1
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025; 15:1877-1906. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
2
|
Rietveld PCS, Guchelaar NAD, Sassen SDT, Koch BCP, Mathijssen RHJ, Koolen SLW. A Clinical Pharmacological Perspective on Intraperitoneal Chemotherapy. Drugs 2025:10.1007/s40265-025-02195-9. [PMID: 40411722 DOI: 10.1007/s40265-025-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/26/2025]
Abstract
Peritoneal metastases (PM), frequently observed in malignancies such as ovarian, colorectal, pancreatic, and gastric cancers, present a significant therapeutic challenge due to poor prognosis and limited effectiveness to systemic chemotherapy. The peritoneal-plasma barrier reduces effective drug transfer from plasma to the peritoneal cavity, reducing cytotoxic effects on PM. Intraperitoneal (IP) chemotherapy offers a locoregional approach, enabling high local drug concentrations that can enhance therapeutic efficacy while limiting systemic toxicity. The three major methods for IP administration-hyperthermic intraperitoneal chemotherapy (HIPEC), pressurized intraperitoneal aerosol chemotherapy (PIPAC), and catheter-based IP (CBIP) chemotherapy-each provide unique pharmacokinetic (PK) advantages for PM treatment. This review provides a comprehensive update on the pharmacological rationale of IP chemotherapy, focusing on drug characteristics that support extended IP retention and effective tumor targeting. The effects of administration variables are discussed, highlighting their role in optimizing IP drug exposure. Additionally, recent PK data on commonly used drugs in IP therapy, including platinum-based agents, taxanes, and novel nanoparticle formulations, will be evaluated. While PK rationale supports the administration of IP chemotherapy, further efficacy results from ongoing clinical trials are still awaited. Innovations in nanoparticle-based formulations and controlled-release systems offer substantial potential for improving both drug retention and targeted delivery, enhancing treatment precision and minimizing systemic toxicity. Continued exploration in these areas, along with optimization of IP administration protocols, is vital for advancing patient outcomes, refining therapeutic strategies, and maximizing the benefits of IP chemotherapy in clinical practice.
Collapse
Affiliation(s)
- Pascale C S Rietveld
- Department of Clinical Pharmacy, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan D T Sassen
- Department of Clinical Pharmacy, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Clinical Pharmacy, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Clinical Pharmacy, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Yan D, Ma X, Hu Y, Zhang G, Hu B, Xiang B, Cheng X, Jing Y, Chen X. Nanomicellar Prodrug Delivery of Glucose-Paclitaxel: A Strategy to Mitigate Paclitaxel Toxicity. Int J Nanomedicine 2025; 20:2087-2101. [PMID: 39990288 PMCID: PMC11844307 DOI: 10.2147/ijn.s500999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Background Paclitaxel-induced blood system disorders and peripheral neuropathy impede the progress of new formulations in clinical trials. Purpose of Study To mitigate these adverse effects by developing and validating a prodrug strategy that encapsulates a glucose-paclitaxel conjugate within nanomicelles. Material and Methods Succinic anhydride was used as a bridge to couple C2'-paclitaxel with methyl 2'-glucopyranose and prepare a glucose-paclitaxel conjugate. Nanomicelles were prepared via solid-phase dispersion, and dynamic light scattering was used to determine their average diameter and the polydispersity index. High-performance liquid chromatography (HPLC) was employed to evaluate drug-loading capacity and encapsulation efficiency. Pharmacokinetic studies and in vivo toxicity assays were performed in Sprague-Dawley (SD) rats. Results The nanomicellar product exhibited a spherical shape with a particle size distribution between 20-60 nm, a PDI of 0.26 ± 0.01, and an encapsulation efficiency of 95.59 ± 1.73%. The pharmacokinetic profile of glucose-paclitaxel nanomicelles in SD rats was markedly different from that of the paclitaxel solution group. Notably, the plasma drug concentration of glucose-paclitaxel nanomicelles was significantly higher than the paclitaxel solution 15 minutes post-administration, with a Vz at only 40% of that of the paclitaxel solution, while the AUC0-∞ was five times greater than that of the paclitaxel solution. Ultimately, glucose-paclitaxel nanomicelles effectively alleviated blood system disorders and peripheral neuropathy in SD rats. Conclusion The encapsulation of glucose-paclitaxel conjugates within nanomicelles presents a viable solution to the dose-limiting toxicities associated with paclitaxel, offering new perspectives on safety for the development of paclitaxel-based therapeutics.
Collapse
Affiliation(s)
- Didi Yan
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Xinyue Ma
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Yixin Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Bo Xiang
- Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaokun Cheng
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
- New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, 050015, People’s Republic of China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
| | - Xi Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People’s Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang, 050018, People’s Republic of China
| |
Collapse
|
4
|
Aza MK, Suberu A, Balogun M, Adegbola G, Sankoh MA, Oyediran T, Aderinto N, Olatunji G, Kokori E, Agbo CE. Nanotheranostics for gynecological cancers: a path forward for Africa. Med Oncol 2024; 42:34. [PMID: 39704911 DOI: 10.1007/s12032-024-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle-based therapies represent a transformative approach to managing gynecological cancers, offering targeted treatment strategies that minimize harm to healthy tissues while maximizing therapeutic efficacy. Despite their potential, implementing these advanced treatments in Africa is needed by a complex interplay of technological, economic, regulatory, and ethical challenges. This paper examines the current landscape of nanoparticle-based therapies, identifying critical barriers to their adoption, including inadequate infrastructure, high costs, and insufficient regulatory frameworks. Technological deficiencies manifest as a need for advanced nanoparticle synthesis, delivery, and diagnostics equipment, impeding research and clinical applications. Economically, the high production costs of nanoparticles, compounded by limited access to advanced diagnostic and treatment facilities, create significant financial barriers for healthcare systems and patients alike. Additionally, the regulatory environment needs to be more cohesive, characterized by a lack of established protocols and expertise to evaluate the unique properties of nanomedicines. However, opportunities for advancement exist through focused research and development initiatives. Targeted drug delivery systems, early detection methods, and immunotherapy integration are promising avenues to enhance treatment outcomes. Collaborative partnerships between African institutions and international research entities, alongside public-private collaborations, could bolster local capabilities in nanomedicine. To facilitate the integration of nanoparticle-based therapies, African governments must prioritize funding for nanomedicine research, create robust regulatory frameworks, and ensure equitable access to these innovative treatments. A concerted effort involving policy reforms, investment, and collaboration is essential for overcoming existing barriers and realizing the full potential of nanoparticle-based therapies in improving health outcomes for gynecological cancer patients across Africa.
Collapse
Affiliation(s)
- Mutia Kehwalla Aza
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | | | | | | | | | | - Gbolahan Olatunji
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | |
Collapse
|
5
|
Pan S, Yuan H, Zhai Q, Zhang Y, He H, Yin T, Tang X, Gou J. The journey of nanoparticles in the abdominal cavity: Exploring their in vivo fate and impact factors. J Control Release 2024; 376:266-285. [PMID: 39396710 DOI: 10.1016/j.jconrel.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal carcinomatosis (PC) is caused by metastasis of primary tumor cells from intra-abdominal organs to the peritoneal surface. Intraperitoneal (IP) chemotherapy allows close contact of high concentrations of therapeutic agents with cancer cells in the peritoneal cavity to prolong patient survival. However, conventional IP chemotherapy is prone to rapid elimination from the peritoneal cavity and lacks specificity towards cancer cells. To address these challenges, there is an imperative demand for exploiting novel drug delivery systems to enhance drug retention in the peritoneal cavity and target PC cells. Therefore, in this review, we first recapitulate the physiological structures and barriers associated with IP drug delivery, highlighting the in vivo fate of nanoparticles (NPs) after IP administration. Furthermore, the influence of physicochemical properties (particle size, charge, surface modification, and carrier composition) on the in vivo fate of NPs is discussed. Perspectives on the rational design of NPs for IP therapy and recent clinical progress are also provided.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Qiyao Zhai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
6
|
Cai Y, Zhang Z, Liu C, Tai Z, Zhu Q, Qi J, Lu Y, Chen Z, Wu W, He H. Size-dependent translocation and lymphatic transportation of polymeric nanocarriers post intraperitoneal administration. J Control Release 2024; 376:553-565. [PMID: 39427777 DOI: 10.1016/j.jconrel.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Intraperitoneal (i.p.) administered nanomedicine has been widely applied in the clinical treatment of intra-abdominal diseases and preclinical pharmacological investigations. However, current understandings about the in vivo fate of i.p.-administered drug remains controversial owing to lack of reliable investigation tools. This work presents a nanoparticle-labeling strategy based on aggregation-caused quenching (ACQ) probes in the second near-infrared (NIR-II) window, which can eliminate the interference of unbound probes and allow for non-invasive tracking of nanoparticles in deep tissues. Our results strongly evidence a size-dependent absorption and biodistribution of the i.p.-administered polymeric nanocarriers (PNs) with particle sizes ranging from 30 to 1000 nm both in vivo and ex vivo, and moreover provide a clear visualization of lymphatic transportation and lymph node retention of integral PNs. Importantly, our findings suggest that small particles (≤30 nm) are favorable in systemic therapies due to their rapid absorption and high concentration (>19 %ID mL-1) in circulation, while large particles (over 1000 nm) are meant for localized treatment of abdominal diseases. Besides, the high retention of 200 nm nanoparticles within lymph nodes indicates their promising role in cancer vaccines and lymphatic diseases including lymph node metastasis.
Collapse
Affiliation(s)
- Yifan Cai
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zichen Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chang Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Fudan Zhangjiang Institute, Shanghai 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
7
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
8
|
diZerega GS, Maulhardt HA, Verco SJ, Marin AM, Baltezor MJ, Mauro SA, Iacobucci MA. Intratumoral Injection of Large Surface Area Microparticle Taxanes in Carcinomas Increases Immune Effector Cell Concentrations, Checkpoint Expression, and Synergy with Checkpoint Inhibitors: A Review of Preclinical and Clinical Studies. Oncol Ther 2024; 12:31-55. [PMID: 38289576 PMCID: PMC10881942 DOI: 10.1007/s40487-024-00261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024] Open
Abstract
This review summarizes development of large surface area microparticle paclitaxel (LSAM-PTX) and docetaxel (LSAM-DTX) for local treatment of primary carcinomas with emphasis on immunomodulation. Intratumoral (IT) delivery of LSAM-PTX and LSAM-DTX provides continuous, therapeutic drug levels for several weeks. Preclinical studies and clinical trials reported a reduction in tumor volume (TV) and immunomodulation in primary tumor and peripheral blood with increases in innate and adaptive immune cells and decreases in suppressor cells. Increased levels of checkpoint expression of immune cells occurred in clinical trials of high-risk non-muscle-invasive bladder cancer (LSAM-DTX) and unresectable localized pancreatic cancer (LSAM-PTX). TV reduction and increases in immune effector cells occurred following IT LSAM-DTX and IT LSAM-PTX together with anti-mCTLA-4 and anti-mPD-1, respectively. Synergistic benefits from combinatorial therapy in a 4T1-Luc breast cancer model included reduction of metastasis with IT LSAM-DTX + anti-mCTLA-4. IT LSAM-PTX and LSAM-DTX are tumoricidal, immune enhancing, and may improve solid tumor response to immune checkpoint inhibitors without additional systemic toxicity.
Collapse
Affiliation(s)
- Gere S diZerega
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA.
- NanOlogy, LLC., 3909 Hulen Street, Fort Worth, TX, 76107, USA.
| | - Holly A Maulhardt
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Shelagh J Verco
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Alyson M Marin
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | | - Samantha A Mauro
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | |
Collapse
|
9
|
Maulhardt HA, Marin AM, diZerega GS. Intratumoral Treatment of Melanoma Tumors with Large Surface Area Microparticle Paclitaxel and Synergy with Immune Checkpoint Inhibition. Int J Nanomedicine 2024; 19:689-697. [PMID: 38283196 PMCID: PMC10812144 DOI: 10.2147/ijn.s449975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The effects of intratumoral (IT) large surface area microparticle paclitaxel (LSAM-PTX) alone and in combination with systemic administration of the programmed cell death protein antibody (anti-mPD-1) were evaluated in a syngeneic murine model of melanoma. Groups of mice with subcutaneously implanted Clone M3 (Cloudman S91) tumors were treated with single and combination therapies. Tumor volume (TV) measurements, body weights, and clinical observations were followed in-life. At end of study, tumor-site tissues were collected, measured, and processed for flow cytometry along with blood and lymph nodes. The combination of LSAM-PTX + anti-mPD-1 resulted in an antitumoral response, which produced a significant decrease in TV compared to control animals. TV decreases also occurred in the LSAM-PTX and anti-mPD-1 groups. Flow cytometry analysis found increases in granulocytes and M2 macrophages and decreases in dendritic cells (DC) and monocytic myeloid-derived suppressor cells (M-MDSC) in tumor-site tissues. Increases in granulocytes and decreases in CD4+ T cells, macrophages, and M1 macrophages were found in the blood of animals administered the combination treatment. Increases in natural killer (NK) cells were found in lymph node tissue in the combination treatment group. These findings suggest that IT LSAM-PTX may provide benefit in the local treatment of melanomas and may synergize with systemic anti-PD-1 therapy, leading to additional tumoricidal outcomes without added systemic toxicity.
Collapse
Affiliation(s)
| | | | - Gere S diZerega
- US Biotest, Inc, San Luis Obispo, CA, USA
- Nanology, LLC, Fort Worth, TX, USA
| |
Collapse
|
10
|
Wang P, Luo Q, Zhang L, Qu X, Che X, Cai S, Liu Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf B Biointerfaces 2023; 231:113558. [PMID: 37776774 DOI: 10.1016/j.colsurfb.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, the First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China.
| |
Collapse
|
11
|
Wientjes MG, Lu Z, Chan CHF, Turaga K, Au JLS. Surgical management of peritoneal metastasis: Opportunities for pharmaceutical research. J Control Release 2023; 361:717-726. [PMID: 37574051 PMCID: PMC10560040 DOI: 10.1016/j.jconrel.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Cytoreductive surgery (CRS) has emerged as a survival-extending treatment of peritoneal metastasis (PM); recent advances include using intraperitoneal chemotherapy (IPC) at normothermic or hyperthermic temperatures, or under pressure (CRS + IPC). Clinical CRS + IPC research has established its highly variable efficacy and suggested tumor size, tumor locations and presence of ascites as potential determinants. On the other hand, there is limited knowledge on the effects of pharmaceutical properties on treatment outcomes. The present study investigated the inter-subject variability of paclitaxel binding to proteins in patient ascites because some PM patients show accumulation of ascites and because activity and transport of highly protein-bound drugs such as paclitaxel are affected by protein binding. Ascites samples were collected from 26 patients and investigated for their protein contents using LC/MS/MS proteomics analysis and for the concentrations of total proteins and two major paclitaxel-binding proteins (human serum albumin or HSA and α-1-acid glycoprotein or AAG). The association constants of paclitaxel to HSA and AAG and the extent of protein binding of paclitaxel in patient ascites were studied using equilibrium dialysis. Proteomic analysis of four randomly selected samples revealed 288 proteins, >90% of which are also present in human plasma. Between 72% - 94% of paclitaxel was bound to proteins in patient ascites. The concentrations of HSA and AAG in ascites showed substantial inter-subject variations, ranging from 14.7 - 46.3 mg/mL and 0.13-2.56 mg/mL, respectively. The respective paclitaxel association constants to commercially available HSA and AAG were ∼ 3.5 and ∼ 120 mM. Calculation using these constants and the HSA and AAG concentrations in individual patient ascites indicated that these two proteins accounted for >85% of the total protein-binding of paclitaxel in ascites. The extensive drug binding to ascites proteins, by reducing the pharmacologically active free fraction, may lead to the diminished CRS efficacy in PM patients with ascites. Clinical advances in CRS + IPC have outpaced current knowledge of pharmaceutical properties in this setting. IPC, as a locally acting therapy, is subjected to processes different from those governing systemic treatments. This study, to our knowledge, is the first to illustrate the implications of drug properties in the CRS + IPC efficacy against PM. While drugs are now an integral part of PM patient management, there is limited pharmaceutical research in this treatment setting (e.g., effects of hyperthermia or pressure on drug transport or release from delivery systems, pharmacokinetics, pharmacodynamics). Hence, CRS + IPC of PM represents an area where additional pharmaceutical research can assist further development and optimization.
Collapse
Affiliation(s)
| | - Ze Lu
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Carlos H F Chan
- Department of Surgery and Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Kiran Turaga
- School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Jessie L S Au
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Guo C, Yuan H, Wang Y, Feng Y, Zhang Y, Yin T, He H, Gou J, Tang X. The interplay between PEGylated nanoparticles and blood immune system. Adv Drug Deliv Rev 2023; 200:115044. [PMID: 37541623 DOI: 10.1016/j.addr.2023.115044] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
During the last two decades, an increasing number of reports have pointed out that the immunogenicity of polyethylene glycol (PEG) may trigger accelerated blood clearance (ABC) and hypersensitivity reaction (HSR) to PEGylated nanoparticles, which could make PEG modification counterproductive. These phenomena would be detrimental to the efficacy of the load and even life-threatening to patients. Consequently, further elucidation of the interplay between PEGylated nanoparticles and the blood immune system will be beneficial to developing and applying related formulations. Many groups have worked to unveil the relevance of structural factors, dosing schedule, and other factors to the ABC phenomenon and hypersensitivity reaction. Interestingly, the results of some reports seem to be difficult to interpret or contradict with other reports. In this review, we summarize the physiological mechanisms of PEG-specific immune response. Moreover, we speculate on the potential relationship between the induction phase and the effectuation phase to explain the divergent results in published reports. In addition, the role of nanoparticle-associated factors is discussed based on the classification of the action phase. This review may help researchers to develop PEGylated nanoparticles to avoid unfavorable immune responses based on the underlying mechanism.
Collapse
Affiliation(s)
- Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yuxiu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
13
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
14
|
Sharma NR, Lo SK, Hendifar A, Othman MO, Patel K, Mendoza-Ladd A, Verco S, Maulhardt HA, Verco J, Wendt A, Marin A, Schmidt CM, diZerega G. Response of Locally Advanced Pancreatic Cancer to Intratumoral Injection of Large Surface Area Microparticle Paclitaxel: Initial Report of Safety and Clinical Outcome. Pancreas 2023; 52:e179-e187. [PMID: 37782888 DOI: 10.1097/mpa.0000000000002236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
OBJECTIVES Large surface area microparticle paclitaxel (LSAM-PTX) provides an intratumoral (IT) chemotherapeutic depot. Safety, tolerability, and tumor response to IT LSAM-PTX delivered by endoscopic ultrasound-fine needle injection were evaluated in subjects with unresectable locally advanced pancreatic cancer (LAPC). METHODS Ten subjects treated in a dose escalation phase and 22 additional subjects receiving 2 injections, 4 weeks apart, of 15 mg/mL LSAM-PTX were followed for 12 months. Paclitaxel pharmacokinetics were evaluated, imaging at 3 and 6 months determined tumor response, and multiplex immunofluorescence was conducted to characterize local immune response. RESULTS Most treatment-emergent adverse events were attributed to LAPC. Plasma paclitaxel levels were negligible. Eight subjects' tumors became resectable after IT LSAM-PTX, and 5 of 6 (83%) were resected with R0. Multiplex immunofluorescence of resected tumors demonstrated increased T cells, natural killer cells, and macrophages and decreased myeloid-derived suppressor cells. Six-month disease control rate was 94%, and median overall survival was 19.7 months in the 2-injection subjects. For nonresected and resected groups, overall survival times were 18.9 and 35.2 months, respectively. CONCLUSIONS Neoadjuvant IT LSAM-PTX, in combination with SOC, was well tolerated and may provide benefits to LAPC patients, evidenced by enhanced immune response, improved disease control rate, restaging leading to surgery, and extended survival.
Collapse
Affiliation(s)
- Neil R Sharma
- From the Division of Interventional Oncology and Surgical Endoscopy, Parkview Cancer Institute, Fort Wayne, IN
| | - Simon K Lo
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Andrew Hendifar
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mohamed O Othman
- Gastroenterology and Hepatology Section, Baylor College of Medicine Medical Center, Houston, TX
| | - Kalpesh Patel
- Gastroenterology and Hepatology Section, Baylor College of Medicine Medical Center, Houston, TX
| | - Antonio Mendoza-Ladd
- Division of Gastroenterology, Texas Tech University Health Sciences Center at El Paso, El Paso, TX
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Maulhardt H, Verco S, Baltezor M, Marin A, diZerega G. Local administration of large surface area microparticle docetaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects: preclinical and clinical studies. Drug Deliv Transl Res 2023; 13:503-519. [PMID: 36058988 PMCID: PMC9794539 DOI: 10.1007/s13346-022-01226-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/31/2022]
Abstract
This report describes local administration of large surface area microparticle docetaxel (LSAM-DTX: ~ 3.5- to 7.5-µm-sized particles with high relative surface area) in preclinical oncology models and in a clinical trial in urothelial carcinoma. Reductions in tumor volumes were found following intratumoral (IT) injection of LSAM-DTX into human urologic carcinoma cell lines and syngeneic murine renal and breast cancer cell lines. Compared to IT injections of docetaxel solution typically administered intravenously, IT LSAM-DTX results in 40-fold more docetaxel retained within the tumor. The long residence time of LSAM-DTX within the tumor acts as a drug depot, allowing for continuous release of docetaxel, exposing tumor cells to high, therapeutic levels of chemotherapeutic for several weeks. Local LSAM-DTX results in tumoricidal effects at the site of deposition as well as in distant tumors, and IT LSAM-DTX in combination with immune checkpoint inhibitor therapy reduces or eliminates metastatic spread. Tumoricidal effects of local LSAM-DTX are accompanied by immunomodulation including increases in innate and adaptive immune cells in the tumor microenvironment and peripheral blood. Encouraging clinical results indicate that local administration of LSAM-DTX may provide therapeutic benefits for non-muscle invasive bladder cancer and muscle invasive bladder cancer patients; treatments were well-tolerated with few local and systemic adverse events and negligible systemic docetaxel exposure. Results of preclinical and clinical investigations summarized here indicate that local administration of LSAM-DTX may augment tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity.
Collapse
Affiliation(s)
- Holly Maulhardt
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Shelagh Verco
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | | | - Alyson Marin
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA
| | - Gere diZerega
- US Biotest, Inc, 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, 93401, USA.
- NanOlogy, LLC, 3909 Hulen Street, Fort Worth, TX, 76107, USA.
| |
Collapse
|
16
|
Koehler B, Ryoo DY, Krishna SG. A Review of Endoscopic Ultrasound-Guided Chemoablative Techniques for Pancreatic Cystic Lesions. Diagnostics (Basel) 2023; 13:344. [PMID: 36766449 PMCID: PMC9914819 DOI: 10.3390/diagnostics13030344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cystic lesions (PCLs) are known precursors to pancreatic cancer, one of the deadliest types of cancer worldwide. Surgical removal or pancreatectomies remain the central approach to managing precancerous high-risk PCLs. Endoscopic ultrasound (EUS)-guided therapeutic management of PCLs is a novel management strategy for patients with prohibitive surgical risks. Various ablation techniques have been explored in previous studies utilizing EUS-guided fine needle injection (FNI) of alcohol and chemotherapeutic agents. This review article focuses on EUS-FNI and chemoablation, encompassing the evolution of chemoablation, pancreatic cyst selection, chemotherapy drug selection, including novel agents, and a discussion of its safety and efficacy.
Collapse
Affiliation(s)
- Bryn Koehler
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Da Yeon Ryoo
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Zhou Y, Qi M, Zhou YX, Fang SQ. Application of intraperitoneal hyperthermic perfusion chemotherapy in gastric cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:1-7. [DOI: 10.11569/wcjd.v31.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors in China. Intraperitoneal hyperthermic perfusion chemotherapy is a comprehensive therapy that combines intraperitoneal perfusion, hyperthermia, and chemotherapy. It has a good curative effect in peritoneal metastasis of gastric cancer. In recent years, with the continuous progress of technology and the deepening of research, the scope of application of intraperitoneal hyperthermic perfusion chemotherapy is more extensive. In this paper, we discuss intraperitoneal hyperthermic perfusion chemotherapy with regard to its application in gastric cancer, commonly used drugs, safety, and prospects.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese medicine, Shanghai 200437, China
| | - Mei Qi
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese medicine, Shanghai 200437, China
| | - Yu-Xuan Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese medicine, Shanghai 200437, China
| | - Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese medicine, Shanghai 200437, China
| |
Collapse
|
18
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
19
|
Bai X, Smith ZL, Wang Y, Butterworth S, Tirella A. Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. MICROMACHINES 2022; 13:mi13101623. [PMID: 36295976 PMCID: PMC9611581 DOI: 10.3390/mi13101623] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/14/2023]
Abstract
Although nanomedicine has been highly investigated for cancer treatment over the past decades, only a few nanomedicines are currently approved and in the market; making this field poorly represented in clinical applications. Key research gaps that require optimization to successfully translate the use of nanomedicines have been identified, but not addressed; among these, the lack of control of the release pattern of therapeutics is the most important. To solve these issues with currently used nanomedicines (e.g., burst release, systemic release), different strategies for the design and manufacturing of nanomedicines allowing for better control over the therapeutic release, are currently being investigated. The inclusion of stimuli-responsive properties and prolonged drug release have been identified as effective approaches to include in nanomedicine, and are discussed in this paper. Recently, smart sustained release nanoparticles have been successfully designed to safely and efficiently deliver therapeutics with different kinetic profiles, making them promising for many drug delivery applications and in specific for cancer treatment. In this review, the state-of-the-art of smart sustained release nanoparticles is discussed, focusing on the design strategies and performances of polymeric nanotechnologies. A complete list of nanomedicines currently tested in clinical trials and approved nanomedicines for cancer treatment is presented, critically discussing advantages and limitations with respect to the newly developed nanotechnologies and manufacturing methods. By the presented discussion and the highlight of nanomedicine design criteria and current limitations, this review paper could be of high interest to identify key features for the design of release-controlled nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Zara L. Smith
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Yuheng Wang
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Annalisa Tirella
- Division of Pharmacy and Optometry, School of Health Science, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- BIOtech-Center for Biomedical Technologies, Department of Industrial Engineering, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- Correspondence:
| |
Collapse
|
20
|
Wouters R, Westrøm S, Vankerckhoven A, Thirion G, Ceusters J, Claes S, Schols D, Bønsdorff TB, Vergote I, Coosemans A. Effect of Particle Carriers for Intraperitoneal Drug Delivery on the Course of Ovarian Cancer and Its Immune Microenvironment in a Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14040687. [PMID: 35456521 PMCID: PMC9031420 DOI: 10.3390/pharmaceutics14040687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Novel treatment strategies are needed to provide a better prognosis for ovarian cancer. For this purpose, the current study was designed to evaluate the effects of different types of particle drug carriers on tumor response and on the tumor immune microenvironment (TME) after intraperitoneal (IP) administration in a murine tumor model. Mice with ID8-fLuc ovarian cancer were injected IP with pegylated liposomes, hydroxyapatite, polystyrene, poly(lactic-co-glycolic acid) (PLGA) and calcium carbonate (CaCO3) microparticles to evaluate the effect of the candidate carriers without drugs. Our results show that several types of microparticle drug carriers caused hyperproliferation of the tumor when injected IP, as reflected in a reduced survival or an accelerated onset of ascites. Alterations of the product formulation of CaCO3 microparticles could result in less hyperproliferation. The hyperproliferation caused by CaCO3 and PLGA was largely driven by a strong innate immune suppression. A combination with chemotherapy was not able to sufficiently counteract the tumor progression caused by the drug carriers. This research points towards the importance of evaluating a drug carrier before using it in a therapeutic setting, since drug carriers themselves can detrimentally influence tumor progression and immune status of the TME. However, it remains to be determined whether the hyperproliferation in this model will be of relevance in other cancer models or in humans.
Collapse
Affiliation(s)
- Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
- Correspondence:
| | - Sara Westrøm
- Oncoinvent AS, 0484 Oslo, Norway; (S.W.); (T.B.B.)
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium; (S.C.); (D.S.)
| | | | - Ignace Vergote
- Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Oncology, Gynecological Oncology, KU Leuven, 3000 Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, 3000 Leuven, Belgium; (A.V.); (G.T.); (J.C.); (A.C.)
| |
Collapse
|
21
|
Maulhardt H, Marin A, Hesseltine H, diZerega G. Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions. Med Oncol 2021; 38:106. [PMID: 34331595 PMCID: PMC8325653 DOI: 10.1007/s12032-021-01555-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
We describe here characterization of the response of local and metastatic disease and immunomodulation following intratumoral (IT) injection of submicron particle docetaxel (SPD) administered alone or in combination with systemic antibody anti-mCTLA-4 (anti-mCTLA-4) in the metastatic 4T1-Luc2-1A4 (4T1) murine breast cancer model. In-life assessments of treatment tolerance, tumor volume (TV), and metastasis were performed (n = 10 animals/group). At study end, immune cell populations in tumor-site tissues and peripheral blood were analyzed using flow cytometry. Signs of distress typical of this aggressive tumor model occurred across all animals except for the combination treated which were asymptomatic and gained weight. TV at study end was significantly reduced in the combination group versus untreated [43% reduced (p < 0.05)] and vehicle controls [54% reduced (p < 0.0001)]. No evidence of thoracic metastasis was found in 40% of combination group animals and thoracic bioluminescence imaging (BLI) was reduced vs. untreated controls (p < 0.01). Significant elevations (p < 0.05) in CD4 + T, CD4 + helper T, Treg, and NKT cells were found in tumor and blood in SPD or combination treatment compared to controls or anti-mCTLA-4. Combination treatment increased tumor-associated CD8 + T cells (p < 0.01), peripheral B cells (p < 0.01), and tumor associated and circulating dendritic cells (DC) (p < 0.05). Tumor-associated NK cells were significantly increased in SPD ± anti-mCTLA-4 treatments (p < 0.01). Myeloid-derived suppressor cells (MDSC) were reduced in bloods in SPD ± anti-mCTLA-4 groups (p < 0.05). These data demonstrate that both SPD and anti-mCTLA-4 produce local anti-tumor effects as well as reductions in metastasis which are significantly enhanced when administered in combination.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- Combined Modality Therapy
- Docetaxel/administration & dosage
- Docetaxel/chemistry
- Docetaxel/pharmacology
- Female
- Immune Checkpoint Inhibitors/pharmacology
- Injections, Intralesional
- Killer Cells, Natural/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lymphocytes, Tumor-Infiltrating/immunology
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- Mice, Inbred BALB C
- Myeloid-Derived Suppressor Cells/immunology
- Particle Size
- T-Lymphocytes, Regulatory/immunology
- Tumor Burden
Collapse
Affiliation(s)
- Holly Maulhardt
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Alyson Marin
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Holly Hesseltine
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA
| | - Gere diZerega
- US Biotest, Inc., 231 Bonetti Drive, Suite 240, San Luis Obispo, CA, USA.
- NanOlogy, LLC., 3909 Hulen Street, Fort Worth, TX, USA.
| |
Collapse
|
22
|
Wang P, Qu X, Che X, Luo Q, Tang X, Liu Y. Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis. Expert Opin Drug Deliv 2021; 18:1193-1210. [PMID: 33682562 DOI: 10.1080/17425247.2021.1896493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In selected patients with limited peritoneal metastasis (PM), favorable tumor biology, and a good clinical condition, there is an indication for combination of cytoreductive surgery (CRS) and subsequent intravenous (IV) or intraperitoneal (IP) chemotherapy. Compared with IV injection, IP therapy can achieve a high drug concentration within the peritoneal cavity with low systemic toxicity, however, the clinical application of IP chemotherapy is limited by the related abdominal pain, infection, and intolerance.Areas covered:To improve the anti-tumor efficacy and safety of IP therapy, various pharmaceutical strategies have been developed and show promising potential. This review discusses the specialized modification of traditional drug delivery systems and demonstrates the preparation of customized drug carriers for IP therapy, including chemotherapy and gene therapy. IP therapy has important clinical significance in the treatment of PM using novel anti-tumor agents as well as conventional drugs in new applications.Expert opinion: Although IP therapy exhibits good performance both in mouse models and in patients with PM in clinical trials, its clinical application remains limited due to the serious side effects and low acceptability. Further investigations, including pharmaceutical strategies, are needed to develop potential IP therapy, focusing on the efficacy and safety thereof.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| |
Collapse
|
23
|
Karwasra R, Singh S, Raza K, Sharma N, Varma S. A brief overview on current status of nanomedicines for treatment of pancytopenia: Focusing on chemotherapeutic regime. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Rossi SM, Murray T, McDonough L, Kelly H. Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities. Expert Opin Drug Deliv 2020; 18:607-623. [PMID: 33253052 DOI: 10.1080/17425247.2021.1856074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Drug-based treatment regimens for cancer are often associated with off-target toxic side effects and low penetration of the drug at the tumor site leading to patient morbidity and limited efficacy. Loco-regional drug delivery has the potential to increase efficacy while concomitantly reducing toxicity.Areas covered: Clinical applications using loco-regional delivery include intra-arterial drug delivery in retinoblastoma, direct intra-tumoral (IT) injection of ethanol for ablation in hepatocellular carcinoma (HCC) and the use of HIPEC in peritoneal carcinomas. In recent years, there has been a significant increase in both approved products and clinical trials, with a particular emphasis on drug delivery platforms such as drug-eluting beads for HCC and hydrogel platforms for intravesical delivery in bladder cancer.Expert opinion: Development of loco-regional drug-delivery systems has been slow, limited by weak clinical data for early applications and challenges relating to dosing, delivery and retention of drugs at the site of action. However, there is increasing focus on the potential of loco-regional drug delivery when combined with bespoke drug-delivery platforms. With the growth in immunotherapies, the use of IT delivery to drive priming of the anti-tumor response has opened up a new field of opportunity for loco-regional drug delivery.
Collapse
Affiliation(s)
- Seona M Rossi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Timothy Murray
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam McDonough
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena Kelly
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
25
|
Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: preclinical and clinical studies. Drug Deliv Transl Res 2020; 11:1806-1817. [PMID: 33159289 PMCID: PMC8421313 DOI: 10.1007/s13346-020-00868-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
This report describes local administration of submicron particle paclitaxel (SPP) (NanoPac®: ~ 800-nm-sized particles with high relative surface area with each particle containing ~ 2 billion molecules of paclitaxel) in preclinical models and clinical trials evaluating treatment of carcinomas. Paclitaxel is active in the treatment of epithelial solid tumors including ovarian, peritoneal, pancreatic, breast, esophageal, prostate, and non-small cell lung cancer. SPP has been delivered directly to solid tumors, where the particles are retained and continuously release the drug, exposing primary tumors to high, therapeutic levels of paclitaxel for several weeks. As a result, tumor cell death shifts from primarily apoptosis to both apoptosis and necroptosis. Direct local tumoricidal effects of paclitaxel, as well as stimulation of innate and adaptive immune responses, contribute to antineoplastic effects. Local administration of SPP may facilitate tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicity. Results of preclinical and clinical investigations described here suggest that local administration of SPP achieves clinical benefit with negligible toxicity and may complement standard treatments for metastatic disease.
Collapse
|
26
|
Mullany S, Miller DS, Robison K, Levinson K, Lee YC, Yamada SD, Walker J, Markman M, Marin A, Mast P, diZerega G. Phase II study of intraperitoneal submicron particle paclitaxel (SPP) plus IV carboplatin and paclitaxel in patients with epithelial ovarian cancersurgery. Gynecol Oncol Rep 2020; 34:100627. [PMID: 32953961 PMCID: PMC7486435 DOI: 10.1016/j.gore.2020.100627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 01/30/2023] Open
Abstract
Patients with ovarian cancer were treated with intraperitoneal submicron particle paclitaxel after debulking surgery. Following surgery, patients received IV chemotherapy without evidence of enhanced systemic toxicity. By RECIST 1.1 criteria, 66% of patients had progression free survival at 6 months and 1-year following surgery.
Submicron particles (~800 nm) of paclitaxel (SPP) contain 1–2 billion molecules of pure drug that release tumoricidal levels of paclitaxel over many weeks. This study compared two dose-levels of SPP instilled into the peritoneal cavity (IP) in 200 ml of saline post-cytoreductive surgery. Eligible patients with primary (n = 6) or recurrent (n = 4) epithelial ovarian cancer who underwent complete cytoreductive surgery were enrolled to receive a single instillation of IP SPP followed by standard IV carboplatin and paclitaxel. Endpoints were PFS and evaluation of treatment emergent adverse events. Clinical response was determined by symptoms, physical exams, CT scans, and serum CA-125 measurements. Of the 24 subjects screened, 10 were enrolled and received treatment: seven patients received 100 mg/m2 and three received 200 mg/m2. Seven subjects completed the 12-month follow-up period. Six patients were evaluable due to one subject who had unevaluable scans throughout the follow-up period and was thus excluded from PFS determination. Upon completion of planned chemotherapy post-SPP instillation, the PFS at 6 months was 66% (4/6) and at 12-months 66% (4/6) using RECIST 1.1. One subject had a complete response at the end of IV treatment but died (unrelated to study treatment) before PFS evaluation. There was one case of incision dehiscence and one case of vaginal cuff leakage after surgery. This pilot study supports further evaluation of IP SPP to treat peritoneal carcinomas.
Collapse
Affiliation(s)
- Sally Mullany
- University of Minnesota Medical Center, 2450 Riverside Ave, Minneapolis, MN 55454, USA
| | - David Scott Miller
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Katina Robison
- Women & Infants Hospital, 101 Dudley St, Providence, RI 02905, USA
| | - Kimberly Levinson
- Johns Hopkins Gynecologic Oncology at GBMC, 6569 Charles St #306, Towson, MD 21204, USA
| | - Yi-Chun Lee
- SUNY DownState Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - S Diane Yamada
- University of Chicago Medical Center, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | - Joan Walker
- University of Oklahoma, Stephenson Cancer Center, 800 NE 10th St, Oklahoma City, OK 73104, USA
| | - Maurie Markman
- Cancer Treatment Centers of America, 1331 E Wyoming Ave, Philadelphia, PA 19124, USA
| | - Alyson Marin
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA
| | - Peter Mast
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA
| | - Gere diZerega
- US Biotest Inc., 231 Bonetti Dr # 240, San Luis Obispo, CA 93401, USA.,NanOlogy, 3909 Hulen St, Fort Worth, TX 76107, USA
| |
Collapse
|
27
|
Alavi S, Haeri A, Mahlooji I, Dadashzadeh S. Tuning the Physicochemical Characteristics of Particle-Based Carriers for Intraperitoneal Local Chemotherapy. Pharm Res 2020; 37:119. [DOI: 10.1007/s11095-020-02818-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
28
|
Ceelen W, Braet H, van Ramshorst G, Willaert W, Remaut K. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion. Expert Opin Drug Deliv 2020; 17:511-522. [PMID: 32142389 DOI: 10.1080/17425247.2020.1736551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Introduction: The rationale for intraperitoneal (IP) drug delivery for patients with peritoneal metastases (PM) is based on the pharmacokinetic advantage resulting from the peritoneal-plasma barrier, and on the potential to adequately treat small, poorly vascularized PM. Despite a history of more than three decades, many aspects of IP drug delivery remain poorly studied.Areas covered: We outline the anatomy and physiology of the peritoneal cavity, including the pharmacokinetics of IP drug delivery. We discuss transport mechanisms governing tissue penetration of IP chemotherapy, and how these are affected by the biomechanical properties of the tumor stroma. We provide an overview of the current clinical evidence on IP chemotherapy in ovarian, colorectal, and gastric cancer. We discuss the current limitations of IP drug delivery and propose several potential areas of progress.Expert opinion: The potential of IP drug delivery is hampered by off-label use of drugs developed for systemic therapy. The efficacy of IP chemotherapy for PM depends on cancer type, disease extent, and mode of drug delivery. Results from ongoing randomized trials will allow to better delineate the potential of IP chemotherapy. Promising approaches include IP aerosol therapy, prolonged delivery platforms such as gels or biomaterials, and the use of nanomedicine.
Collapse
Affiliation(s)
- Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Belgium
| | - Helena Braet
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | | | - Wouter Willaert
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Katrien Remaut
- Cancer Research Institute Ghent (CRIG), Belgium
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, Hsieh MF, Chen JC. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers (Basel) 2020; 12:E598. [PMID: 32155695 PMCID: PMC7182942 DOI: 10.3390/polym12030598] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease killing millions of people globally. Among various medical treatments, nano-medicines are gaining importance continuously. Many nanocarriers have been developed for treatment, but polymerically-based ones are acquiring importance due to their targeting capabilities, biodegradability, biocompatibility, capacity for drug loading and long blood circulation time. The present article describes progress in polymeric nano-medicines for theranostic cancer treatment, which includes cancer diagnosis and treatment in a single dosage form. The article covers the applications of natural and synthetic polymers in cancer diagnosis and treatment. Efforts were also made to discuss the merits and demerits of such polymers; the status of approved nano-medicines; and future perspectives.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Mosa Alsehli
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Luciana Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Shang-Ting Tsai
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Ruei-Siang Yu
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Ming Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan;
| |
Collapse
|
30
|
Peritoneal Metastases in Colorectal Cancer: Biology and Barriers. J Gastrointest Surg 2020; 24:720-727. [PMID: 31745890 DOI: 10.1007/s11605-019-04441-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Advances in the molecular biology of tumor metastasis have paralleled the evolution in the management of metastatic disease from colorectal cancer. In this review, we summarize the current understanding of the mechanism of colorectal cancer metastases, in particular that of peritoneal metastases, as well as clinical data on the treatment of this disease. METHODS A review of relevant English literature using MEDLINE/PubMed on the biology of colorectal cancer metastases, determinants of oligometastasis, and use of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the treatment of metastatic colorectal cancer is presented. RESULTS Recognition of oligometastasis in the evolution of colorectal peritoneal metastases provides the theoretical framework for which cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy is considered. Clearly, a subset of patients benefit from peritoneal metastasectomy. CONCLUSION Advances in cancer biology and clinical imaging promise to expand the role of cytoreductive surgery with or without intraperitoneal chemotherapy in the management of peritoneal metastases from colorectal cancer.
Collapse
|
31
|
Verco J, Johnston W, Frost M, Baltezor M, Kuehl PJ, Lopez A, Gigliotti A, Belinsky SA, Wolff R, diZerega G. Inhaled Submicron Particle Paclitaxel (NanoPac) Induces Tumor Regression and Immune Cell Infiltration in an Orthotopic Athymic Nude Rat Model of Non-Small Cell Lung Cancer. J Aerosol Med Pulm Drug Deliv 2019; 32:266-277. [PMID: 31347939 PMCID: PMC6781259 DOI: 10.1089/jamp.2018.1517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: This study evaluated the antineoplastic and immunostimulatory effects of inhaled (IH) submicron particle paclitaxel (NanoPac®) in an orthotopic non-small cell lung cancer rodent model. Methods: Male nude rats were whole body irradiated, intratracheally instilled with Calu-3 cancer cells and divided into six treatment arms (n = 20 each): no treatment (Group 1); intravenous nab-paclitaxel at 5.0 mg/kg once weekly for 3 weeks (Group 2); IH NanoPac at 0.5 or 1.0 mg/kg, once weekly for 4 weeks (Groups 3 and 4), or twice weekly for 4 weeks (Groups 5 and 6). Upon necropsy, left lungs were paraffin embedded, serially sectioned, and stained for histopathological examination. A subset was evaluated by immunohistochemistry (IHC), anti-pan cytokeratin staining AE1/AE3+ tumor cells and CD11b+ staining dendritic cells, natural killer lymphocytes, and macrophage immune cells (n = 2, Group 1; n = 3 each for Groups 2–6). BCL-6 staining identified B lymphocytes (n = 1 in Groups 1, 2, and 6). Results: All animals survived to scheduled necropsy, exhibited no adverse clinical observations due to treatment, and gained weight at the same rate throughout the study. Histopathological evaluation of Group 1 lung samples was consistent with unabated tumor growth. Group 2 exhibited regression in 10% of animals (n = 2/20). IH NanoPac-treated groups exhibited significantly higher tumor regression incidence per group (n = 11–13/20; p < 0.05, χ2). IHC subset analysis revealed tumor-nodule cluster separation, irregular borders between tumor and non-neoplastic tissue, and an increased density of infiltrating CD11b+ cells in Group 2 animals (n = 2/3) and in all IH NanoPac-treated animals reviewed (n = 3/3 per group). A single animal in Group 4 and Group 6 exhibited signs of pathological complete response at necropsy with organizing stroma and immune cells replacing areas presumed to have previously contained adenocarcinoma nodules. Conclusion: Tumor regression and immune cell infiltration were observed in all treatment groups, with an increased incidence noted in animals receiving IH submicron particle paclitaxel treatment.
Collapse
Affiliation(s)
- James Verco
- US Biotest, Inc., San Luis Obispo, California
| | | | - Michael Frost
- Western Diagnostic Services Laboratory, Santa Maria, California
| | | | | | - Anita Lopez
- Lovelace Biomedical, Albuquerque, New Mexico
| | | | | | | | - Gere diZerega
- US Biotest, Inc., San Luis Obispo, California.,NanOlogy, LLC, Fort Worth, Texas
| |
Collapse
|
32
|
Padmakumar S, Parayath NN, Nair SV, Menon D, Amiji MM. Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release 2019; 305:29-40. [PMID: 31103675 PMCID: PMC6602817 DOI: 10.1016/j.jconrel.2019.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The objective of this study was to evaluate intraperitoneal (IP) metronomic chemotherapy using sustained release paclitaxel (PTX) delivery from electrospun biodegradable polymeric yarns woven into suturable nanotextiles. Following confirmation of in vitro PTX efficacy in ID8-VEGF epithelial ovarian cancer cells, in vivo studies were performed upon surgical peritoneal implantation of nanotextile implants in orthotopic, syngeneic ID8-VEGF tumor-bearing C57BL/6 mice. In comparison to the clinical PTX-solution, there was a significant enhancement of anti-tumor efficacy and safety with PTX-nanotextiles. After 35-days, the peritoneum of tumor-bearing mice with PTX-nanotextiles was completely devoid of tumor nodules and ascitic fluid. Additionally, VEGF levels measured in peritoneal lavage fluid were 300-fold lower compared to PTX-solution and 600-fold lower as compared to untreated tumor-bearing animals. PTX-solution treated group also developed severe metastatic lesions and progressive ascitic fluid buildup. More importantly, no signs of systemic/ organ toxicity were observed in PTX-nanotextile implanted mice, unlike the systemic toxic effects induced by PTX-solution. Collectively, our results show the therapeutic and safety advantages offered by combining clinically translatable metronomic low-dose chemotherapy and IP pharmacokinetics using biodegradable nanotextile implants in addressing the challenges of late-stage ovarian cancer.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Shantikumar V Nair
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Aerosolization of Nanotherapeutics as a Newly Emerging Treatment Regimen for Peritoneal Carcinomatosis. Cancers (Basel) 2019; 11:cancers11070906. [PMID: 31261685 PMCID: PMC6678324 DOI: 10.3390/cancers11070906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/31/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Recent advances in locoregional chemotherapy have opened the door to new approaches for the clinical management of peritoneal carcinomatosis (PC) by facilitating the delivery of anti-neoplastic agents directly to the tumor site, while mitigating adverse effects typically associated with systemic administration. In particular, an innovative intra-abdominal chemotherapeutic approach, known as Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC), was recently introduced to the intraperitoneal (IP) therapy regimens as a palliative therapeutic option in patients with PC, presumably providing a better drug distribution pattern together with deeper drug penetration into tumor nodules within the peritoneal space. Furthermore, the progress of nanotechnology in the past few decades has prompted the application of different nanomaterials in IP cancer therapy, offering new possibilities in this field ranging from an extended retention time to sustained drug release in the peritoneal cavity. This review highlights the progress, challenges, and opportunities in utilizing cancer nanotherapeutics for locoregional drug delivery, with a special emphasis on the aerosolization approach for intraperitoneal therapies.
Collapse
Affiliation(s)
- Molood Shariati
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Laboratory of Experimental Surgery, Department of Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Laboratory of Experimental Surgery, Department of Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
34
|
Local Injection of Submicron Particle Docetaxel is Associated with Tumor Eradication, Reduced Systemic Toxicity and an Immunologic Response in Uro-Oncologic Xenografts. Cancers (Basel) 2019; 11:cancers11040577. [PMID: 31022918 PMCID: PMC6520999 DOI: 10.3390/cancers11040577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
Intratumoral (IT) administration of submicron particle docetaxel (NanoDoce®, NanOlogy LLC, Fort Worth, TX, USA) and its efficacy against genitourinary-oncologic xenografts in rats and mice, xenograft-site docetaxel concentrations and immune-cell infiltration were studied. IT-NanoDoce®, IV-docetaxel and IT-vehicle were administered to clear cell renal carcinoma (786-O: rats), transitional cell bladder carcinoma (UM-UC-3: mice) and prostate carcinoma (PC-3: mice). Treatments were given every 7 days with 1, 2, or 3 doses administered. Animals were followed for tumor growth and clinical signs. At necropsy, 786-O and UM-UC-3 tumor-site tissues were evaluated by H&E and IHC and analyzed by LC-MS/MS for docetaxel concentration. Two and 3 cycles of IT-NanoDoce® significantly reduced UM-UC-3 tumor volume (p < 0.01) and eliminated most UM-UC-3 and 786-O tumors. In both models, NanoDoce® treatment was associated with (peri)tumor-infiltrating immune cells. Lymphoid structures were observed in IT-NanoDoce®-treated UM-UC-3 animals adjacent to tumor sites. IT-vehicle and IV-docetaxel exhibited limited immune-cell infiltration. In both studies, high levels of docetaxel were detected in NanoDoce®-treated animals up to 50 days post-treatment. In the PC-3 study, IT-NanoDoce® and IV-docetaxel resulted in similar tumor reduction. NanoDoce® significantly reduced tumor volume compared to IT-vehicle in all xenografts (p < 0.0001). We hypothesize that local, persistent, therapeutic levels of docetaxel from IT-NanoDoce® reduces tumor burden while increasing immune-cell infiltration. IT NanoDoce® treatment of prostate, renal and bladder cancer may result in enhanced tumoricidal effects.
Collapse
|
35
|
Chen CC, Li JJ, Guo NH, Chang DY, Wang CY, Chen JT, Lin WJ, Chi KH, Lee YJ, Liu RS, Chen CL, Wang HE. Evaluation of the Biological Behavior of a Gold Nanocore-Encapsulated Human Serum Albumin Nanoparticle (Au@HSANP) in a CT-26 Tumor/Ascites Mouse Model after Intravenous/Intraperitoneal Administration. Int J Mol Sci 2019; 20:ijms20010217. [PMID: 30626093 PMCID: PMC6337091 DOI: 10.3390/ijms20010217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is one of the major causes of cancer-related death in Taiwan and worldwide. Patients with peritoneal metastasis from colorectal cancer have reduced overall survival and poor prognosis. Hybrid protein-inorganic nanoparticle systems have displayed multifunctional applications in solid cancer theranostics. In this study, a gold nanocore-encapsulated human serum albumin nanoparticle (Au@HSANP), which is a hybrid protein-inorganic nanoparticle, and its radioactive surrogate 111In-labeled Au@HSANP (111In-Au@HSANP), were developed and their biological behaviors were investigated in a tumor/ascites mouse model. 111In-Au@HSANP was injected either intravenously (iv) or intraperitoneally (ip) in CT-26 tumor/ascites-bearing mice. After ip injection, a remarkable and sustained radioactivity retention in the abdomen was noticed, based on microSPECT images. After iv injection, however, most of the radioactivity was accumulated in the mononuclear phagocyte system. The results of biodistribution indicated that ip administration was significantly more effective in increasing intraperitoneal concentration and tumor accumulation than iv administration. The ratios of area under the curve (AUC) of the ascites and tumors in the ip-injected group to those in the iv-injected group was 93 and 20, respectively. This study demonstrated that the ip injection route would be a better approach than iv injections for applying gold-albumin nanoparticle in peritoneal metastasis treatment.
Collapse
Affiliation(s)
- Chao-Cheng Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jia-Je Li
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Nai-Hua Guo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Deng-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chung-Yih Wang
- Radiotherapy, Department of Medical Imaging, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | | | - Wuu-Jyh Lin
- Institute of Nuclear Energy Research, Taoyuan 325, Taiwan.
| | - Kwan-Hwa Chi
- Shin Kong Wu Ho-Su memorial hospital, Taipei 111, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 115, Taiwan.
- Department of Nuclear Medicine and National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
36
|
|
37
|
Verco J, Johnston W, Baltezor M, Kuehl PJ, Gigliotti A, Belinsky SA, Lopez A, Wolff R, Hylle L, diZerega G. Pharmacokinetic Profile of Inhaled Submicron Particle Paclitaxel (NanoPac ®) in a Rodent Model. J Aerosol Med Pulm Drug Deliv 2018; 32:99-109. [PMID: 30359162 PMCID: PMC6477588 DOI: 10.1089/jamp.2018.1467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Inhaled chemotherapeutics may enhance pulmonary drug exposure to malignant lesions in the lung without substantially contributing to systemic toxicities. The pharmacokinetic profile of inhaled submicron particle paclitaxel (NanoPac®) in healthy rodent plasma and lung tissue is evaluated here to determine administration proof-of-principle. Methods: Healthy male Sprague Dawley rats received paclitaxel in one of three arms: intravenous nab-paclitaxel at 2.9 mg/kg (IVnP), inhaled NanoPac low dose (IHNP-LD) at 0.38 mg/kg, or inhaled NanoPac high dose (IHNP-HD) at 1.18 mg/kg. Plasma and lung tissue paclitaxel concentrations were determined using ultraperformance liquid chromatography tandem mass spectrometry from animals sacrificed at 10 time points ranging up to 2 weeks after administration. Peak concentration (Cmax), apparent residence half-life (T1/2), exposure (AUC(last)), and dose-normalized exposure (AUCD(last)) were determined. Pulmonary histopathology was performed on rats sacrificed at the 336-hour time point. Results: Paclitaxel was detectable and quantifiable in the rat lung for both inhaled NanoPac arms sampled at the final necropsy, 336 hours postadministration. Substantial paclitaxel deposition and retention resulted in an order of magnitude increase in dose-normalized pulmonary exposure over IVnP. Inhaled NanoPac arms had an order of magnitude lower plasma Cmax than IVnP, but followed a similar plasma T1/2 clearance (quantifiable only to 72 hours postadministration). Pulmonary histopathology found all treated animals indistinguishable from treatment-naive rats. Conclusion: In the rodent model, inhaled NanoPac demonstrated substantial deposition and retention of paclitaxel in sampled lung tissue. Further research to determine NanoPac's toxicity profile and potential efficacy as lung cancer therapy is underway.
Collapse
Affiliation(s)
- James Verco
- 1 US Biotest, Inc. , San Luis Obispo, California
| | | | | | | | | | | | - Anita Lopez
- 3 Lovelace Biomedical , Albuquerque, New Mexico
| | - Ronald Wolff
- 4 RK Wolff-Safety Consulting , Fort Myers, Florida
| | - Lauren Hylle
- 1 US Biotest, Inc. , San Luis Obispo, California
| | - Gere diZerega
- 1 US Biotest, Inc. , San Luis Obispo, California.,5 NanOlogy, LLC, Fort Worth, Texas
| |
Collapse
|
38
|
Padmakumar S, Paul-Prasanth B, Pavithran K, Vijaykumar DK, Rajanbabu A, Sivanarayanan TB, Kadakia E, Amiji MM, Nair SV, Menon D. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:274-284. [PMID: 30343013 DOI: 10.1016/j.nano.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022]
Abstract
A woven nanotextile implant was developed and optimized for long-term continuous drug delivery for potential oncological applications. Electrospun polydioxanone (PDS) nanoyarns, which are twisted bundles of PDS nanofibres, were loaded with paclitaxel (PTX) and woven into nanotextiles of different packing densities. A mechanistic modeling of in vitro drug release proved that a combination of diffusion and matrix degradation controlled the slow PTX-release from a nanoyarn, emphasizing the role of nanostructure in modulating release kinetics. Woven nanotextiles, through variations in its packing density and thereby architecture, demonstrated tuneable PTX-release. In vivo PTX-release, pharmacokinetics and biodistribution were evaluated in healthy BALB/c mice by suturing the nanotextile to peritoneal wall. The slow and metronomic PTX-release for 60 days from the loosely woven implant was extremely effective in enhancing its residence in peritoneum, in contrast to intraperitoneal injections. Such an implantable matrix offers a novel platform for therapy of solid tumors over prolonged durations.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Keechilat Pavithran
- Department of Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Anupama Rajanbabu
- Department of Oncology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | | | - Ekta Kadakia
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Shantikumar V Nair
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
39
|
Dwivedi P, Yuan S, Han S, Mangrio FA, Zhu Z, Lei F, Ming Z, Cheng L, Liu Z, Si T, Xu RX. Core–shell microencapsulation of curcumin in PLGA microparticles: programmed for application in ovarian cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S481-S491. [DOI: 10.1080/21691401.2018.1499664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Pankaj Dwivedi
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Shuai Yuan
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Farhana Akbar Mangrio
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Fan Lei
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhang Ming
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Lei Cheng
- First affiliated hospital of University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Zhongfa Liu
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ting Si
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv 2018; 25:846-861. [PMID: 29589479 PMCID: PMC7011950 DOI: 10.1080/10717544.2018.1455764] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy has revived hopes during the past few years for the management of peritoneal disseminations of digestive and gynecological cancers. Nevertheless, a poor drug penetration is one key drawback of IP chemotherapy since peritoneal neoplasms are notoriously resistant to drug penetration. Recent preclinical studies have focused on targeting the aberrant tumor microenvironment to improve intratumoral drug transport. However, tumor stroma targeting therapies have limited therapeutic windows and show variable outcomes across different cohort of patients. Therefore, the development of new strategies for improving the efficacy of IP chemotherapy is a certain need. In this work, we propose a new magnetically assisted strategy to elevate drug penetration into peritoneal tumor nodules and improve IP chemotherapy. A computational model was developed to assess the feasibility and predictability of the proposed active drug delivery method. The key tumor pathophysiology, including a spatially heterogeneous construct of leaky vasculature, nonfunctional lymphatics, and dense extracellular matrix (ECM), was reconstructed in silico. The transport of intraperitoneally injected magnetic nanoparticles (MNPs) inside tumors was simulated and compared with the transport of free cytotoxic agents. Our results on magnetically assisted delivery showed an order of magnitude increase in the final intratumoral concentration of drug-coated MNPs with respect to free cytotoxic agents. The intermediate MNPs with the radius range of 200-300 nm yield optimal magnetic drug targeting (MDT) performance in 5-10 mm tumors while the MDT performance remains essentially the same over a large particle radius range of 100-500 nm for a 1 mm radius small tumor. The success of MDT in larger tumors (5-10 mm in radius) was found to be markedly dependent on the choice of magnet strength and tumor-magnet distance while these two parameters were less of a concern in small tumors. We also validated in silico results against experimental results related to tumor interstitial hypertension, conventional IP chemoperfusion, and magnetically actuated movement of MNPs in excised tissue.
Collapse
Affiliation(s)
- Milad Shamsi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada.,c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Amir Sedaghatkish
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Dejam
- d Department of Petroleum Engineering, College of Engineering and Applied Science , University of Wyoming , Laramie , WY , USA
| | - Mohsen Saghafian
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Mehdi Mohammadi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| | - Amir Sanati-Nezhad
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
41
|
Su Y, Liu M, Liang K, Liu X, Song Y, Deng Y. Evaluating the Accelerated Blood Clearance Phenomenon of PEGylated Nanoemulsions in Rats by Intraperitoneal Administration. AAPS PharmSciTech 2018; 19:3210-3218. [PMID: 30187444 DOI: 10.1208/s12249-018-1120-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
The accelerated blood clearance (ABC) phenomenon is induced by repeated intravenous injection of stealth polyethylene glycol (PEG) nanocarriers and appears as the alteration of the pharmacokinetics and biodistribution of the second administration. Nevertheless, there is no any report about the ABC phenomenon induced by intraperitoneal administration of PEGylated nanocarriers. In this study, we firstly observed whether the ABC phenomenon is induced with PEGylated nanoemulsion at the dose of 0.5~100 μmol phospholipid·kg-1 by intraperitoneal/intravenous injections in rats. The PEG (molecule weight, 2000)-modified nanoemulsions PE-B and PE in which fluorescence indicator dialkylcarbocyanines (DiR) is encapsulated by PE-B were prepared for this work. The pharmacokinetics of the first injected PE via veins or peritoneal cavity features different variation trends. Moreover, the tissue distributions (in vivo or in vitro) of the first injected PE by intraperitoneal injection reveals that the PE gains access to the whole lymphatic circulatory system. Furthermore, our results demonstrate that the ABC phenomenon can be induced by intraperitoneal administration PE-B and present obvious changes with varying PE-B concentration 0.5~100 μmol phospholipid·kg-1. Moreover, an interesting point is that the ABC phenomenon induced by intraperitoneal injected PE-B can be significantly inhibited by intraperitoneal pre-injection of distilled water. For understanding this issue clear, we studied the production of anti-PEG IgM and the characteristic morphologies of immune cells. We observed that the mast cells in peritoneal cavity exhibit rapid depletion in response to the intraperitoneal pre-injection of distilled water, while the anti-PEG IgM secretes at the same level.
Collapse
|
42
|
Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics 2018; 8:4279-4294. [PMID: 30214620 PMCID: PMC6134923 DOI: 10.7150/thno.26345] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Despite significant advances in cancer diagnostics and treatment, ovarian cancers (OC) continue to kill more than 150,000 women every year worldwide. Due to the relatively asymptomatic nature and the advanced stage of the disease at the time of diagnosis, OC is the most lethal gynecologic malignancy. The current treatment for advanced OC relies on the synergistic effect of combining surgical cytoreduction and chemotherapy; however, beside the fact that chemotherapy resistance is a major challenge in OC management, new imaging strategies are needed to target microscopic lesions and improve both cytoreductive surgery and patient outcomes. In this context, nanostructured probes are emerging as a new class of medical tool that can simultaneously provide imaging contrast, target tumor cells, and carry a wide range of medicines resulting in better diagnosis and therapeutic precision. Herein we summarize several exemplary efforts in nanomedicine for addressing unmet clinical needs.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
43
|
Abstract
The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Peter Qiao
- Case Center for Biomolecular Engineering, Department of Biomedical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
44
|
Padmakumar S, Parayath N, Leslie F, Nair SV, Menon D, Amiji MM. Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opin Drug Deliv 2018; 15:481-494. [PMID: 29488406 DOI: 10.1080/17425247.2018.1446938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) remains to be the most lethal of all gynecological malignancies mainly due to its asymptomatic nature. The late stages are manifested with predominant metastases confined to the peritoneal cavity. Although there has been a substantial progress in the treatment avenue with different therapeutic interventions, the overall survival rate of patients remain poor due to relapse and drug resistance. AREAS COVERED The pharmacokinetic advantages offered by intraperitoneal (IP) chemotherapy due to peritoneal-plasma barrier can be potentially exploited for EOC relapse treatment. The ability to retain high concentrations of chemo-drugs with high AUC peritoneum/plasma for prolonged durations in the peritoneal cavity can be utilized effectively through the clinical adoption of drug delivery systems (DDSs) which obviates the need for indwelling catheters. The metronomic dosing strategy could enhance anti-tumor efficacy with a continuous, low dose of chemo-drugs providing minimal systemic toxicity. EXPERT OPINION The development of a feasible, non-catheter based, IP DDS, retaining the peritoneal-drug levels, with less systemic levels could offer significant survival advantages as a patient-compliant therapeutic strategy. Suturable-implantable devices based on metronomic dosing, eluting drug in a sustained manner at low doses, could be implanted surgically post-debulking for treatment of refractory EOC patients.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA.,b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Neha Parayath
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Fraser Leslie
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| | - Shantikumar V Nair
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Deepthy Menon
- b Centre for Nanosciences and Molecular Medicine , Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham , Kochi , India
| | - Mansoor M Amiji
- a Department of Pharmaceutical Sciences, School of Pharmacy , Northeastern University , Boston , MA , USA
| |
Collapse
|
45
|
Nowacki M, Peterson M, Kloskowski T, McCabe E, Guiral DC, Polom K, Pietkun K, Zegarska B, Pokrywczynska M, Drewa T, Roviello F, Medina EA, Habib SL, Zegarski W. Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotheprapy to treat patients with peritoneal carcinomatosis. Oncotarget 2017; 8:78208-78224. [PMID: 29100461 PMCID: PMC5652850 DOI: 10.18632/oncotarget.20596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
The treatment of peritoneal surface malignances has changed considerably over the last thirty years. Unfortunately, the palliative is the only current treatment for peritoneal carcinomatosis (PC). Two primary intraperitoneal chemotherapeutic methods are used. The first is combination of cytoreductive surgery (CRS) and Hyperthermic IntraPEritoneal Chemotherapy (HIPEC), which has become the gold standard for many cases of PC. The second is Pressurized IntraPeritoneal Aerosol Chemotheprapy (PIPAC), which is promising direction to minimally invasive as safedrug delivery. These methods were improved through multicenter studies and clinical trials that yield important insights and solutions. Major method development has been made through nanomedicine, specifically nanoparticles. Here, we are presenting the latest advances of nanoparticles and their application to precision diagnostics and improved treatment strategies for PC. These advances will likely develop both HIPEC and PIPAC methods that used for in vitro and in vivo studies. Several benefits of using nanoparticles will be discussed including: 1) Nanoparticles as drug delivery systems; 2) Nanoparticles and Near Infrred (NIR) Irradiation; 3) use of nanoparticles in perioperative diagnostic and individualized treatment planning; 4) use of nanoparticles as anticancer dressing's, hydrogels and as active beeds for optimal reccurence prevention; and 5) finally the curent in vitro and in vivo studies and clinical trials of nanoparticles. The current review highlighted use of nanoparticles as novel tools in improving drug delivery to be effective for treatment patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Maciej Nowacki
- Chair of Department of Surgical Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre of Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Margarita Peterson
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Eleanor McCabe
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Delia Cortes Guiral
- Department of General Surgery (Peritoneal Surface Surgical Oncology), Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - Karol Polom
- General Surgery and Surgical Oncology Department, University of Siena, Siena, Italy
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Pietkun
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Barbara Zegarska
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Franco Roviello
- Chair of Cosmetology and Aesthetic Dermatology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Bydgoszcz, Poland
| | - Edward A. Medina
- Department of Pathology, University of Texas Health, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cell Systems and Anatomy, University of Texas Health Geriatric Research Education, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Wojciech Zegarski
- Chair of Department of Surgical Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Oncology Centre of Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
46
|
Wang F, Chen J, Dai W, He Z, Zhai D, Chen W. Pharmacokinetic studies and anticancer activity of curcumin-loaded nanostructured lipid carriers. ACTA PHARMACEUTICA 2017; 67:357-371. [PMID: 28858837 DOI: 10.1515/acph-2017-0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/19/2017] [Indexed: 12/20/2022]
Abstract
In order to investigate the potential of nanostructured lipid carriers for efficient and targeted delivery of curcumin, the pharmacokinetic parameters of curcumin-loaded nanostructured lipid carriers (Cur-NLC) were evaluated in rats after a single intraperitoneal dose of Cur-NLC. In addition, the anticancer activity of Cur-NLC against human lung adenocarcinoma A549 cells was verified by a cellular uptake study, and a cytotoxicity and apoptosis assay. Bioavailability of Cur-NLC was better than that of native curcumin (p > 0.01), as seen from the area under the plasma concentration-time curve (AUC), maximum plasma concentration (Cmax), mean residence time (MRT) and total plasma clearance (CLz/F). Cur-NLC has a more obvious lung-targeting property in comparison with native curcumin. Cur-NLC showed higher anticancer activity in vitro against A549 cells than native curcumin (IC50 value of 5.66 vs. 9.81 mg L-1, respectively). Meanwhile, Cur-NLC treated A549 cells showed a higher apoptosis rate compared to that of native curcumin. These results indicate that NLC is a promising system for the delivery of curcumin in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei , Hefei 230011 , Anhui, People’s Republic of China
- Institute of Pharmacokinetics , Anhui University of Chinese Medicine , Hefei 230012 , Anhui, People’s Republic of China
| | - Jin Chen
- Department of Pharmacy, The Second People’s Hospital of Hefei , Hefei 230011 , Anhui, People’s Republic of China
| | - Wenting Dai
- Department of Pharmacy, The Second People’s Hospital of Hefei , Hefei 230011 , Anhui, People’s Republic of China
| | - Zhengmin He
- Department of Pharmacy, The Second People’s Hospital of Hefei , Hefei 230011 , Anhui, People’s Republic of China
| | - Dandan Zhai
- Department of Pharmacy, The Second People’s Hospital of Hefei , Hefei 230011 , Anhui, People’s Republic of China
| | - Weidong Chen
- Institute of Pharmacokinetics , Anhui University of Chinese Medicine , Hefei 230012 , Anhui, People’s Republic of China
| |
Collapse
|
47
|
Hunt H, Simón-Gracia L, Tobi A, Kotamraju VR, Sharma S, Nigul M, Sugahara KN, Ruoslahti E, Teesalu T. Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release 2017; 260:142-153. [PMID: 28603028 PMCID: PMC6129970 DOI: 10.1016/j.jconrel.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Gastrointestinal and gynecological malignancies disseminate in the peritoneal cavity - a condition known as peritoneal carcinomatosis (PC). Intraperitoneal (IP) administration can be used to improve therapeutic index of anticancer drugs used for PC treatment. Activity of IP anticancer drugs can be further potentiated by encapsulation in nanocarriers and/or affinity targeting with tumor-specific affinity ligands, such as tumor homing peptides. Here we evaluated a novel tumor penetrating peptide, linTT1 (AKRGARSTA), as a PC targeting ligand for nanoparticles. We first demonstrated that the primary homing receptor for linTT1, p32 (or gC1qR), is expressed on the cell surface of peritoneal carcinoma cell lines of gastric (MKN-45P), ovarian (SKOV-3), and colon (CT-26) origin, and that peritoneal tumors in mice and clinical peritoneal carcinoma explants express p32 protein accessible from the IP space. Iron oxide nanoworms (NWs) functionalized with the linTT1 peptide were taken up and routed to mitochondria in cultured PC cells. NWs functionalized with linTT1 peptide in tandem with a pro-apoptotic [D(KLAKLAK)2] peptide showed p32-dependent cytotoxicity in MKN-45P, SKOV-3, and CT-26 cells. Upon IP administration in mice bearing MKN-45P, SKOV-3, and CT-26 tumors, linTT1-functionalized NWs showed robust homing and penetration into malignant lesions, whereas only a background accumulation was seen in control tissues. In tumors, the linTT1-NW accumulation was seen predominantly in CD31-positive blood vessels, in LYVE-1-positive lymphatic structures, and in CD11b-positive tumor macrophages. Experimental therapy of mice bearing peritoneal MKN-45P xenografts and CT-26 syngeneic tumors with IP linTT1-D(KLAKLAK)2-NWs resulted in significant reduction of weight of peritoneal tumors and significant decrease in the number of metastatic tumor nodules, whereas treatment with untargeted D(KLAKLAK)2-NWs had no effect. Our data show that targeting of p32 with linTT1 tumor-penetrating peptide improves tumor selectivity and antitumor efficacy of IP pro-apoptotic NWs. P32-directed intraperitoneal targeting of other anticancer agents and nanoparticles using peptides and other affinity ligands may represent a general strategy to increase their therapeutic index.
Collapse
Affiliation(s)
- Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shweta Sharma
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mait Nigul
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Kazuki N Sugahara
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Cancer Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
48
|
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017; 38:611-624. [PMID: 28627697 PMCID: PMC5562049 DOI: 10.3892/or.2017.5718] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/29/2017] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials are increasingly used as drug carriers for cancer therapy. Nanomaterials also appeal to researchers in the areas of cancer diagnosis and biomarker discovery. Several antitumor nanodrugs are currently being tested in preclinical and clinical trials and show promise in therapeutic and other settings. We review the development of nanomaterial drug carriers, including liposomes, polymer nanoparticles, dendritic polymers, and nanomicelles, for the diagnosis and treatment of various cancers. The prospects of nanomaterials as drug carriers for future clinical applications are also discussed.
Collapse
Affiliation(s)
- Zhen Li
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan, P.R. China
| | - Shirui Tan
- College of Agricultural Sciences, Yunnan University, Kunming, Yunnan, P.R. China
| | - Shuan Li
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan, P.R. China
| |
Collapse
|
49
|
Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis - Mission possible? Adv Drug Deliv Rev 2017; 108:13-24. [PMID: 27422808 DOI: 10.1016/j.addr.2016.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal carcinomatosis (PC). Over the past decade, a lot of effort has been put both in the academia and clinic in developing IP therapeutic approaches that maximize local efficacy while limiting systemic side effects. Also nanomedicines are under investigation for the treatment of tumors confined to the peritoneal cavity, due to their potential to increase the peritoneal retention and to target drugs to the tumor sites as compared to free drugs. Despite the progress reported by multiple clinical studies, there are no FDA approved drugs or formulations for specific use in the IP cavity yet. This review discusses the current clinical management of PC, as well as recent advances in nanomedicine-based IP delivery. We address important challenges to be overcome towards designing optimal nanocarriers for IP therapy in vivo.
Collapse
|
50
|
Flessner MF. Pharmacokinetic problems in peritoneal drug administration: an update after 20 years. Pleura Peritoneum 2016; 1:183-191. [PMID: 30911622 DOI: 10.1515/pp-2016-0022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Intraperitoneal chemotherapy has demonstrated significant pharmacologic and clinical advantage over traditional intravenous administration for cancers that are restricted to the peritoneal cavity. The combination of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (HIPEC) has become the standard technique used to fight ovarian and gastrointestinal cancers in many centers. However, challenges remain for HIPEC to contact the entire peritoneal surface, penetrate the tumor tissue, and transport to the lymphatics and other metastatic sites. New innovations in delivery technique, such as heated aerosol, and in delivery molecules, such as microparticles, nanoparticles, nanogels, and tumor-penetrating peptides are being tested in animal models and will likely soon be in human trials. Improvements in overall care, such as the recent clinical trial of an oral agent for maintenance therapy in ovarian carcinoma, will continue in this field for the next 20 years.
Collapse
|