organic acids and amino acids by HPLC-UV. Also, the biological potential, expressed as acetylcholinesterase inhibitory activity was accessed and, in some parts, an acetylcholinesterase inhibitory capacity higher than 85% was found (IC(50) at 422, 442 and 2683 microg/mL in leaves, stems and petals, respectively). C. roseus aqueous extract revealed to be a rich source of phenolics, namely caffeoylquinic acids and flavonoids derivatives (up to 4127 mg/kg in stems, 4484 mg/kg in seeds, 8688 mg/kg in leaves and 41125 mg/kg in petals), organic acids (962, 6678, 25972 and 12463 mg/kg in seeds, petals, stems and leaves, respectively), such as citric acid (over 85% in some plant parts), and amino acids (31557, 39327, 50540 and 159697 mg/kg in stems, petals, seeds and leaves, respectively), of which arginine was a major compound.
Collapse
Affiliation(s)
- David M Pereira
- REQUIMTE/Department of Pharmacognosy, Faculty of Pharmacy, Porto University, R. Aníbal Cunha, 164, 4050-047 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
45
|
Ferreres F, Fernandes F, Oliveira JMA, Valentão P, Pereira JA, Andrade PB. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala). Food Chem Toxicol 2009; 47:1209-20. [PMID: 19233244 DOI: 10.1016/j.fct.2009.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/28/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
Abstract
Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.
Collapse
Affiliation(s)
- Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Ferreres F, Pereira DM, Valentão P, Andrade PB, Seabra RM, Sottomayor M. New phenolic compounds and antioxidant potential of Catharanthus roseus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9967-9974. [PMID: 18850714 DOI: 10.1021/jf8022723] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Screening of the phenolic compounds from seeds, stems, leaves and petals of Catharanthus roseus (L.) G. Don (cv. Little Bright Eye) was achieved by HPLC-DAD-ESI-MS/MS. This is the first detailed study of noncolored phenolics in C. roseus, which allowed the characterization of three caffeoylquinic acids and fifteen flavonol glycosides (di- and trisaccharides of kaempferol, quercetin and isorhamnetin). Fifteen compounds are reported for the first time in this species. The scavenging ability of the different plant matrices was assessed against DPPH(*) radical and against reactive oxygen (superoxide radical) and a reactive nitrogen (nitric oxide) species. A concentration-dependent protective effect was observed for seeds and tissues, with petals shown to be the most active.
Collapse
Affiliation(s)
- Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Oliveira AP, Pereira JA, Andrade PB, Valentão P, Seabra RM, Silva BM. Organic acids composition of Cydonia oblonga Miller leaf. Food Chem 2008; 111:393-9. [DOI: 10.1016/j.foodchem.2008.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/22/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
48
|
Harbaum B, Hubbermann EM, Zhu Z, Schwarz K. Free and bound phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). Food Chem 2008; 110:838-46. [DOI: 10.1016/j.foodchem.2008.02.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/18/2007] [Accepted: 02/21/2008] [Indexed: 11/30/2022]
|
49
|
Inflorescences of Brassicacea species as source of bioactive compounds: A comparative study. Food Chem 2008; 110:953-61. [DOI: 10.1016/j.foodchem.2008.02.087] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/28/2007] [Accepted: 02/29/2008] [Indexed: 11/23/2022]
|
50
|
Oliveira AP, Pereira DM, Andrade PB, Valentão P, Sousa C, Pereira JA, Bento A, Rodrigues MA, Seabra RM, Silva BM. Free amino acids of tronchuda cabbage (Brassica oleracea L. Var. costata DC): influence of leaf position (internal or external) and collection time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5216-5221. [PMID: 18553888 DOI: 10.1021/jf800563w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The free amino acid profile of 18 samples of tronchuda cabbage ( Brassica oleracea L. var. costata DC) leaves, harvested at three different months, was determined by HPLC/UV-vis. The tronchuda cabbage leaves total free amino acid content varied from 3.3 to 14.4 g/kg fresh weight. Generally, arginine was the major compound, followed by proline, threonine, glutamine, cysteine, and glutamic acid. This study indicates that free amino acids are not similarly distributed: in external leaves, proline and arginine were the major free amino acids, while in internal ones, arginine was the main free amino acid, followed by threonine, glutamine, and cysteine. Significant differences were observed for valine, proline, arginine, leucine, cysteine, lysine, histidine, and tyrosine contents. The levels of some free amino acids were significantly affected by the collection period. In external leaves, this occurred with glutamic acid, serine, valine, leucine, cysteine, and ornithine contents, while in internal leaves, it occurred with aspartic acid, arginine, and total contents.
Collapse
Affiliation(s)
- Andreia P Oliveira
- CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, R. Carlos da Maia, 296, 4200-150 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|