1
|
Guo Q, Lyu S, Shen W, Liu L, Ma W, Zhang M, Bu W, Lou B. The isolation and identification of a novel flavivirus from diseased Chinese soft-shelled turtle (Pelodiscussinensis). Virology 2025; 608:110547. [PMID: 40267592 DOI: 10.1016/j.virol.2025.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
In recent years, mass mortality of Pelodiscus sinensis has occurred in many Chinese turtle farms and no etiological research on this disease has been conducted to date. The main clinical manifestation of sick P. sinensis was telangiectasis induced bleeding occurred in the limbs, calipash and plastron. After dissection, we found that the blood viscosity was reduced. Typical clinical manifestations included light abdominal cavity effusion, intestine and gastric wall edema and transparency. HE staining showed distinct lesions in liver, intestine, kidney, spleen, heart and lung tissues of infected P. sinensis. TEM observation showed that the spherical virions were approximately 30 nm in diameter. Partial genome of the pathogen was obtained by Illumina sequencing and then assembled and annotated. Phylogenetic analysis of the polyprotein amino acid sequences of this pathogen and other flaviviruses showed that it was closely related to Chinese soft-shelled turtle flavivirus isolate HZ-2017. RT-PCR detection of this virus in the sick P. sinensis from turtle farms showed a high infection rate. QRT-PCR analysis of viral distribution in P. sinensis tissues indicated that the kidney contains the highest amount of virus. The virus was tentatively named "Pelodiscus sinensis flavivirus" (PSFV). In this study, the results of PSFV pathological characteristic and genome information laid a good foundation for further study of this virus.
Collapse
Affiliation(s)
- Qi Guo
- Institute of Hydrobiology, Zhejiang Academic of Agricultural Sciences, Hangzhou, 310021, China
| | - Sunjian Lyu
- Institute of Hydrobiology, Zhejiang Academic of Agricultural Sciences, Hangzhou, 310021, China.
| | - Weifeng Shen
- Institute of Hydrobiology, Zhejiang Academic of Agricultural Sciences, Hangzhou, 310021, China
| | - Li Liu
- Institute of Hydrobiology, Zhejiang Academic of Agricultural Sciences, Hangzhou, 310021, China.
| | - Wenjun Ma
- Zhejiang Aquatic Technology Extension Station, Hangzhou, 310021, China
| | | | - Weishao Bu
- Yunhe County Qingjiang Ecological Trionyx sinensis Breeding Cooperative, Lishui, 310018, China
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academic of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
2
|
Maia LJ, Silva AB, de Oliveira CH, Campos FS, da Silva LA, de Abreu FVS, Ribeiro BM. Sylvatic Mosquito Viromes in the Cerrado Biome of Minas Gerais, Brazil: Discovery of New Viruses and Implications for Arbovirus Transmission. Viruses 2024; 16:1276. [PMID: 39205250 PMCID: PMC11359572 DOI: 10.3390/v16081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Studies on animal virome have mainly concentrated on chordates and medically significant invertebrates, often overlooking sylvatic mosquitoes, constituting a major part of mosquito species diversity. Despite their potential role in arbovirus transmission, the viromes of sylvatic mosquitoes remain largely unexplored. These mosquitoes may also harbor insect-specific viruses (ISVs), affecting arboviral transmission dynamics. The Cerrado biome, known for rapid deforestation and its status as a biodiversity hotspot, offers an ideal setting for investigating mosquito viromes due to potential zoonotic spillover risks from land use changes. This study aimed to characterize the viromes of sylvatic mosquitoes collected from various locations within Minas Gerais state, Brazil. The total RNA was extracted from mosquito pools of Psorophora albipes, Sabethes albiprivus, Sa. chloropterus, Psorophora ferox, and Coquillettidia venezuelensis species, followed by high-throughput sequencing (HTS). Bioinformatic analysis included quality control, contig assembly, and viral detection. Sequencing data analysis revealed 11 near-complete viral genomes (new viruses are indicated with asterisks) across seven viral families and one unassigned genus. These included: Xinmoviridae (Ferox mosquito mononega-like virus* and Albipes mosquito Gordis-like virus*), Phasmaviridae (Sabethes albiprivus phasmavirus*), Lispiviridae (Pedras lispivirus variant MG), Iflaviridae (Sabethes albiprivus iflavivirus*), Virgaviridae (Buriti virga-like virus variant MG and Sabethes albiprivus virgavirus 1*), Flaviviridae (Psorophora ferox flavivirus*), Mesoniviridae (Alphamesonivirus cavallyense variant MG), and the genus Negevirus (Biggie virus variant MG virus and Coquillettidia venezuelensis negevirus*). Moreover, the presence of ISVs and potential novel arboviruses underscores the need for ongoing surveillance and control strategies to mitigate the risk of emerging infectious diseases.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Unimontes, Montes Claros 39401-089, Brazil
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Fabricio Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, Brazil;
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Leonardo Assis da Silva
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais (IFNMG), Salinas 39560-000, Brazil;
- Centro Colaborador de Entomologia/Lacoi/IFNMG/Secretaria Municipal de Saúde de Salinas, Salinas 39560-000, Brazil
| | - Bergmann Morais Ribeiro
- Laboratório de Baculovírus, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília (UnB), Brasília 70910-900, Brazil; (L.J.M.); (L.A.d.S.)
| |
Collapse
|
3
|
Joseph RE, Bozic J, Werling KL, Krizek RS, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West Nile virus (WNV) in a strain-specific manner in Culex tarsalis mosquitoes. J Gen Virol 2024; 105:002017. [PMID: 39189607 PMCID: PMC11348563 DOI: 10.1099/jgv.0.002017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and C. tarsalis mosquitoes. The titres of both WNV strains - WN02-1956 and NY99 - were suppressed by EILV in C6/36 cells as early as 48-72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In C. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in C. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Rachel S. Krizek
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Carvalho VL, Prakoso D, Schwarz ER, Logan TD, Nunes BTD, Beachboard SE, Long MT. Negevirus Piura Suppresses Zika Virus Replication in Mosquito Cells. Viruses 2024; 16:350. [PMID: 38543716 PMCID: PMC10976066 DOI: 10.3390/v16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
We investigated the interaction between the insect-specific virus, Piura virus (PIUV), and the arbovirus Zika virus (ZIKV) in Aedes albopictus cells. We performed coinfection experiments in C6/36 cells. Piura virus (Cor 33 strain, Colombia) and ZIKV (PRVABC58 strain, Puerto Rico) were co-inoculated into C6/36 cells using two multiplicity of infection (MOI) combinations: 0.1 for both viruses and 1.0 for ZIKV, 0.1 for PIUV. Wells were infected in triplicate with either PIUV and ZIKV coinfection, ZIKV-only, or PIUV-only. Mock infected cells served as control wells. The cell suspension was collected daily 7 days post-infection. Zika virus load was titrated by TCID50 on Vero 76 cells. The ZIKV-only infection and PIUV and ZIKV coinfection experiments were also quantified by RT-qPCR. We also investigated whether ZIKV interfered in the PIUV replication. PIUV suppressed the replication of ZIKV, resulting in a 10,000-fold reduction in ZIKV titers within 3 days post-infection. PIUV viral loads were not reduced in the presence of ZIKV. We conclude that, when concurrently infected, PIUV suppresses ZIKV in C6/36 cells while ZIKV does not interfere in PIUV replication.
Collapse
Affiliation(s)
- Valéria L. Carvalho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Dhani Prakoso
- Professor Nidom Foundation, Surabaya, East Java 60236, Indonesia;
| | - Erika R. Schwarz
- Montana Veterinary Diagnostic Laboratory, 1911 W Lincoln St., Bozeman, MT 59718, USA
| | - Tracey D. Logan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, 1225 Center Dr. Suite 4101, Gainesville, FL 32611, USA
| | - Bruno Tardelli Diniz Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, s/n, Ananindeua 67030-000, PA, Brazil
| | - Sarah E. Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, 1945 SW 16th Ave., Gainesville, FL 32608, USA
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Saivish MV, Nogueira ML, Rossi SL, Vasilakis N. Beyond Borders: Investigating the Mysteries of Cacipacoré, a Lesser-Studied Arbovirus in Brazil. Viruses 2024; 16:336. [PMID: 38543701 PMCID: PMC10975354 DOI: 10.3390/v16030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
Cacipacoré virus (CPCV) was discovered in 1977 deep in the Amazon rainforest from the blood of a black-faced ant thrush (Formicarius analis). As a member of the family Flaviviridae and genus orthoflavivirus, CPCV's intricate ecological association with vectors and hosts raises profound questions. CPCV's transmission cycle may involve birds, rodents, equids, bovines, marsupials, non-human primates, and bats as potential vertebrate hosts, whereas Culex and Aedes spp. mosquitoes have been implicated as potential vectors of transmission. The virus' isolation across diverse biomes, including urban settings, suggests its adaptability, as well as presents challenges for its accurate diagnosis, and thus its impact on veterinary and human health. With no specific treatment or vaccine, its prevention hinges on traditional arbovirus control measures. Here, we provide an overview of its ecology, transmission cycles, epidemiology, pathogenesis, and prevention, aiming at improving our ability to better understand this neglected arbovirus.
Collapse
Affiliation(s)
- Marielena V. Saivish
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Maurício L. Nogueira
- Laboratórios de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, Sao Jose do Rio Preto 15090-000, SP, Brazil; (M.V.S.); (M.L.N.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
6
|
Tabata K, Itakura Y, Ariizumi T, Igarashi M, Kobayashi H, Intaruck K, Kishimoto M, Kobayashi S, Hall WW, Sasaki M, Sawa H, Orba Y. Development of flavivirus subviral particles with low cross-reactivity by mutations of a distinct antigenic domain. Appl Microbiol Biotechnol 2023; 107:7515-7529. [PMID: 37831184 PMCID: PMC10656323 DOI: 10.1007/s00253-023-12817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.
Collapse
Affiliation(s)
- Koshiro Tabata
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Yukari Itakura
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
| | - Hiroko Kobayashi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mai Kishimoto
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Laboratory of Veterinary Microbiology, Osaka Metropolitan University, Izumisano, 598-8531, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060‑0818, Japan
| | - William W Hall
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan
- Global Virus Network, Baltimore, MD, 21201, USA
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan.
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, N20, W10001-0020, Japan.
| |
Collapse
|
7
|
Joseph RE, Bozic J, Werling KL, Urakova N, Rasgon JL. Eilat virus (EILV) causes superinfection exclusion against West NILE virus (WNV) in a strain specific manner in Culex tarsalis mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542294. [PMID: 37292979 PMCID: PMC10245884 DOI: 10.1101/2023.05.25.542294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
West Nile virus (WNV) is the leading cause of mosquito-borne illness in the United States. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vector Culex tarsalis is also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells and Culex tarsalis mosquitoes. The titers of both WNV strains-WN02-1956 and NY99-were suppressed by EILV in C6/36 cells as early as 48-72 h post superinfection at both multiplicity of infections (MOIs) tested in our study. The titers of WN02-1956 at both MOIs remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titers. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. In Cx. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes, EILV enhanced NY99 infection titers at 3 days post superinfection, but this effect disappeared at 7 days post superinfection. In contrast, WN02-1956 infection titers were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, in Cx. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jovana Bozic
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Sherlock Biosciences, Watertown, Massachusetts, United States
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Current affiliation: Oxford University, Oxford, United Kingdom
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
8
|
Evidence that untranslated genomic sequences are key determinants of insect-specific flavivirus host restriction. Virology 2022; 574:102-114. [DOI: 10.1016/j.virol.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022]
|
9
|
Gabiane G, Yen P, Failloux A. Aedes mosquitoes in the emerging threat of urban yellow fever transmission. Rev Med Virol 2022; 32:e2333. [PMID: 35124859 PMCID: PMC9541788 DOI: 10.1002/rmv.2333] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
This last decade has seen a resurgence of yellow fever (YF) in historical endemic regions and repeated attempts of YF introduction in YF-free countries such as the Asia-Pacific region and the Caribbean. Infected travellers are the main entry routes in these regions where competent mosquito vectors proliferate in appropriate environmental conditions. With the discovery of the 17D vaccine, it was thought that YF would be eradicated. Unfortunately, it was not the case and, contrary to dengue, chikungunya and Zika, factors that cotribute to YF transmission remain under investigation. Today, all the signals are red and it is very likely that YF will be the next pandemic in the YF-free regions where millions of people are immunologically naïve. Unlike COVID-19, YF is associated with a high case-fatality rate and a high number of deaths are expected. This review gives an overview of global YF situation, including the non-endemic Asia-Pacific region and the Caribbean where Aedes aegypti is abundantly distributed, and also proposes different hypotheses on why YF outbreaks have not yet occurred despite high records of travellers importing YF into these regions and what role Aedes mosquitoes play in the emergence of urban YF.
Collapse
Affiliation(s)
- Gaelle Gabiane
- Institut PasteurUniversité de Paris, Unit of Arboviruses and Insect VectorsParisFrance
- Université des Antilles, Campus de SchoelcherSchoelcherMartinique
| | - Pei‐Shi Yen
- Institut PasteurUniversité de Paris, Unit of Arboviruses and Insect VectorsParisFrance
| | - Anna‐Bella Failloux
- Institut PasteurUniversité de Paris, Unit of Arboviruses and Insect VectorsParisFrance
| |
Collapse
|
10
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
11
|
Daidoji T, Morales Vargas RE, Hagiwara K, Arai Y, Watanabe Y, Nishioka K, Murakoshi F, Garan K, Sadakane H, Nakaya T. Development of genus-specific universal primers for the detection of flaviviruses. Virol J 2021; 18:187. [PMID: 34526049 PMCID: PMC8442469 DOI: 10.1186/s12985-021-01646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background Flaviviruses are representative arboviruses carried by arthropods and/or vertebrates; these viruses can pose a public health concern in many countries. By contrast, it is known that a novel virus group called insect-specific flaviviruses (ISFs) also infects arthropods, although no such virus has yet been isolated from vertebrates. The characteristics of ISFs, which affect replication of human-pathogenic flaviviruses within co-infected mosquito cells or mosquitoes without affecting the mosquitoes themselves, mean that we should pay attention to both ISFs and human-pathogenic flaviviruses, despite the fact that ISFs appear not to be directly hazardous to human health. To assess the risk of diseases caused by flaviviruses, and to better understand their ecology, it is necessary to know the extent to which flaviviruses are harbored by arthropods. Methods We developed a novel universal primer for use in a PCR-based system to detect a broad range of flaviviruses. We then evaluated its performance. The utility of the novel primer pair was evaluated in a PCR assay using artificially synthesized oligonucleotides derived from a template viral genome sequence. The utility of the primer pair was also examined by reverse transcription PCR (RT-PCR) using cDNA templates prepared from virus-infected cells or crude supernatants prepared from virus-containing mosquito homogenates. Results The novel primer pair amplified the flavivirus NS5 sequence (artificially synthesized) in all samples tested (six species of flavivirus that can cause infectious diseases in humans, and flaviviruses harbored by insects). In addition, the novel primer pair detected viral genomes in cDNA templates prepared from mosquito cells infected with live flavivirus under different infectious conditions. Finally, the viral genome was detected with high sensitivity in crude supernatants prepared from pooled mosquito homogenates. Conclusion This PCR system based on a novel primer pair makes it possible to detect arthropod-borne flaviviruses worldwide (the primer pair even detected viruses belonging to different genetic subgroups). As such, an assay based on this primer pair may help to improve public health and safety, as well as increase our understanding of flavivirus ecology. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01646-5.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | | | - Katsuro Hagiwara
- Veterinary Virology, School of Veterinary Medicine , Rakuno Gakuen University, Hokkaido, 069-8501, Japan
| | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Keisuke Nishioka
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Fumi Murakoshi
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
12
|
White AV, Fan M, Mazzara JM, Roper RL, Richards SL. Mosquito-infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. J Med Virol 2021; 93:3362-3373. [PMID: 33219544 DOI: 10.1002/jmv.26686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023]
Abstract
The primary vector of dengue virus (DENV) is Aedes aegypti. The mosquito-infecting virus, Espirito Santo virus (ESV), does not infect Vero (mammalian) cells and grows in mosquito (C6/36) cells without cytopathic effects. Effects of ESV infection on replication of DENV were explored in vitro and in vivo, analyzing protein, RNA genome expression, and plaque formation. ESV and DENV simultaneous coinfection did not block protein synthesis from either virus but did result in inhibition of DENV replication in mosquito cells. Furthermore, ESV superinfected with DENV resulted in inhibition of DENV replication and spread in A. aegypti, thus reducing vector competence. Tissue culture experiments on viral kinetics of ESV and DENV coinfection showed that neither virus significantly affects the replication of the other in Vero, HeLa, or HEK cells. Hence, ESV blocks DENV replication in insect cells, but not the mammalian cells evaluated here. Our study provides new insights into ESV-induced suppression of DENV, a globally important pathogen impacting public health.
Collapse
Affiliation(s)
- Avian V White
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Ming Fan
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jordan M Mazzara
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Rachel L Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Stephanie L Richards
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
13
|
Blasdell KR, Wynne JW, Perera D, Firth C. First detection of a novel 'unknown host' flavivirus in a Malaysian rodent. Access Microbiol 2021; 3:000223. [PMID: 34151174 PMCID: PMC8208762 DOI: 10.1099/acmi.0.000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identification of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the first known report of a member of this group of viruses from a potential mammalian host.
Collapse
Affiliation(s)
- Kim R Blasdell
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - James W Wynne
- Agriculture and Food Business Unit, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | - David Perera
- The Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Cadhla Firth
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
14
|
Tangudu CS, Charles J, Nunez-Avellaneda D, Hargett AM, Brault AC, Blitvich BJ. Chimeric Zika viruses containing structural protein genes of insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions. Virology 2021; 559:30-39. [PMID: 33812340 DOI: 10.1016/j.virol.2021.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Long Pine Key virus (LPKV) and Lammi virus are insect-specific flaviviruses that phylogenetically affiliate with dual-host flaviviruses. The goal of this study was to provide insight into the genetic determinants that condition this host range restriction. Chimeras were initially created by replacing select regions of the Zika virus genome, including the premembrane and envelope protein (prM-E) genes, with the corresponding regions of the LPKV genome. Of the four chimeras produced, one (the prM-E swap) yielded virus that replicated in mosquito cells. Another chimeric virus with a mosquito replication-competent phenotype was created by inserting the prM-E genes of Lammi virus into a Zika virus genetic background. Vertebrate cells did not support the replication of either chimeric virus although trace to modest amounts of viral antigen were produced, consistent with suboptimal viral entry. These data suggest that dual-host affiliated insect-specific flaviviruses cannot replicate in vertebrate cells due to entry and post-translational restrictions.
Collapse
Affiliation(s)
- Chandra S Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jermilia Charles
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Daniel Nunez-Avellaneda
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Alissa M Hargett
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
15
|
de Oliveira Ribeiro G, da Costa AC, Gill DE, Ribeiro ESD, Rego MODS, Monteiro FJC, Villanova F, Nogueira JS, Maeda AY, de Souza RP, Tahmasebi R, Morais VS, Pandey RP, Raj VS, Scandar SAS, da Silva Vasami FG, D'Agostino LG, Maiorka PC, Deng X, Nogueira ML, Sabino EC, Delwart E, Leal É, Cunha MS. Guapiaçu virus, a new insect-specific flavivirus isolated from two species of Aedes mosquitoes from Brazil. Sci Rep 2021; 11:4674. [PMID: 33633167 PMCID: PMC7907106 DOI: 10.1038/s41598-021-83879-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Classical insect-flaviviruses (cISFVs) and dual host-related insect-specific flavivirus (dISFV) are within the major group of insect-specific flavivirus. Remarkably dISFV are evolutionarily related to some of the pathogenic flavivirus, such as Zika and dengue viruses. The Evolutionary relatedness of dISFV to flavivirus allowed us to investigate the evolutionary principle of host adaptation. Additionally, dISFV can be used for the development of flavivirus vaccines and to explore underlying principles of mammalian pathogenicity. Here we describe the genetic characterization of a novel putative dISFV, termed Guapiaçu virus (GUAPV). Distinct strains of GUAPV were isolated from pools of Aedes terrens and Aedes scapularis mosquitoes. Additionally, we also detected viral GUAPV RNA in a plasma sample of an individual febrile from the Amazon region (North of Brazil). Although GUAPV did not replicate in tested mammalian cells, 3'UTR secondary structures duplication and codon usage index were similar to pathogenic flavivirus.
Collapse
Affiliation(s)
| | | | - Danielle Elise Gill
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Edcelha Soares D'Athaide Ribeiro
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Marlisson Octavio da S Rego
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Fred Julio Costa Monteiro
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Rua Tancredo Neves, 1.118, Macapá, AP, CEP 68905-230, Brazil
| | - Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil
| | - Juliana Silva Nogueira
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Adriana Yurika Maeda
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Renato Pereira de Souza
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil
| | - Roozbeh Tahmasebi
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Vanessa S Morais
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | | | | | | | - Paulo César Maiorka
- Department of Pathology, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA.
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil.
| | - Mariana Sequetin Cunha
- Institute of Tropical Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil.
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, SP, 01246-000, Brazil.
| |
Collapse
|
16
|
Carvalho VL, Long MT. Insect-Specific Viruses: An overview and their relationship to arboviruses of concern to humans and animals. Virology 2021; 557:34-43. [PMID: 33631523 DOI: 10.1016/j.virol.2021.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023]
Abstract
The group of Insect-specific viruses (ISVs) includes viruses apparently restricted to insects based on their inability to replicate in the vertebrates. Increasing numbers of ISVs have been discovered and characterized representing a diverse number of viral families. However, most studies have focused on those ISVs belonging to the family Flaviviridae, which highlights the importance of ISV study from other viral families, which allow a better understanding for the mechanisms of transmission and evolution used for this diverse group of viruses. Some ISVs have shown the potential to modulate arboviruses replication and vector competence of mosquitoes. Based on this, ISVs may be used as an alternative tool for biological control, development of vaccines, and diagnostic platforms for arboviruses. In this review, we provide an update of the general characteristics of ISVs and their interaction with arboviruses that infect vertebrates.
Collapse
Affiliation(s)
- Valéria L Carvalho
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Rodovia BR-316, Km 7, S/n, Ananindeua, Para, 67030-000, Brazil.
| | - Maureen T Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, College of Veterinary Medicine, 1945 SW 16th Ave, Gainesville, FL, 32608, USA.
| |
Collapse
|
17
|
Discoveries of Exoribonuclease-Resistant Structures of Insect-Specific Flaviviruses Isolated in Zambia. Viruses 2020; 12:v12091017. [PMID: 32933075 PMCID: PMC7551683 DOI: 10.3390/v12091017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
To monitor the arthropod-borne virus transmission in mosquitoes, we have attempted both to detect and isolate viruses from 3304 wild-caught female mosquitoes in the Livingstone (Southern Province) and Mongu (Western Province) regions in Zambia in 2017. A pan-flavivirus RT-PCR assay was performed to identify flavivirus genomes in total RNA extracted from mosquito lysates, followed by virus isolation and full genome sequence analysis using next-generation sequencing and rapid amplification of cDNA ends. We isolated a newly identified Barkedji virus (BJV Zambia) (10,899 nt) and a novel flavivirus, tentatively termed Barkedji-like virus (BJLV) (10,885 nt) from Culex spp. mosquitoes which shared 96% and 75% nucleotide identity with BJV which has been isolated in Israel, respectively. These viruses could replicate in C6/36 cells but not in mammalian and avian cell lines. In parallel, a comparative genomics screening was conducted to study evolutionary traits of the 5'- and 3'-untranslated regions (UTRs) of isolated viruses. Bioinformatic analyses of the secondary structures in the UTRs of both viruses revealed that the 5'-UTRs exhibit canonical stem-loop structures, while the 3'-UTRs contain structural homologs to exoribonuclease-resistant RNAs (xrRNAs), SL-III, dumbbell, and terminal stem-loop (3'SL) structures. The function of predicted xrRNA structures to stop RNA degradation by Xrn1 exoribonuclease was further proved by the in vitro Xrn1 resistance assay.
Collapse
|
18
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
19
|
Elrefaey AME, Abdelnabi R, Rosales Rosas AL, Wang L, Basu S, Delang L. Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses 2020; 12:E964. [PMID: 32878245 PMCID: PMC7552076 DOI: 10.3390/v12090964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.
Collapse
Affiliation(s)
| | - Rana Abdelnabi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Ana Lucia Rosales Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| | - Sanjay Basu
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK;
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium; (R.A.); (A.L.R.R.); (L.W.)
| |
Collapse
|
20
|
Applying a pan-flavivirus RT-qPCR assay in Brazilian public health surveillance. Arch Virol 2020; 165:1863-1868. [PMID: 32474687 DOI: 10.1007/s00705-020-04680-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
The aim of this study was to improve flavivirus field monitoring in Brazil using a reliable probe-based RT-qPCR assay. Standard flavivirus strains were employed to evaluate the performance of the assay, and its applicability was evaluated using 235 stored pools of Culicidae samples collected between 1993 and 1997 and in 2016. Flavivirus species were identified by sequencing. Sixteen (6.8%) samples tested positive: Ilheus virus, Iguape virus, and Saint Louis encephalitis virus were identified in historical specimens from 1993-1994, while insect-specific flaviviruses were detected in the samples from 2016. This approach was demonstrated to be accurate for flavivirus detection and characterization, and it can be successfully applied for vector surveillance and for monitoring and discovery of insect specific flaviviruses.
Collapse
|
21
|
Zika Virus Surveillance at the Human-Animal Interface in West-Central Brazil, 2017-2018. Viruses 2019; 11:v11121164. [PMID: 31888285 PMCID: PMC6950091 DOI: 10.3390/v11121164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/30/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022] Open
Abstract
Zika virus (ZIKV) was first discovered in 1947 in Uganda but was not considered a public health threat until 2007 when it found to be the source of epidemic activity in Asia. Epidemic activity spread to Brazil in 2014 and continued to spread throughout the tropical and subtropical regions of the Americas. Despite ZIKV being zoonotic in origin, information about transmission, or even exposure of non-human vertebrates and mosquitoes to ZIKV in the Americas, is lacking. Accordingly, from February 2017 to March 2018, we sought evidence of sylvatic ZIKV transmission by sampling whole blood from approximately 2000 domestic and wild vertebrates of over 100 species in West-Central Brazil within the active human ZIKV transmission area. In addition, we collected over 24,300 mosquitoes of at least 17 genera and 62 species. We screened whole blood samples and mosquito pools for ZIKV RNA using pan-flavivirus primers in a real-time reverse-transcription polymerase chain reaction (RT-PCR) in a SYBR Green platform. Positives were confirmed using ZIKV-specific envelope gene real-time RT-PCR and nucleotide sequencing. Of the 2068 vertebrates tested, none were ZIKV positive. Of the 23,315 non-engorged mosquitoes consolidated into 1503 pools tested, 22 (1.5%) with full data available showed some degree of homology to insect-specific flaviviruses. To identify previous exposure to ZIKV, 1498 plasma samples representing 62 species of domestic and sylvatic vertebrates were tested for ZIKV-neutralizing antibodies by plaque reduction neutralization test (PRNT90). From these, 23 (1.5%) of seven species were seropositive for ZIKV and negative for dengue virus serotype 2, yellow fever virus, and West Nile virus, suggesting potential monotypic reaction for ZIKV. Results presented here suggest no active transmission of ZIKV in non-human vertebrate populations or in alternative vector candidates, but suggest that vertebrates around human populations have indeed been exposed to ZIKV in West-Central Brazil.
Collapse
|
22
|
Maia LMS, Pinto AZDL, Carvalho MSD, Melo FLD, Ribeiro BM, Slhessarenko RD. Novel Viruses in Mosquitoes from Brazilian Pantanal. Viruses 2019; 11:v11100957. [PMID: 31627274 PMCID: PMC6832572 DOI: 10.3390/v11100957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 01/25/2023] Open
Abstract
Viruses are ubiquitous and diverse microorganisms arising as a result of interactions within their vertebrate and invertebrate hosts. Here we report the presence of different viruses in the salivary glands of 1657 mosquitoes classified over 28 culicinae species from the North region of the Brazilian Pantanal wetland through metagenomics, viral isolation, and RT-PCR. In total, 12 viruses were found, eight putative novel viruses with relatively low similarity with pre-existing species of viruses within their families, named Pirizal iflavirus, Furrundu phlebovirus, Pixé phlebovirus, Guampa vesiculovirus, Chacororé flavivirus, Rasqueado orbivirus, Uru chuvirus, and Bororo circovirus. We also found the already described Lobeira dielmorhabdovirus, Sabethes flavivirus, Araticum partitivirus, and Murici totivirus. Therefore, these findings underscore the vast diversity of culicinae and novel viruses yet to be explored in Pantanal, the largest wetland on the planet.
Collapse
Affiliation(s)
- Laura Marina Siqueira Maia
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Andressa Zelenski de Lara Pinto
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Michellen Santos de Carvalho
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| | - Fernando Lucas de Melo
- Departamento de Fitopatologia, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil.
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília, Distrito Federal, Brazil.
| | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Sáude, Laboratório de Virologia, Universidade Federal de Mato Grosso (UFMT), 78060-900 Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
23
|
Mosquito-Borne Viruses and Insect-Specific Viruses Revealed in Field-Collected Mosquitoes by a Monitoring Tool Adapted from a Microbial Detection Array. Appl Environ Microbiol 2019; 85:AEM.01202-19. [PMID: 31350319 DOI: 10.1128/aem.01202-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in Aedes aegypti, Aedes albopictus, and Culex mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and Culex flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in A. aegypti populations. Wolbachia was also detected in several of the field samples (A. albopictus and Culex spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the Flavivirus, Alphavirus, and Orthobunyavirus genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas.IMPORTANCE Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.
Collapse
|
24
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
25
|
Schlub TE, Buchmann JP, Holmes EC. A Simple Method to Detect Candidate Overlapping Genes in Viruses Using Single Genome Sequences. Mol Biol Evol 2019; 35:2572-2581. [PMID: 30099499 PMCID: PMC6188560 DOI: 10.1093/molbev/msy155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overlapping genes in viruses maximize the coding capacity of their genomes and allow the generation of new genes without major increases in genome size. Despite their importance, the evolution and function of overlapping genes are often not well understood, in part due to difficulties in their detection. In addition, most bioinformatic approaches for the detection of overlapping genes require the comparison of multiple genome sequences that may not be available in metagenomic surveys of virus biodiversity. We introduce a simple new method for identifying candidate functional overlapping genes using single virus genome sequences. Our method uses randomization tests to estimate the expected length of open reading frames and then identifies overlapping open reading frames that significantly exceed this length and are thus predicted to be functional. We applied this method to 2548 reference RNA virus genomes and find that it has both high sensitivity and low false discovery for genes that overlap by at least 50 nucleotides. Notably, this analysis provided evidence for 29 previously undiscovered functional overlapping genes, some of which are coded in the antisense direction suggesting there are limitations in our current understanding of RNA virus replication.
Collapse
Affiliation(s)
- Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan P Buchmann
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW , Australia
| |
Collapse
|
26
|
Öhlund P, Lundén H, Blomström AL. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 2019; 55:127-137. [PMID: 30632016 PMCID: PMC6458977 DOI: 10.1007/s11262-018-01629-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023]
Abstract
The advancement in high-throughput sequencing technology and bioinformatics tools has spurred a new age of viral discovery. Arthropods is the largest group of animals and has shown to be a major reservoir of different viruses, including a group known as insect-specific viruses (ISVs). The majority of known ISVs have been isolated from mosquitoes and shown to belong to viral families associated with animal arbovirus pathogens, such as Flaviviridae, Togaviridae and Phenuiviridae. These insect-specific viruses have a strict tropism and are unable to replicate in vertebrate cells, these properties are interesting for many reasons. One is that these viruses could potentially be utilised as biocontrol agents using a similar strategy as for Wolbachia. Mosquitoes infected with the viral agent could have inferior vectorial capacity of arboviruses resulting in a decrease of circulating arboviruses of public health importance. Moreover, insect-specific viruses are thought to be ancestral to arboviruses and could be used to study the evolution of the switch from single-host to dual-host. In this review, we discuss new discoveries and hypothesis in the field of arboviruses and insect-specific viruses.
Collapse
Affiliation(s)
- Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Hanna Lundén
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07, Uppsala, Sweden.
| |
Collapse
|
27
|
Golnar AJ, Langevin S, Panella NA, Solberg OD, Reisen WK, Komar N. Flanders hapavirus in western North America. Arch Virol 2018; 163:3351-3356. [PMID: 30159683 PMCID: PMC7083209 DOI: 10.1007/s00705-018-4003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
Flanders virus (FLAV; family Rhabdoviridae) is a mosquito-borne hapavirus with no known pathology that is frequently isolated during arbovirus surveillance programs. Here, we document the presence of FLAV in Culex tarsalis mosquitoes and a Canada goose (Branta canadensis) collected in western North America, outside of the currently recognized range of FLAV. Until now, FLAV-like viruses detected in the western United States were assumed to be Hart Park virus (HPV, family Rhabdoviridae), a closely related congener. A re-examination of archived viral isolates revealed that FLAV was circulating in California as early as 1963. FLAV also was isolated in Nebraska, Colorado, South Dakota, North Dakota, and Saskatchewan, Canada. Phylogenetic analysis of the U1 pseudogene for 117 taxa and eight nuclear genes for 15 taxa demonstrated no distinct clustering between western FLAV isolates. Assuming the range of FLAV has been expanding west, these results indicate that FLAV likely spread west following multiple invasion events. However, it remains to be determined if the detection of FLAV in western North America is due to expansion or is a result of enhanced arbovirus surveillance or diagnostic techniques. Currently, the impact of FLAV infection remains unknown.
Collapse
Affiliation(s)
- Andrew J Golnar
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843, USA.
| | - Stan Langevin
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - Nicholas A Panella
- Division of Vector-Borne Diseases, Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Owen D Solberg
- Department of Systems Biology, Sandia National Laboratories, Livermore, CA, 94550, USA
| | - William K Reisen
- Center for Vectorborne Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Nicholas Komar
- Division of Vector-Borne Diseases, Arbovirus Diseases Branch, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| |
Collapse
|
28
|
Romo H, Kenney JL, Blitvich BJ, Brault AC. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg Microbes Infect 2018; 7:181. [PMID: 30429457 PMCID: PMC6235874 DOI: 10.1038/s41426-018-0180-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022]
Abstract
Previous studies demonstrated an insect-specific flavivirus, Nhumirim virus (NHUV), can suppress growth of West Nile virus (WNV) and decrease transmission rates in NHUV/WNV co-inoculated Culex quinquefasciatus. To assess whether NHUV might interfere with transmission of other medically important flaviviruses, the ability of NHUV to suppress viral growth of Zika virus (ZIKV) and dengue-2 virus (DENV-2) was assessed in Aedes albopictus cells. Significant reductions in ZIKV (100,000-fold) and DENV-2 (10,000-fold) were observed in either cells concurrently inoculated with NHUV or pre-inoculated with NHUV. In contrast, only a transient 10-fold titer reduction was observed with an alphavirus, chikungunya virus. Additionally, restricted in vitro mosquito growth of ZIKV was associated with lowered levels of intracellular ZIKV RNA in NHUV co-inoculated cultures. To assess whether NHUV could modulate vector competence for ZIKV, NHUV-inoculated Aedes aegypti were orally exposed to ZIKV. NHUV-inoculated mosquitoes demonstrated significantly lower ZIKV infection rates (18%) compared to NHUV unexposed mosquitoes (51%) (p < 0.002). Similarly, lower ZIKV transmission rates were observed for NHUV/ZIKV dually intrathoracically inoculated mosquitoes (41%) compared to ZIKV only inoculated mosquitoes (78%) (p < 0.0001), suggesting that NHUV can interfere with both midgut infection and salivary gland infection of ZIKV in Ae. aegypti. These results indicate NHUV could be utilized to model superinfection exclusion mechanism(s) and to study the potential for the mosquito virome to impact transmission of medically important flaviviruses.
Collapse
Affiliation(s)
- Hannah Romo
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Joan L Kenney
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, 80521, USA.
| |
Collapse
|
29
|
Camp JV, Bakonyi T, Soltész Z, Zechmeister T, Nowotny N. Uranotaenia unguiculata Edwards, 1913 are attracted to sound, feed on amphibians, and are infected with multiple viruses. Parasit Vectors 2018; 11:456. [PMID: 30081963 PMCID: PMC6090806 DOI: 10.1186/s13071-018-3030-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Background Uranotaenia unguiculata Edwards, 1913 is a species of mosquito (Diptera: Culicidae) native to central Europe. Recently a novel lineage of the West Nile virus (WNV-lineage 4c) was identified in pools of adult female Ur. unguiculata. To increase the body of knowledge about this species, various trapping methods were evaluated to determine the most efficient method for capturing adult female Ur. unguiculata. Results Sound traps collected equivalent numbers of female Ur. unguiculata as low-hanging light-baited downdraft traps. Hosts were identified as Pelophylax lessonae and P. ridibunda (Anura: Ranidae) species group frogs from the blood found in engorged females. In addition to confirming infection by WNV-lin. 4c, a potentially integrated flavivirus sequence was detected in male mosquitoes. A novel Alphamesonivirus 1 (Nidovirales: Mesoniviridae) was found to be widespread in the Ur. unguiculata population and is herein described. Conclusions Efficient collection methods for Ur. unguiculata for arbovirus surveillance reflect mosquito questing behavior. Uranotaenia unguiculata targets frog species which call from the water, and it is likely that the novel WNV-lin. 4c is maintained in a frog-mosquito transmission cycle. The improved trapping methods listed here will assist future studies of the vector status of Ur. unguiculata for WNV and other arboviruses. Electronic supplementary material The online version of this article (10.1186/s13071-018-3030-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.
| | - Tamás Bakonyi
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, Budapest, Hungary
| | - Zoltán Soltész
- Lendület Ecosystem Services Research Group, MTA Centre for Ecological Research, Vácrátót, Hungary.,Hungarian Natural History Museum, Budapest, Hungary
| | | | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Calisher CH, Higgs S. The Discovery of Arthropod-Specific Viruses in Hematophagous Arthropods: An Open Door to Understanding the Mechanisms of Arbovirus and Arthropod Evolution? ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:87-103. [PMID: 29324047 DOI: 10.1146/annurev-ento-020117-043033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of an odd virus from hematophagous arthropods 40 years ago by Stollar and Thomas described cell fusing agent virus in cells derived from Aedes aegypti mosquitoes. Then came the report of Kamiti River virus from Ae. macintoshi in 1999, followed by worldwide reports of the discovery of other viruses of mosquitoes, ticks, and midges that replicate only in arthropods and not in vertebrates or in vertebrate cells. These viruses (now totaling at least 64 published) have genomes analogous to viruses in various families that include arboviruses and nonarboviruses. It is likely that some of these viruses have been insufficiently studied and may yet be shown to infect vertebrates. However, there is no doubt that the vast majority are restricted to arthropods alone and that they represent a recently recognized clade. Their biology, modes of transmission, worldwide distribution (some have been detected in wild-caught mosquitoes in both Asia and the United States, for example), molecular characteristics of their genomes, and potential for becoming vertebrate pathogens, or at least serving as virus reservoirs, are fascinating and may provide evidence useful in understanding virus evolution. Because metagenomics studies of arthropods have shown that arthropod genomes are the sources of arthropod virus genomes, further studies may also provide insights into the evolution of arthropods. More recently, others have published excellent papers that briefly review discoveries of arthropod viruses and that characterize certain genomic peculiarities, but, to now, there have been no reviews that encompass all these facets. We therefore anticipate that this review is published at a time and in a manner that is helpful for both virologists and entomologists to make more sense and understanding of this recently recognized and obviously important virus group. This review focuses specifically on arthropod viruses in hematophagous arthropods.
Collapse
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1690;
| | - Stephen Higgs
- Kansas State University, Manhattan, Kansas 66506-7600;
| |
Collapse
|
31
|
Pauvolid-Corrêa A, Campos Z, Soares R, Nogueira RMR, Komar N. Neutralizing antibodies for orthobunyaviruses in Pantanal, Brazil. PLoS Negl Trop Dis 2017; 11:e0006014. [PMID: 29091706 PMCID: PMC5665413 DOI: 10.1371/journal.pntd.0006014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
The Pantanal is a hotspot for arbovirus studies in South America. Various medically important flaviviruses and alphaviruses have been reported in domestic and wild animals in the region. To expand the knowledge of local arbovirus circulation, a serosurvey for 14 Brazilian orthobunyaviruses was conducted with equines, sheep and free-ranging caimans. Sera were tested for specific viral antibodies using plaque-reduction neutralization test (PRNT). Monotypic reactions were detected for Maguari, Xingu, Apeu, Guaroa, Murutucu, Oriboca, Oropouche and Nepuyo viruses. Despite the low titers for most of the orthobunyaviruses tested, the detection of monotypic reactions for eight orthobunyaviruses suggests the Pantanal as a region of great orthobunyavirus diversity. The present data, in conjunction with previous studies that detected a high diversity of other arboviruses, ratify the Pantanal as an important natural reservoir for sylvatic and medically important arboviruses in Brazil.
Collapse
Affiliation(s)
- Alex Pauvolid-Corrêa
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention (CDC), Fort Collins, CO, United States of America
- * E-mail: ,
| | - Zilca Campos
- Embrapa Pantanal, Ministério da Agricultura Pecuária e Abastecimento, Corumbá, MS, Brasil
| | - Raquel Soares
- Embrapa Pantanal, Ministério da Agricultura Pecuária e Abastecimento, Corumbá, MS, Brasil
| | - Rita Maria Ribeiro Nogueira
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Ministério da Saúde, Rio de Janeiro, RJ, Brasil
| | - Nicholas Komar
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention (CDC), Fort Collins, CO, United States of America
| |
Collapse
|
32
|
Pauvolid-Corrêa A, Komar N. VectorTest™ West Nile Virus Antigen Assay in an Inhibition Platform as Field Screening Tool for Flavivirus Group-Specific Antibodies in Brazilian Equines. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:237-240. [PMID: 28854109 DOI: 10.2987/17-6645r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current methods for detecting Flavivirus antibodies are enzyme-linked immunosorbent assays (ELISAs) and neutralization tests, both of which require laboratories and trained staff. We evaluated the VectorTest™ West Nile Virus Antigen Assay in an inhibition platform (VecTest-inhibition assay [VIA]) as a simpler screening method for detecting antibodies for a variety of flaviviruses among a population of equines from Brazil. We found that the VIA is a field-deployable rapid method with 100% sensitivity and 64% specificity compared with blocking ELISA for the detection of group-specific Flavivirus antibodies in equine serum samples. The VIA is a potentially useful field test for rapid field-based Flavivirus antibody detection in equine serum samples.
Collapse
Affiliation(s)
- Alex Pauvolid-Corrêa
- Arbovirus Diseases Branch (NCEZID-DVBD), Centers for Disease Control and Prevention (CDC), 3156 Rampart Road, Fort Collins, CO 80521
| | - Nicholas Komar
- Arbovirus Diseases Branch (NCEZID-DVBD), Centers for Disease Control and Prevention (CDC), 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
33
|
Identification of putative unique immunogenic ZIKV and DENV1-4 peptides for diagnostic cellular based tests. Sci Rep 2017; 7:6218. [PMID: 28740150 PMCID: PMC5524841 DOI: 10.1038/s41598-017-05980-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/14/2017] [Indexed: 11/25/2022] Open
Abstract
Since the re-emergence of Zika virus in 2014 and subsequent association with microcephaly, much work has focused on the development of a vaccine to halt its spread throughout the world. The mosquito vector that transmits this virus is widespread and responsible for the spread of other arboviridae including Dengue. Current diagnostic methods rely on serologic testing that are complicated by cross reactivity and therefore unable to distinguish Zika from Dengue infection in the absence of virus isolation. We performed an in silico analysis to identify potential epitopes that may stimulate a unique T-lymphocyte response to distinguish prior infection with Zika or Dengue. From this analysis, we not only identified epitopes unique to Zika and Dengue, but also identified epitopes unique to each Dengue serotype. These peptides contribute to a pool of peptides identified for vaccine development that can be tested in vitro to confirm immunogenicity, absence of homology and global population coverage. The current lack of accurate diagnostic testing hampers our ability to understand the scope of the epidemic, implications for vaccine implementation and complications related to monoinfection and co-infection with these two closely related viruses.
Collapse
|
34
|
Abstract
Genomic sequences are described from five novel viruses and divergent strains of Brejeira and Guaico Culex viruses from mosquitoes collected in Pantanal, Brazil, in 2010.
Collapse
|
35
|
Goenaga S, Kenney JL, Duggal NK, Delorey M, Ebel GD, Zhang B, Levis SC, Enria DA, Brault AC. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes. Viruses 2015; 7:5801-12. [PMID: 26569286 PMCID: PMC4664984 DOI: 10.3390/v7112911] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022] Open
Abstract
Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUV and WNV, or solely with WNV as a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease.
Collapse
Affiliation(s)
- Silvina Goenaga
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Nisha K Duggal
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Mark Delorey
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bo Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
| | - Silvana C Levis
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Delia A Enria
- Instituto Nacional de Enfermedades Virales Humanas, Pergamino 2700, Argentina.
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| |
Collapse
|
36
|
Bolling BG, Weaver SC, Tesh RB, Vasilakis N. Insect-Specific Virus Discovery: Significance for the Arbovirus Community. Viruses 2015; 7:4911-28. [PMID: 26378568 PMCID: PMC4584295 DOI: 10.3390/v7092851] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 01/23/2023] Open
Abstract
Arthropod-borne viruses (arboviruses), especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.
Collapse
Affiliation(s)
- Bethany G Bolling
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology,University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
37
|
Ecuador Paraiso Escondido Virus, a New Flavivirus Isolated from New World Sand Flies in Ecuador, Is the First Representative of a Novel Clade in the Genus Flavivirus. J Virol 2015; 89:11773-85. [PMID: 26355096 PMCID: PMC4645344 DOI: 10.1128/jvi.01543-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A new flavivirus, Ecuador Paraiso Escondido virus (EPEV), named after the village where it was discovered, was isolated from sand flies (Psathyromyia abonnenci, formerly Lutzomyia abonnenci) that are unique to the New World. This represents the first sand fly-borne flavivirus identified in the New World. EPEV exhibited a typical flavivirus genome organization. Nevertheless, the maximum pairwise amino acid sequence identity with currently recognized flaviviruses was 52.8%. Phylogenetic analysis of the complete coding sequence showed that EPEV represents a distinct clade which diverged from a lineage that was ancestral to the nonvectored flaviviruses Entebbe bat virus, Yokose virus, and Sokoluk virus and also the Aedes-associated mosquito-borne flaviviruses, which include yellow fever virus, Sepik virus, Saboya virus, and others. EPEV replicated in C6/36 mosquito cells, yielding high infectious titers, but failed to reproduce either in vertebrate cell lines (Vero, BHK, SW13, and XTC cells) or in suckling mouse brains. This surprising result, which appears to eliminate an association with vertebrate hosts in the life cycle of EPEV, is discussed in the context of the evolutionary origins of EPEV in the New World. IMPORTANCE The flaviviruses are rarely (if ever) vectored by sand fly species, at least in the Old World. We have identified the first representative of a sand fly-associated flavivirus, Ecuador Paraiso Escondido virus (EPEV), in the New World. EPEV constitutes a novel clade according to current knowledge of the flaviviruses. Phylogenetic analysis of the virus genome showed that EPEV roots the Aedes-associated mosquito-borne flaviviruses, including yellow fever virus. In light of this new discovery, the New World origin of EPEV is discussed together with that of the other flaviviruses.
Collapse
|
38
|
Vasilakis N, Tesh RB. Insect-specific viruses and their potential impact on arbovirus transmission. Curr Opin Virol 2015; 15:69-74. [PMID: 26322695 DOI: 10.1016/j.coviro.2015.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 11/15/2022]
Abstract
Arthropod-borne viruses (arboviruses) are the causative agents of significant morbidity and mortality among humans and animals globally. In the past few years, the widespread adoption of next generation sequencing and metagenomics has led to a new era of virus discovery, where many novel viruses have been documented, exhibiting a restricted host-range in mosquitoes. They represent a wide-range of insect-specific viruses within the families of Bunyaviridae, Flaviviridae, Mesoniviridae, Reoviridae, Rhabdoviridae, Togaviridae, and the newly recognized taxon of Negeviruses. Collectively, their discovery has opened new vistas about the extent of viral diversity and evolution, their influence on vector competence and ability of their insect hosts to transmit human pathogens (e.g. arboviruses), and their potential development as biological control agents or novel vaccine platforms.
Collapse
Affiliation(s)
- Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | - Robert B Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Center for Tropical Diseases, Institute for Human Infectious and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| |
Collapse
|
39
|
Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 2015; 7:1927-59. [PMID: 25866904 PMCID: PMC4411683 DOI: 10.3390/v7041927] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022] Open
Abstract
There has been a dramatic increase in the number of insect-specific flaviviruses (ISFs) discovered in the last decade. Historically, these viruses have generated limited interest due to their inability to infect vertebrate cells. This viewpoint has changed in recent years because some ISFs have been shown to enhance or suppress the replication of medically important flaviviruses in co-infected mosquito cells. Additionally, comparative studies between ISFs and medically important flaviviruses can provide a unique perspective as to why some flaviviruses possess the ability to infect and cause devastating disease in humans while others do not. ISFs have been isolated exclusively from mosquitoes in nature but the detection of ISF-like sequences in sandflies and chironomids indicates that they may also infect other dipterans. ISFs can be divided into two distinct phylogenetic groups. The first group currently consists of approximately 12 viruses and includes cell fusing agent virus, Kamiti River virus and Culex flavivirus. These viruses are phylogenetically distinct from all other known flaviviruses. The second group, which is apparently not monophyletic, currently consists of nine viruses and includes Chaoyang virus, Nounané virus and Lammi virus. These viruses phylogenetically affiliate with mosquito/vertebrate flaviviruses despite their apparent insect-restricted phenotype. This article provides a review of the discovery, host range, mode of transmission, superinfection exclusion ability and genomic organization of ISFs. This article also attempts to clarify the ISF nomenclature because some of these viruses have been assigned more than one name due to their simultaneous discoveries by independent research groups.
Collapse
Affiliation(s)
- Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
40
|
Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol 2014; 95:2796-2808. [PMID: 25146007 DOI: 10.1099/vir.0.068031-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past decade, there has been an upsurge in the number of newly described insect-specific flaviviruses isolated pan-globally. We recently described the isolation of a novel flavivirus (tentatively designated 'Nhumirim virus'; NHUV) that represents an example of a unique subset of apparently insect-specific viruses that phylogenetically affiliate with dual-host mosquito-borne flaviviruses despite appearing to be limited to replication in mosquito cells. We characterized the in vitro growth potential and 3' untranslated region (UTR) sequence homology with alternative flaviviruses, and evaluated the virus's capacity to suppress replication of representative Culex spp.-vectored pathogenic flaviviruses in mosquito cells. Only mosquito cell lines were found to support NHUV replication, further reinforcing the insect-specific phenotype of this virus. Analysis of the sequence and predicted RNA secondary structures of the 3' UTR indicated NHUV to be most similar to viruses within the yellow fever serogroup and Japanese encephalitis serogroup, and viruses in the tick-borne flavivirus clade. NHUV was found to share the fewest conserved sequence elements when compared with traditional insect-specific flaviviruses. This suggests that, despite apparently being insect specific, this virus probably diverged from an ancestral mosquito-borne flavivirus. Co-infection experiments indicated that prior or concurrent infection of mosquito cells with NHUV resulted in a significant reduction in virus production of West Nile virus (WNV), St Louis encephalitis virus (SLEV) and Japanese encephalitis virus. The inhibitory effect was most effective against WNV and SLEV with over a 10(6)-fold and 10(4)-fold reduction in peak titres, respectively.
Collapse
Affiliation(s)
- Joan L Kenney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| | | | | | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|