1
|
Komedchikova EN, Kolesnikova OA, Obozina AS, Antonova AO, Dukat AM, Fedotova PA, Khardikova DS, Sokol DV, Shimanskaia IO, Svetlakova AV, Shipunova VO. It takes Two: Advancing cancer treatment with two-step nanoparticle delivery. Biochem Biophys Res Commun 2025; 767:151921. [PMID: 40318380 DOI: 10.1016/j.bbrc.2025.151921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The rapid advancement of nanobiotechnology has resulted in the development of numerous targeted nanoformulations and sophisticated nanobiorobots for biomedical applications. Despite the potential of nanostructures to improve drug delivery and therapeutic efficacy, their clinical application is still constrained by insufficient accumulation in tumor tissues. Current methodologies result in only an average of 0.6 % of administered nanoparticles reaching tumors, prompting the development of innovative strategies to improve targeting and influence the pharmacokinetics and pharmacodynamics of drugs. One such approach is two-step targeting, which includes either the concept of tumor pre-targeting with specific recognizing elements or the stimuli-sensitive activation of nanostructures. This review critically evaluates advancements in two-step drug delivery systems utilizing nanobiotechnology for targeted cancer therapy. For instance, two-step delivery based on the pre-targeting concept involves an initial injection of targeting molecules that bind to tumor-specific antigens, followed by the administration of drug-loaded nanocarriers modified with complementary adaptors. This approach enhances nanoparticle accumulation in tumors and improves therapeutic outcomes by increasing interaction avidity and overcoming steric hindrances. We critically assess existing adaptor systems for two-step drug delivery and synthesize findings from various studies demonstrating their efficacy in both in vitro and in vivo settings, while addressing challenges in clinical translation. We also explore future directions for developing novel adaptor systems to enhance two-step delivery mechanisms. This review aims to contribute to optimizing nanobiotechnology in oncology for more effective cancer therapies.
Collapse
Affiliation(s)
| | - Olga A Kolesnikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | | - Arina O Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Alexei M Dukat
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Polina A Fedotova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daria S Khardikova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Daniil V Sokol
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Iana O Shimanskaia
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Anna V Svetlakova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | | |
Collapse
|
2
|
Liu W, Andersson J, Järlebark J, Shaji A, Sha J, Dahlin A. The Electric Field in Solid State Nanopores Causes Dissociation of Strong Biomolecular Interactions. NANO LETTERS 2025. [PMID: 40389804 DOI: 10.1021/acs.nanolett.5c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Electrical sensing with nanopores has become a widely used bioanalytical tool. However, it remains unclear if and how the extremely strong electric field generated inside the pores influences biomolecular interactions. Here we show that the field disrupts the strongest known protein-ligand interaction in biology, namely biotin-avidin bonds. Remarkably, the lifetime of the interaction is decreased by at least 4 orders of magnitude. At hundreds of mV, avidin (from egg-white) starts dissociating from biotin-functionalized nanopores over a time scale of minutes even at the maximum bond valency of four. Streptavidin-coated nanoparticles, which form many more bonds, remain bound but exhibit surface mobility due to the field. These results show that nanopore sensors can give very inaccurate results when used for affinity-based detection or biomolecular interaction analysis and that the pore environment should be regarded as potentially invasive for the molecules inside.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Amina Shaji
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
3
|
Jones J, Campbell A, Kyei I, Sobansky MR, Hager MV, Hage DS. High-performance chromatographic immunoassay utilizing a biotin-streptavidin platform for activity-based analysis of therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1258:124603. [PMID: 40252558 DOI: 10.1016/j.jchromb.2025.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
There has been rapid growth in the use of monoclonal antibodies (mAbs) as biopharmaceuticals over the last twenty years. This has led to the need for new analytical methods that can rapidly and specifically measure or characterize mAbs for research, development and quality control, including means for the assessment of a therapeutic mAb's biological activity. High-performance immunoaffinity chromatography (HPIAC) was examined in this report as an approach for such work, in which the interactions between an antibody and its antigen were used for the selective isolation and analysis of one of these components. This report describes the utilization of a biotin-streptavidin platform in HPIAC and with affinity microcolumns that were used together in a chromatographic immunoassay for the analysis of a therapeutic mAb. Various components of this method were characterized and optimized to provide a method that was reusable and that could provide results within 7 min. The final assay could measure down to 0.03 mg/mL mAb (1.5 μg) for a 50 μL sample injection. The assay precision was ±0.7-1.3 % based on peak area measurements and ± 1.0-2.4 % using peak heights. The method was then evaluated for its use with typical samples encountered for a therapeutic mAb during its development and processing. Each microcolumn in this assay could be used for more than 350-400 sample application/elution cycles. The extension of this platform and approach to other applications was also considered.
Collapse
Affiliation(s)
- Jacob Jones
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Avery Campbell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Isaac Kyei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
4
|
Ptaszek AL, Kratzwald S, Sagan F, Migotti M, Sánchez-Murcia PA, Konrat R, Platzer G. From Weak Interactions to High Stability: Deciphering the Streptavidin-Biotin Interaction through NMR and Computational Analysis. J Phys Chem B 2025. [PMID: 40356290 DOI: 10.1021/acs.jpcb.5c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Understanding weak interactions in protein-ligand complexes is essential for advancing drug design. Here, we combine experimental and quantum mechanical approaches to study the streptavidin-biotin complex, one of the strongest interacting protein-ligand systems. Using a monomeric streptavidin mutant, we analyze 1H NMR chemical shift perturbations (CSPs) of biotin upon binding, identifying remarkable upfield shifts of up to -3.2 ppm. Quantum chemical calculations attribute these shifts primarily to aromatic ring currents, with additional contributions from charge transfer effects linked to weak interactions. The agreement between experimental and computed chemical shifts validated the X-ray structure as a reliable basis for detailed computational analyses. Energy decomposition analysis reveals that electrostatics dominate the biotin-streptavidin interaction, complemented by significant orbital and dispersion contributions. Notably, weak noncovalent interactions, such as CH···S, CH···π, and CH···HC contacts, driven by London dispersion forces, contribute ∼44% to the complex's stability.
Collapse
Affiliation(s)
- Aleksandra L Ptaszek
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftintalstr. 6/III, A-8010 Graz, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Sarah Kratzwald
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- CIC bioGUNE, Precision Medicine and Metabolism Lab, Bizkaia Science and Technology Park, Building 800, Derio (Bizkaia), Derio 48160, Spain
- MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, Vienna 1090, Austria
| | - Filip Sagan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Mario Migotti
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Pedro A Sánchez-Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftintalstr. 6/III, A-8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, A-8010 Graz, Austria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| | - Gerald Platzer
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
- MAG-LAB GmbH, Karl-Farkas-Gasse 22, 1030 Vienna, Austria
| |
Collapse
|
5
|
Wang H, Liu L, Zhang Z, Li C, Wang K, Gao J, Hu Q, Wang W, Li H. Insights of affinity-based probes for target identification in drug discovery. Eur J Med Chem 2025; 293:117711. [PMID: 40359656 DOI: 10.1016/j.ejmech.2025.117711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Identifying molecular targets of physiologically active organic compounds remains a major challenge in contemporary biomedical research and drug discovery. In recent years, the development of activity-based protein profiling (ABPP) techniques has proven to be superior to classical molecular target identification methods. ABPP can be classified into activity-based probes (AcBPs) and affinity-based probes (AfBPs). AfBPs bind to target proteins through reversible non-covalent interactions, thus minimizing the impact on the natural biological functions of the protein. The development of AfBPs has great potential for studying drug targets, optimizing drugs, and improving therapeutic efficacy. As a result, there has been a dramatic increase in research and development focused on affinity probes with the use of a wide range of AfBPs such as biotin probes, FITC probes, BRET probes, and radiolabeled probes. This tutorial describes the process of designing and synthesizing different types of AfBPs from biologically active compounds, and then utilizing the probes to identify the target proteins. It also provides insights for subsequent drug discovery and development.
Collapse
Affiliation(s)
- Hui Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Li Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Chencheng Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Jingjing Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Fang H, Gong T, Su Y, Xiong S, Yao M, Guo Q, Tong W, Gan T, Zhang P, Liu Q, Tan Y, Zhang C, Huang X, Xiong Y. PBS-DLS: A Novel Ultrasensitive Dynamic Light Scattering Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327829 DOI: 10.1021/acsami.5c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Despite significant advances in ultrasensitive detection, current methodologies are often hindered by the need for sophisticated equipment, complex signal amplification processes, and specialized operation. Here, we have developed a novel strategy by universal polyvalent biotin-streptavidin cross-linking aggregation coupled with dynamic light scattering (PBS-DLS) that effectively transduces and amplifies undetected molecular recognition events at low target concentrations, demonstrating its potential application as an ultrasensitive immunoassay. The controllability in the size and quantity of the DLS nanoprobe enables this advanced design to achieve tunable sensitivity down to attomolar levels and a broad detection range spanning six orders of magnitude. By reducing the detection time to approximately 15 min, our PBS-DLS emerges as a promising tool for point-of-care (POC) testing. Moreover, this PBS-DLS immunosensor has been validated through its rapid and ultrasensitive detection of the SARS-CoV-2 nucleocapsid (N) protein (a macromolecular model target) and malachite green (MG, a small molecule model target) in complex sample matrices, outperforming conventional immunoassays and other testing methods. The exceptional sensitivity, simplicity, and speed of this novel approach position it as a highly promising platform for the development of various bioanalytical methods and POC assays.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tian Gong
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Mingjian Yao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Qian Guo
- Jiangxi Province Centre for Disease Control and Prevention, Youth Science and Technology Innovation Research Team, Nanchang 330029, P.R. China
| | - Weipeng Tong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tingting Gan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Peng Zhang
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Qiong Liu
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Youwen Tan
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Chengsheng Zhang
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Center for Molecular Diagnosis and Precision Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330209, P.R. China
- School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi Medical Academy of Nutrition and Health Management, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, P.R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
7
|
Kakkar P, Kakkar T, Nampi PP, Jose G, Saha S. Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke. Biosens Bioelectron 2025; 275:117227. [PMID: 39923527 DOI: 10.1016/j.bios.2025.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/28/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Over 17 million people experience a stroke episode annually, with 5.9 million deaths. Stroke is diagnosed by physical tests and neuroimaging which need to be performed quickly to determine if the stroke is caused by ischaemia or haemorrhage. Neuroimaging can reliably confirm bleeding, but many patients with suspected ischaemic stroke (up to 40%) are subsequently confirmed to have alternative pathologies e.g., migraine or seizures (stroke mimics) delaying the transfer of stroke patients to an acute stroke unit for early intervention and treatment. Thus, a simple complimentary blood biomarker test to differentiate stroke patients from non-stroke patients with similar clinical symptoms is essential in prehospital and emergency settings for efficient stroke management and prompt treatment. The current 'Gold Standard' technique for detecting protein biomarkers is complex, time-consuming, and requires automated equipment. In this study, we have developed a proof-of-concept of lanthanide-doped upconversion nanoparticle (UCNP)-based optical biosensor platform for detecting glial fibrillary acidic protein (GFAP), a potential stroke biomarker, in human blood serum. The results show a linear response in photoluminescence quenching of UCNP conjugated GFAP antibody with the increasing concentration of GFAP biomarker in human blood serum. This approach can be used in the ambulance and Emergency Department to quickly diagnose a stroke. In the longer term, such techniques can be integrated into a self-assessment kit to monitor those patients who are at risk after strokes.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Tarun Kakkar
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Padmaja Parameswaran Nampi
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Gin Jose
- School of Chemical and Process Engineering (SCAPE), University of Leeds, LS2 9JT, Leeds, United Kingdom.
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), Faculty of Medicine and Health, University of Leeds, LS2 9JT, Leeds, United Kingdom.
| |
Collapse
|
8
|
Lima E, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. D-(+)-Biotinylated squaraine dyes: A journey from synthetic conception, photophysical and -chemical characterization, to the exploration of their photoantitumoral action mechanisms. Eur J Med Chem 2025; 293:117699. [PMID: 40349637 DOI: 10.1016/j.ejmech.2025.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Biotin is primarily taken up by cells through sodium-dependent multivitamin transporter, which is highly expressed in aggressive cancer cell lines, often at levels surpassing those of the folate receptor. This makes biotin an attractive ligand for tumor-targeted drug delivery. Building on this rationale, this study presents a series of six D-(+)-biotin-conjugated squaraine dyes derived from benzothiazole, indolenine, and benz[e]indole, with N-ethyl and N-hexyl chains. These compounds were thoroughly characterized in terms of their photophysical and photochemical properties, revealing strong absorption in the so-called "phototherapeutic window", notable fluorescence, especially the benzothiazole derivatives, aqueous stability, particularly the indolenine-based dyes, and moderate to high photostability. Computational studies further indicated a strong binding affinity to human serum albumin and avidin proteins. All dyes exhibited photodynamic activity, with indolenine derivatives showing remarkable tumor selectivity and benz[e]indole analogs evidencing superior photocytotoxicity. The most promising compounds preferentially accumulated in mitochondria, and both singlet oxygen and other reactive oxygen species were found to play a role in their photobiological effects. Additionally, they were non-genotoxic in the absence of irradiation, and apoptosis was the primary mechanism of cell death upon light activation. This was evidenced by preserved cytoplasmic membrane integrity, nuclear fragmentation, and caspase-3/7 activation, reinforcing the safety and potential of these compounds as phototherapeutic agents. Although cellular uptake via the sodium-dependent multivitamin transporter was not established, and diffusion is expected to be the predominant mechanism, the high predicted avidin-binding affinity of these dyes opens exciting new avenues for photodynamic therapy-combined strategies.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal; RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
9
|
Chen FY, Fu R, Gong Z, Li C, Guo DS, Cai K. Ultrahigh-Affinity Molecular Recognition in Water and Biomedical Applications. Angew Chem Int Ed Engl 2025:e202500916. [PMID: 40240679 DOI: 10.1002/anie.202500916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Aqueous-phase molecular recognition pairs with ultrahigh binding affinity hold immense value in biotechnology and chemical applications. However, the rational design of synthetic pairs with such exceptional binding strength has long remained a significant challenge, with notable progress achieved only in recent years. In this minireview, we begin by defining the term "ultrahigh-affinity" through a comprehensive analysis of available data on aqueous-phase molecular recognition by water-soluble macrocyclic hosts. Based on this foundation, we provide a detailed overview of the latest advancements in various classes of ultrahigh-affinity receptors, extracting key design principles that drive their remarkable performance. We further highlight emerging applications of ultrahigh-affinity molecular pairs in biomedical materials, spanning bioorthogonal chemistry, biosensing, bioimaging, drug delivery, and toxin sequestration. These examples underscore the transformative potential of ultrahigh-affinity recognition in addressing real-world biomedical challenges. Finally, we offer a forward-looking perspective on the future of this rapidly evolving field, exploring potential directions for designing more diverse and functional ultrahigh-affinity molecular recognition tools. By bridging the gap between fundamental science and practical applications, this minireview aims to inspire the development of next-generation molecular recognition systems and foster deeper integration between supramolecular chemistry and biomedical materials, paving the way for innovative solutions to pressing biomedical needs.
Collapse
Affiliation(s)
- Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Zhihao Gong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Chunju Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Kang Cai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Dong Q, Sun X, Wang Y, Zhang W, Feng F, Li D, Wang J, Wang E. Enabling Sensitive Quantification of Exosomes Combining Aptamer-Based Rolling Circle Amplification and Silver Nanoparticles. Anal Chem 2025; 97:7212-7220. [PMID: 40153314 DOI: 10.1021/acs.analchem.4c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Exosomes carry various biological information and are abundant in body fluids, making them a promising noninvasive biomarker for disease diagnosis and prognosis. However, current detection methods have limitations in sensitivity, specificity, and cost effectiveness, hindering their clinical application. To address these challenges, we have developed a fast, accurate, and cost-effective method for detecting exosomes with high sensitivity and specificity, making it ideal for clinical applications. Clusters of differentiation 63 (CD63) aptamer with its complementary DNA (CD63 aptamer/cDNA) linked to streptavidin-coated magnetic beads (SA-MBs) are used as a capture probe. Exosomes with CD63 proteins can bind to the aptamer and release the cDNA, which initiates rolling circle amplification (RCA) to magnify the cDNA copies. The negatively charged RCA products induce the aggregation of positively charged spermine-modified silver nanoparticles (AgNPs) through electrostatic attraction. The aggregation of AgNPs can be observed visually with the naked eye or quantitatively analyzed using ultraviolet-visible (UV-vis) spectroscopy to determine the concentration of exosomes, with limits of detection of 4.0 × 104 particles/mL for visual observation and 800 particles/mL for UV-vis spectroscopy, respectively. The method has also been demonstrated for detecting the exosomes in serum samples, indicating its potential for clinical use in liquid biopsy.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
- College of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261053, P. R. China
| | - Xu Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fan Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jin Wang
- Department of Chemistry of Physics & Astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
11
|
Petrov D, Plais L, Schira K, Cai J, Keller M, Lessing A, Bassi G, Cazzamalli S, Neri D, Gloger A, Scheuermann J. Flexibility-tuning of dual-display DNA-encoded chemical libraries facilitates cyclic peptide ligand discovery. Nat Commun 2025; 16:3273. [PMID: 40188178 PMCID: PMC11972359 DOI: 10.1038/s41467-025-58507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Cyclic peptides constitute an important drug modality since they offer significant advantages over small molecules and macromolecules. However, access to diverse chemical sets of cyclic peptides is difficult on a large library scale. DNA-encoded Chemical Libraries (DELs) provide a suitable tool to obtain large chemical diversity, but cyclic DELs made by standard DEL implementation cannot efficiently explore their conformational diversity. On the other hand, dual-display Encoded Self-Assembling Chemical (ESAC) Libraries can be used for modulating macrocycle flexibility since the two displayed peptides can be connected in an incremental fashion. In this work, we construct a 56 million dual-display ESAC library using a two-step cyclization strategy. We show that varying the level of conformational restraint is essential for the discovery of specific ligands for the three protein targets thrombin, human alkaline phosphatase and streptavidin.
Collapse
Affiliation(s)
- Dimitar Petrov
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Louise Plais
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Kristina Schira
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Junyu Cai
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Michelle Keller
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Alice Lessing
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Gabriele Bassi
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | | | - Dario Neri
- Philochem AG, Libernstrasse 3, 8112, Otelfingen, Switzerland
| | - Andreas Gloger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | - Jörg Scheuermann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland.
| |
Collapse
|
12
|
Ali SA, Chen YL, Tseng HS, Ayalew H, She JW, Gautam B, Tu HL, Hsiao YS, Yu HH. Poly(3,4-ethylenedioxythiophene) Nanorod Arrays-Based Organic Electrochemical Transistor for SARS-CoV-2 Spike Protein Detection in Artificial Saliva. ACS Sens 2025; 10:2007-2018. [PMID: 40080450 PMCID: PMC11959606 DOI: 10.1021/acssensors.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
The outbreak and continued spread of coronavirus disease 2019 (COVID-19) have significantly threatened public health. Antibody testing is essential for infection diagnosis, seroepidemiological analysis, and vaccine evaluation. However, achieving convenient, fast, and accurate detection remains challenging in this prolonged battle. This study reports a highly sensitive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein detection platform based on organic electrochemical transistors (OECTs) for biosensing applications. We developed a nanostructured poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer with the carboxylic acid functional group (PEDOTAc) for modifying specific antibodies on an OECT channel for the detection of the COVID-19 spike protein. The OECT device features a channel composed of a PEDOT:polystyrenesulfonate (PEDOT:PSS) bottom layer, with the upper layer decorated with PEDOTAc nanorod arrays via the oxidative polymerization and a trans-printing method. Our novel PEDOTAc nanorod array-based OECT device exhibits promising potential for future healthcare and point-of-care sensing due to its rapid response, high sensitivity, and high accuracy. Through optimization, we achieved specific detection of the SARS-CoV-2 spike protein within minutes, with a detectable region from 10 fM to 100 nM. These biosensors hold significant promise for use in the diagnosis and prognosis of COVID-19.
Collapse
Affiliation(s)
- Syed Atif Ali
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science & Technology, Taiwan International Graduate Program
(TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ying-Lin Chen
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hsueh-Sheng Tseng
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hailemichael Ayalew
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Jia-Wei She
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Department
of Engineering and System Science, National
Tsing Hua University, Hsinchu 30010, Taiwan
| | - Bhaskarchand Gautam
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiung-Lin Tu
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Yu-Sheng Hsiao
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Hsiao-hua Yu
- Smart Organic
Materials Laboratory, Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Sustainable
Chemical Science & Technology, Taiwan International Graduate Program
(TIGP), Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2025; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
14
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
15
|
Zhang Y, Zhao J, Guo H, Lu X, Tan D. Production and Bioseparation Applications of Polyhydroxyalkanoate Nano-Granules Functionalized with Streptavidin. Microorganisms 2025; 13:312. [PMID: 40005680 PMCID: PMC11858450 DOI: 10.3390/microorganisms13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Rapidly growing industrial biotechnology and bio-manufacturing require simple and cost-effective bioseparation tools. A novel strategy of bioseparation based on the streptavidin-decorated polyhydroxyalkanoate (PHA) nano-granules was developed in this study. By fusing to the N-terminus of PHA-associated phasin protein, the streptavidin was one-step immobilized on the surface of PHA nano-granules simultaneously with the accumulation of PHA in recombinant Escherichia coli. About 1.95 g/L of PHA nano-granules (54.51 wt% of cell dry weight) were produced after 48 h bacterial cultivation. The following qualitative and quantitative characterizations demonstrated that the streptavidin accounted for approximately 6.78% of the total weight of the purified PHA nano-granules and confirmed a considerable biotin affinity of 0.1 ng biotin/μg surface protein. As a proof of concept, the nano-granules were further functionalized with biotinylated oligo(dT) for mRNA isolation and about 1.26 μg of mRNA (occupied 2.59%) was purified from 48.45 μg of total RNA, achieving good integrity and high purity with few DNA and rRNA contaminations. Moreover, the nano-granules retained more than 80% of their initial mRNA recovery efficiency after ten cycles of repeated use. The PHA-SAP nano-granules were also functionalized with biotinylated magnetic beads, allowing magnetic recovery of the PHA nano-granules from cell lysates that still needs optimization. Our study provides a novel and expandable platform of PHA nano-granules that can be further functionalized with various biological groups for bioseparation applications. The functional PHA nano-granules have a great potential to serve as bioseparation resin for large-scale purification processes after suitable optimizations for "bench-to-factory" translation, contributing to scalable and sustainable bioprocessing.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Life Science & Technology, Xinjiang University, Urumchi 830049, China;
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Jiping Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Hui Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| |
Collapse
|
16
|
Wei X, Luo QY, Li Y, Yuan J, Deng M, Liu X, Zhong P, Ouyang H, Li Y, Huang J, Quan H, Chu J, Yu X, Zhou W, Jin Z. Flexible Site-Specific Labeling-Mediated Self-Assembly Sensor Based on Quantum Dots and LUMinescent AntiBody Sensor for Duplexed Detection of Antibodies. ACS Sens 2025; 10:301-309. [PMID: 39791864 DOI: 10.1021/acssensors.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra. This issue complicates the implementation of multiplexed detection. To address this challenge, we present an innovative enhancement to the LUMABS sensor with quantum dots (QDs) as the acceptor instead of FP. The use of QDs offers several advantages over those of traditional FP-based sensors. The biotin-avidin system facilitates the flexible interchangeability of QDs, allowing for a more convenient multicolor sensor construct. The new QD-LUMABS system overcomes the limitations of spectral cross-talk and provides better spectral separation. This breakthrough enables the successful implementation of multiplexed detection for multiple targets simultaneously. Results demonstrated that the wavelength-tunable QD-LUMABS sensors achieved picomolar-level detection limits for antibodies and that this sensor-construction strategy was generally applicable among various epitopes and their antibodies. Furthermore, this sensor displayed excellent duplexing capabilities. These features underscore its potential for future clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Xiaoyuan Wei
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qing-Ying Luo
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen 518055, P. R. China
| | - Yeqing Li
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jing Yuan
- Shenzhen Bay Laboratory, Institute of Systems and Physical Biology, Shenzhen 518132, P. R. China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xinyu Liu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Peiluan Zhong
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | | | - Yanfei Li
- HeavyBio, Inc., Shenzhen 518102, P. R. China
| | | | | | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Xuefeng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Wenhua Zhou
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zongwen Jin
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| |
Collapse
|
17
|
Yan S, Gan Y, Xu H, Piao H. Bacterial carrier-mediated drug delivery systems: a promising strategy in cancer therapy. Front Bioeng Biotechnol 2025; 12:1526612. [PMID: 39845371 PMCID: PMC11750792 DOI: 10.3389/fbioe.2024.1526612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cancer is a major killer threatening modern human health and a leading cause of death worldwide. Due to the heterogeneity and complexity of cancer, traditional treatments have limited effectiveness. To address this problem, an increasing number of researchers and medical professionals are working to develop new ways to treat cancer. Bacteria have chemotaxis that can target and colonize tumor tissue, as well as activate anti-tumor immune responses, which makes them ideal for biomedical applications. With the rapid development of nanomedicine and synthetic biology technologies, bacteria are extensively used as carriers for drug delivery to treat tumors, which holds the promise of overcoming the limitations of conventional cancer treatment regimens. This paper summarizes examples of anti-cancer drugs delivered by bacterial carriers, and their strengths and weaknesses. Further, we emphasize the promise of bacterial carrier delivery systems in clinical translation.
Collapse
Affiliation(s)
- Sizuo Yan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Yu Gan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
- Central Laboratory, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
18
|
Mengrani Z, Hong W, Palma M. DNA-Mediated Carbon Nanotubes Heterojunction Assembly. ACS NANOSCIENCE AU 2024; 4:391-398. [PMID: 39713723 PMCID: PMC11659895 DOI: 10.1021/acsnanoscienceau.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 12/24/2024]
Abstract
Herein, we present a strategy for the controlled assembly of single-walled carbon nanotube (SWCNT) linear junctions mediated by DNA as a functional linker. We demonstrate this by employing SWCNTs of two different chiralities via the specific design of DNA sequences and chiral selection. Streptavidin and AuNP labeling of the SWCNT sidewalls demonstrate the presence of two different chirality within each individual CNT-DNA-CNT junction. These one-dimensional nanohybrids were further organized from solution to devices. The approach we developed is of general applicability for the assembly of functional nanohybrids based on carbon nanotubes toward functional applications.
Collapse
Affiliation(s)
| | | | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
19
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024; 9:5626-5641. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
20
|
Shilova NV, Polyakova SM, Nokel AY, Lipatnikov AD, Gordeeva EA, Lavrenteva MV, Bovin NV. (Strept)avidin Binds Glycoconjugates. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2023-2027. [PMID: 39647829 DOI: 10.1134/s0006297924110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 12/10/2024]
Abstract
Fluorescently labeled and conjugated (strept)avidins are widely used for imaging biotinylated molecules in immunological assays and histochemistry. We showed that besides biotin, these proteins bind glycans, including fragments of mammalian glycoproteins and glycolipids, in particular, ABO blood group antigens, oligolactosamines, and 6-O-sulfated oligosaccharides. This interaction is inhibited in a dose-dependent manner by micromolar concentrations of polymeric, but not monomeric, glycan conjugates (i.e., requires polyvalence). Taking into account the cluster organization of cell glycans (glycoproteins and glycolipids), the ability of (strept)avidins to bind glycans might be a source of errors in the analysis of carbohydrate-containing samples, which can be prevented by avoiding a large excess of (strept)avidin in analytical systems.
Collapse
Affiliation(s)
- Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of the Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - Svetlana M Polyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey Yu Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of the Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - Alexander D Lipatnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Elena A Gordeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Marina V Lavrenteva
- Biotechnology Department, MIREA - Russian Technological University, Moscow, 119571, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
21
|
Salazar Marcano DE, Chen JJ, Moussawi MA, Kalandia G, Anyushin AV, Parac-Vogt TN. Redox-active polyoxovanadates as cofactors in the development of functional protein assemblies. J Inorg Biochem 2024; 260:112687. [PMID: 39142056 DOI: 10.1016/j.jinorgbio.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
The interactions of polyoxovanadates (POVs) with proteins have increasingly attracted interest in recent years due to their potential biomedical applications. This is especially the case because of their redox and catalytic properties, which make them interesting for developing artificial metalloenzymes. Organic-inorganic hybrid hexavanadates in particular offer several advantages over all-inorganic POVs. However, they have been scarcely investigated in biological systems even though, as shown in this work, hybrid hexavanadates are highly stable in aqueous solutions up to relatively high pH. Therefore, a novel bis-biotinylated hexavanadate was synthesized and shown to selectively interact with two biotin-binding proteins, avidin and streptavidin. Bridging interactions between multiple proteins led to their self-assembly into supramolecular bio-inorganic hybrid systems that have potential as artificial enzymes with the hexavanadate core as a redox-active cofactor. Moreover, the structure and charge of the hexavanadate core were determined to enhance the binding affinity and slightly alter the secondary structure of the proteins, which affected the size and speed of formation of the assemblies. Hence, tuning the polyoxometalate (POM) core of hybrid POMs (HPOMs) with protein-binding ligands has been demonstrated to be a potential strategy for controlling the self-assembly process while also enabling the formation of novel POM-based biomaterials that could be of interest in biomedicine.
Collapse
Affiliation(s)
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
22
|
Wang Z, Dai J, He H, Si T, Ng K, Zheng S, Zhou X, Zhou Z, Yuan H, Yang M. Cellulose Nanofibrils of High Immunoaffinity for Efficient Enrichment of Small Extracellular Vesicles. SMALL METHODS 2024; 8:e2400426. [PMID: 38678531 PMCID: PMC11579556 DOI: 10.1002/smtd.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Indexed: 05/01/2024]
Abstract
Extracellular vesicles (EVs), crucial in facilitating the transport of diverse molecular cargoes for intercellular communication, have shown great potential in diagnostics, therapeutics, and drug delivery. The challenge of developing effective preparation methods for EVs is heightened by their intrinsic heterogeneity and complexity. Here, a novel strategy for high EV enrichment is developed by utilizing EV-affinitive-modified cellulose nanofibrils. Specifically, modified cellulose with rich carboxyl groups has outstanding dispersing properties, able to be dispersed into cellulose nanofibrils in solution. These cellulose nanofibrils are utilized as scaffolds for the immobilization of EV-affinitive antibody of CD63 by chemical conjugation. The CD63-modified nanofibrils demonstrate a superior EV capture efficiency of 86.4% compared with other reported methods. The high performance of this system is further validated by the efficient capture of EVs from biological blood plasma, allowing the detection of bioactive markers from EV-derived miRNAs and proteins. The authors envision that these modified cellulose nanofibrils of enhanced capability on EV enrichment will open new avenues in various biomedical applications.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jun Dai
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Tongxu Si
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Kaki Ng
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Shuang Zheng
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Present address:
Department of Civil EngineeringUniversity of Hong KongPokfulamHong KongP. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Zhihang Zhou
- Department of Gastroenterologythe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Huijun Yuan
- Department of Biochip CenterWuwei Tumor Hospital of Gansu ProvinceGansu730000P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhen518000P. R. China
- Department of Biomedical Sciences, and Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
23
|
Chen J, Zhang G, Xiao X, Liu D, Peng J, Xiong Y, Lai W. Bifunctional bovine serum albumin modification driven sensitivity-enhanced lateral flow immunoassay for small molecule hazards monitoring in food. Int J Biol Macromol 2024; 282:136915. [PMID: 39476895 DOI: 10.1016/j.ijbiomac.2024.136915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Traditional lateral flow immunoassays (TLFIAs) are valued for their simplicity, speed, and user-friendliness. However, the specificity of conventional test strips often necessitates large quantities of antigen-protein conjugates for target detection, which can be resource-intensive. Here, we present a strategy aimed at enhancing the universality of test strips while reducing the consumption of antigen-protein conjugates, without compromising sensitivity. By coating streptavidin on the test line and employing bifunctional antigen-protein conjugates (competitor to target and immunoprobe linker), the test strip was thus served as a universal module. We developed three universal lateral flow immunoassays (ULFIAs) for the detection of aflatoxin B1 (AFB1), carbendazim (CBZ), and enrofloxacin (ENR). Compared to traditional methods based on the same aggregation-induced emission fluorescent microspheres, the proposed ULFIAs demonstrated a significant increase in sensitivity, with enhancements of 11.0-fold for AFB1, 10.9-fold for CBZ, and 4.1-fold for ENR. Additionally, this approach substantially reduced the consumption of antigen-protein conjugates by 19.1-fold, 40.9-fold, and 23.8-fold, respectively, thereby promoting greener detection methods. This bifunctional antigen conjugate strategy offers a promising pathway for the sensitive detection of small molecule hazards.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Yonghua Xiong
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
24
|
De Plano LM, Oddo S, Bikard D, Caccamo A, Conoci S. Generation of a Biotin-Tagged Dual-Display Phage. Cells 2024; 13:1696. [PMID: 39451214 PMCID: PMC11506469 DOI: 10.3390/cells13201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Phage display is widely used in biomedical research. One of the great advantages of phage display is the specificity of the connection of a foreign peptide exposed outside the capsid to the intended target. Secondary detection systems, which are often laborious and costly, are required to identify and quantify the peptide/target interaction. In this study, we generated a novel dual-display phage to facilitate the detection and quantification of the peptide/target interaction. First, we generated a biotin-tagged phage by adding a small biotin-accepting peptide (sBT) to gene-3 of the M13K07 helper phage. Subsequently, we enhanced the M13K07 biotin-tagged phage by incorporating a selective peptide on gene-8, which is then exposed to the phage capsid. The exposed peptide acts as a probe to bind to a selective molecular target, whose interaction can be readily visualized thanks to the biotinylated phage. Our versatile dual-display phage exhibits high flexibility; by swapping the displayed peptide/probe, one can change the phage target while retaining the sBT gene in-frame with the pIII. We expect the generated biotin-tagged dual phages to be used as a multifunctional probe to couple with several streptavidin-biotin-based systems.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (S.O.); (S.C.)
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (S.O.); (S.C.)
| | - David Bikard
- Pasteur Institute, University of Paris, Synthetic Biology, 75015 Paris, France;
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (S.O.); (S.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (L.M.D.P.); (S.O.); (S.C.)
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- LAB Sense Beyond Nano—DSFTM CNR, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
25
|
Kawashima T, Nakamura M, Sakono M. A one-process production of completely biotinylated proteins in a T7 expression system. Biotechnol Appl Biochem 2024; 71:1070-1078. [PMID: 38770738 DOI: 10.1002/bab.2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Streptavidin is a tetrameric protein with high specificity and affinity for biotin. The interaction between avidin and biotin has become a valuable tool in nanotechnology. In recent years, the site-specific biotin modification of proteins using biotin ligases, such as BirA, has attracted attention. This study established an in vivo method for achieving the complete biotinylation of target proteins using a single plasmid co-expressing BirA and its target proteins. Specifically, a biotin-modified protein was produced in Escherichia coli strain BL21(DE3) using a single plasmid containing genes encoding both BirA and a protein fused to BirA's substrate sequence, Avitag. This approach simplifies the production of biotinylated proteins in E. coli and allows the creation of various biotinylated protein types through gene replacement. Furthermore, the biotin modification rate of the obtained target protein could be evaluated using Native-PAGE without performing complicated isolation operations of biotinylated proteins. In Native-PAGE, biotin-modified proteins and unmodified proteins were confirmed as clearly different bands, and it was possible to easily derive the modification rate from the respective band intensities.
Collapse
Affiliation(s)
- Takuma Kawashima
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Mitsuki Nakamura
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
26
|
Prudhomme M, Lakhdar C, Fattaccioli J, Addouche M, Chollet F. Functionalization of microbubbles in a microfluidic chip for biosensing application. Biomed Microdevices 2024; 26:39. [PMID: 39287824 DOI: 10.1007/s10544-024-00721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
Microbubbles are widely used for biomedical applications, ranging from imagery to therapy. In these applications, microbubbles can be functionalized to allow targeted drug delivery or imaging of the human body. However, functionalization of the microbubbles is quite difficult, due to the unstable nature of the gas/liquid interface. In this paper, we describe a simple protocol for rapid functionalization of microbubbles and show how to use them inside a microfluidic chip to develop a novel type of biosensor. The microbubbles are functionalized with biochemical ligand directly at their generation inside the microfluidic chip using a DSPE-PEG-Biotin phospholipid. The microbubbles are then organized inside a chamber before injecting the fluid with the bioanalyte of interest through the static bubbles network. In this proof-of-concept demonstration, we use streptavidin as the bioanalyte of interest. Both functionalization and capture are assessed using fluorescent microscopy thanks to fluorescent labeled chemicals. The main advantages of the proposed technique compared to classical ligand based biosensor using solid surface is its ability to rapidly regenerate the functionalized surface, with the complete functionalization/capture/measurement cycle taking less than 10 min.
Collapse
Affiliation(s)
- Marc Prudhomme
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Chaimaa Lakhdar
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL Université, Sorbonne Université, CNRS, F-75005, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, F-75005, Paris, France
| | - Mahmoud Addouche
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France
| | - Franck Chollet
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, Besançon, F-25000, France.
| |
Collapse
|
27
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
28
|
Wiest A, Kielkowski P. Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers. Beilstein J Org Chem 2024; 20:2323-2341. [PMID: 39290210 PMCID: PMC11406061 DOI: 10.3762/bjoc.20.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.
Collapse
Affiliation(s)
- Andreas Wiest
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Pavel Kielkowski
- LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
29
|
Xiao S, Mu M, Feng C, Pan S, Chen N. The application of bacteria-nanomaterial hybrids in antitumor therapy. J Nanobiotechnology 2024; 22:536. [PMID: 39227831 PMCID: PMC11373302 DOI: 10.1186/s12951-024-02793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Adverse effects and multidrug resistance remain significant obstacles in conventional cancer therapy. Nanomedicines, with their intrinsic properties such as nano-sized dimensions and tunable surface characteristics, have the potential to mitigate the side effects of traditional cancer treatments. While nanomaterials have been widely applied in cancer treatment, challenges such as low targeting efficiency and poor tumor penetration persist. Recent research has shown that anaerobic bacteria exhibit high selectivity for primary tumors and metastatic cancers, offering good safety and superior tumor penetration capabilities. This suggests that combining nanomaterials with bacteria could complement their respective limitations, opening vast potential applications in cancer therapy. The use of bacteria in combination with nanomaterials for anticancer treatments, including chemotherapy, radiotherapy, and photothermal/photodynamic therapy, has contributed to the rapid development of the field of bacterial oncology treatments. This review explores the mechanisms of bacterial tumor targeting and summarizes strategies for synthesizing bacterial-nanomaterial and their application in cancer therapy. The combination of bacterial-nanomaterial hybrids with modern therapeutic approaches represents a promising avenue for future cancer treatment research, with the potential to improve treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Susu Xiao
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenqian Feng
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shulin Pan
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Groaz E, Modranka J, Ploschik D, Jabgunde A, Froeyen M, Jang MY, Wagenknecht HA, Herdewijn P. Impact of sulfur substitution on biotin binding affinity to streptavidin. Bioorg Chem 2024; 150:107600. [PMID: 38945086 DOI: 10.1016/j.bioorg.2024.107600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jakub Modranka
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Damian Ploschik
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Amit Jabgunde
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mi-Yeon Jang
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Chen J, Wang B, Dasgupta A, Porte C, Eckardt L, Qi J, Weiler M, Lammers T, Rix A, Shi Y, Kiessling F. Aminolysis-mediated single-step surface functionalization of poly (butyl cyanoacrylate) microbubbles for ultrasound molecular imaging. J Nanobiotechnology 2024; 22:528. [PMID: 39218888 PMCID: PMC11367926 DOI: 10.1186/s12951-024-02806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Molecular ultrasound imaging with actively targeted microbubbles (MB) proved promising in preclinical studies but its clinical translation is limited. To achieve this, it is essential that the actively targeted MB can be produced with high batch-to-batch reproducibility with a controllable and defined number of binding ligands on the surface. In this regard, poly (n-butyl cyanoacrylate) (PBCA)-based polymeric MB have been used for US molecular imaging, however, ligand coupling was mostly done via hydrolysis and carbodiimide chemistry, which is a multi-step procedure with poor reproducibility and low MB yield. Herein, we developed a single-step coupling procedure resulting in high MB yields with minimal batch-to-batch variation. Actively targeted PBCA-MB were generated using an aminolysis protocol, wherein amine-containing cRGD was added to the MB using lithium methoxide as a catalyst. We confirmed the successful conjugation of cRGD on the MB surface, while preserving their structure and acoustic signal. Compared to the conventional hydrolysis protocol, aminolysis resulted in higher MB yields and better reproducibility of coupling efficiency. Optical imaging revealed that under flow conditions, cRGD- and rhodamine-labelled MB, generated by aminolysis, specifically bind to tumor necrosis factor-alpha (TNF-α) activated endothelial cells in vitro. Furthermore, US molecular imaging demonstrated a markedly higher binding of the cRGD-MB than of control MB in TNF-α activated mouse aortas and 4T1 tumors in mice. Thus, using the aminolysis based conjugation approach, important refinements on the production of cRGD-MB could be achieved that will facilitate the production of clinical-scale formulations with excellent binding and ultrasound imaging performance.
Collapse
Affiliation(s)
- Junlin Chen
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Bi Wang
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Céline Porte
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Lisa Eckardt
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Jinwei Qi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Yang Shi
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
32
|
Weber TM, Özdüzenciler P, Tamgüney G, Pietruszka J. Utilization of a Branched Late-Stage Clickable Biotinylated Chassis on the Example of a Pittsburgh B Analogue. Org Lett 2024; 26:6771-6775. [PMID: 39051841 PMCID: PMC11320650 DOI: 10.1021/acs.orglett.4c02527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Biotinylation is probably the most frequent and practically useful modification of molecules to facilitate selective and highly affine binding to (strept)avidin for immobilization, enrichment, and purification for further (bio)chemical or (bio)physical investigations. We present a protecting-group-free synthesis of a branched biotin bis-azide that enables dual-payload late-stage functionalization with arbitrary alkynes via click chemistry. Utility of the chassis is briefly showcased on the example of a valuable Pittsburgh B analogue, which binds pathological protein aggregates, commonly found in neurodegenerative diseases.
Collapse
Affiliation(s)
- T. Moritz Weber
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf
im Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pelin Özdüzenciler
- Institut
für Biologische Informationsprozesse 7 (IBI-7: Strukturbiochemie), Forschungszentrum Jülich, 52428 Jülich, Germany
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Gültekin Tamgüney
- Institut
für Biologische Informationsprozesse 7 (IBI-7: Strukturbiochemie), Forschungszentrum Jülich, 52428 Jülich, Germany
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Jörg Pietruszka
- Mathematisch-Naturwissenschaftliche
Fakultät, Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf
im Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut
für Bio- und Geowissenschaften 1 (IBG-1: Biotechnologie), Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
33
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
34
|
Stewart JM, Li S, Tang AA, Klocke MA, Gobry MV, Fabrini G, Di Michele L, Rothemund PWK, Franco E. Modular RNA motifs for orthogonal phase separated compartments. Nat Commun 2024; 15:6244. [PMID: 39080253 PMCID: PMC11289419 DOI: 10.1038/s41467-024-50003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.
Collapse
Affiliation(s)
- Jaimie Marie Stewart
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Shiyi Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA
| | - Martin Vincent Gobry
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Giacomo Fabrini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- fabriCELL, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Department of Bioengineering, California Institute of Technology, Pasadena, USA.
- Department of Computation & Neural Systems, California Institute of Technology, Pasadena, USA.
| | - Elisa Franco
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Zou M, Zhou H, Gu L, Zhang J, Fang L. Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics. BIOLOGY 2024; 13:555. [PMID: 39194493 DOI: 10.3390/biology13080555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Throughout the human lifespan, from conception to the end of life, small molecules have an intrinsic relationship with numerous physiological processes. The investigation into small-molecule targets holds significant implications for pharmacological discovery. The determination of the action sites of small molecules provide clarity into the pharmacodynamics and toxicological mechanisms of small-molecule drugs, assisting in the elucidation of drug off-target effects and resistance mechanisms. Consequently, innovative methods to study small-molecule targets have proliferated in recent years, with chemical proteomics standing out as a vanguard development in chemical biology in the post-genomic age. Chemical proteomics can non-selectively identify unknown targets of compounds within complex biological matrices, with both probe and non-probe modalities enabling effective target identification. This review attempts to summarize methods and illustrative examples of small-molecule target identification via chemical proteomics. It delves deeply into the interactions between small molecules and human biology to provide pivotal directions and strategies for the discovery and comprehension of novel pharmaceuticals, as well as to improve the evaluation of drug safety.
Collapse
Affiliation(s)
- Mingjie Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Haiyuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Letian Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
36
|
Xu J, Brown NJS, Seol Y, Neuman KC. Heterogeneous distribution of kinesin-streptavidin complexes revealed by mass photometry. SOFT MATTER 2024; 20:5509-5515. [PMID: 38832814 PMCID: PMC11254546 DOI: 10.1039/d3sm01702h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Kinesin-streptavidin complexes are widely used in microtubule-based active-matter studies. The stoichiometry of the complexes is empirically tuned but experimentally challenging to determine. Here, mass photometry measurements reveal heterogenous distributions of kinesin-streptavidin complexes. Our binding model indicates that heterogeneity arises from both the kinesin-streptavidin mixing ratio and the kinesin-biotinylation efficiency.
Collapse
Affiliation(s)
- Jing Xu
- Department of Physics, University of California, Merced, CA 95343, USA.
| | - Nathaniel J S Brown
- Department of Quantitative and Systems Biology, University of California, Merced, CA 95343, USA
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Oppenheimer KG, Hager NA, McAtee CK, Filiztekin E, Shang C, Warnick JA, Bruchez MP, Brodsky JL, Prosser DC, Kwiatkowski AV, O’Donnell AF. Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in S. cerevisiae. Mol Biol Cell 2024; 35:mr5. [PMID: 38809589 PMCID: PMC11244157 DOI: 10.1091/mbc.e24-04-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Spatial and temporal tracking of fluorescent proteins (FPs) in live cells permits visualization of proteome remodeling in response to extracellular cues. Historically, protein dynamics during trafficking have been visualized using constitutively active FPs fused to proteins of interest. While powerful, such FPs label all cellular pools of a protein, potentially masking the dynamics of select subpopulations. To help study protein subpopulations, bioconjugate tags, including the fluorogen activation proteins (FAPs), were developed. FAPs are comprised of two components: a single-chain antibody (SCA) fused to the protein of interest and a malachite-green (MG) derivative, which fluoresces only when bound to the SCA. Importantly, the MG derivatives can be either cell-permeant or -impermeant, thus permitting isolated detection of SCA-tagged proteins at the cell surface and facilitating quantitative endocytic measures. To expand FAP use in yeast, we optimized the SCA for yeast expression, created FAP-tagging plasmids, and generated FAP-tagged organelle markers. To demonstrate FAP efficacy, we coupled the SCA to the yeast G-protein coupled receptor Ste3. We measured Ste3 endocytic dynamics in response to pheromone and characterized cis- and trans-acting regulators of Ste3. Our work significantly expands FAP technology for varied applications in S. cerevisiae.
Collapse
Affiliation(s)
| | - Natalie A. Hager
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Elif Filiztekin
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | - Chaowei Shang
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Adam V. Kwiatkowski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | | |
Collapse
|
38
|
Sangji MH, Lee SR, Sai H, Weigand S, Palmer LC, Stupp SI. Self-Sorting vs Coassembly in Peptide Amphiphile Supramolecular Nanostructures. ACS NANO 2024; 18:15878-15887. [PMID: 38848478 DOI: 10.1021/acsnano.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The functionality of supramolecular nanostructures can be expanded if systems containing multiple components are designed to either self-sort or mix into coassemblies. This is critical to gain the ability to craft self-assembling materials that integrate functions, and our understanding of this process is in its early stages. In this work, we have utilized three different peptide amphiphiles with the capacity to form β-sheets within supramolecular nanostructures and found binary systems that self-sort and others that form coassemblies. This was measured using atomic force microscopy to reveal the nanoscale morphology of assemblies and confocal laser scanning microscopy to determine the distribution of fluorescently labeled monomers. We discovered that PA assemblies with opposite supramolecular chirality self-sorted into chemically distinct nanostructures. In contrast, the PA molecules that formed a mixture of right-handed, left-handed, and flat nanostructures on their own were able to coassemble with the other PA molecules. We attribute this phenomenon to the energy barrier associated with changing the handedness of a β-sheet twist in a coassembly of two different PA molecules. This observation could be useful for designing biomolecular nanostructures with dual bioactivity or interpenetrating networks of PA supramolecular assemblies.
Collapse
Affiliation(s)
- M Hussain Sangji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E Superior St., Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 N St. Clair Street, Chicago, Illinois 60611, United States
| |
Collapse
|
39
|
Huang G, Li C, Wu R, Xue G, Song Q, Lan L, Xue C, Xu L, Shen Z. Self-assembly of protein-DNA hybrids dedicated to an accelerated and self-primed strand displacement amplification for reinforced serum microRNA probing. Anal Chim Acta 2024; 1308:342667. [PMID: 38740453 DOI: 10.1016/j.aca.2024.342667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification. Thus, it is crucial to create a modular probe with a controlled structure, high local concentration, and ease of synthesis. RESULTS Inspired by the natural spatial-confinement effect based on a well-known streptavidin-biotin interaction, we constructed a protein-DNA hybrid, named protein-scaffolded DNA tetrads (PDT), which consists of four biotinylated Y-shaped DNA (Y-DNA) surrounding a streptavidin protein center via a streptavidin-biotin bridge. The streptavidin-biotin recognition system significantly increased the local concentration and intermolecular distance of the probes to achieve enhanced reaction efficiency and kinetics. The PDT-based assay starts with the target miRNA binding to Y-DNA, which disassembles the Y-DNA structures into three types of hairpin-shaped structures via self-primed strand displacement amplification (SPSDA) and generates remarkable fluorescence signal that is proportional to the miRNA concentration. Results demonstrated that PDT enabled a more efficient detection of miRNA-21 with a sensitivity of 1 fM. Moreover, it was proven reliable for the detection of clinical serum samples, suggesting great potential for advancing the development of rapid and robust signal amplification technologies for early diagnosis. SIGNIFICANCE This simple yet robust system contributes to the early diagnosis of miR-21 with satisfactory sensitivity and specificity, and display a significantly improved nuclease resistance owing to their unique structure. The results suggested that the strategy is expected to provide a promising potential platform for tumor diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Guoqiao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Department of Laboratory Medicine, Jintang First People's Hospital, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, PR China
| | - Chan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Rong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi, 332000, PR China
| | - Qiufeng Song
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linwen Lan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
40
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
41
|
Alhassan AM, Shirure VS, Luo J, Nguyen BB, Rollins ZA, Shergill BS, Zhu X, Baumgarth N, George SC. A Microfluidic Strategy to Capture Antigen‐Specific High‐Affinity B Cells. ADVANCED NANOBIOMED RESEARCH 2024; 4. [DOI: 10.1002/anbr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Assessing B cell affinity to pathogen‐specific antigens prior to or following exposure could facilitate the assessment of immune status. Current standard tools to assess antigen‐specific B cell responses focus on equilibrium binding of the secreted antibody in serum. These methods are costly, time‐consuming, and assess antibody affinity under zero force. Recent findings indicate that force may influence BCR‐antigen binding interactions and thus immune status. Herein, a simple laminar flow microfluidic chamber in which the antigen (hemagglutinin of influenza A) is bound to the chamber surface to assess antigen‐specific BCR binding affinity of five hemagglutinin‐specific hybridomas from 65 to 650 pN force range is designed. The results demonstrate that both increasing shear force and bound lifetime can be used to enrich antigen‐specific high‐affinity B cells. The affinity of the membrane‐bound BCR in the flow chamber correlates well with the affinity of the matched antibodies measured in solution. These findings demonstrate that a microfluidic strategy can rapidly assess BCR‐antigen‐binding properties and identify antigen‐specific high‐affinity B cells. This strategy has the potential to both assess functional immune status from peripheral B cells and be a cost‐effective way of identifying individual B cells as antibody sources for a range of clinical applications.
Collapse
Affiliation(s)
- Ahmed M. Alhassan
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Venktesh S. Shirure
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Jean Luo
- Department of Pathology, Microbiology, and Immunology University of California Davis CA 95616 USA
| | - Bryan B. Nguyen
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | - Zachary A. Rollins
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| | | | - Xiangdong Zhu
- Department of Physics and Astronomy University of California Davis CA 95616 USA
| | - Nicole Baumgarth
- Department of Pathology, Microbiology, and Immunology University of California Davis CA 95616 USA
- Department of Molecular Microbiology and Immunology Bloomberg School of Public Health and Department of Molecular and Comparative Pathobiology School of Medicine Johns Hopkins University Baltimore MD 21205 USA
| | - Steven C. George
- Department of Biomedical Engineering University of California Davis CA 95616 USA
| |
Collapse
|
42
|
Williams TL, Taily IM, Hatton L, Berezin AA, Wu Y, Moliner V, Świderek K, Tsai Y, Luk LYP. Secondary Amine Catalysis in Enzyme Design: Broadening Protein Template Diversity through Genetic Code Expansion. Angew Chem Int Ed Engl 2024; 63:e202403098. [PMID: 38545954 PMCID: PMC11497281 DOI: 10.1002/anie.202403098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/20/2024]
Abstract
Secondary amines, due to their reactivity, can transform protein templates into catalytically active entities, accelerating the development of artificial enzymes. However, existing methods, predominantly reliant on modified ligands or N-terminal prolines, impose significant limitations on template selection. In this study, genetic code expansion was used to break this boundary, enabling secondary amines to be incorporated into alternative proteins and positions of choice. Pyrrolysine analogues carrying different secondary amines could be incorporated into superfolder green fluorescent protein (sfGFP), multidrug-binding LmrR and nucleotide-binding dihydrofolate reductase (DHFR). Notably, the analogue containing a D-proline moiety demonstrated both proteolytic stability and catalytic activity, conferring LmrR and DHFR with the desired transfer hydrogenation activity. While the LmrR variants were confined to the biomimetic 1-benzyl-1,4-dihydronicotinamide (BNAH) as the hydride source, the optimal DHFR variant favorably used the pro-R hydride from NADPH for stereoselective reactions (e.r. up to 92 : 8), highlighting that a switch of protein template could broaden the nucleophile option for catalysis. Owing to the cofactor compatibility, the DHFR-based secondary amine catalysis could be integrated into an enzymatic recycling scheme. This established method shows substantial potential in enzyme design, applicable from studies on enzyme evolution to the development of new biocatalysts.
Collapse
Affiliation(s)
- Thomas L. Williams
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Irshad M. Taily
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Lewis Hatton
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Andrey A Berezin
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Yi‐Lin Wu
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM)Universitat Jaume I12071CastellóSpain
| | - Yu‐Hsuan Tsai
- Institute of Molecular PhysiologyShenzhen Bay LaboratoryGaoke International Innovation CenterGuangming District518132Shenzhen, GuangdongChina
| | - Louis Y. P. Luk
- School of Chemistry and Cardiff Catalysis InstituteCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUnited Kingdom
| |
Collapse
|
43
|
Saipul Bahri NSN, Nguyen TT, Matsumoto K, Watanabe M, Morita Y, Septiani EL, Cao KLA, Hirano T, Ogi T. Controlling the Magnetic Responsiveness of Cellulose Nanofiber Particles Embedded with Iron Oxide Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:3227-3237. [PMID: 38627897 DOI: 10.1021/acsabm.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.
Collapse
Affiliation(s)
- Nur Syakirah Nabilah Saipul Bahri
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Tue Tri Nguyen
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Kohei Matsumoto
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Mai Watanabe
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Yuko Morita
- Life Sciences Headquarters, DKS Co. Ltd., 5 Ogawara, Kisshoin, Minami, Kyoto 601-8391, Japan
| | - Eka Lutfi Septiani
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Tomoyuki Hirano
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8527, Japan
| |
Collapse
|
44
|
Liu K, Wang L, Peng J, Lyu Y, Li Y, Duan D, Zhang W, Wei G, Li T, Niu Y, Zhao Y. Drug-Loaded Bacillus Calmette-Guérin Bacteria for Immuno-Chemo Combo Therapy in Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310735. [PMID: 38330363 DOI: 10.1002/adma.202310735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Intravesical Bacillus Calmette-Guérin (BCG) is a well-established strategy for managing high-risk nonmuscle-invasive bladder cancer (NMIBC); however, over half of patients still experience disease recurrence or progression. Although the combined intravesical instillation of various chemotherapeutic drugs is implemented in clinical trials to enhance the BCG therapy, the outcome is far from satisfying due to severe irritative effects and treatment intolerance at high doses. Therefore, it is adopted the "biotin-streptavidin strategy" to doxorubicin (DOX)-encapsulated nanoparticles within live BCG bacteria (DOX@BCG) to improve treatment outcomes. Adherence of BCG to the bladder epithelium helps precisely target DOX@BCG to the local tumor cells and simultaneously increases intratumoral transport of therapeutic drugs. DOX@BCG effectively inhibits cancer progression and prolongs the survival of rats/mice with orthotopic bladder cancer owing to synergism between BCG-immunotherapy, DOX-chemotherapy, and DOX-induced immunogenic tumor cell death; furthermore, it exhibits improved tolerance and biosafety, and establishes antitumor immunity in the tumor microenvironment. Therefore, the drug-loaded live BCG bacterial delivery system holds considerable potential for clinical translation in the intravesical treatment of bladder cancer.
Collapse
Affiliation(s)
- Kangkang Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lining Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Peng
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanji Lyu
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yiming Li
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dengyi Duan
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenyi Zhang
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Guojiang Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Taipeng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Zhao
- Department of Radiology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
45
|
Zakiyyah SN, Irkham, Einaga Y, Gultom NS, Fauzia RP, Kadja GTM, Gaffar S, Ozsoz M, Hartati YW. Green Synthesis of Ceria Nanoparticles from Cassava Tubers for Electrochemical Aptasensor Detection of SARS-CoV-2 on a Screen-Printed Carbon Electrode. ACS APPLIED BIO MATERIALS 2024; 7:2488-2498. [PMID: 38577953 DOI: 10.1021/acsabm.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Green synthesis approaches for making nanosized ceria using starch from cassava as template molecules to control the particle size are reported. The results of the green synthesis of ceria with an optimum calcination temperature of 800 °C shows a size distribution of each particle of less than 30 nm with an average size of 9.68 nm, while the ratio of Ce3+ to Ce4+ was 25.6%. The green-synthesized nanoceria are applied to increase the sensitivity and attach biomolecules to the electrode surface of the electrochemical aptasensor system for coronavirus disease (COVID-19). The response of the aptasensor to the receptor binding domain of the virus was determined with the potassium ferricyanide redox system. The screen-printed carbon electrode that has been modified with green-synthesized nanoceria shows 1.43 times higher conductivity than the bare electrode, while those modified with commercial ceria increase only 1.18 times. Using an optimized parameter for preparing the aptasensors, the detection and quantification limits were 1.94 and 5.87 ng·mL-1, and the accuracy and precision values were 98.5 and 89.1%. These results show that green-synthesized ceria could be a promising approach for fabricating an electrochemical aptasensor.
Collapse
Affiliation(s)
- Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Noto Susanto Gultom
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Retna Putri Fauzia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Mehmet Ozsoz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
46
|
Talapphet N, Huh CS, Kim MM. Development of gold nanocluster complex for the detection of tumor necrosis factor-alpha based on immunoassay. J Immunol Methods 2024; 527:113648. [PMID: 38373541 DOI: 10.1016/j.jim.2024.113648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Tumor necrosis factor-alpha, TNF-α, a cytokine recognized as a key regulator of inflammatory responses, is primarily produced by activated monocytes and macrophages. Measuring TNF-α levels serves as a valuable indicator for tracking several diseases and pathological states. Gold nanotechnology has been identified as a highly effective catalyst with unique properties for measuring inflammatory cytokines. This study aimed to synthesize gold nanoclusters (AuNCs) and the AuNCs-streptavidin system, along with their characterizations and spherical morphology. The detection of TNF-α antigen with AuNCs was determined, and a new immunoassay-based AuNCs analytical platform was studied. In this study, it was demonstrated that the synthesized AuNCs and AuNCs-streptavidin showed a bright-yellow appearance with absorption peaks at A600 and A610 nm, respectively. The approximately spherical shape was observed by TEM analysis. The AuNCs demonstrated a sensitivity limit for the detection of the TNF-α antigen, with a linear dose-dependent detection range of less than 1.25 ng/mL. The products of the band sizes and band intensities were proportional to the amount of TNF-α in the range of ∼80 kDa, ∼55 kDa, and ∼ 25 kDa in western blot analysis. The TNF-α in cell lysate was successfully detected using an immunoassay after the activation of RAW264.7 cells with lipopolysaccharide (LPS). This assay may serve as a viable alternative for TNF-α detection with high speed, sensitivity, and qualities, ensuring its broad applications.
Collapse
Affiliation(s)
- Natchanok Talapphet
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea
| | - Chang Soon Huh
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 47340, Republic of Korea.
| |
Collapse
|
47
|
Zhang Y, Zhang Y, Zhou W, He P, Sun X, Li J, Wei H, Yu J. Rapid and sensitive detection of SARS-CoV-2 IgM through luciferase luminescence on an automatic platform. Int J Biol Macromol 2024; 265:130964. [PMID: 38499123 DOI: 10.1016/j.ijbiomac.2024.130964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
SARS-CoV-2 has brought a global health crisis worldwide. IgM is an early marker in sera after the infections, and the detection of IgM is crucial to assist diagnosis and evaluate the vaccination clinically. Herein, we developed an automated platform to identify IgM against SARS-CoV-2 in sera. Streptavidin-magnetic beads were utilized to bind to a biotinylated anti-IgM antibody, which was employed to capture IgM in sera. RBD fused luciferase hGluc was employed to label the trapped IgM against RBD and the signal of luminescence of hGluc with the substrate of coelenterazine corresponded to the amount of SARS-CoV-2 IgM conjugated to the magnetic beads. An appropriate cut-off value of the designed method was defined by a set of negative samples and positive samples with 100 % sensitivity and 100 % specificity. Through serial dilution of a positive sample, it was found that the method has a better sensitivity than ELISA. The application to determine IgM against SARS-CoV-2 demonstrated a good performance of the method. The developed system can complete the analysis of SARS-CoV-2 IgM within 25 min. Through the substitution of RBD antigen with antigens of other pathogens in this platform, the automated detection of IgM against the corresponding pathogens can be realized.
Collapse
Affiliation(s)
- Yibing Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yun Zhang
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xueni Sun
- Laboratory of Infection and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Junhua Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
48
|
Liao Z, Jiang J, Wu W, Shi J, Wang Y, Yao Y, Sheng T, Liu F, Liu W, Zhao P, Lv F, Sun J, Li H, Gu Z. Lymph node-biomimetic scaffold boosts CAR-T therapy against solid tumor. Natl Sci Rev 2024; 11:nwae018. [PMID: 38440217 PMCID: PMC10911814 DOI: 10.1093/nsr/nwae018] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
The limited infiltration and persistence of chimeric antigen receptor (CAR)-T cells is primarily responsible for their treatment deficits in solid tumors. Here, we present a three-dimensional scaffold, inspired by the physiological process of T-cell proliferation in lymph nodes. This scaffold gathers the function of loading, delivery, activation and expansion for CAR-T cells to enhance their therapeutic effects on solid tumors. This porous device is made from poly(lactic-co-glycolic acid) by a microfluidic technique with the modification of T-cell stimulatory signals, including anti-CD3, anti-CD28 antibodies, as well as cytokines. This scaffold fosters a 50-fold CAR-T cell expansion in vitro and a 15-fold cell expansion in vivo. Particularly, it maintains long-lasting expansion of CAR-T cells for up to 30 days in a cervical tumor model and significantly inhibits the tumor growth. This biomimetic delivery strategy provides a versatile platform of cell delivery and activation for CAR-T cells in treating solid tumors.
Collapse
Affiliation(s)
- Ziyan Liao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jiaqi Shi
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yanfang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuejun Yao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Sheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feifei Lv
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
49
|
Liu J, Yuan S, Bremmer A, Hu Q. Convergence of Nanotechnology and Bacteriotherapy for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309295. [PMID: 38358998 PMCID: PMC11040386 DOI: 10.1002/advs.202309295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Bacteria have distinctive properties that make them ideal for biomedical applications. They can self-propel, sense their surroundings, and be externally detected. Using bacteria as medical therapeutic agents or delivery platforms opens new possibilities for advanced diagnosis and therapies. Nano-drug delivery platforms have numerous advantages over traditional ones, such as high loading capacity, controlled drug release, and adaptable functionalities. Combining bacteria and nanotechnologies to create therapeutic agents or delivery platforms has gained increasing attention in recent years and shows promise for improved diagnosis and treatment of diseases. In this review, design principles of integrating nanoparticles with bacteria, bacteria-derived nano-sized vesicles, and their applications and future in advanced diagnosis and therapeutics are summarized.
Collapse
Affiliation(s)
- Jun Liu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Sichen Yuan
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of PharmacyUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Wisconsin Center for NanoBioSystemsUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
- Carbone Cancer Center, School of Medicine and Public HealthUniversity of Wisconsin, Madison (UW‐Madison)MadisonWI53705USA
| |
Collapse
|
50
|
Lee J, Soares G, Doty C, Park J, Hovey J, Schrader A, Han HS. Versatile Prepolymer Platform for Controlled Tailoring of Quantum Dot Surface Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15202-15214. [PMID: 38470982 PMCID: PMC11070902 DOI: 10.1021/acsami.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Quantum dots (QDs) hold immense promise for bioimaging, yet technical challenges in surface engineering limit their wider scientific use. We introduce poly(pentafluorophenyl acrylate) (PPFPA) as a user-friendly prepolymer platform for creating precisely controlled multidentate polymeric ligands for QD surface engineering, accessible to researchers without extensive synthetic expertise. PPFPA combines the benefits of both bottom-up and prepolymer approaches, offering minimal susceptibility to hydrolysis and side reactions for controlled chemical composition, along with simple synthetic procedures using commercially available reagents. Live cell imaging experiments highlighted a significant reduction in nonspecific binding when employing PPFPA, owing to its minimal hydrolysis, in contrast to ligands synthesized by using a conventional prepolymer prone to uncontrolled hydrolysis. This observation underscores the distinct advantage of our prepolymer system. Leveraging PPFPA, we synthesized biomolecule-conjugated QDs and performed QD-based immunofluorescence to detect a cytosolic protein. To effectively label cytosolic targets in such a dense and complex environment, probes must exhibit minimal nonspecific binding and be compact. As a result, QD-immunofluorescence has focused primarily on cell surface targets. By creating compact QD-F(ab')2, we sensitively detected alpha-tubulin with a ∼50-fold higher signal-to-noise ratio compared to organic dye-based labeling. PPFPA represents a versatile and accessible platform for tailoring QD surfaces, offering a pathway to realize the full potential of colloidal QDs in various scientific applications.
Collapse
Affiliation(s)
- JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Biological and Environmental Studies, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Giselle Soares
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Calvin Doty
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joonhyuck Park
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Jack Hovey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alex Schrader
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|