1
|
Nikolla E, Grandberry A, Jamerson D, Flynn CR, Sundaresan S. The Enteric Neuronal Circuitry: A Key Ignored Player in Nutrient Sensing Along the Gut-Brain Axis. FASEB J 2025; 39:e70586. [PMID: 40318068 PMCID: PMC12048873 DOI: 10.1096/fj.202500220rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
The role of the gut-to-brain axis in the regulation of nutrient sensing has been studied extensively for decades. Research has mainly centered on vagal afferent and efferent neurotransmission along the gastrointestinal tract, followed by the integration of luminal information in the nodose ganglia and transmission to vagal integral sites in the brain. The physiological and cellular mechanisms of nutrient sensing by enterocytes and enteroendocrine cells have been well established; however, the roles of the enteric nervous system (ENS) remain elusive. Recent advances in targeting specific neuronal subpopulations and imaging techniques unravel the plausible roles of the ENS in nutrient sensing. In this review, we highlight physiological, cellular, and molecular insights that direct toward direct and indirect roles of the ENS in luminal nutrient sensing and vagal neurotransmission along the gut-brain axis and discuss functional maladaptations observed during metabolic insults, as observed during obesity and associated comorbidities, including type 2 diabetes.
Collapse
Affiliation(s)
- Ester Nikolla
- Department of Physiology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Ava Grandberry
- Department of Biomedical Sciences, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Destiné Jamerson
- Department of Biomedical Sciences, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Charles Robb Flynn
- Department of SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sinju Sundaresan
- Department of Physiology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
- Chicago College of Osteopathic MedicineMidwestern UniversityDowners GroveIllinoisUSA
- Chicago College of OptometryMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
2
|
Sun J, Zhang W, Cui Z, Pan Y, Smagghe G, Zhang L, Wickham JD, Sun J, Mang D. HcGr76 responds to fructose and chlorogenic acid and is involved in regulation of peptide expression in the midgut of Hyphantria cunea larvae. PEST MANAGEMENT SCIENCE 2024; 80:5672-5683. [PMID: 38982883 DOI: 10.1002/ps.8285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Sensing dietary components in the gut is important to ensure an appropriate hormonal response and metabolic regulation after food intake. The fall webworm, Hyphantria cunea, is a major invasive pest in China and has led to significant economic losses and ecosystem disruption. The larvae's broad host range and voracious appetite for leaves make H. cunea a primary cause of serious damage to both forests and crops. To date, however, the gustatory receptors (Grs) of H. cunea and their regulatory function remain largely unknown. RESULTS We identified the fall webworm gustatory receptor HcGr76 as a fructose and chlorogenic acid receptor using Ca2+ imaging and determination of intracellular Ca2+ concentration by a microplate reader. Moreover, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis revealed that HcGr76 is highly expressed in the anterior and middle midgut. Knockdown of HcGr76 caused a significant reduction in the expression of neuropeptide F 1 (NPF1) and CCHamide-2, and led to a decrease in carbohydrate and lipid levels in the hemolymph. CONCLUSION Our studies provide circumstantial evidence that HcGr76 expressed in the midgut is involved in sensing dietary components, and regulates the expression of relevant peptide hormones to alter metabolism in H. cunea larvae, thus providing a promising molecular target for the development of new insect-specific control products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Sun
- College of Life Science, Hebei University, Baoding, China
| | - Wenjing Zhang
- College of Life Science, Hebei University, Baoding, China
| | - Zhebo Cui
- College of Life Science, Hebei University, Baoding, China
| | - Yifan Pan
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Guy Smagghe
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang, China
- Cellular and Molecular Life Sciences, Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Jianghua Sun
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
| | - Dingze Mang
- College of Life Science, Hebei University, Baoding, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, China
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Salahuddin M, Hiramatsu K, Al-Amin M, Imai Y, Kita K. Low dietary carbohydrate induces structural alterations in enterocytes of the chicken ileum. Anim Sci J 2024; 95:e13919. [PMID: 38287469 DOI: 10.1111/asj.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
We investigated the role of dietary carbohydrates in the maintenance of the enterocyte microvillar structure in the chicken ileum. Male chickens were divided into the control and three experimental groups, and the experimental groups were fed diets containing 50%, 25%, and 0% carbohydrates of the control diet. The structural alterations in enterocytes were examined using transmission electron microscopy and immunofluorescent techniques for β-actin and villin. Glucagon-like peptide (GLP)-2 and proglucagon mRNA were detected by immunohistochemistry and in situ hybridization, respectively. Fragmentation and wide gap spaces were frequently observed in the microvilli of the 25% and 0% groups. The length, width, and density of microvilli were also decreased in the experimental groups. The experimental groups had shorter terminal web extensions, and there were substantial changes in the mitochondrial density between the control and experimental groups. Intensities of β-actin and villin immunofluorescence observed on the apical surface of enterocytes were lower in the 0% group. The frequency of GLP-2-immunoreactive and proglucagon mRNA-expressing cells decreased with declining dietary carbohydrate levels. This study revealed that dietary carbohydrates contribute to the structural maintenance of enterocyte microvilli in the chicken ileum. The data from immunohistochemistry and in situ hybridization assays suggest the participation of GLP-2 in this maintenance system.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Md Al-Amin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano, Japan
| | - Yuriko Imai
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Kami-ina, Nagano, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
4
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
5
|
Atanga R, Singh V, In JG. Intestinal Enteroendocrine Cells: Present and Future Druggable Targets. Int J Mol Sci 2023; 24:ijms24108836. [PMID: 37240181 DOI: 10.3390/ijms24108836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enteroendocrine cells are specialized secretory lineage cells in the small and large intestines that secrete hormones and peptides in response to luminal contents. The various hormones and peptides can act upon neighboring cells and as part of the endocrine system, circulate systemically via immune cells and the enteric nervous system. Locally, enteroendocrine cells have a major role in gastrointestinal motility, nutrient sensing, and glucose metabolism. Targeting the intestinal enteroendocrine cells or mimicking hormone secretion has been an important field of study in obesity and other metabolic diseases. Studies on the importance of these cells in inflammatory and auto-immune diseases have only recently been reported. The rapid global increase in metabolic and inflammatory diseases suggests that increased understanding and novel therapies are needed. This review will focus on the association between enteroendocrine changes and metabolic and inflammatory disease progression and conclude with the future of enteroendocrine cells as potential druggable targets.
Collapse
Affiliation(s)
- Roger Atanga
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie G In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
7
|
Salahuddin M, Hiramatsu K, Kita K. Dietary carbohydrate influences the colocalization pattern of Glucagon-like Peptide-1 with neurotensin in the chicken ileum. Domest Anim Endocrinol 2022; 79:106693. [PMID: 34973620 DOI: 10.1016/j.domaniend.2021.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide (GLP)-1 colocalizes with neurotensin (NT) in the same enteroendocrine cells (EECs) of the chicken ileum. The present study was designed to clarify the influence of dietary carbohydrate (CHO) on the colocalization pattern of GLP-1 with NT in the chicken distal ileum. Male White Leghorn chickens at 6 weeks of age (n = 15) were divided into three groups, a control and two experimental (low-CHO and CHO-free), with five chickens in each, and fed control or experimental diets for 7 d. Distal ileum was collected from each bird as a tissue sample and subjected to double immunofluorescence staining to detect GLP-1 and NT. Three types of EEC, GLP-1+/NT+, GLP-1+/NT- and GLP-1-/NT+, were demonstrated in the chicken ileum. GLP-1+/NT+ cells in the control group had a spindle-like shape with a long cytoplasmic process, but those in the experimental groups were round and lacked a cytoplasmic process. The ratio of GLP-1+/NT+ cells was significantly decreased in the two experimental groups compared with that in the control group. The ratio of GLP-1+/NT+ cells was significantly lower than those of GLP-1+/NT- and GLP-1-/NT+ cells in the two experimental groups. Most cells that were immunoreactive for GLP-1 and NT antisera lacked signals of proglucagon (PG) and NT precursor (NTP) mRNA in the experimental groups. The number of EECs expressing PG and NTP mRNA signals showed tendencies for decreases with a reduction of dietary CHO level. These findings suggest that dietary CHO could be a significant regulator of the pattern of colocalization pattern of GLP-1 with NT in the chicken ileum.
Collapse
Affiliation(s)
- M Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - K Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan.
| | - K Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
8
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Salahuddin M, Hiramatsu K, Nishimoto I, Kita K. Dietary carbohydrate modifies the density of L cells in the chicken ileum. J Vet Med Sci 2022; 84:265-274. [PMID: 34980756 PMCID: PMC8920715 DOI: 10.1292/jvms.21-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Glucagon-like peptides (GLPs) are secreted from intestinal L cells and stimulate various
physiological functions in the gastrointestinal tract. The secretion of GLPs is influenced
by macronutrient ingestion. This study aims to clarify the effects of dietary carbohydrate
(CHO) on L cells in the chicken ileum. Six-week-old, male White Leghorn chickens were
divided into three groups: control, low-CHO and CHO-free, with five chickens in each
group. Paraffin sections were made from the proximal and distal ileum of each animal and
subjected to immunohistochemistry for GLP-1 and GLP-2 peptides and in
situ hybridization for proglucagon (PG) mRNA. A significant reduction of GLP-1-
and GLP-2-immunoreactive cells was observed in the two experimental groups compared with
that in the control. A reduction of cells expressing PG mRNA was observed in the proximal
and distal ileum of the CHO-free group compared with that in the control. The ratio of
GLP-1-immunoreactive cells showing Ki-67 immunoreactivity was significantly lower in the
distal ileum of the CHO-free group than that in the control group. These data suggest that
dietary CHO is an effective stimulator for modifying L cell density in the chicken
ileum.
Collapse
Affiliation(s)
- Md Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - Kohzy Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - Iori Nishimoto
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - Kazumi Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
10
|
Zhang S, Li L, Li H. Role of ectopic olfactory receptors in glucose and lipid metabolism. Br J Pharmacol 2021; 178:4792-4807. [PMID: 34411276 DOI: 10.1111/bph.15666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The metabolic syndrome has become one of the major public health challenges in the world, and adjusting glucose and lipid levels to their normal values is crucial for treating the metabolic syndrome. Olfactory receptors (ORs) expressed in extra-nasal tissues participate in diverse biological processes, including the regulation of glucose and lipid metabolism. Ectopic ORs can regulate a variety of metabolic events including insulin secretion, glucagon secretion, fatty acid oxidation, lipogenesis and thermogenesis. Understanding the physiological function and deciphering the olfactory recognition code by suitable ligands make ectopic ORs potential targets for the treatment of the metabolic syndrome. In this review, we delineate the roles and mechanisms of ectopic ORs in the regulation of glucose and lipid metabolism, summarize the corresponding natural ligands, and discuss existing problems and the therapeutic potential of targeting ORs in the metabolic syndrome.
Collapse
Affiliation(s)
- Siyu Zhang
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Gaudel F, Guiraudie-Capraz G, Féron F. Limbic Expression of mRNA Coding for Chemoreceptors in Human Brain-Lessons from Brain Atlases. Int J Mol Sci 2021; 22:ijms22136858. [PMID: 34202385 PMCID: PMC8267617 DOI: 10.3390/ijms22136858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.
Collapse
|
12
|
Abstract
Neurotensin is secreted from intestinal N cells in response to the food ingestion. Influences of different dietary protein levels on neurotensin-immunoreactive cells in the chicken ileum were examined by using immunohistochemical and morphometrical techniques. The results showed that dietary protein had an obvious influence on neurotensin-immunoreactive cells in the chicken ileum. Four experimental groups were used, with dietary crude protein (CP) levels of 18% (control), 9%, 4.5% and 0%. Enteroendocrine cells showing neurotensin-immunoreactivity were located in crypts and villous epithelium in all groups. Most of the neurotensin-immunoreactive cells in the villous epithelium showed pyramidal or spindle-like shape with a long cytoplasmic process reaching the intestinal lumen, but cells with round or oval shape were found in the CP4.5% and 0% groups. Frequencies of occurrence of neurotensin-immunoreactive cells in the CP18%, 9%, 4.5% and 0% groups were 42.4±3.3, 36.6±2.2, 30.8±2.6 and 25.4±3.8 (cell count per mucosal area: cells/mm2, mean±SD), respectively. There were significant differences in neurotensin-immunoreactive cell frequency between the control and lower CP level, 4.5% and 0%, groups. A significant correlation was found between frequency of occurrence of neurotensin-immunoreactive cells and daily protein intake. These results indicate that ingested protein is likely to be a potential signal for neurotensin production and secretion of N cells in the chicken ileum.
Collapse
|
13
|
Fan W, Saito S, Matsumura S. Expression of the Tas1r3 and Pept1 genes in the digestive tract of wagyu cattle. Transl Anim Sci 2020; 4:txaa019. [PMID: 32705019 PMCID: PMC7201161 DOI: 10.1093/tas/txaa019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/26/2023] Open
Abstract
Animals have precise recognition systems for amino acids and peptides that regulate their feeding behavior as well as metabolic responses. Because of their particular gastrointestinal structure, ruminants are expected to have unique mechanisms of amino acid regulation in the digestive tract. To better understand these mechanisms in the ruminant digestive tract, the expression of Tas1r3 and Pept1 was studied along the gastrointestinal tract of Japanese Black cattle through quantitative RT-PCR and immunohistochemistry. Tas1r3 mRNA was detected ubiquitously along the gastrointestinal tract, and the most predominant expression was observed in the reticulum. In addition, the presence of Tas1r3 receptor was confirmed in the rumen through immunohistochemistry. The expression level of Pept1 mRNA was higher in the forestomach (rumen, reticulum, and omasum) and small intestine (duodenum) than that in the tongue, and predominant expression was observed in the rumen. By contrast, a negligible amount of Pept1 mRNA was detected in the abomasum and large intestine. Further studies on the roles of Tas1r3 and Pept1 in the digestive tract, in particular, in the four components of the stomach, will help us to understand the mechanisms of amino acids regulation in ruminants and provide the basis for formulating cattle diets to improve the health and productivity of cattle.
Collapse
Affiliation(s)
- Weihong Fan
- Graduate School of Natural Science and Technology, Gifu University, Yanagido, Gifu, Japan
| | - Shoichiro Saito
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| |
Collapse
|
14
|
Paniagua M, Crespo J, Arís A, Devant M. Citrus aurantium flavonoid extract improves concentrate efficiency, animal behavior, and reduces rumen inflammation of Holstein bulls fed high-concentrate diets. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Lyte JM, Lyte M. Review: Microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior. Animal 2019; 13:2689-2698. [PMID: 30806347 DOI: 10.1017/s1751731119000284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From birth to slaughter, pigs are in constant interaction with microorganisms. Exposure of the skin, gastrointestinal and respiratory tracts, and other systems allows microorganisms to affect the developmental trajectory and function of porcine physiology as well as impact behavior. These routes of communication are bi-directional, allowing the swine host to likewise influence microbial survival, function and community composition. Microbial endocrinology is the study of the bi-directional dialogue between host and microbe. Indeed, the landmark discovery of host neuroendocrine systems as hubs of host-microbe communication revealed neurochemicals act as an inter-kingdom evolutionary-based language between microorganism and host. Several such neurochemicals are stress catecholamines, which have been shown to drastically increase host susceptibility to infection and augment virulence of important swine pathogens, including Clostridium perfringens. Catecholamines, the production of which increase in response to stress, reach the epithelium of multiple tissues, including the gastrointestinal tract and lung, where they initiate diverse responses by members of the microbiome as well as transient microorganisms, including pathogens and opportunistic pathogens. Multiple laboratories have confirmed the evolutionary role of microbial endocrinology in infectious disease pathogenesis extending from animals to even plants. More recent investigations have now shown that microbial endocrinology also plays a role in animal behavior through the microbiota-gut-brain axis. As stress and disease are ever-present, intersecting concerns during each stage of swine production, novel strategies utilizing a microbial endocrinology-based approach will likely prove invaluable to the swine industry.
Collapse
Affiliation(s)
- J M Lyte
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - M Lyte
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019; 317:E559-E572. [PMID: 31310579 DOI: 10.1152/ajpendo.00036.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Stoianov
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Kure Liu C, Joseph PV, Feldman DE, Kroll DS, Burns JA, Manza P, Volkow ND, Wang GJ. Brain Imaging of Taste Perception in Obesity: a Review. Curr Nutr Rep 2019; 8:108-119. [PMID: 30945140 PMCID: PMC6486899 DOI: 10.1007/s13668-019-0269-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We summarize neuroimaging findings related to processing of taste (fat, salt, umami, bitter, and sour) in the brain and how they influence hedonic responses and eating behaviors and their role in obesity. RECENT FINDINGS Neuroimaging studies in obese individuals have revealed alterations in reward/motivation, executive control/self-regulation, and limbic/affective circuits that are implicated in food and drug addiction. Psychophysical studies show that sensory properties of food ingredients may be associated with anthropometric and neurocognitive outcomes in obesity. However, few studies have examined the neural correlates of taste and processing of calories and nutrient content in obesity. The literature of neural correlated of bitter, sour, and salty tastes remains sparse in obesity. Most published studies have focused on sweet, followed by fat and umami taste. Studies on calorie processing and its conditioning by preceding taste sensations have started to delineate a dynamic pattern of brain activation associated with appetition. Our expanded understanding of taste processing in the brain from neuroimaging studies is poised to reveal novel prevention and treatment targets to help address overeating and obesity.
Collapse
Affiliation(s)
- Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Paule Valery Joseph
- Sensory Science and Metabolism Unit, Biobehavioral Branch, National Institute of Nursing Research, National Institutes of Health, 31 Center Drive, Rm 5B03, Bethesda, MD 20892-2178 USA
| | - Dana E. Feldman
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Danielle S. Kroll
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Jamie A. Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Blvd., Suite 5274, Bethesda, MD 20892-9581 USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Dr, Rm B2L124, Bethesda, MD 20892-1013 USA
| |
Collapse
|
18
|
Oh J, Jang CH, Kim JS. Soy-derived phytoalexins: mechanism of in vivo biological effectiveness in spite of their low bioavailability. Food Sci Biotechnol 2019; 28:1-6. [PMID: 30815288 DOI: 10.1007/s10068-018-0498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
The well-demonstrated bioefficacy of phytochemicals in spite of their paradoxically low bioavailability has long puzzled scientists. Glyceollins, a family of soy-derived phytoalexins, have been reported to exert a variety of biological effects in vitro and in vivo systems in spite of poor systemic bioavailability after oral administration, suggesting that secondary messengers generated in gastrointestinal tract would transfer signals to target organs and tissues to manifest any effect. This review focuses on the potential mechanisms of how the poorly bioavailable glyceollins could still exert in vivo biological effects.
Collapse
Affiliation(s)
- Jisun Oh
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Chan Ho Jang
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jong-Sang Kim
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea.,2Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
19
|
Abstract
Neurolocalization of taste disorders requires a knowledge of the functional anatomy involved in mediating taste information from the peripheral mucosal surfaces through numerous peripheral cranial nerves to complex subcortical and cortical brain regions. Our understanding of this functional anatomy has advanced in recent years. Taste is an experience that is both innate and learned, and the "taste" experience involves the integration of information from other sensory modalities, such as olfaction and somatosensation. Normal taste perception is influenced by different neurophysiologic states, which involve endocrine function, emotions, and even attitudes and expectations toward eating. At its core, the normal effective ability to taste is a reflection of the proper function of many organ systems within the body and may be considered a marker for good health. Clinical taste disorders, on the other hand, involve the dysfunction of the normal neural taste pathways and/or aberrant influences on multisensory integration and cortical taste processing. The number of disease processes, which can adversely affect taste, are numerous and quite varied in their presentation. There may be contributory involvement of other organ systems within the body, and the appropriate management of taste disorders often requires a multidisciplinary approach to fully understand the disorder. Depending on the underlying cause, taste disorders can be effectively managed when identified. Treatments may include correcting underlying metabolic disturbances, eliminating infections, changing offending medications, replenishing nutritional deficiencies, operating on structural impairments, calming autoimmune processes, and even stabilizing electrochemical interactions.
Collapse
Affiliation(s)
- Steven M Bromley
- South Jersey MS Center and Bromley Neurology, PC, Audubon, NJ, United States.
| |
Collapse
|
20
|
Abstract
The anatomical structure and function of beaks, bills and tongue together with the mechanics of deglutition in birds have contributed to the development of a taste system denuded of macrostructures visible to the human naked eye. Studies in chickens and other birds have revealed that the avian taste system consists of taste buds not clustered in papillae and located mainly (60 %) in the upper palate hidden in the crevasses of the salivary ducts. That explains the long delay in the understanding of the avian taste system. However, recent studies reported 767 taste buds in the oral cavity of the chicken. Chickens appear to have an acute sense of taste allowing for the discrimination of dietary amino acids, fatty acids, sugars, quinine, Ca and salt among others. However, chickens and other birds have small repertoires of bitter taste receptors (T2R) and are missing the T1R2 (related to sweet taste in mammals). Thus, T1R2-independent mechanisms of glucose sensing might be particularly relevant in chickens. The chicken umami receptor (T1R1/T1R3) responds to amino acids such as alanine and serine (known to stimulate the umami receptor in rodents and fish). Recently, the avian nutrient chemosensory system has been found in the gastrointestinal tract and hypothalamus related to the enteroendocrine system which mediates the gut-brain dialogue relevant to the control of feed intake. Overall, the understanding of the avian taste system provides novel and robust tools to improve avian nutrition.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article aims to educate clinical neurologists on the importance of taste and smell disorders in clinical neurology. These disorders commonly occur in head trauma, multiple sclerosis, seizure disorders, and neurodegenerative diseases such as idiopathic Parkinson disease and dementia, mild cognitive impairment, and Alzheimer disease, just to name a few. This article covers the basic anatomy of smell and taste, notes the important points of taking a proper history, and discusses smell and taste testing, which are inexpensive, minimally time-consuming procedures. Recurrent bad smells and tastes are not uncommon in these disorders, which cause major impairment in quality of life, including loss of appetite, decreased eating, and weight loss. The diagnosis and treatment of these disorders will also be discussed. RECENT FINDINGS Despite past widespread negative prognoses of taste and smell disorders, more recent work in the last 10 years has shown an improved prognosis for smell and taste recovery in most disorders, and recommendations for changes in food preparation have helped many patients enjoy their food and increase their appetite. Recent experimental evidence has shown that smell loss and testing can assist in separating idiopathic Parkinson disease from other parkinsonian syndromes, can suggest which patients with rapid eye movement (REM) sleep behavior disorder will more likely develop Parkinson disease, and can be predictive of the progression of cognitive impairment and Alzheimer dementia. SUMMARY This article discusses the common smell and taste disorders that a clinical neurologist will encounter in practice. The anatomy and function of smell and taste will be reviewed, followed by office evaluation and testing. The common disorders will be reviewed, along with their prognosis and management.
Collapse
|
22
|
Cheng X, Voss U, Ekblad E. Tuft cells: Distribution and connections with nerves and endocrine cells in mouse intestine. Exp Cell Res 2018; 369:105-111. [PMID: 29758188 DOI: 10.1016/j.yexcr.2018.05.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022]
Abstract
Tuft cells are gastrointestinal (GI) sensory cells recognized by their characteristic shape and their microvilli "tuft". Aims of the present study were to elucidate their regional distribution and spatial connections with satiety associated endocrine cells and nerve fibers throughout the intestinal tract. C57BL/6 J mice were used in the experiments. The small intestine was divided into five segments, and the large intestine was kept undivided. The segments were coiled into "Swiss rolls". Numbers and topographic distribution of tuft cells and possible contacts with endocrine cells and nerve fibers were estimated in the different segments, using immunocytochemistry. Tuft cells were found throughout the intestines; the highest number was in proximal small intestine. Five percent of tuft cells were found in close proximity to cholecystokinin-immunoreactive (IR) endocrine cells and up to 10% were in contact with peptide YY- and glucagon-like peptide-1-IR endocrine cells. Sixty percent of tuft cells in the small intestine and 40% in the large intestine were found in contact with nerve fibers. Calcitonin gene-related peptide-IR fibers constituted one-third of the fiber-contacts in the small intestine and two-thirds in the large intestine. These observations highlight the possibility of tuft cells as modulators of GI activities in response to luminal signaling.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| | - Ulrikke Voss
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| | - Eva Ekblad
- Department of Experimental Medical Science, Unit of Neurogastroenterology, Lund University, Sölvegatan 19, BMC B11, SE-22184 Lund, Sweden.
| |
Collapse
|
23
|
Roura E, Navarro M. Physiological and metabolic control of diet selection. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fact that most farm animals have no dietary choice under commercial practices translates the dietary decisions to the carers. Thus, a lack of understanding of the principles of dietary choices is likely to result in a high toll for the feed industry. In healthy animals, diet selection and, ultimately, feed intake is the result of factoring together the preference for the feed available with the motivation to eat. Both are dynamic states and integrate transient stimulus derived from the nutritional status, environmental and social determinants of the animal with hard-wired genetic mechanisms. Peripheral senses are the primary inputs that determine feed preferences. Some of the sensory aspects of feed, such as taste, are innate and genetically driven, keeping the hedonic value of feed strictly associated with a nutritional frame. Sweet, umami and fat tastes are all highly appetitive. They stimulate reward responses from the brain and reinforce dietary choices related to essential nutrients. In contrast, aroma (smell) recognition is a plastic trait and preferences are driven mostly by learned experience. Maternal transfer through perinatal conditioning and the individual’s own innate behaviour to try or to avoid novel feed (often termed as neophobia) are known mechanisms where the learning process strongly affects preferences. In addtition, the motivation to eat responds to episodic events fluctuating in harmony with the eating patterns. These signals are driven mainly by gastrointestinal hormones (such as cholecystokinin [CCK] and glucagon-like peptide 1 [GLP-1]) and load. In addition, long-term events generate mechanisms for a sustainable nutritional homeostasis managed by tonic signals from tissue stores (i.e. leptin and insulin). Insulin and leptin are known to affect appetite by modulating peripheral sensory inputs. The study of chemosensory mechanisms related to the nutritional status of the animal offers novel tools to understand the dynamic states of feed choices so as to meet nutritional and hedonic needs. Finally, a significant body of literature exists regarding appetite driven by energy and amino acids in farm animals. However, it is surprising that there is scarcity of knowledge regarding what and how specific dietary nutrients may affect satiety. Thus, a better understanding on how bitter compounds and excess dietary nutrients (i.e. amino acids) play a role in no-choice animal feeding is an urgent topic to be addressed so that right choices can be made on the animal’s behalf.
Collapse
|
24
|
Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front Mol Biosci 2017; 4:63. [PMID: 28932739 PMCID: PMC5592726 DOI: 10.3389/fmolb.2017.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany
| | - Eda Suku
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Biotechnology, University of VeronaVerona, Italy
| | - Sven Cichon
- Institute of Neuroscience and Medicine INM-1, Forschungszentrum JülichJülich, Germany.,Institute for Human Genetics, Department of Genomics, Life&Brain Center, University of BonnBonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of BaselBasel, Switzerland
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule AachenAachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National UniversityHanoi, Vietnam
| |
Collapse
|
25
|
Abstract
Microbial endocrinology represents the intersection of two seemingly disparate fields, microbiology and neurobiology, and is based on the shared presence of neurochemicals that are exactly the same in host as well as in the microorganism. The ability of microorganisms to not only respond to, but also produce, many of the same neurochemicals that are produced by the host, such as during periods of stress, has led to the introduction of this evolutionary-based mechanism which has a role in the pathogenesis of infectious disease. The consideration of microbial endocrinology-based mechanisms has demonstrated, for example, that the prevalent use of catecholamine-based synthetic drugs in the clinical setting contributes to the formation of biofilms in indwelling medical devices. Production of neurochemicals by microorganisms most often employs the same biosynthetic pathways as those utilized by the host, indicating that acquisition of host neurochemical-based signaling system in the host may have been acquired due to lateral gene transfer from microorganisms. That both host and microorganism produce and respond to the very same neurochemicals means that there is bidirectionality contained with the theoretical underpinnings of microbial endocrinology. This can be seen in the role of microbial endocrinology in the microbiota-gut-brain axis and its relevance to infectious disease. Such shared pathways argue for a role of microorganism-neurochemical interactions in infectious disease.
Collapse
|
26
|
Qing-Hua Granule induces GLP-1 secretion via bitter taste receptor in db/db mice. Biomed Pharmacother 2017; 89:10-17. [PMID: 28213324 DOI: 10.1016/j.biopha.2017.01.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Qing-Hua Granule (QHG), the modified formulation of a classical Chinese prescription named Gegen Qinlian Decoction, was clinically employed to treat type 2 diabetes mellitus (T2DM) through regulation of glucagon-like peptide-1 (GLP-1). However, the potential mechanism is unknown. We investigate whether QHG induces GLP-1 secretion via activation of bitter taste receptor (TAS2R) pathway in the gastrointestinal tract of db/db mice. The db/db mice were intragastrically (i.g.) administered QHG (low/medium/high dose) once daily for 8 weeks. GLP-1 secretion was evaluated. The bitter receptor signaling pathway, which regulates GLP-1 secretion, including TAS2R5 (a subtype of TAS2R), α-gustducin (Gαgust), 1-phosphatidylinositol-4, 5-bisphosphate phosphodiesterase beta-2 (PLCβ2), transient receptor potential cation channel subfamily M member 5 (TRPM5), was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot and immunohistochemistry (IHC). The biochemical observations of ileum and pancreas tissue were detected histopathologically. Acquity Ultra Performance LCTM - Micromass ZQ 2000 (UPLC-MS) was used for the phytochemical analysis. QHG exhibited significant and dose-dependent effect on GLP-1 secretion in db/db mice, along with significant up-regulation of TAS2R5 mRNA level and activation of TAS2R pathway (p<0.05). In addition, QHG improved the histopathological structure of ileum and pancreatic tissue. Seventeen compounds were identified in QHG. In conclusion, QHG induces GLP-1 secretion in db/db mice, most likely through the bitter taste receptor pathway.
Collapse
|
27
|
Wong ACN, Vanhove AS, Watnick PI. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 2016; 9:271-81. [PMID: 26935105 PMCID: PMC4833331 DOI: 10.1242/dmm.023408] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host-microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.
Collapse
Affiliation(s)
- Adam C N Wong
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Audrey S Vanhove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
28
|
Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem Cell Biol 2016; 146:673-683. [PMID: 27680547 DOI: 10.1007/s00418-016-1504-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/27/2022]
Abstract
A peculiar cell type of the respiratory and gastrointestinal epithelia, originally termed "brush cell" or "tuft cell" by electron microscopists because of its apical tuft of microvilli, utilizes the canonical bitter taste transduction cascade known from oropharyngeal taste buds to detect potential hazardous compounds, e.g. bacterial products. Upon stimulation, this cell initiates protective reflexes and local inflammatory responses through release of acetylcholine and chemokines. Guided by the understanding of these cells as sentinels, they have been newly discovered at previously unrecognized anatomical locations, including the urethra. Solitary cholinergic urethral cells express canonical taste receptors and are polymodal chemosensors for certain bitter substances, glutamate (umami) and uropathogenic Escherichia coli. Intraurethral bitter stimulation triggers cholinergic reflex activation of bladder detrusor activity, which is interpreted as cleaning flushing of the urethra. The currently known scenario suggests the presence of at least two more urethral chemosensory cell types: non-cholinergic brush cells and neuroendocrine serotonergic cells. The potential implications are enormous and far reaching, as these cells might be involved in monitoring and preventing ascending urinary tract infection and triggering of inappropriate detrusor activity. However, although appealing, this is still highly speculative, since the actual number of distinct chemosensory cell types needs to be finally clarified, as well as their embryological origin, developmental dynamics, receptor equipment, modes of signalling to adjacent nerve fibres and other cells, repertoire of chemo- and cytokines, involvement in pathogenesis of diseases and many other aspects.
Collapse
|
29
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
30
|
Pham H, Hui H, Morvaridi S, Cai J, Zhang S, Tan J, Wu V, Levin N, Knudsen B, Goddard WA, Pandol SJ, Abrol R. A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells. Biochem Biophys Res Commun 2016; 475:295-300. [PMID: 27208775 DOI: 10.1016/j.bbrc.2016.04.149] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 02/09/2023]
Abstract
The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor's potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release.
Collapse
Affiliation(s)
- Hung Pham
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hongxiang Hui
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA; International Center for Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Susan Morvaridi
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jiena Cai
- International Center for Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Sanqi Zhang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, 710061, China
| | - Jun Tan
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400030, China
| | - Vincent Wu
- Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles, CA, USA
| | | | - Beatrice Knudsen
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
| | - Stephen J Pandol
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, University of California, Los Angeles, CA, USA; GIRx Metabolics Inc., Los Angeles, CA, USA
| | - Ravinder Abrol
- Departments of Biomedical Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA; GIRx Metabolics Inc., Los Angeles, CA, USA.
| |
Collapse
|
31
|
Karaki SI, Ishikawa J, Tomizawa Y, Kuwahara A. Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa. Physiol Rep 2016; 4:4/9/e12790. [PMID: 27162263 PMCID: PMC4873638 DOI: 10.14814/phy2.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/18/2016] [Indexed: 12/28/2022] Open
Abstract
ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions.
Collapse
Affiliation(s)
- Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Junji Ishikawa
- FANCL Research Institute, FANCL Corporation, Yokohama, Japan
| | - Yuka Tomizawa
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Atsukazu Kuwahara
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
32
|
Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B. Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterol Motil 2016; 28:620-30. [PMID: 26691223 PMCID: PMC4842178 DOI: 10.1111/nmo.12754] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Specialized endoderm-derived epithelial cells, that is, enteroendocrine cells (EECs), are widely distributed throughout the gastrointestinal (GI) tract. Enteroendocrine cells form the largest endocrine organ in the body and play a key role in the control of GI secretion and motility, the regulation of food intake, postprandial glucose levels and metabolism. EECs sense luminal content and release signaling molecules that can enter the circulation to act as classic hormones on distant targets, act locally on neighboring cells and on distinct neuronal pathways including enteric and extrinsic neurons. Recent studies have shed light on EEC sensory transmission by showing direct connections between EECs and the nervous system via axon-like processes that form a well-defined neuroepithelial circuits through which EECs can directly communicate with the neurons innervating the GI tract to initiate appropriate functional responses. PURPOSE This review will highlight the role played by the EECs in the complex and integrated sensory information responses, and discuss the new findings regarding EECs in the brain-gut axis bidirectional communication.
Collapse
Affiliation(s)
- R Latorre
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - C Sternini
- CURE Digestive Diseases Research Center, Division of Digestive Diseases and Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
33
|
Clara R, Langhans W, Mansouri A. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis. Metabolism 2016; 65:8-17. [PMID: 26892511 DOI: 10.1016/j.metabol.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. METHODS First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. RESULTS OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. CONCLUSION These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1.
Collapse
Affiliation(s)
- Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland.
| |
Collapse
|
34
|
Mang D, Shu M, Endo H, Yoshizawa Y, Nagata S, Kikuta S, Sato R. Expression of a sugar clade gustatory receptor, BmGr6, in the oral sensory organs, midgut, and central nervous system of larvae of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:85-98. [PMID: 26721200 DOI: 10.1016/j.ibmb.2015.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/22/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Insects taste nonvolatile chemicals through gustatory receptors (Grs) and make choices for feeding, mating, and oviposition. To date, genome projects have identified 69 Gr genes in the silkworm, Bombyx mori; however, the expression sites of these Grs remain to be explored. In this study, we used reverse transcription (RT)-PCR to investigate expression of the B. mori Gr-6 (BmGr6) gene, a member of the putative sugar clade gene family in various tissues. BmGr6 is expressed in the midgut, central nervous system (CNS), and oral sensory organs. Moreover, immunohistochemistry using an anti-BmGr6 antiserum demonstrated that BmGr6 is expressed in cells by oral sensory organs, midgut and nervous system. Furthermore, double-immunohistochemistry indicated that BmGr6 is expressed in midgut enteroendocrine cells, also in CNS neurosecretory cells. In particular, a portion of BmGr6-expressing cells, in both midgut and CNS, secretes FMRFamide-related peptides (FaRPs). These results suggest that BmGr6 functions not only as a taste receptor, but also as a chemical sensor such as for the regulation of gut movement, physiological conditions, and feeding behavior of larvae.
Collapse
Affiliation(s)
- Dingze Mang
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Min Shu
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Haruka Endo
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Yasutaka Yoshizawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Shinji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shingo Kikuta
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | - Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan.
| |
Collapse
|
35
|
Posovszky C, Wabitsch M. Regulation of appetite, satiation, and body weight by enteroendocrine cells. Part 1: characteristics of enteroendocrine cells and their capability of weight regulation. Horm Res Paediatr 2015; 83:1-10. [PMID: 25471008 DOI: 10.1159/000368898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
The gastrointestinal tract is the gateway for food in our body. Food ingestion and the ensuing digestive processes depend on the composition and amount of ingested nutrients. This complex process of nutrient digestion and absorption is effectively regulated by the enteroendocrine system. Enteroendocrine cells (EECs) reside scattered throughout the intestinal epithelium. They express nutrient receptors that face the lumen and secrete peptide hormones in response to food. Besides regulating digestion, gastrointestinal endocrine cells are involved in the regulation of appetite and satiety. The first part of this review describes the anatomical and biological characteristics of EECs and discusses the capability of their hormones to influence appetite, satiety, and body weight. In the second part, we then discuss the therapeutic potential of EECs in the treatment of obesity.
Collapse
Affiliation(s)
- Carsten Posovszky
- University Outpatient Clinic for Pediatric Gastroenterology, and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | |
Collapse
|
36
|
Yu Y, Hao G, Zhang Q, Hua W, Wang M, Zhou W, Zong S, Huang M, Wen X. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem Pharmacol 2015. [PMID: 26206195 DOI: 10.1016/j.bcp.2015.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect.
Collapse
Affiliation(s)
- Yunli Yu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Gang Hao
- Suzhou Institute for Food and Drug Control, 215104, PR China.
| | - Quanying Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Wenyan Hua
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Meng Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Wenjia Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Shunlin Zong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Ming Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Xiaozhou Wen
- Jiangsu Province Hospital of Traditional Chinese Medicine, 210029, PR China.
| |
Collapse
|
37
|
Malach E, Shaul ME, Peri I, Huang L, Spielman AI, Seger R, Naim M. Membrane-permeable tastants amplify β2-adrenergic receptor signaling and delay receptor desensitization via intracellular inhibition of GRK2's kinase activity. Biochim Biophys Acta Gen Subj 2015; 1850:1375-88. [PMID: 25857770 DOI: 10.1016/j.bbagen.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Amphipathic sweet and bitter tastants inhibit purified forms of the protein kinases GRK2, GRK5 and PKA activities. Here we tested whether membrane-permeable tastants may intracellularly interfere with GPCR desensitization at the whole cell context. METHODS β2AR-transfected cells and cells containing endogenous β2AR were preincubated with membrane-permeable or impermeable tastants and then stimulated with isoproterenol (ISO). cAMP formation, β2AR phosphorylation and β2AR internalization were monitored in response to ISO stimulation. IBMX and H89 inhibitors and GRK2 silencing were used to explore possible roles of PDE, PKA, and GRK2 in the tastants-mediated amplification of cAMP formation and the tastant delay of β2AR phosphorylation and internalization. RESULTS Membrane-permeable but not impermeable tastants amplified the ISO-stimulated cAMP formation in a concentration- and time-dependent manner. Without ISO stimulation, amphipathic tastants, except caffeine, had no effect on cAMP formation. The amplification of ISO-stimulated cAMP formation by the amphipathic tastants was not affected by PDE and PKA activities, but was completely abolished by GRK2 silencing. Amphipathic tastants delayed the ISO-induced GRK-mediated phosphorylation of β2ARs and GRK2 silencing abolished it. Further, tastants also delayed the ISO-stimulated β2AR internalization. CONCLUSION Amphipathic tastants significantly amplify β2AR signaling and delay its desensitization via their intracellular inhibition of GRK2. GENERAL SIGNIFICANCE Commonly used amphipathic tastants may potentially affect similar GPCR pathways whose desensitization depends on GRK2's kinase activity. Because GRK2 also modulates phosphorylation of non-receptor components in multiple cellular pathways, these gut-absorbable tastants may permeate into various cells, and potentially affect GRK2-dependent phosphorylation processes in these cells as well.
Collapse
Affiliation(s)
- Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Merav E Shaul
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Irena Peri
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Liquan Huang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Naim
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
38
|
Fleischer J, Bumbalo R, Bautze V, Strotmann J, Breer H. Expression of odorant receptor Olfr78 in enteroendocrine cells of the colon. Cell Tissue Res 2015; 361:697-710. [DOI: 10.1007/s00441-015-2165-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
|
39
|
Doty RL. Neurotoxic exposure and impairment of the chemical senses of taste and smell. HANDBOOK OF CLINICAL NEUROLOGY 2015; 131:299-324. [PMID: 26563795 DOI: 10.1016/b978-0-444-62627-1.00016-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical senses of taste and smell determine the flavor of foods and beverages, guide appropriate food intake, and warn of such environmental hazards as spoiled or poisonous food, leaking natural gas, smoke, and airborne pollutants. This chapter addresses the influences of neurotoxic exposures on human chemoreception and provides basic information on the adverse influences of such exposures on rodent epithelia. The focus of the chapter is in olfaction, given dearth of empiric research on the effects of neurotoxic chemical exposures on the sense of taste, i.e., sweet, sour, bitter, salty, and savory sensations. As will be apparent from the chapter, numerous neurotoxins--many of which are encountered in industrial workplaces--alter the ability to smell, including solvents, metals, and particulate matter. The olfactory system is particularly vulnerable to such agents since its receptors are more or less directly exposed to the outside environment. Importantly, some such agents can enter the brain via the olfactory nerve or surrounding perineural spaces, bypassing the blood-brain barrier and damaging central nervous system structures and inducing pathologic processes that appear to be similar to those seen in neurodegenerative diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Department of Otorhinolaryngology; Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 2014; 359:693-698. [DOI: 10.1007/s00441-014-2033-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/14/2014] [Indexed: 02/01/2023]
|
41
|
van der Wielen N, van Avesaat M, de Wit NJW, Vogels JTWE, Troost F, Masclee A, Koopmans SJ, van der Meulen J, Boekschoten MV, Müller M, Hendriks HFJ, Witkamp RF, Meijerink J. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine. PLoS One 2014; 9:e107531. [PMID: 25216051 PMCID: PMC4162619 DOI: 10.1371/journal.pone.0107531] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/12/2014] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as "nutrient sensing". Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. AIM To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. METHODS Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. RESULTS AND CONCLUSION The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man.
Collapse
Affiliation(s)
- Nikkie van der Wielen
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark van Avesaat
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nicole J. W. de Wit
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jack T. W. E. Vogels
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Freddy Troost
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ad Masclee
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sietse-Jan Koopmans
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Jan van der Meulen
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Mark V. Boekschoten
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Michael Müller
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Henk F. J. Hendriks
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
42
|
Abstract
Five canonical tastes, bitter, sweet, umami (amino acid), salty, and sour (acid), are detected by animals as diverse as fruit flies and humans, consistent with a near-universal drive to consume fundamental nutrients and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste in each are highly divergent. The identification over the last two decades of receptors and other molecules that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduction and coding of information by the gustatory systems of vertebrates and invertebrates. In this Review, we discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight principles that are common across species, despite stark differences in receptor types.
Collapse
Affiliation(s)
- Emily R Liman
- Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Yali V Zhang
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
43
|
Westphalen CB, Asfaha S, Hayakawa Y, Takemoto Y, Lukin DJ, Nuber AH, Brandtner A, Setlik W, Remotti H, Muley A, Chen X, May R, Houchen CW, Fox JG, Gershon MD, Quante M, Wang TC. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J Clin Invest 2014; 124:1283-95. [PMID: 24487592 DOI: 10.1172/jci73434] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 01/10/2023] Open
Abstract
Doublecortin-like kinase 1 protein (DCLK1) is a gastrointestinal tuft cell marker that has been proposed to identify quiescent and tumor growth-sustaining stem cells. DCLK1⁺ tuft cells are increased in inflammation-induced carcinogenesis; however, the role of these cells within the gastrointestinal epithelium and their potential as cancer-initiating cells are poorly understood. Here, using a BAC-CreERT-dependent genetic lineage-tracing strategy, we determined that a subpopulation of DCLK1⁺ cells is extremely long lived and possesses rare stem cell abilities. Moreover, genetic ablation of Dclk1 revealed that DCLK1⁺ tuft cells contribute to recovery following intestinal and colonic injury. Surprisingly, conditional knockdown of the Wnt regulator APC in DCLK1⁺ cells was not sufficient to drive colonic carcinogenesis under normal conditions; however, dextran sodium sulfate-induced (DSS-induced) colitis promoted the development of poorly differentiated colonic adenocarcinoma in mice lacking APC in DCLK1⁺ cells. Importantly, colonic tumor formation occurred even when colitis onset was delayed for up to 3 months after induced APC loss in DCLK1⁺ cells. Thus, our data define an intestinal DCLK1⁺ tuft cell population that is long lived, quiescent, and important for intestinal homeostasis and regeneration. Long-lived DCLK1⁺ cells maintain quiescence even following oncogenic mutation, but are activated by tissue injury and can serve to initiate colon cancer.
Collapse
|
44
|
Abstract
The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.
Collapse
|
45
|
Tucker RM, Mattes RD, Running CA. Mechanisms and effects of "fat taste" in humans. Biofactors 2014; 40:313-26. [PMID: 24591077 DOI: 10.1002/biof.1162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
Abstract
Evidence supporting a "taste" cue from fat in the oral cavity continues to accrue. The proposed stimuli for fat taste, non-esterified fatty acids (NEFA), are released from food through hydrolytic rancidity and lipase activity derived from foods or saliva. NEFA must then be released from the food matrix, negotiate the aqueous environment to reach taste cell surfaces, and interact with receptors such as CD36 and GPR120 or diffuse across cell membranes to initiate a taste signal. Knowledge of these processes in non-gustatory tissues should inform understanding of taste responses to NEFA. Additionally, downstream effects of oral triglyceride exposure have been observed in numerous studies. Data specific to effects of NEFA versus triglyceride are scarce, but modified sham feeding trials with triglyceride document cephalic phase responses including elevations in serum lipids and insulin as well as potential, but debated, effects on gut peptides, appetite, and thermogenesis. In this review, we highlight the mechanisms by which NEFA migrate to and interact with taste cells, and then we examine physiological responses to oral fat exposure.
Collapse
Affiliation(s)
- Robin M Tucker
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
46
|
Ackroff K, Sclafani A. Post-oral fat stimulation of intake and conditioned flavor preference in C57BL/6J mice: A concentration-response study. Physiol Behav 2014; 129:64-72. [PMID: 24582671 DOI: 10.1016/j.physbeh.2014.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
Fat appetite is determined not only by orosensory (flavor) stimuli but also by the post-oral actions of dietary fat, which promote increased attraction to the flavors of high-fat foods. Experiment 1 presents a concentration-response analysis of how intragastric (IG) fat self-infusions stimulate intake and condition flavor preferences in C57BL/6J mice trained 1h/day. Separate groups of food-restricted mice consumed a flavored saccharin solution (the CS-) paired with IG self-infusions of water (Test 0) followed by a different flavored solution (the CS+) paired with IG self-infusions of 1.6, 3.2, 6.4 or 12.8% Intralipid (IL, soybean oil) (Tests 1-3). Following additional CS- and CS+ training sessions, a two-bottle CS+ vs. CS- choice test was conducted without infusions. Infusions of 3.2-12.8% IL stimulated CS+ licking in the first test session and more so in subsequent test sessions, and also conditioned significant CS+ preferences. These effects were similar to those previously observed with isocaloric glucose infusions (8-32%). IG infusion of 1.6% IL stimulated intake slightly but did not condition a CS+ preference comparable to the actions of isocaloric 4% glucose. Experiment 2 compared these subthreshold IL and glucose concentrations with that of a 1.6% IL+4% glucose infusion. This mixture stimulated 1-h CS+ licking more rapidly but generated a preference similar to that of 1.6% IL. In 23h/day tests, however, the IL+glucose mixture stimulated greater CS+ intakes and preferences than did 1.6% IL or 4% glucose. These findings show that fat, like glucose, rapidly generates concentration-dependent post-oral signals that stimulate intake and enhance preferences for energy-rich foods in mice.
Collapse
Affiliation(s)
- Karen Ackroff
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA; Cognition, Brain and Behavior Doctoral Subprogram, The Graduate School, City University of New York, New York, NY 10016, USA.
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA; Cognition, Brain and Behavior Doctoral Subprogram, The Graduate School, City University of New York, New York, NY 10016, USA
| |
Collapse
|
47
|
Monir MM, Hiramatsu K, Matsumoto S, Nishimura K, Takemoto C, Shioji T, Watanabe T, Kita K, Yonekura S, Roh SG. Influences of protein ingestion on glucagon-like peptide (GLP)-1-immunoreactive endocrine cells in the chicken ileum. Anim Sci J 2014; 85:581-7. [PMID: 24506838 DOI: 10.1111/asj.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
Influences of a specific dietary nutrient on glucagon-like peptide (GLP)-1-containing cells in the chicken intestine are not yet clear. Significance of dietary protein level on GLP-1-containing cells in the chicken ileum was investigated. Chickens fed control or experimental diets of varying protein levels were examined using immunohistochemical and morphometrical techniques. We show that the protein ingestion had an impact on the activities of GLP-1-immunoreactive cells in the chicken ileum. Weight gains declined with decreasing dietary crude protein (CP) levels, but no significant differences were detected in the daily feed intake and villous height. GLP-1-immunoreactive cells with a round or oval shape were frequently observed in the lower CP level groups (4.5% and 0%). Frequencies of occurrence of GLP-1-immunoreactive cells were 41.1 ± 4.1, 38.5 ± 4, 34.8 ± 3.1 and 34.3 ± 3.7 (cells/mm(2) , mean ± SD) for dietary CP level of 18%, 9%, 4.5% and 0% groups, respectively and significant differences were recognized between the control and lower CP level groups (P<0.05). Multiple regression analysis indicated a significant correlation between the daily protein intake and frequencies of occurrence of GLP-1-immunoreactive cells. The protein ingestion is one of the signals that influence GLP-1-containing cells in the chicken small intestine.
Collapse
Affiliation(s)
- Mohammad M Monir
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Kami-ina, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The G-protein-coupled receptor molecules and downstream effectors that are used by taste buds to detect sweet, bitter, and savory tastes are also utilized by chemoresponsive cells of the airways to detect irritants. Here, we describe the different cell types in the airways that utilize taste-receptor signaling to trigger protective epithelial and neural responses to potentially dangerous toxins and bacterial infection.
Collapse
Affiliation(s)
- Marco Tizzano
- Department of Cell & Developmental Biology, Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
49
|
There is no sweet escape from social pain: Glucose does not attenuate the effects of ostracism. Physiol Behav 2014; 124:8-14. [DOI: 10.1016/j.physbeh.2013.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
|
50
|
Transcriptomic analysis of the bitter taste receptor-mediated glucagon-like peptide-1 stimulation effect of quinine. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7410-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|