1
|
Lu Z, Stencel O, Liu W, Vasileiou E, Xu HC, Pandey P, Stachura P, Elwy A, Tsombal A, Mai AS, Auer F, Morcos MNF, Seidl M, Koziel S, Bruch PM, Dietrich S, Elitzur S, Hartmann G, Lang KS, Janssen S, Fischer U, Bhatia S, Lang PA, Borkhardt A, Hauer J, Pandyra AA. Immune training enhances anti-viral responses and improves outcomes in Pax5 -/+ mice susceptible to chronic infection. EMBO Mol Med 2025; 17:696-721. [PMID: 40082582 PMCID: PMC11982562 DOI: 10.1038/s44321-025-00208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Viral infections pose a significant global burden. Host susceptibility to pathogens is determined by many factors including genetic variation that can lead to immunodeficient or dysregulated antiviral immune responses. Pax5 heterozygosity (Pax5-/+), resulting in reduced PAX5 levels in mice, mimics germline or somatic PAX5 dysregulation contributing to diseases such as childhood B-cell precursor acute lymphoblastic leukemia (B-ALL). In contrast to the well-characterized roles of PAX5 during early B-cell development, little is known about how Pax5 heterozygosity impacts antiviral responses. We infected Pax5-/+ mice with the noncytopathic Lymphocytic Choriomeningitis Virus (LCMV) and found that infection with the chronic Docile strain resulted in decreased survival of Pax5-/+ mice. While early adaptive CD8+ T-cell (CTL) immunity was robust in Pax5-/+ mice, LCMV-specific neutralizing antibody production was compromised leading to impaired long-term viral clearance and a pro-inflammatory milieu in the bone marrow (BM). Here we show that survival outcomes were improved upon prophylactic treatment with the β-glucan immune trainer through induction of heterologous protection against chronic infection. β-Glucan enhanced viral clearance, CTL immunity, neutralizing antibody production and reduced monocyte immunosuppression in multiple LCMV-resident host organs. New insight from this study will help design effective prophylactic treatment strategies against chronic viral infections, particularly in genetically predisposed susceptible hosts.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Olivia Stencel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Wei Liu
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Eleni Vasileiou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Piyush Pandey
- Department of Molecular Medicine II, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Paweł Stachura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Department of Molecular Medicine II, Medical Faculty and University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Abdelrahman Elwy
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anastassia Tsombal
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Ann-Sophie Mai
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Franziska Auer
- Technical University of Munich, TUM School of Medicine and Health, Department of Pediatrics, Munich, Germany
| | - Mina N F Morcos
- Technical University of Munich, TUM School of Medicine and Health, Department of Pediatrics, Munich, Germany
| | - Maximilian Seidl
- Institute of Pathology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Sarah Koziel
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sascha Dietrich
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sarah Elitzur
- Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University, Gießen, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- DKTK partner site Essen-Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- DKTK partner site Essen-Düsseldorf, Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany
- DKTK partner site Essen-Düsseldorf, Düsseldorf, Germany
| | - Julia Hauer
- Technical University of Munich, TUM School of Medicine and Health, Department of Pediatrics, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and Technical University of Munich, Munich, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner Site Munich, Munich, Germany
| | - Aleksandra A Pandyra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Düsseldorf, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
2
|
Xiao Z, Guo Y, Li J, Jiang X, Wu F, Wang Y, Zhang Y, Zhou W. Harnessing traditional Chinese medicine polysaccharides for combatting COVID-19. Carbohydr Polym 2024; 346:122605. [PMID: 39245521 DOI: 10.1016/j.carbpol.2024.122605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
With the global spread of COVID-19 posing ongoing challenges to public health systems, there is an ever-increasing demand for effective therapeutics that can mitigate both viral transmission and disease severity. This review surveys the landscape of polysaccharides derived from traditional Chinese medicine, acclaimed for their medicinal properties and potential to contribute to the COVID-19 response. We specifically focus on the capability of these polysaccharides to thwart SARS-CoV-2 entry into host cells, a pivotal step in the viral life cycle that informs transmission and pathogenicity. Moreover, we delve into the concept of trained immunity, an innate immune system feature that polysaccharides may potentiate, offering an avenue for a more moderated yet efficacious immune response against various pathogens, including SARS-CoV-2. Our comprehensive overview aims to bolster understanding of the possible integration of these substances within anti-COVID-19 measures, emphasizing the need for rigorous investigation into their potential applications and underlying mechanisms. The insights provided here strongly support ongoing investigations into the adjunctive use of polysaccharides in the management of COVID-19, with the anticipation that such findings could lead to a deeper appreciation and clearer elucidation of the antiviral potentials inherent in complex Chinese herbal remedies.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Yizhen Guo
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Jingxuan Li
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Xuyong Jiang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fushan Wu
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ying Wang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| | - Wenxia Zhou
- Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Drug, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
3
|
Wzorek-Łyczko K, Woźniak W, Piwowarczyk A, Kuchar E. The anti-infective effect of β-glucans in children. INT J VITAM NUTR RES 2024; 94:296-307. [PMID: 37779363 DOI: 10.1024/0300-9831/a000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background: β-glucans are bioactive β-D-glucose polysaccharides of natural origin, presenting antimicrobial and immunomodulation properties, with a low risk of toxicity. Objectives: This scoping review aims to present the current knowledge on the anti-infective properties of β-glucans in the pediatric population. Methods: We used the PRISMA Extension for Scoping Reviews Checklist to prepare this review. Studies were identified by electronic searches of Pubmed, Embase, and Cochrane databases up to May 2021. Results: The primary search allowed us to find 6232 studies, twelve of which were finally included in the analysis. Eight studies were designed as randomized, placebo-controlled trials, while in four studies the intervention outcome was compared with the pre-intervention period in the same group. The type of preparation and doses varied between studies: in five trials pleuran was administered (in dose 10 mg/5 kg of body weight/day), and in one study baker's yeast β-glucan was used (in two doses: 35 mg/day and 75 mg/day). In six other studies, the analyzed preparation comprised β-glucan and other substances. The shortest study lasted seven days, while the most prolonged intervention lasted six months, followed by six months of follow-up. Ten out of twelve trials demonstrated the effectiveness of β-glucans in reducing respiratory tract infection incidence or alleviation of upper respiratory tract infection symptoms. Ten out of twelve studies have reported a good tolerance and safety profile. Conclusions: Good tolerance of β-glucans shows a favorable benefit-risk ratio of this type of intervention. Nevertheless, further monitoring of their efficacy and safety in high-quality research is necessary.
Collapse
Affiliation(s)
- Katarzyna Wzorek-Łyczko
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Weronika Woźniak
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Anna Piwowarczyk
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| | - Ernest Kuchar
- The Department of Pediatrics with Clinical Assessment Unit, Medical University of Warsaw, Poland
| |
Collapse
|
4
|
Moerings BGJ, Mes JJ, van Bergenhenegouwen J, Govers C, van Dijk M, Witkamp RF, van Norren K, Abbring S. Dietary Intake of Yeast-Derived β-Glucan and Rice-Derived Arabinoxylan Induces Dose-Dependent Innate Immune Priming in Mice. Mol Nutr Food Res 2024; 68:e2300829. [PMID: 38682734 DOI: 10.1002/mnfr.202300829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Beta-glucans and arabinoxylans are known for their immunostimulatory properties. However, in vivo these have been documented almost exclusively following parenteral administration, underemphasizing oral intake. C57BL/6 mice are fed either a control diet or a diet supplemented with yeast-derived whole β-glucan particle (yWGP) or with rice-derived arabinoxylan (rice bran-1) at a concentration of 1%, 2.5%, or 5% weight/weight (w/w) for 2 weeks. Thereafter, cells from blood, bone marrow, and spleen are collected for ex vivo stimulation with various microbial stimuli. Dietary intake of yWGP for 2 weeks at concentrations of 1% and 2.5% w/w increases ex vivo cytokine production in mouse blood and bone marrow, whereas 5% w/w yWGP shows no effect. In the spleen, cytokine production remains unaffected by yWGP. At a concentration of 1% w/w, rice bran-1 increases ex vivo cytokine production by whole blood, but 2.5% and 5% w/w cause inhibitory effects in bone marrow and spleen. This study demonstrates that dietary yWGP and rice bran-1 induce immune priming in mouse blood and bone marrow, with the strongest effects observed at 1% w/w. Future human trials should substantiate the efficacy of dietary β-glucans and arabinoxylans to bolster host immunity, focusing on dose optimization.
Collapse
Affiliation(s)
- Bart G J Moerings
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| | | | - Coen Govers
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | | | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Klaske van Norren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
| | - Suzanne Abbring
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, 6708 WE, The Netherlands
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, 6708 WG, The Netherlands
| |
Collapse
|
5
|
Jia L, Beidelschies M, Evans JM, Niemtzow RC, Niemtzow SZ, Dusek JA, Lin Y, Wu C, Su YC, Wang CJ, Lin CY, Astana PRW, Ardiyanto D, Hardjoutomo R, Visithanon K, Puagkong J, Chokpaisarn J, Lopez MV, Yotsuyanagi H, Lee MS, Ramirez HJG, Bobadilla CP, Quinteros EMG, Galanti de la Paz M, Maramba-Lazarte CC. Recommendations and guidelines of integrative medicine for COVID-19 care: The APEC project outcome. Integr Med Res 2024; 13:101022. [PMID: 38434793 PMCID: PMC10907161 DOI: 10.1016/j.imr.2024.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
This article - Recommendations and Guidelines of Integrative Medicine (IM) for COVID-19 Care - was one of the outcomes from an Asia-Pacific Economic Cooperation (APEC) Project (Integrative Medicine (IM) and COVID -19 Care) during the time between May 2022 and March 2023. With the efforts from care providers, researchers, health policy makers and healthcare administrative leaders among APEC economies, the purpose of this file was to provide comprehensive IM systems for COVID-19 care as recommendations and suggestive guidelines including care methods, tools, procedures, symptom conditions and targets selections, and points need to be considered during care applications. All cited COVID-19 care practices have confirmed their efficacy and usefulness either used alone or combined with conventional medicine. This article provides current useful medical information on IM for COVID-19 care which could benefit APEC economies and world health communities on their healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - C. Jason Wang
- National Research Institute of Chinese Medicine, Chinese Taipei
| | - Chien-Yu Lin
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - APEC Health Working Group
- National Cancer Institute, USA
- Cleveland Clinic, USA
- The Center for Functional Medicine, USA
- The US Air Force Medical Corps, USA
- Connor Whole Health, USA
- Food and Drug Administration, USA
- Stanford University, USA
- National Research Institute of Chinese Medicine, Chinese Taipei
- Hsinchu MacKay Memorial Hospital, Chinese Taipei
- Sebelas Maret University of Surakarta, Indonesia
- Ministry of Health, Indonesia
- Public Health Management, Ministry of Health, Indonesia
- Department of Thai Traditional and Alternative Medicine, Thailand
- Prince of Songkla University, Thailand
- National University of San Marcos, Peru
- University of Tokyo, Japan
- Korea Institute of Oriental Medicine, Republic of Korea
- Complementary Care System, Mexico
- Academic Network of Integrative Medicine and Health, Chile
- Ministry of Health, Chile
- Academic University of Chile, Chile
- National Institutes of Health, Philippines
| |
Collapse
|
6
|
Han B, Yue F, Zhang X, Xu K, Zhang Z, Sun Z, Mu L, Li X. Genetically engineering of Saccharomyces cerevisiae for enhanced oral delivery vaccine vehicle. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109425. [PMID: 38316348 DOI: 10.1016/j.fsi.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Lu Mu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
7
|
Zhong X, Wang G, Li F, Fang S, Zhou S, Ishiwata A, Tonevitsky AG, Shkurnikov M, Cai H, Ding F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023; 15:1615. [PMID: 37376063 DOI: 10.3390/pharmaceutics15061615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucan, one of the homopolysaccharides composed of D-glucose, exists widely in cereals and microorganisms and possesses various biological activities, including anti-inflammatory, antioxidant, and anti-tumor properties. More recently, there has been mounting proof that β-glucan functions as a physiologically active "biological response modulator (BRM)", promoting dendritic cell maturation, cytokine secretion, and regulating adaptive immune responses-all of which are directly connected with β-glucan-regulated glucan receptors. This review focuses on the sources, structures, immune regulation, and receptor recognition mechanisms of β-glucan.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
- Medical College, Shaoguan University, Shaoguan 512026, China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Fu Li
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Sixian Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Saitama, Japan
| | - Alexander G Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Maxim Shkurnikov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow 117418, Russia
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
8
|
Nathan J, Shameera R, Ramachandran A. Impact of nutraceuticals on immunomodulation against viral infections-A review during COVID-19 pandemic in Indian scenario. J Biochem Mol Toxicol 2023; 37:e23320. [PMID: 36799127 DOI: 10.1002/jbt.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in early December 2019 is a censorious global emergency after World War II. Research on the coronavirus uncovered essential information that aided in the development of the vaccine, and specific coronavirus disease 2019 (COVID-19) vaccines were later developed and were approved for usage in humans. But then, mutations in the coronavirus gave rise to new variants and questioned the vaccine's efficacy against them. On the other hand, the investigation of traditional medicine was also on its path to find a novel outcome against COVID-19. On a comparative analysis between India and the United States, India had low death rate and high recovery rate than the latter. The dietary regulation of immunity may be the factor that makes the above difference. The immunity gained from the regular diet of Indian culture nourishes Indian people with essential phytochemicals that support immunity and metabolism. Dietary phytochemicals or nutraceuticals possess antioxidant, anti-inflammatory, and anticancer properties, out of which our concern will be on immune-boosting phytochemicals from our daily nutritional supplements. In several case studies, dietary substance like lemon, ginger, and spinach was reported in the recovery of COVID-19 patients. Thus in this review, we discuss coronavirus and its available variants, vaccines, and the effect of nutraceuticals against the coronavirus. Further, we denote that the immunity of the Indian population may be high because of their diet, which adds natural phytochemicals to boost their immunity and metabolism.
Collapse
Affiliation(s)
- Jhansi Nathan
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Rabiathul Shameera
- AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Arunkumar Ramachandran
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Kil BJ, Pyung YJ, Park H, Kang JW, Yun CH, Huh CS. Probiotic potential of Saccharomyces cerevisiae GILA with alleviating intestinal inflammation in a dextran sulfate sodium induced colitis mouse model. Sci Rep 2023; 13:6687. [PMID: 37095161 PMCID: PMC10125971 DOI: 10.1038/s41598-023-33958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
Recently, several probiotic products have been developed; however, most probiotic applications focused on prokaryotic bacteria whereas eukaryotic probiotics have received little attention. Saccharomyces cerevisiae yeast strains are eukaryotes notable for their fermentation and functional food applications. The present study investigated the novel yeast strains isolated from Korean fermented beverages and examined their potential probiotic characteristics. We investigated seven strains among 100 isolates with probiotic characteristics further. The strains have capabilities such as auto-aggregation tendency, co-aggregation with a pathogen, hydrophobicity with n-hexadecane,1,1-diphenyl-2-picrylhydrazyl scavenging effect, survival in simulated gastrointestinal tract conditions and the adhesion ability of the strains to the Caco-2 cells. Furthermore, all the strains contained high cell wall glucan content, a polysaccharide with immunological effects. Internal transcribed spacer sequencing identified the Saccharomyces strains selected in the present study as probiotics. To examine the effects of alleviating inflammation in cells, nitric oxide generation in raw 264.7 cells with S. cerevisiae showed that S. cerevisiae GILA could be a potential probiotic strain able to alleviate inflammation. Three probiotics of S. cerevisiae GILA strains were chosen by in vivo screening with a dextran sulfate sodium-induced colitis murine model. In particular, GILA 118 down-regulates neutrophil-lymphocyte ratio and myeloperoxidase in mice treated with DSS. The expression levels of genes encoding tight junction proteins in the colon were upregulated, cytokine interleukin-10 was significantly increased, and tumor necrosis factor-α was reduced in the serum.
Collapse
Affiliation(s)
- Bum Ju Kil
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jin Pyung
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Cheol-Heui Yun
- Biomodulation Major, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, 25354, Republic of Korea.
| |
Collapse
|
10
|
Zhang L, Xiao H, Zhao L, Liu Z, Chen L, Liu C. Comparison of the Effects of Prebiotics and Synbiotics Supplementation on the Immune Function of Male University Football Players. Nutrients 2023; 15:nu15051158. [PMID: 36904156 PMCID: PMC10004888 DOI: 10.3390/nu15051158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
This study was conducted to compare the effects of long-term prebiotic and synbiotic supplementations on the immunosuppression of male football players after daily high-intensity training and a one-time strenuous exercise. A total of 30 male university student-athletes were recruited and randomly assigned to the prebiotic (PG, n = 15) or synbiotic group (SG, n = 15), receiving a prebiotic or synbiotic once per day for six weeks. Physiological assessments were conducted by a maximal oxygen uptake (VO2max) test and an exhaustive constant load exercise (75% VO2max test). Inflammatory cytokine and secretory immunoglobulin A (SIgA) were measured. VO2max, maximal heart rate (HRmax), and lactic acid elimination rate (ER) were used to evaluate aerobic capacity. Upper respiratory tract infection (URTI) complaints were evaluated using a questionnaire. URTI incidence and duration were significantly lower in the SG group than that in the PG group (p < 0.05). At baseline, SIgA and interleukin-1β (IL-1β) levels in the SG group (p < 0.01) as well as IL-1β and IL-6 in the PG group (p < 0.05) were significantly increased, and IL-4 concentration was markedly reduced in the PG group (p < 0.01). The concentrations of IL-4, IL-10 and transforming growth factor-β1 (TGF-β1) were significantly reduced in the PG and SG group immediately after the constant load exercise. Significantly decreased HRmax and enhanced ER (increased by 193.78%) were detected in the SG group, not in the PG group, during the constant load experiment (p < 0.05) and the recovery period (p < 0.01), respectively. However, VO2max value was not changed. These data suggest that synbiotic supplementation for six weeks has a more positive effect than prebiotics on the immune function and athletic performance of male university football players.
Collapse
Affiliation(s)
- Lufang Zhang
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Hui Xiao
- School of China Football Sports, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Zeting Liu
- Department of Mathematic Science, School of Sport Engineering, Beijing Sport University, Beijing 100084, China
| | - Lanmu Chen
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Chenzhe Liu
- Department of Exercise Physiology, School of Sport Science, Beijing Sport University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
11
|
Lindberg F, Nelson I, Ranstam J, Riker DK. Early intervention with a glycerol throat spray containing cold-adapted cod trypsin after self-diagnosis of common cold: A randomised trial. PLoS One 2022; 17:e0270699. [PMID: 35789217 PMCID: PMC9255730 DOI: 10.1371/journal.pone.0270699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background
A glycerol throat spray containing cold-adapted cod trypsin (GCTS) deactivates common cold virus in vitro and decreases pharyngeal rhinovirus load after inoculation in humans. We relied on early self-diagnosis and evaluated two different scales to detect a treatment effect in naturally occurring common colds.
Methods
Adults were enrolled in this randomised, prospective, parallel group, single-blind study to begin treatment six times daily at first sign of a common cold or were assigned to a non-treated group. Jackson’s symptom scale and the 9-item Wisconsin Upper Respiratory Symptom Survey (WURSS)-21 quality of life (QoL) domain were recorded daily by subjects and area under the curve over 12 days (AUC1-12) calculated.
Results
Treatment resulted in reduced symptoms with an AUC1-12 of 45.1 ± 32.5 for Jackson scores compared to 53.8 ± 35.7 in the controls (p = 0.023). AUC1-12 for the 9-item WURSS-21 QoL domain was likewise improved, 113.6 ± 107.7 and 152.7 ± 126.3 (p = 0.006), respectively. During the first four days fewer of the treated subjects (35.3%) used rescue medication than did the control group (50.4%, p = 0.014).
Conclusions
Reduction in common cold symptoms was seen with treatment with a glycerol throat spray containing cold-adapted cod trypsin. This effect was best detected with the 9-item WURSS-21 QoL domain.
Collapse
Affiliation(s)
| | | | | | - Donald K. Riker
- On Point Advisors, LLC, Scottsdale, AZ, United States of America
| |
Collapse
|
12
|
Preethy S, Raghavan K, Dedeepiya VD, Surya Prakash V, Ikewaki N, Ikeue Y, Nagataki M, Iwasaki M, Senthilkumar R, Abraham SJK. Beneficial Immune Regulation by Biological Response Modifier Glucans in COVID-19 and Their Envisaged Potentials in the Management of Sepsis. Front Immunol 2022; 13:870632. [PMID: 35833122 PMCID: PMC9272021 DOI: 10.3389/fimmu.2022.870632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a life-threatening condition caused by an abnormal immune response induced by infection with no approved or specific therapeutic options. We present our perspectives for the therapeutic management of sepsis through a four-way approach: (1) infection control through immune enhancement; (2) immune suppression during the initial hyper-inflammatory phase; (3) balanced immune-modulation to counter the later immune-paralysis phase; and (4) advantageous effects on metabolic and coagulation parameters throughout. COVID-19 is a virus-triggered, accelerated sepsis-like reaction that is associated with the rapid progress of an inflammatory cascade involving a cytokine storm and multiorgan failure. Here, we discuss the potential of the biological response modifiers, β-glucans (BRMGs), in the management of sepsis based on their beneficial effects on inflammatory-immune events in COVID-19 clinical studies. In COVID-19 patients, apart from metabolic regulation, BRMGs, derived from a black yeast, Aureobasidium pullulans strain AFO-202, have been reported to stimulate immune responses. BRMGs, produced by another strain (N-163) of A. pullulans, have been implicated in the beneficial regulation of inflammatory markers and immunity, namely IL-6, C-reactive protein (CRP), D-Dimer, ferritin, neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-C-reactive protein ratio (LCR), leucocyte-to-C-reactive protein ratio (LeCR), and leukocyte-to-IL-6 ratio (LeIR). Agents such as these β-glucans, which are safe as they have been widely consumed by humans for decades, have potential as adjuncts for the prevention and management of sepsis as they exert their beneficial effects across the spectrum of processes and factors involved in sepsis pathology, including, but not limited to, metabolism, infection, inflammation, immune modulation, immune enhancement, and gut microbiota.
Collapse
Affiliation(s)
- Senthilkumar Preethy
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Kadalraja Raghavan
- Department of Paediatric Neurology, Sarvee Integra Private Limited, Chennai, India
- Department of Paediatric Neurology, Jesuit Antonyraj memorial Inter-disciplinary Centre for Advanced Recovery and Education (JAICARE), Madurai, India
| | | | | | - Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Japan
- Institute of Immunology, Junsei Educational Institute, Nobeoka, Japan
| | | | | | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
| | - Rajappa Senthilkumar
- Fujio-Eiji Academic Terrain (FEAT), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
| | - Samuel J. K. Abraham
- Mary-Yoshio Translational Hexagon (MYTH), Nichi-In Centre for Regenerative Medicine (NCRM), Chennai, India
- Centre for Advancing Clinical Research (CACR), University of Yamanashi - School of Medicine, Chuo, Japan
- Antony-Xavier Interdisciplinary Scholastics (AXIS), GN Corporation Ltd., Kofu, Japan
| |
Collapse
|
13
|
β-Glucans from Yeast—Immunomodulators from Novel Waste Resources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
β-glucans are a large class of complex polysaccharides with bioactive properties, including immune modulation. Natural sources of these compounds include yeast, oats, barley, mushrooms, and algae. Yeast is abundant in various processes, including fermentation, and they are often discarded as waste products. The production of biomolecules from waste resources is a growing trend worldwide with novel waste resources being constantly identified. Yeast-derived β-glucans may assist the host’s defence against infections by influencing neutrophil and macrophage inflammatory and antibacterial activities. β-glucans were long regarded as an essential anti-cancer therapy and were licensed in Japan as immune-adjuvant therapy for cancer in 1980 and new mechanisms of action of these molecules are constantly emerging. This paper outlines yeast β-glucans’ immune-modulatory and anti-cancer effects, production and extraction, and their availability in waste streams.
Collapse
|
14
|
Islam MA, Haque MA, Rahman MA, Hossen F, Reza M, Barua A, Marzan AA, Das T, Kumar Baral S, He C, Ahmed F, Bhattacharya P, Jakariya M. A Review on Measures to Rejuvenate Immune System: Natural Mode of Protection Against Coronavirus Infection. Front Immunol 2022; 13:837290. [PMID: 35371007 PMCID: PMC8965011 DOI: 10.3389/fimmu.2022.837290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2, a novel Corona virus strain, was first detected in Wuhan, China, in December 2019. As of December 16, 2021, almost 4,822,472 people had died and over 236,132,082 were infected with this lethal viral infection. It is believed that the human immune system is thought to play a critical role in the initial phase of infection when the viruses invade the host cells. Although some effective vaccines have already been on the market, researchers and many bio-pharmaceuticals are still working hard to develop a fully functional vaccine or more effective therapeutic agent against the COVID-19. Other efforts, in addition to functional vaccines, can help strengthen the immune system to defeat the corona virus infection. Herein, we have reviewed some of those proven measures, following which a more efficient immune system can be better prepared to fight viral infection. Among these, dietary supplements like- fresh vegetables and fruits offer a plentiful of vitamins and antioxidants, enabling to build of a healthy immune system. While the pharmacologically active components of medicinal plants directly aid in fighting against viral infection, supplementary supplements combined with a healthy diet will assist to regulate the immune system and will prevent viral infection. In addition, some personal habits, like- regular physical exercise, intermittent fasting, and adequate sleep, had also been proven to aid the immune system in becoming an efficient one. Maintaining each of these will strengthen the immune system, allowing innate immunity to become a more defensive and active antagonistic mechanism against corona-virus infection. However, because dietary treatments take longer to produce beneficial effects in adaptive maturation, personalized nutrition cannot be expected to have an immediate impact on the global outbreak.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Microbiology President Abdul Hamid Medical College, Karimganj, Bangladesh
| | - Md. Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md. Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mahin Reza
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Dhaka, Bangladesh
| |
Collapse
|
15
|
Kowalczewski PŁ, Olejnik A, Świtek S, Bzducha-Wróbel A, Kubiak P, Kujawska M, Lewandowicz G. Bioactive compounds of potato ( Solanum tuberosum L.) juice: from industry waste to food and medical applications. CRITICAL REVIEWS IN PLANT SCIENCES 2022; 41:52-89. [DOI: 10.1080/07352689.2022.2057749] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | - Anna Olejnik
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Stanisław Świtek
- Department of Agronomy, Poznań University of Life Sciences, Poznań, Poland
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Grażyna Lewandowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
16
|
|
17
|
Pan W, Hao S, Zheng M, Lin D, Jiang P, Zhao J, Shi H, Yang X, Li X, Yu Y. Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming. Inflammation 2021; 43:1323-1336. [PMID: 32170601 DOI: 10.1007/s10753-020-01211-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trained immunity has been recently identified in innate immune cells, which undergo long-term epigenetic and metabolic reprogramming after exposure to pathogens for protection from secondary infections. (1, 3)/(1, 6)-β-glucan derived from fungi can induce potent trained immunity; however, the effect of (1, 3)/(1, 4)-β-glucan (rich in dietary fiber oat) on trained immunity has not been reported. In the present study, two cell culture systems for trained immunity induction were validated in monocytes/macrophages from mouse bone myeloid and human THP-1 cells exposed to positive inducers of trained immunity, including β-glucan from Trametes versicolor or human-oxidized low-density lipoprotein. Primed with oat β-glucan, the mRNA expression and production of TNF-α and IL-6 significantly increased in response to re-stimulation of TLR-4/2 ligands. Moreover, the expression of several key enzymes in glycolytic pathway and tricarboxylic acid cycle was significantly upregulated. In addition, inhibiting these enzymes decreased the production of TNF-α and IL-6 boosted by oat β-glucan. These results show that oat β-glucan induces trained immunity through metabolic reprogramming. This provides important evidence that dietary fiber can maintain the long-term responsiveness of the innate immune system, which may benefit for prevention of infectious diseases or cancers.
Collapse
Affiliation(s)
- Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.,JOINN Laboratories (Suzhou), Suzhou, 215421, Jiangsu Province, China
| | - Shanshan Hao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Danhong Lin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Pengfei Jiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Jinxiu Zhao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Hongli Shi
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
18
|
Vlassopoulou M, Yannakoulia M, Pletsa V, Zervakis GI, Kyriacou A. Effects of fungal beta-glucans on health - a systematic review of randomized controlled trials. Food Funct 2021; 12:3366-3380. [PMID: 33876798 DOI: 10.1039/d1fo00122a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Beta-glucans are polysaccharides that exhibit a wide range of biological properties as a result of their varying chemical composition. Like all dietary fibers, they avoid catabolism in the upper gastrointestinal tract, and they reach the large intestine undigested. There, they undergo fermentation by the gut microbiota, a process that has potential beneficial effects for the host. The aim of this systematic review is to assess the effects of consumption of beta-(1 → 3,1 → 6)-d-glucans, naturally found in the cell walls of fungi, on health outcomes. METHODS A comprehensive literature search was performed on PubMed, Cochrane Library and Web of Science to retrieve studies that applied randomized controlled trials (RCTs) to investigate the impact of exclusive oral administration of fungal beta-glucans in any form and at any dosage to healthy subjects or patients. RESULTS Thirty-four RCTs, of the 917 records retrieved in total, met the eligibility criteria and are included in the present review. The sources of fungal beta-glucans were Saccharomyces cerevisiae, Aureobasidium pullulans, Pleurotus ostreatus, Lentinula edodes and Ganoderma lucidum, and the dosage of supplementation ranged from 2.5 to 1000 mg daily for up to 6.5 months. The primary physiological outcome of the majority of the interventions was immunomodulation, which resulted in (a) strengthened immune defense that reduces the incidence and symptoms of cold, flu and other respiratory infections and (b) improvement of allergic symptoms. However, the findings on the induction of immune response alterations were inconsistent at the cellular and molecular levels. Another aspect is psychological wellbeing, as the cohorts that received the polysaccharides of interest reported improvement in their mood states as well as amelioration of overall wellbeing. At the same time, it might also be useful as a complementary agent to patients undergoing cancer therapies. Furthermore, supplements containing beta-(1 → 3,1 → 6)-d-glucan administered to overweight/obese adults might have the potential to decrease comorbid conditions associated with obesity. Notably, no adverse event causally related to glucans was recorded. CONCLUSIONS Supplementation with beta-(1 → 3,1 → 6)-d-glucans is well-tolerated, and health-promoting properties are manifested primarily through the potentiation of the immune system. More studies are required to confirm their additional beneficial effects, to establish the optimal dose, and to reveal the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Marigoula Vlassopoulou
- Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Str., Kallithea 176 76, Greece. and Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., Athens 116 35, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Str., Kallithea 176 76, Greece.
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., Athens 116 35, Greece
| | - Georgios I Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., Athens 118 55, Greece
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 70 El. Venizelou Str., Kallithea 176 76, Greece.
| |
Collapse
|
19
|
Zhong K, Liu Z, Lu Y, Xu X. Effects of yeast β-glucans for the prevention and treatment of upper respiratory tract infection in healthy subjects: a systematic review and meta-analysis. Eur J Nutr 2021; 60:4175-4187. [PMID: 33900466 DOI: 10.1007/s00394-021-02566-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE Yeast β-glucans are known for their immune-modulating effects; however, their effects on human upper respiratory tract infections (URTIs) remain unclear. The aim of the present study was to use a systematic review and meta-analysis approach to investigate the effects of yeast β-glucans for the prevention and treatment of URTIs in healthy subjects. METHODS Databases including Pubmed, Web of Science, EMBASE and the Cochrane Library were searched and 13 RCTs investigating the effects of yeast β-glucans on the incidence, duration, and severity of URTIs in healthy subjects were included. RESULTS The results showed that compared to the placebo group, yeast β-glucan could significantly reduce the incidence of URTIs (OR = 0.345, 95% CI = 0.192 to 0.620, p < 0.001), decrease the average number of URTI episodes (SMD = - 0.315, 95% CI = - 0.500 to - 0.130, p < 0.05), and decrease the duration of URTIs (SMD = - 0.312, 95% CI = - 0.561 to - 0.064, p < 0.001). Improved severity of symptoms was found in yeast β-glucan group compared to the placebo group in the majority of included studies. In addition, yeast β-glucan was well tolerated and safe in general. CONCLUSION These findings suggest a positive effect of yeast β-glucans on human URTIs. However, due to the high heterogeneity and small number of included studies, more high-quality research and clinical trials are warranted.
Collapse
Affiliation(s)
- Kunxia Zhong
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Zhiqin Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Yao Lu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
20
|
Shokri-Mashhadi N, Kazemi M, Saadat S, Moradi S. Effects of select dietary supplements on the prevention and treatment of viral respiratory tract infections: a systematic review of randomized controlled trials. Expert Rev Respir Med 2021; 15:805-821. [PMID: 33858268 DOI: 10.1080/17476348.2021.1918546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Viral respiratory tract infections (RTIs) have been recognized as a global public health burden. Despite current theories about their effectiveness, the true benefits of dietary supplements on the prevention and treatment of viral RTIs remain elusive, due to contradictory reports. Hence, we aimed to evaluate the effectiveness of dietary supplements on the prevention and treatment of viral RTIs.Areas covered: We systematically searched databases of PubMed, Web of Science, Scopus, and Google Scholar through 4 March 2020, to identify randomized controlled trials that evaluated the effects of consuming selected dietary supplements on the prevention or treatment of viral RTIs.Expert opinion: Thirty-nine randomized controlled trials (n = 16,797 participants) were eligible and included. Namely, vitamin D supplementation appeared to improve viral RTIs across cohorts particulate in those with vitamin D deficiency. Among the evaluated dietary supplements, specific lactobacillus strains were used most commonly with selected prebiotics that showed potentially positive effects on the prevention and treatment of viral RTIs. Further, ginseng extract supplementation may effectively prevent viral RTIs as adjuvant therapy. However, longitudinal research is required to confirm these observations and address the optimal dose, duration, and safety of dietary supplements being publicly recommended.
Collapse
Affiliation(s)
- Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Kazemi
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, NewYork, USA
| | - Saeed Saadat
- Department of Computer Sciences, Faculty of Mathematics and Natural Sciences, Heinrich Heine Universität, Düsseldorf, Germany
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
van Steenwijk HP, Bast A, de Boer A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021; 13:1333. [PMID: 33920583 PMCID: PMC8072893 DOI: 10.3390/nu13041333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
The importance of a well-functioning and balanced immune system has become more apparent in recent decades. Various elements have however not yet been uncovered as shown, for example, in the uncertainty on immune system responses to COVID-19. Fungal beta-glucans are bioactive molecules with immunomodulating properties. Insights into the effects and function of beta-glucans, which have been used in traditional Chinese medicine for centuries, advances with the help of modern immunological and biotechnological methods. However, it is still unclear into which area beta-glucans fit best: supplements or medicine? This review has highlighted the potential application of fungal beta-glucans in nutrition and medicine, reviewing their formulation, efficacy, safety profile, and immunomodulating effects. The current status of dietary fungal glucans with respect to the European scientific requirements for health claims related to the immune system and defense against pathogens has been reviewed. Comparing the evidence base of the putative health effects of fungal beta-glucan supplements with the published guidance documents by EFSA on substantiating immune stimulation and pathogen defense by food products shows that fungal beta-glucans could play a role in supporting and maintaining health and, thus, can be seen as a good health-promoting substance from food, which could mean that this effect may also be claimed if approved. In addition to these developments related to food uses of beta-glucan-containing supplements, beta-glucans could also hold a novel position in Western medicine as the concept of trained immunity is relatively new and has not been investigated to a large extent. These innovative concepts, together with the emerging success of modern immunological and biotechnological methods, suggest that fungal glucans may play a promising role in both perspectives, and that there are possibilities for traditional medicine to provide an immunological application in both medicine and nutrition.
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| | - Aalt Bast
- Campus Venlo, University College Venlo, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology & Toxicology, Medicine and Life Sciences, Faculty of Health, Maastricht University, 5911 BV Venlo, The Netherlands
| | - Alie de Boer
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
22
|
De Marco Castro E, Calder PC, Roche HM. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions. Mol Nutr Food Res 2021; 65:e1901071. [PMID: 32223047 PMCID: PMC7816268 DOI: 10.1002/mnfr.201901071] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/28/2020] [Indexed: 12/16/2022]
Abstract
The innate immune system responds in a rapid and non-specific manner against immunologic threats; inflammation is part of this response. This is followed by a slower but targeted and specific response termed the adaptive or acquired immune response. There is emerging evidence that dietary components, including yeast-derived β-glucans, can aid host defense against pathogens by modulating inflammatory and antimicrobial activity of neutrophils and macrophages. Innate immune training refers to a newly recognized phenomenon wherein compounds may "train" innate immune cells, such that monocyte and macrophage precursor biology is altered to mount a more effective immunological response. Although various human studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between β-glucan supplementation and human immune function. This review offers an up-to-date report on yeast-derived β-glucans as immunomodulators, including a brief overview of the current paradigm regarding the interaction of β-glucans with the immune system. The recent pre-clinical work that has partly decrypted mode of action and the newest evidence from human trials are also reviewed. According to pre-clinical studies, β-1,3/1,6-glucan derived from baker's yeast may offer increased immuno-surveillance, although the human evidence is weaker than that gained from pre-clinical studies.
Collapse
Affiliation(s)
- Elena De Marco Castro
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
| | - Philip C. Calder
- Faculty of MedicineUniversity of SouthamptonSouthamptonSO16 6YDUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation TrustUniversity of SouthamptonSouthamptonSO16 6YDUK
| | - Helen M. Roche
- Nutrigenomics Research GroupSchool of Public Health, Physiotherapy, and Sports ScienceConway Institute, and Institute of Food and HealthUniversity College DublinDublin 4D04 V1W8Ireland
- Diabetes Complications Research CentreConway InstituteUniversity College DublinDublin 4D04 V1W8Ireland
- Institute for Global Food SecurityQueens University BelfastBelfastNorthern IrelandBT9 5DLUK
| |
Collapse
|
23
|
Abstract
Coronavirus disease 2019 (COVID-19) has become pandemic very rapidly at the beginning of 2020. In the rush to possible therapeutic options, probiotics administration has been proposed mainly based on indirect observation. Some evidence of COVID-19 effects on intestinal microbiota dysbiosis has been shown and probiotics have been considered for their efficacy in the management of respiratory tract viral infections. These observations could be reinforced by the more and more evident existence of a lung-gut axis, suggesting the modulation of gut microbiota among the approaches to the COVID-19 prevention and treatment. As different possible roles of probiotics in this extremely severe illness have been contemplated, the aim of this work is to collect all the currently available information related to this topic, providing a starting point for future studies focussing on it.
Collapse
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
24
|
Affiliation(s)
| | | | - Erasmo Neviani
- Department of food and drug, University of Parma, Parma, Italy
| |
Collapse
|
25
|
Geller A, Yan J. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19? Front Immunol 2020; 11:1782. [PMID: 32760409 PMCID: PMC7372085 DOI: 10.3389/fimmu.2020.01782] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022] Open
Abstract
As the SARS-CoV-2 virus wreaks havoc on the populations, health care infrastructures and economies of nations around the world, finding ways to protect health care workers and bolster immune responses in the general population while we await an effective vaccine will be the difference between life and death for many people. Recent studies show that innate immune populations may possess a form of memory, termed Trained Immunity (TRIM), where innate immune cells undergo metabolic, mitochondrial, and epigenetic reprogramming following exposure to an initial stimulus that results in a memory phenotype of enhanced immune responses when exposed to a secondary, heterologous, stimulus. Throughout the literature, it has been shown that the induction of TRIM using such inducers as the BCG vaccine and β-glucan can provide protection through altered immune responses against a range of viral infections. Here we hypothesize a potential role for β-glucan in decreasing worldwide morbidity and mortality due to COVID-19, and posit several ideas as to how TRIM may actually shape the observed epidemiological phenomena related to COVID-19. We also evaluate the potential effects of β-glucan in relation to the immune dysregulation and cytokine storm observed in COVID-19. Ultimately, we hypothesize that the use of oral β-glucan in a prophylactic setting could be an effective way to boost immune responses and abrogate symptoms in COVID-19, though clinical trials are necessary to confirm the efficacy of this treatment and to further examine differential effects of β-glucan's from various sources.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Division of Immunotherapy, Department of Surgery, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
26
|
Chan CKY, Tao J, Chan OS, Li HB, Pang H. Preventing Respiratory Tract Infections by Synbiotic Interventions: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2020; 11:979-988. [PMID: 31996911 PMCID: PMC7360463 DOI: 10.1093/advances/nmaa003] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Dysbiosis of the human gut microbiome has been linked to various health conditions, including respiratory tract infections (RTIs) through the gut-lung axis. Several trials have reported that synbiotic therapy could help prevent RTIs or relieve symptoms of some diseases. This meta-analysis comprehensively evaluates the clinical effects of synbiotic supplements for preventing RTIs. PubMed and Google Scholar were searched by keywords for eligible clinical trials until April 2019. Sixty-two studies were retrieved, and 16 studies were selected for meta-analysis. The primary outcomes were defined as the proportion of participants with RTIs at least once or the times of RTI episodes during follow-up based on the intention-to-treat approach. Overall, synbiotic interventions reduced the incidence rate of RTIs by 16% (95% CI: 4%, 27%) and the proportion of participants experiencing RTIs by 16% (95% CI: 5%, 26%). There was no significant evidence of publication bias. A subgroup analysis suggested more prominent effects of synbiotics among adults than infants and children for RTI prevention. The sensitivity analysis excluding trials with prebiotics or probiotics as controls was consistent with our primary analysis. This meta-analysis of clinical trials involving >10,000 individuals showed that synbiotic interventions could be an alternative nutrition strategy for conferring human health and preventing RTIs. Future investigations on the clinical efficacy and safety of synbiotic interventions are warranted with strain-specific and dose-specific approaches.
Collapse
Affiliation(s)
- Carty K Y Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jun Tao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olivia S Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| | - Herbert Pang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Zabriskie HA, Blumkaitis JC, Moon JM, Currier BS, Stefan R, Ratliff K, Harty PS, Stecker RA, Rudnicka K, Jäger R, Roberts MD, Young K, Jagim AR, Kerksick CM. Yeast Beta-Glucan Supplementation Downregulates Markers of Systemic Inflammation after Heated Treadmill Exercise. Nutrients 2020; 12:nu12041144. [PMID: 32325856 PMCID: PMC7230631 DOI: 10.3390/nu12041144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aerobic exercise and thermal stress instigate robust challenges to the immune system. Various attempts to modify or supplement the diet have been proposed to bolster the immune system responses. The purpose of this study was to identify the impact of yeast beta-glucan (Saccharomyces cerevisiae) supplementation on exercise-induced muscle damage and inflammation. Healthy, active men (29.6 ± 6.7 years, 178.1 ± 7.2 cm, 83.2 ± 11.2 kg, 49.6 ± 5.1 mL/kg/min, n = 16) and women (30.1 ± 8.9 years, 165.6 ± 4.1 cm, 66.7 ± 10.0 kg, 38.7 ± 5.8 mL/kg/min, n = 15) were randomly assigned in a double-blind and cross-over fashion to supplement for 13 days with either 250 mg/day of yeast beta-glucan (YBG) or a maltodextrin placebo (PLA). Participants arrived fasted and completed a bout of treadmill exercise at 55% peak aerobic capacity (VO2Peak) in a hot (37.2 ± 1.8 °C) and humid (45.2 ± 8.8%) environment. Prior to and 0, 2, and 72 h after completing exercise, changes in white blood cell counts, pro- and anti-inflammatory cytokines, markers of muscle damage, markers of muscle function, soreness, and profile of mood states (POMS) were assessed. In response to exercise and heat, both groups experienced significant increases in white blood cell counts, plasma creatine kinase and myoglobin, and soreness along with reductions in peak torque and total work with no between-group differences. Concentrations of serum pro-inflammatory cytokines in YBG were lower than PLA for macrophage inflammatory protein 1β (MIP-1β) (p = 0.044) and tended to be lower for interleukin 8 (IL-8) (p = 0.079), monocyte chemoattractment protein 1 (MCP-1) (p = 0.095), and tumor necrosis factor α (TNF-α) (p = 0.085). Paired samples t-tests using delta values between baseline and 72 h post-exercise revealed significant differences between groups for IL-8 (p = 0.044, 95% Confidence Interval (CI): (0.013, 0.938, d = −0.34), MCP-1 (p = 0.038, 95% CI: 0.087, 2.942, d = −0.33), and MIP-1β (p = 0.010, 95% CI: 0.13, 0.85, d = −0.33). POMS outcomes changed across time with anger scores in PLA exhibiting a sharper decline than YBG (p = 0.04). Vigor scores (p = 0.04) in YBG remained stable while scores in PLA were significantly reduced 72 h after exercise. In conclusion, a 13-day prophylactic period of supplementation with 250 mg of yeast-derived beta-glucans invoked favorable changes in cytokine markers of inflammation after completing a prolonged bout of heated treadmill exercise.
Collapse
Affiliation(s)
| | - Julia C. Blumkaitis
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Jessica M. Moon
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Brad S. Currier
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Riley Stefan
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Kayla Ratliff
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Patrick S. Harty
- Energy Balance and Body Composition Laboratory, Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX 79409, USA;
| | - Richard A. Stecker
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI 53202, USA;
| | | | - Kaelin Young
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Andrew R. Jagim
- Sports Medicine, Mayo Clinic Health System, Onalaska, WI 54650, USA;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, 209 S. Kingshighway, St. Charles, MO 63301, USA; (J.C.B.); (J.M.M.); (B.S.C.); (R.S.); (K.R.); (R.A.S.)
- Correspondence: ; Tel.: +1-636-627-4629
| |
Collapse
|
28
|
Vetvicka V, Vetvickova J. β-Glucan Improves Conditions of Chronic Fatigue in Mice by Stimulation of Immunity. Open Biochem J 2020. [DOI: 10.2174/1874091x02014010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Various natural molecules have been studied for the enhancement of physical endurance. Glucan has been found to improve various stress-related conditions and to improve fatigue and endurance.
Objective:
In our study, we focused on evaluation of glucan effects on some reactions involved in chronic fatigue.
Methods:
We measured phagocytosis of neutrophils, the production of IL-2, IL-4, and IL-10 by spleen cells, and levels of antioxidant glutathione and oxidative stress marker superoxide dismutase in brain. In addition, we measured the effects of glucan on water immersion and on rotarod.
Results:
The glucan supplementation strongly improved the suppressed phagocytosis and changes in cytokine and levels of oxidative stress markers caused by fatigue. In addition, glucan supplementation also increased the motor functioning of tested animals.
Conclusion:
Our data suggested that anti-fatigue properties of glucan are related with its well-established effects as stimulator of immune reactions.
Collapse
|
29
|
Efficacy and safety of oral and inhalation commercial beta-glucan products: Systematic review of randomized controlled trials. Clin Nutr 2020; 39:40-48. [DOI: 10.1016/j.clnu.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
|
30
|
Evans M, Falcone PH, Crowley DC, Sulley AM, Campbell M, Zakaria N, Lasrado JA, Fritz EP, Herrlinger KA. Effect of a Euglena gracilis Fermentate on Immune Function in Healthy, Active Adults: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2019; 11:nu11122926. [PMID: 31816842 PMCID: PMC6950611 DOI: 10.3390/nu11122926] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Euglena gracilis produce high amounts of algal β-1,3-glucan, which evoke an immune response when consumed. This study investigated the effect of supplementation with a proprietary Euglena gracilis fermentate (BG), containing greater than 50% β-1,3-glucan, on immune function as measured by self-reported changes in upper respiratory tract infection (URTI) symptoms. Thirty-four healthy, endurance-trained participants were randomized and received either 367 mg of BG or placebo (PLA) for 90 days. Symptoms were assessed by the 24-item Wisconsin Upper Respiratory Symptom Survey and safety via clinical chemistry, hematology, vitals, and adverse event reporting. Participants supplemented with BG over 90 days reported fewer sick days (BG: 1.46 ± 1.01; PLA: 4.79 ± 1.47 days; p = 0.041), fewer URTI symptoms (BG: 12.62 ± 5.92; PLA: 42.29 ± 13.17; p = 0.029), fewer symptom days (BG: 5.46 ± 1.89; PLA: 15.43 ± 4.59 days; p = 0.019), fewer episodes (BG: 2.62 ± 0.67; PLA: 4.79 ± 0.67; p = 0.032), and lower global severity measured as area under curve for URTI symptoms (BG: 17.50 ± 8.41; PLA: 89.79 ± 38.92; p = 0.0499) per person compared to placebo. Sick days, symptoms, and global severity were significantly (p < 0.05) fewer over 30 days in the BG group compared to PLA. All safety outcomes were within clinically normal ranges. The study provides evidence that supplementation with a proprietary Euglena gracilis fermentate containing greater than 50% β-1,3-glucan may reduce and prevent URTI symptoms, providing immune support and protecting overall health.
Collapse
Affiliation(s)
- Malkanthi Evans
- KGK Science, London, ON N6A 5R8, Canada
- Correspondence: ; Tel.: +1-519-438-9374 (ext. 239)
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scott AM, Clark J, Julien B, Islam F, Roos K, Grimwood K, Little P, Del Mar CB. Probiotics for preventing acute otitis media in children. Cochrane Database Syst Rev 2019; 6:CD012941. [PMID: 31210358 PMCID: PMC6580359 DOI: 10.1002/14651858.cd012941.pub2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Acute otitis media (AOM), or acute middle ear infection, is one of the most frequently occurring childhood diseases, and the most common reason given for prescribing antibiotics in this age group. Guidelines often recommend antibiotics as first-line treatment for severe AOM. However, antibiotics also lead to antibiotic resistance, so preventing episodes of AOM is an urgent priority. OBJECTIVES To assess the effects of probiotics to prevent the occurrence and reduce the severity of acute otitis media in children. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three other databases (October 2018), two trial registers (October 2018), and conducted a backwards and forwards citation analysis (August 2018). We did not apply any language, publication date, or publication status restrictions. SELECTION CRITERIA Randomised controlled trials (RCTs) of children (aged up to 18 years), comparing probiotics with placebo, usual care, or no probiotic. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility of trials for inclusion and risk of bias of the included trials, and extracted data using pre-piloted data extraction forms. We analysed dichotomous data as either risk ratio (RR) or odds ratios (OR) and continuous data as mean differences (MD). MAIN RESULTS We included 17 RCTs involving 3488 children, of which 16 RCTs were included in the meta-analyses. Of the 16 RCTs that reported the mean age of children, mean age overall was 2.4 years; in 4 RCTs the mean age of children participating in the trial was less than 1 year old; in 2 RCTs the mean age was between 1 and 2 years old; and in 10 RCTs the mean age was older than 2 years. Probiotic strains evaluated by the trials varied, with 11 of the included RCTs evaluating Lactobacillus-containing probiotics, and six RCTs evaluating Streptococcus-containing probiotics.The proportion of children (i.e. the number of children in each group) experiencing one or more episodes of AOM during the treatment was lower for those taking probiotics (RR 0.77, 95% confidence interval (CI) 0.63 to 0.93; 16 trials; 2961 participants; number needed to treat for an additional beneficial outcome (NNTB) = 10; moderate-certainty evidence).Post hoc subgroup analysis found that among children not prone to otitis media, a lower proportion of children receiving probiotics experienced AOM (RR 0.64, 95% CI 0.49 to 0.84; 11 trials; 2227 participants; NNTB = 9; moderate-certainty evidence). However, among children who were otitis prone, there was no difference between probiotic and comparator groups (RR 0.97, 95% CI 0.85 to 1.11; 5 trials; 734 participants; high-certainty evidence). The test for subgroup differences was significant (P = 0.007).None of the included trials reported on the severity of AOM.The proportion of children experiencing adverse events did not differ between the probiotic and comparator groups (OR 1.54, 95% CI 0.60 to 3.94; 4 trials; 395 participants; low-certainty evidence).Probiotics decreased the proportion of children taking antibiotics for any infection (RR 0.66, 95% CI 0.51 to 0.86; 8 trials; 1768 participants; NNTB = 8; moderate-certainty evidence). Test for subgroup differences (use of antibiotic specifically for AOM, use of antibiotic for infections other than AOM) was not significant.There was no difference in the mean number of school days lost (MD -0.95, 95% CI -2.47 to 0.57; 5 trials; 1280 participants; moderate-certainty evidence). There was no difference between groups in the level of compliance in taking the intervention (RR 1.02, 95% CI 0.99 to 1.05; 5 trials; 990 participants).Probiotics decreased the proportion of children having other infections (RR 0.75, 95% CI 0.65 to 0.87; 11 trials; 3610 participants; NNTB = 12; moderate-certainty evidence). Test for subgroup differences (acute respiratory infections, gastrointestinal infections) was not significant.Probiotic strains trialled and their dose, frequency, and duration of administration varied considerably across studies, which likely contributed to the substantial levels of heterogeneity. Sensitivity testing of funnel plots did not reveal publication bias. AUTHORS' CONCLUSIONS Probiotics may prevent AOM in children not prone to AOM, but the inconsistency of the subgroup analyses suggests caution in interpreting these results. Probiotics decreased the proportion of children taking antibiotics for any infection. The proportion of children experiencing adverse events did not differ between the probiotic and comparator groups. The optimal strain, duration, frequency, and timing of probiotic administration still needs to be established.
Collapse
Affiliation(s)
- Anna M Scott
- Bond UniversityCentre for Research in Evidence‐Based Practice (CREBP)14 University DriveGold CoastQueenslandAustralia4229
| | - Justin Clark
- Bond UniversityCentre for Research in Evidence‐Based Practice (CREBP)14 University DriveGold CoastQueenslandAustralia4229
| | - Blair Julien
- Bond University14 University DriveRobinaQueenslandAustralia4229
| | - Farhana Islam
- Bond University14 University DriveRobinaQueenslandAustralia4229
| | - Kristian Roos
- Lundby HospitalENT DepartmentWieselgrensplatesen 2AGoteborgSweden41717
| | - Keith Grimwood
- Griffith University and Departments of Infectious Diseases and Paediatrics, Gold Coast HealthSchool of Medicine and Menzies Health Institute QueenslandGold CoastQueenslandAustralia
| | - Paul Little
- Aldermoor Health Centre, University of SouthamptonPrimary Care and Population Sciences, Faculty of MedicineAldermoor CloseSouthamptonUKS016 5ST
| | - Chris B Del Mar
- Bond UniversityCentre for Research in Evidence‐Based Practice (CREBP)14 University DriveGold CoastQueenslandAustralia4229
| | | |
Collapse
|
32
|
Bzducha-Wróbel A, Pobiega K, Błażejak S, Kieliszek M. The scale-up cultivation of Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl Microbiol Biotechnol 2018; 102:9131-9145. [PMID: 30215128 PMCID: PMC6208972 DOI: 10.1007/s00253-018-9357-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 08/30/2018] [Indexed: 11/08/2022]
Abstract
New ideas on production of yeast origin β-glucan preparations for industrial application are attracting interest considering market development of that high-value functional polysaccharide. Sellecting an efficient yeast producer and designing culture conditions are a prerequisite for obtaining high yield of β-glucan. The aim of this study was to describe at the first time the influence of the mode of cultivation (shake-flasks and batch fermentation) and time of culture on characteristic and yield of biomass and β(1,3)/(1,6)-glucan preparations of Candida utilis ATCC 9950 after cultivation in medium based on waste potato juice water supplemented with 10% of glycerol. After shake-flask culture, the biomass was characterized by higher protein content (app. 26.5%) compared to 19% after batch fermentation while the cultivation on a biofermentor scale promoted polysaccharides biosynthesis. The highest output of purified β(1,3)/(1,6)-glucan preparation (5.3 gd.w./L), containing app. 85% of that polysaccharide, was found after 48 h cultivation in biofermentor. Batch fermentation promoted biosynthesis of alkali-insoluble β(1,3)/(1,6)-glucan fraction, decreasing the content of β(1,6)-glucan. The yield of β(1,3)/(1,6)-glucan synthesis was 0.063 (g/g glycerol), while the productivity of that polysaccharide reached 0.094 (g/L/h). Longer batch fermentation (72 h) resulted in reduction of production efficiency of β-glucan preparation under studied conditions. The results of the study provide a new efficient biotechnological solution to produce high-value β-glucan preparations of C. utilis origin based on valorization of agro-waste potato juice water with glycerol.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland.
| | - Katarzyna Pobiega
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| | - Marek Kieliszek
- Faculty of Food Science, Department of Biotechnolgy, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776, Warszawa, Poland
| |
Collapse
|
33
|
Dharsono T, Rudnicka K, Wilhelm M, Schoen C. Effects of Yeast (1,3)-(1,6)-Beta-Glucan on Severity of Upper Respiratory Tract Infections: A Double-Blind, Randomized, Placebo-Controlled Study in Healthy Subjects. J Am Coll Nutr 2018; 38:40-50. [PMID: 30198828 DOI: 10.1080/07315724.2018.1478339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Each year, adults suffer about two to four upper respiratory tract infections (URTIs), mostly in winter. The aim of the study was to evaluate the effects of brewers' yeast (1,3)-(1,6)-beta-glucan on incidence and severity of upper respiratory tract infections (URTIs). METHODS Generally healthy men and women (n = 299) reporting at least three URTIs during the previous year were randomized to receive either a placebo or 900 mg of yeast beta-glucan daily for 16 weeks during winter. In cases of acute URTI, the severity of URTI symptoms was assessed via the WURSS-21 questionnaire and the Jackson scale, and a clinical confirmation was implemented by the investigator. RESULTS Overall, 70 subjects under placebo and 71 subjects under yeast beta-glucan experienced at least one clinically confirmed URTI episode. The global severity using WURSS-21 had been quite similar between the study groups (p = 0.5267), whereas during the first days of URTIs the severity was less pronounced in the yeast beta-glucan group. On the episode level, the severity of physical symptoms was significantly lower for all investigated time intervals up to 7 days under yeast beta-glucan (WURSS (Q2-11) (days 1-2: p = 0.0465, days 1-3: p = 0.0323, days 1-4: p = 0.0248, days 1-7: p = 0.0278), also confirmed for the Jackson scale). The reduction of severity was accompanied by a significant increase in the joy subscore of the Perceived Stress Questionnaire (PSQ20) (p = 0.0148). In addition, there was a reduction of systolic (p = 0.0458) and diastolic (p = 0.1439) blood pressure. CONCLUSION Subjects supplementing with yeast beta-glucan benefit by a reduced severity of physical URTI symptoms during the first week of an episode, even though the incidence and global severity of common colds could not be altered in comparison to placebo. Furthermore, accompanying benefits in terms of blood pressure and mood were identified. Altogether, yeast beta-glucan supports the immune function.
Collapse
Affiliation(s)
| | - Karolina Rudnicka
- b Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection , University of Lodz , Lodz , Poland
| | - Manfred Wilhelm
- c Department of Mathematics, Natural and Economic Sciences , University of Applied Sciences Ulm , Ulm , Germany
| | | |
Collapse
|
34
|
Wachholz PA, Nunes VDS, Polachini do Valle A, Jacinto AF, Villas-Boas PJF. Effectiveness of probiotics on the occurrence of infections in older people: systematic review and meta-analysis. Age Ageing 2018; 47:527-536. [PMID: 29415116 DOI: 10.1093/ageing/afy006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/17/2017] [Accepted: 01/18/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND infectious diseases in older people are associated with higher mortality rates and probiotics have been hypothesised to reduce the occurrence of infection. OBJECTIVES to assess the effectiveness and safety of probiotics in the occurrence of infections in older adults in comparison to placebo. METHODS a systematic review and meta-analysis of randomised placebo-controlled trials were conducted on 30 December 2016 using Medline, Embase, CENTRAL, Web of Science and LILACS databases. Efficacy outcomes were: occurrence of infection, quality of life, mortality and mean duration of infection per episode. Safety outcomes were adverse events. Data were analysed using relative risk ratios with 95% confidence intervals. Relative risk ratios were pooled where more than three estimates were available. RESULTS fifteen articles were included, with a total of 5,916 participants with a mean age of 75.21 years. The effect of probiotics was not significantly different from that reported for placebo on the occurrence of infection, adverse events, mortality or mean duration of infection episodes (relative risk (RR) 0.90, 95% confidence interval (CI) 0.76 to 1.08; RR 1.01, 95% CI 0.91 to 1.12; RR 1.09, 95% CI 0.70 to 1.72; MD -0.35, 95% CI -1.57 to 0.87, respectively). CONCLUSION the current low-quality evidence does not support the use of probiotics for the reduction in the occurrence of infection in older adults, however, the safety outcomes were similar between probiotics and placebo. Further research is required to confirm these findings.PROSPERO: CRD42014013707.
Collapse
Affiliation(s)
- Patrick Alexander Wachholz
- Departament of Public Health, São Paulo State University (UNESP), School of Medicine, Botucatu—São Paulo, Brazil
| | - Vânia dos Santos Nunes
- Departament of Internal Medicine, São Paulo State University (UNESP), School of Medicine, Botucatu—São Paulo, Brazil
| | - Adriana Polachini do Valle
- Departament of Internal Medicine, São Paulo State University (UNESP), School of Medicine, Botucatu—São Paulo, Brazil
| | - Alessandro Ferrari Jacinto
- Departament of Internal Medicine, São Paulo State University (UNESP), School of Medicine, Botucatu—São Paulo, Brazil
| | - Paulo José Fortes Villas-Boas
- Departament of Internal Medicine, São Paulo State University (UNESP), School of Medicine, Botucatu—São Paulo, Brazil
| |
Collapse
|
35
|
McFarlin BK, Venable AS, Carpenter KC, Henning AL, Ogenstad S. Oral Supplementation with Baker's Yeast Beta Glucan Is Associated with Altered Monocytes, T Cells and Cytokines following a Bout of Strenuous Exercise. Front Physiol 2017; 8:786. [PMID: 29104540 PMCID: PMC5654840 DOI: 10.3389/fphys.2017.00786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/25/2017] [Indexed: 12/28/2022] Open
Abstract
Exercise and physical labor in extreme environmental conditions causes transient decreases in immune cell and cytokine concentrations, likely increasing the susceptibility to opportunistic infection. Baker's yeast beta glucan (BYBG) has been previously demonstrated to be an effective countermeasure in athletes, but its effectiveness in individuals of average fitness under similar physical stress is unknown. The purpose of this study was to determine if 10 days of oral supplementation with BYBG could modify previously observed suppression of monocytes, T cells, circulating and whole blood LPS-stimulated cytokines due to strenuous exercise. Venous blood samples were collected from 109 healthy volunteers prior to, immediately after, 2 and 4 h post-exercise. Monocyte and T cell concentration, cell-surface receptor expression and serum and LPS-stimulated cytokines were assessed. BYBG significantly (P < 0.05) altered total and classic monocyte concentration and expression of CD38, CD80, CD86, TLR2, and TLR4 on monocyte subsets. BYBG also significantly increased CD4+ and CD8+ T cell concentration and the exercise response of CCR7+/CD45RA- central memory (TCM) cells. Likewise, BYBG significantly (P < 0.05) altered serum IFN-γ and IL-2, and LPS-stimulated IFN-γ, IL-2, IL-4, and IL-7. Taken together these data support the hypothesis that oral BYBG supplementation modulates the expected exercise response for individuals of average fitness. This may result in a decrease in susceptibility to opportunistic infections after strenuous exercise.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, Department of KHPR, University of North Texas, Denton, TX, United States.,Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Adam S Venable
- Applied Physiology Laboratory, Department of KHPR, University of North Texas, Denton, TX, United States.,Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | | | - Andrea L Henning
- Applied Physiology Laboratory, Department of KHPR, University of North Texas, Denton, TX, United States.,Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | | |
Collapse
|
36
|
Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci 2017; 18:ijms18091906. [PMID: 28872611 PMCID: PMC5618555 DOI: 10.3390/ijms18091906] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
β-Glucans are a group of biologically-active fibers or polysaccharides from natural sources with proven medical significance. β-Glucans are known to have antitumor, anti-inflammatory, anti-obesity, anti-allergic, anti-osteoporotic, and immunomodulating activities. β-Glucans are natural bioactive compounds and can be taken orally, as a food supplement, or as part of a daily diet, and are considered safe to use. The medical significance and efficiency of β-glucans are confirmed in vitro, as well as using animal- and human-based clinical studies. However, systematic study on the clinical and physiological significance of β-glucans is scarce. In this review, we not only discuss the clinical and physiological importance of β-glucans, we also compare their biological activities through the existing in vitro and animal-based in vivo studies. This review provides extensive data on the clinical study of β-glucans.
Collapse
|
37
|
Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention. Nutrients 2017; 9:nu9070779. [PMID: 28726737 PMCID: PMC5537893 DOI: 10.3390/nu9070779] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).
Collapse
|
38
|
Roohvand F, Shokri M, Abdollahpour-Alitappeh M, Ehsani P. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin Ther Pat 2017; 27:929-951. [PMID: 28608761 DOI: 10.1080/13543776.2017.1339789] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.
Collapse
Affiliation(s)
- Farzin Roohvand
- a Department of Virology , Pasteur Institute of Iran , Pasteur Ave, Tehran , Iran
| | - Mehdi Shokri
- a Department of Virology , Pasteur Institute of Iran , Pasteur Ave, Tehran , Iran.,b Department of Immunology , Pasteur Institute of Iran , Tehran , Iran
| | | | - Parastoo Ehsani
- c Department of Molecular Biology , Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
39
|
Lee YJ, Paik DJ, Kwon DY, Yang HJ, Park Y. Agrobacterium sp.-derived β-1,3-glucan enhances natural killer cell activity in healthy adults: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr Res Pract 2017; 11:43-50. [PMID: 28194264 PMCID: PMC5300946 DOI: 10.4162/nrp.2017.11.1.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/07/2016] [Accepted: 11/22/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND/OBJECTIVES The present study investigated the hypothesis that a highly pure linear β-1,3-glucan produced by Agrobacterium sp. R259 enhances human natural killer (NK) cell activity and suppresses pro-inflammatory cytokines. SUBJECTS/METHODS In an eight-week, double-blind, randomized, placebo-controlled clinical trial, 83 healthy adults with white blood cell counts of 4,000-8,000 cells/µL were participated and randomly assigned to take two capsules per day containing either 350 mg β-1,3-glucan or placebo. Six participants withdrew their study consent or were excluded due to NK cell activity levels outside the normal range. NK cell activity and serum levels of immunoglobulin G (IgG) and cytokines, such as interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12 and tumor necrosis factor (TNF)-α were measured. RESULTS NK cell activity and the serum levels of IL-10 were significantly higher from baseline to week 8 in the β-glucan group compared with the placebo group (P = 0.048, P = 0.029). Consumption of β-1,3-glucan also significantly increased NK cell activity compared with placebo after adjusting for smoking and stress status (P = 0.009). In particular, the effect of β-1,3-glucan on NK cell activity was greater in participants with severe stress than in those experiencing mild stress. However, the administration β-1,3-glucan did not significantly modulate the levels of IFN-γ, IL-2, IL-4, IL-6, IL-12, TNF-α and IgG compared with the placebo. CONCLUSION The results showed that supplementation with bacterial β-1,3-glucan significantly increased NK cell activity without causing any adverse effects. Additionally, the beneficial effect of β-1,3-glucan on NK cell activity was greater in participants experiencing severe stress.
Collapse
Affiliation(s)
- Yeon Joo Lee
- Department of Food and Nutrition, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Korea
| | - Doo-Jin Paik
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Dae Young Kwon
- Devision of Strategic Food Research, Korea Food Research Institute, Seongnam-si, Gyeonggi 13539, Korea
| | - Hye Jeong Yang
- Devision of Strategic Food Research, Korea Food Research Institute, Seongnam-si, Gyeonggi 13539, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
40
|
Pontes MV, Ribeiro TCM, Ribeiro H, de Mattos AP, Almeida IR, Leal VM, Cabral GN, Stolz S, Zhuang W, Scalabrin DMF. Cow's milk-based beverage consumption in 1- to 4-year-olds and allergic manifestations: an RCT. Nutr J 2016; 15:19. [PMID: 26920136 PMCID: PMC4769487 DOI: 10.1186/s12937-016-0138-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Nutrients such as docosahexaenoic acid (DHA), prebiotics and β-glucan have been associated with reduced incidence of respiratory illnesses and allergic manifestations (AM). Our objective was to assess if consumption of a cow’s milk-based beverage with these and other nutrients supports respiratory, gastrointestinal, and skin health in otherwise well-nourished, healthy children. Methods In this double-blind, randomized, controlled trial, healthy children (1–4 years of age) from two daycare centers in Brazil were fed three servings/day of a cow’s milk-based beverage (CMBB; n = 125) containing DHA, the prebiotics polydextrose (PDX) and galactooligosaccharides (GOS), β-glucan, and other key nutrients, or a control cow’s milk-based beverage (control; n = 131) for up to 28 weeks. Occurrence of respiratory infections, diarrheal disease and AM was assessed by study pediatricians and the number of episodes were analyzed with the Cochran-Mantel-Haenszel test and the Andersen-Gill model. Results The CMBB group had fewer episodes of AM, which included allergic rhinitis or conjunctivitis, wheezing, allergic cough, eczema and urticaria, compared to the control group (p = 0.021). The hazard ratio for increased number of episodes of AM was lower in the CMBB group compared to control (HR, 0.64; 95 % CI 0.47–0.89; p = 0.007). There was no difference in the incidence of respiratory infections and diarrheal disease between groups. Conclusion A cow’s milk-based beverage containing DHA, PDX/GOS, and yeast β-glucan, and supplemented with micronutrients, including zinc, vitamin A and iron, when consumed 3 times/day for 28 weeks by healthy 1- to 4-year-old children was associated with fewer episodes of allergic manifestations in the skin and the respiratory tract. Trial registration registration number: NCT01431469
Collapse
Affiliation(s)
- M V Pontes
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - T C M Ribeiro
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - H Ribeiro
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - A P de Mattos
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - I R Almeida
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - V M Leal
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - G N Cabral
- Federal University of Bahia, Salvador, Bahia, Brazil.
| | - S Stolz
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA.
| | - W Zhuang
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA.
| | - D M F Scalabrin
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, USA.
| |
Collapse
|
41
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
42
|
Berven L, Skjeldal FM, Prydz K, Zubaidi LMK, Ballance S, Thidemann Johansen H, Samuelsen ABC. Particulate yeast β-glucan is internalized by RAW 264.7 macrophages and reduces the activity of the tumor-associated protease legumain. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Liepins J, Kovačova E, Shvirksts K, Grube M, Rapoport A, Kogan G. Drying enhances immunoactivity of spent brewer's yeast cell wall β-D-glucans. J Biotechnol 2015; 206:12-6. [PMID: 25858155 DOI: 10.1016/j.jbiotec.2015.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/16/2014] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
Abstract
Due to immunological activity, microbial cell wall polysaccharides are defined as 'biological response modifiers' (BRM). Cell walls of spent brewer's yeast also have some BRM activity. However, up to date there is no consensus on the use of spent brewer's yeast D-glucan as specific BRM in humans or animals. The aim of this paper is to demonstrate the potential of spent brewer's yeast β-D-glucans as BRM, and drying as an efficient pretreatment to increase β-D-glucan's immunogenic activity. Our results revealed that drying does not change spent brewer's yeast biomass carbohydrate content as well as the chemical structure of purified β-D-glucan. However, drying increased purified β-D-glucan TNF-α induction activity in the murine macrophage model. We presume drying pretreatment enhances purity of extracted β-D-glucan. This is corroborated with FT-IR analyses of the β-D-glucan spectra. Based on our results, we suggest that dry spent brewer's yeast biomass can be used as a cheap source for high-quality β-D-glucan extraction. Drying in combination with carboxylmethylation (CM), endows spent brewer's yeast β-D-glucan with the immunoactivity similar or exceeding that of a well-characterized fungal BRM pleuran.
Collapse
Affiliation(s)
- Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia.
| | - Elena Kovačova
- Institute of Virology, Slovak Academy of Sciences, Dúbravská Cesta 9, 84245 Bratislava, Slovakia
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Alexander Rapoport
- Institute of Microbiology and Biotechnology, University of Latvia, Kronvalda Blvd 4, Riga LV-1586, Latvia
| | - Grigorij Kogan
- Directorate E Health, Directorate General for Research and Innovation, European Commission, B-1049 Brussels, Belgium
| |
Collapse
|
44
|
Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 2015; 6:679-93. [DOI: 10.1039/c4fo00529e] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions.
Collapse
Affiliation(s)
- P. M. Ryan
- Teagasc Moorepark Food Research Centre
- Cork
- Ireland
- Department of Microbiology
- University College Cork
| | - R. P. Ross
- Alimentary Pharmabiotic Centre
- University College Cork
- Ireland
- College of Science
- Engineering & Food Science
| | - G. F. Fitzgerald
- Alimentary Pharmabiotic Centre
- University College Cork
- Ireland
- Department of Microbiology
- University College Cork
| | | | - C. Stanton
- Teagasc Moorepark Food Research Centre
- Cork
- Ireland
- Alimentary Pharmabiotic Centre
- University College Cork
| |
Collapse
|
45
|
Leentjens J, Quintin J, Gerretsen J, Kox M, Pickkers P, Netea MG. The effects of orally administered Beta-glucan on innate immune responses in humans, a randomized open-label intervention pilot-study. PLoS One 2014; 9:e108794. [PMID: 25268806 PMCID: PMC4182605 DOI: 10.1371/journal.pone.0108794] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Rationale To prevent or combat infection, increasing the effectiveness of the immune response is highly desirable, especially in case of compromised immune system function. However, immunostimulatory therapies are scarce, expensive, and often have unwanted side-effects. β-glucans have been shown to exert immunostimulatory effects in vitro and in vivo in experimental animal models. Oral β-glucan is inexpensive and well-tolerated, and therefore may represent a promising immunostimulatory compound for human use. Methods We performed a randomized open-label intervention pilot-study in 15 healthy male volunteers. Subjects were randomized to either the β -glucan (n = 10) or the control group (n = 5). Subjects in the β-glucan group ingested β-glucan 1000 mg once daily for 7 days. Blood was sampled at various time-points to determine β-glucan serum levels, perform ex vivo stimulation of leukocytes, and analyze microbicidal activity. Results β-glucan was barely detectable in serum of volunteers at all time-points. Furthermore, neither cytokine production nor microbicidal activity of leukocytes were affected by orally administered β-glucan. Conclusion The present study does not support the use of oral β-glucan to enhance innate immune responses in humans. Trial Registration ClinicalTrials.gov NCT01727895
Collapse
Affiliation(s)
- Jenneke Leentjens
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
| | - Jessica Quintin
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Institute for Infectious Diseases, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
46
|
Li F, Jin X, Liu B, Zhuang W, Scalabrin D. Follow-up formula consumption in 3- to 4-year-olds and respiratory infections: an RCT. Pediatrics 2014; 133:e1533-40. [PMID: 24843061 DOI: 10.1542/peds.2013-3598] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Children are vulnerable to diet inadequacies, which may affect immune function. Our objective was to determine if a follow-up formula (FUF) containing DHA, the prebiotics PDX and GOS, and yeast β-glucan affects incidence of respiratory infections and diarrheal disease in healthy children. METHODS In a double-blind, randomized, controlled, prospective trial, 3-4 year old children were fed 3 servings per day of either a FUF with 25 mg DHA, 1.2 g PDX/GOS, and 8.7 mg yeast β-glucan per serving or an unfortified, cow's milk-based beverage (control) for 28 weeks. Fecal and blood samples were collected to assess immune markers and iron/zinc status. Incidence of acute respiratory infections (ARI), diarrheal disease, and antibiotic treatment were obtained from medical records. RESULTS The FUF group had fewer episodes and shorter duration of ARI (mean days [SE]; control = 4.3 [0.2]; FUF = 3.5 [0.2]; P = .007), less antibiotic use (n [%]; control = 21 [14%]; FUF = 8 [5%]; P = .01), and fewer missed days of day care due to illness. No diarrheal disease was diagnosed in either group. The FUF group had higher interleukin-10 and white blood cell count at the end of the study. There were no differences in hemoglobin, serum ferritin and zinc, or fecal secretory immunoglobulin A. CONCLUSIONS Daily consumption of a FUF was associated with fewer episodes and shorter duration of ARI, as well as less antibiotic use. The children who consumed the FUF had increased interleukin-10 and white blood cells, suggesting an antiinflammatory mechanism and/or an increase of effector immune cells.
Collapse
Affiliation(s)
- Fei Li
- Developmental and Behavioral Pediatric Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Xingming Jin
- Developmental and Behavioral Pediatric Department, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; and
| | - Bryan Liu
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, Indiana
| | - Weihong Zhuang
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, Indiana
| | - Deolinda Scalabrin
- Clinical Research, Department of Medical Affairs, Mead Johnson Nutrition, Evansville, Indiana
| |
Collapse
|
47
|
Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J 2014; 13:38. [PMID: 24774968 PMCID: PMC4012169 DOI: 10.1186/1475-2891-13-38] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
Beta-glucans are a heterogeneous group of natural polysaccharides mostly investigated for their immunological effects. Due to the low systemic availability of oral preparations, it has been thought that only parenterally applied beta-glucans can modulate the immune system. However, several in vivo and in vitro investigations have revealed that orally applied beta-glucans also exert such effects. Various receptor interactions, explaining possible mode of actions, have been detected. The effects mainly depend on the source and structure of the beta-glucans. In the meantime, several human clinical trials with dietary insoluble yeast beta-glucans have been performed. The results confirm the previous findings of in vivo studies. The results of all studies taken together clearly indicate that oral intake of insoluble yeast beta-glucans is safe and has an immune strengthening effect.
Collapse
Affiliation(s)
- Heike Stier
- analyze & realize GmbH, Waldseeweg 6, 13467 Berlin, Germany.
| | | | | |
Collapse
|
48
|
Abstract
The common cold is the most frequent, although generally mild, human disease. Human Rhinoviruses are the prevalent causative agents, but other viruses are also implicated. Being so common, viral colds, have significant implications on public health and quality of life, but may also be life-threatening for vulnerable groups of patients. Specific diagnosis and treatment of the common cold still remain unmet needs. Molecular diagnostic techniques allow specific detection of known pathogens as well as the identification of newly emerging viruses. Although a number of medications or natural treatments have been shown to have some effect, either on the number or on the severity of common colds, no single agent is considerably effective. Virus-specific management remains in most cases a challenging potential as many factors have to be taken into account, including the diversity of the viral genomes, the heterogeneity of affected individuals, as well as the complexity of this long standing host-virus relationship.
Collapse
|
49
|
Yenidogan E, Akgul GG, Gulcelik MA, Dinc S, Colakoglu MK, Kayaoglu HA. Effect of β-glucan on drain fluid and amount of drainage following modified radical mastectomy. Adv Ther 2014; 31:130-9. [PMID: 24421054 DOI: 10.1007/s12325-014-0091-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Indexed: 11/29/2022]
Abstract
INTRODUCTION To reduce the seroma formation following mastectomy and axillary dissection, many different techniques and drugs have been investigated. The aim of this study is to evaluate the effects of oral β-glucan on drain fluid and efficacy of daily drainage and drain removal day in mastectomy patients. METHODS One hundred and thirty breast cancer patients of Ankara Oncology Training and Research Hospital were divided into 2 groups by consecutive randomization (n = 65 each). β-glucan 10 mg capsules were administered to Group 1 twice a day for 10 days. Group 2 took placebos in the same manner. Age, menarche age, menopause, parity, history of oral contraceptives, comorbidities, postoperative daily drainage volumes and drain removal days were recorded and compared. Seroma samples during the first and second day of drainage were taken for analysis of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF-α). RESULTS There was no difference between groups in terms of age, menarche age, menopause period, parity, oral contraceptive use and comorbidities. Group 1 showed significantly lower daily drainage volumes between days 2 and 8. Mean drain removal day was 7.16 ± 1.72 in Group 1 and 8.59 ± 2.27 in Group 2. The difference was significant (p < 0.001). TNF-α and IL-6 levels on days 1 and 2 in Group 1 were significantly lower (p < 0.001). In addition, β-glucan significantly shortened the number of days required for the drain removal in patients who have comorbidities (p = 0.018). The earliest removal was in patients without comorbidity and who received β-glucan (p = 0.002). CONCLUSION β-glucan decreased drain discharges after mastectomy. The drains were removed earlier in β-glucan administered patients.
Collapse
Affiliation(s)
- Erdinc Yenidogan
- Department of General Surgery, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey,
| | | | | | | | | | | |
Collapse
|
50
|
Samuelsen ABC, Schrezenmeir J, Knutsen SH. Effects of orally administered yeast-derived beta-glucans: a review. Mol Nutr Food Res 2013; 58:183-93. [PMID: 24019098 DOI: 10.1002/mnfr.201300338] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/01/2013] [Accepted: 07/20/2013] [Indexed: 01/01/2023]
Abstract
Yeast-derived beta-glucans (Y-BG) are considered immunomodulatory compounds suggested to enhance the defense against infections and exert anticarcinogenic effects. Specific preparations have received Generally Recognized as Safe status and acceptance as novel food ingredients by European Food Safety Authority. In human trials, orally administered Y-BG significantly reduced the incidence of upper respiratory tract infections in individuals susceptible to upper respiratory tract infections, whereas significant differences were not seen in healthy individuals. Increased salivary IgA in healthy individuals, increased IL-10 levels in obese subjects, beneficial changes in immunological parameters in allergic patients, and activated monocytes in cancer patients have been reported following Y-BG intake. The studies were conducted with different doses (7.5-1500 mg/day), using different preparations that vary in their primary structure, molecular weight, and solubility. In animal models, oral Y-BG have reduced the incidence of bacterial infections and levels of stress-induced cytokines and enhanced antineoplastic effects of cytotoxic agents. Protective effects toward drug intoxication and ischemia/reperfusion injury have also been reported. In conclusion, additional studies following good clinical practice principles are needed in which well-defined Y-BG preparations are used and immune markers and disease endpoints are assessed. Since optimal dosing may depend on preparation characteristics, dose-response curves might be assessed to find the optimal dose for a specific preparation.
Collapse
Affiliation(s)
- Anne Berit C Samuelsen
- Department of Pharmaceutical Chemistry, Pharmacognosy, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|