1
|
Li X, Yu Q, Hua X, He J, Liu J, Peng L, Wang J, Li X, Yang Y. Phosphorylation of ADF7-Mediated by AGC1.7 Regulates Pollen Germination in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1149-1161. [PMID: 39412187 DOI: 10.1111/pce.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 01/04/2025]
Abstract
Actin depolymerizing factors (ADFs), like other actin-binding proteins (ABPs), are modified by phosphorylation to regulate the dynamics of the actin filaments, thereby functioning in various processes throughout the plant lifecycle. In this study, we found that the Arabidopsis thaliana cytoplasmic kinase AGC1.7 interacts with ADF7 in vitro and in vivo. AGC1.7 phosphorylates ADF7 at its Ser-6, Ser-103 and Ser-104 residues in vitro, while replacing these residues with alanine promotes ADF7-mediated actin depolymerization in vitro. Expression of the phosphorylation-mimetic mutant protein ADF7S6/103/104D driven by the pollen-specific LAT52 promoter fully rescues the defects in germination rate, silique length and seeds per silique in both adf7-2 and agc1.5 agc1.7 (agcdm) mutants. Our data establish a model whereby AGC1.7-mediated ADF7 phosphorylation plays an important role in pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhuang Y, Wang Y, Jiao C, Shang Z, Huang S. Arabidopsis VILLIN5 bundles actin filaments using a novel mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2854-2866. [PMID: 39093617 DOI: 10.1111/tpj.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Being a bona fide actin bundler, Arabidopsis villin5 (VLN5) plays a crucial role in regulating actin stability and organization within pollen tubes. Despite its significance, the precise mechanism through which VLN5 bundles actin filaments has remained elusive. Through meticulous deletion analysis, we have unveiled that the link between gelsolin repeat 6 (G6) and the headpiece domain (VHP), rather than VHP itself, is indispensable for VLN5-mediated actin bundling. Further refinement of this region has pinpointed a critical sequence spanning from Val763 to Ser823, essential for VLN5's actin-bundling activity. Notably, the absence of Val763-Ser823 in VLN5 results in decreased filamentous decoration within pollen tubes and a diminished ability to rescue actin bundling defects in vln2vln5 mutant pollen tubes compared to intact VLN5. Moreover, our findings highlight that the Val763-Ser823 sequence harbors a binding site for F-actin, suggesting that this linker-based F-actin binding site, in conjunction with the F-actin binding site localized in G1-G6, enables a single VLN5 to concurrently bind to two adjacent actin filaments. Therefore, our study unveils a novel mechanism by which VLN5 bundles actin filaments.
Collapse
Affiliation(s)
- Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cuixia Jiao
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Wang X, Li T, Xu J, Zhang F, Liu L, Wang T, Wang C, Ren H, Zhang Y. Distinct functions of microtubules and actin filaments in the transportation of the male germ unit in pollen. Nat Commun 2024; 15:5448. [PMID: 38937444 PMCID: PMC11211427 DOI: 10.1038/s41467-024-49323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/02/2024] [Indexed: 06/29/2024] Open
Abstract
Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.
Collapse
Affiliation(s)
- Xiangfei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Tonghui Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Jiuting Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Lifang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Chun Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, 519087, Zhuhai, China.
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
4
|
Sun Y, Shi M, Wang D, Gong Y, Sha Q, Lv P, Yang J, Chu P, Guo S. Research progress on the roles of actin-depolymerizing factor in plant stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1278311. [PMID: 38034575 PMCID: PMC10687421 DOI: 10.3389/fpls.2023.1278311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Actin-depolymerizing factors (ADFs) are highly conserved small-molecule actin-binding proteins found throughout eukaryotic cells. In land plants, ADFs form a small gene family that displays functional redundancy despite variations among its individual members. ADF can bind to actin monomers or polymerized microfilaments and regulate dynamic changes in the cytoskeletal framework through specialized biochemical activities, such as severing, depolymerizing, and bundling. The involvement of ADFs in modulating the microfilaments' dynamic changes has significant implications for various physiological processes, including plant growth, development, and stress response. The current body of research has greatly advanced our comprehension of the involvement of ADFs in the regulation of plant responses to both biotic and abiotic stresses, particularly with respect to the molecular regulatory mechanisms that govern ADF activity during the transmission of stress signals. Stress has the capacity to directly modify the transcription levels of ADF genes, as well as indirectly regulate their expression through transcription factors such as MYB, C-repeat binding factors, ABF, and 14-3-3 proteins. Furthermore, apart from their role in regulating actin dynamics, ADFs possess the ability to modulate the stress response by influencing downstream genes associated with pathogen resistance and abiotic stress response. This paper provides a comprehensive overview of the current advancements in plant ADF gene research and suggests that the identification of plant ADF family genes across a broader spectrum, thorough analysis of ADF gene regulation in stress resistance of plants, and manipulation of ADF genes through genome-editing techniques to enhance plant stress resistance are crucial avenues for future investigation in this field.
Collapse
|
5
|
Yuan G, Gao H, Yang T. Exploring the Role of the Plant Actin Cytoskeleton: From Signaling to Cellular Functions. Int J Mol Sci 2023; 24:15480. [PMID: 37895158 PMCID: PMC10607326 DOI: 10.3390/ijms242015480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
The plant actin cytoskeleton is characterized by the basic properties of dynamic array, which plays a central role in numerous conserved processes that are required for diverse cellular functions. Here, we focus on how actins and actin-related proteins (ARPs), which represent two classical branches of a greatly diverse superfamily of ATPases, are involved in fundamental functions underlying signal regulation of plant growth and development. Moreover, we review the structure, assembly dynamics, and biological functions of filamentous actin (F-actin) from a molecular perspective. The various accessory proteins known as actin-binding proteins (ABPs) partner with F-actin to finely tune actin dynamics, often in response to various cell signaling pathways. Our understanding of the significance of the actin cytoskeleton in vital cellular activities has been furthered by comparison of conserved functions of actin filaments across different species combined with advanced microscopic techniques and experimental methods. We discuss the current model of the plant actin cytoskeleton, followed by examples of the signaling mechanisms under the supervision of F-actin related to cell morphogenesis, polar growth, and cytoplasmic streaming. Determination of the theoretical basis of how the cytoskeleton works is important in itself and is beneficial to future applications aimed at improving crop biomass and production efficiency.
Collapse
Affiliation(s)
| | | | - Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (G.Y.); (H.G.)
| |
Collapse
|
6
|
Zhang R, Xu Y, Yi R, Shen J, Huang S. Actin cytoskeleton in the control of vesicle transport, cytoplasmic organization, and pollen tube tip growth. PLANT PHYSIOLOGY 2023; 193:9-25. [PMID: 37002825 DOI: 10.1093/plphys/kiad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Pollen tubes extend rapidly via tip growth. This process depends on a dynamic actin cytoskeleton, which has been implicated in controlling organelle movements, cytoplasmic streaming, vesicle trafficking, and cytoplasm organization in pollen tubes. In this update review, we describe the progress in understanding the organization and regulation of the actin cytoskeleton and the function of the actin cytoskeleton in controlling vesicle traffic and cytoplasmic organization in pollen tubes. We also discuss the interplay between ion gradients and the actin cytoskeleton that regulates the spatial arrangement and dynamics of actin filaments and the organization of the cytoplasm in pollen tubes. Finally, we describe several signaling components that regulate actin dynamics in pollen tubes.
Collapse
Affiliation(s)
- Ruihui Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Lu Q, Liu X, Qu X, Huang S. Visualization and Quantification of the Dynamics of Actin Filaments in Arabidopsis Pollen Tubes. Methods Mol Biol 2023; 2604:285-295. [PMID: 36773243 DOI: 10.1007/978-1-0716-2867-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The actin cytoskeleton plays an essential role in the regulation of polarized pollen tube growth, and its functions are dictated by its spatial organization and dynamics. Here we describe an assay to monitor the dynamics of actin filaments decorated with Lifeact-mEGFP in Arabidopsis pollen tubes using spinning disk confocal microscopy and measuring the parameters associated with their dynamics. The method allows us to assess the dynamics of actin filaments in growing Arabidopsis pollen tubes.
Collapse
Affiliation(s)
- Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaonan Liu
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Actin: Static and Dynamic Studies. Methods Mol Biol 2023; 2604:13-24. [PMID: 36773222 DOI: 10.1007/978-1-0716-2867-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The actin cytoskeleton is a highly dynamic network in plant cells, which is precisely regulated by numerous actin-binding proteins. Hence, characterizing the biochemical activities of actin-binding proteins is of great importance. Here we describe methods for determining the binding and bundling of microfilaments as well as methods for visualizing microfilaments using fluorescent phalloidin and single-molecule TIRF imaging.
Collapse
|
9
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
10
|
Jiang Y, Lu Q, Huang S. Functional non-equivalence of pollen ADF isovariants in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1068-1081. [PMID: 35233873 DOI: 10.1111/tpj.15723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
ADF/cofilin is a central regulator of actin dynamics. We previously demonstrated that two closely related Arabidopsis class IIa ADF isovariants, ADF7 and ADF10, are involved in the enhancement of actin turnover in pollen, but whether they have distinct functions remains unknown. Here, we further demonstrate that they exhibit distinct functions in regulating actin turnover both in vitro and in vivo. We found that ADF7 binds to ADP-G-actin with lower affinity, and severs and depolymerizes actin filaments less efficiently in vitro than ADF10. Accordingly, in pollen grains, ADF7 more extensively decorates actin filaments and is less freely distributed in the cytoplasm compared to ADF10. We further demonstrate that ADF7 and ADF10 show distinct intracellular localizations during pollen germination, and they have non-equivalent functions in promoting actin turnover in pollen. We thus propose that cooperation and labor division of ADF7 and ADF10 enable pollen cells to achieve exquisite control of the turnover of different actin structures to meet different cellular needs.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaonan Lu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Xu R, Li Y, Liu C, Shen N, Zhang Q, Cao T, Qin M, Han L, Tang D. Twinfilin regulates actin assembly and Hexagonal peroxisome 1 (Hex1) localization in the pathogenesis of rice blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1641-1655. [PMID: 34519407 PMCID: PMC8578832 DOI: 10.1111/mpp.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 05/06/2023]
Abstract
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuan‐Bao Li
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Tingyan Cao
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Minghui Qin
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Bo Han
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian‐Taiwan Crop PestsKey Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of CropsPlant Immunity CenterFujian Agriculture and Forestry UniversityFuzhouChina
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
12
|
Xu Y, Huang S. Control of the Actin Cytoskeleton Within Apical and Subapical Regions of Pollen Tubes. Front Cell Dev Biol 2020; 8:614821. [PMID: 33344460 PMCID: PMC7744591 DOI: 10.3389/fcell.2020.614821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
In flowering plants, sexual reproduction involves a double fertilization event, which is facilitated by the delivery of two non-motile sperm cells to the ovule by the pollen tube. Pollen tube growth occurs exclusively at the tip and is extremely rapid. It strictly depends on an intact actin cytoskeleton, and is therefore an excellent model for uncovering the molecular mechanisms underlying dynamic actin cytoskeleton remodeling. There has been a long-term debate about the organization and dynamics of actin filaments within the apical and subapical regions of pollen tube tips. By combining state-of-the-art live-cell imaging with the usage of mutants which lack different actin-binding proteins, our understanding of the origin, spatial organization, dynamics and regulation of actin filaments within the pollen tube tip has greatly improved. In this review article, we will summarize the progress made in this area.
Collapse
Affiliation(s)
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Çetinbaş-Genç A, Cai G, Del Duca S. Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca 2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:578-590. [PMID: 33065378 DOI: 10.1016/j.plaphy.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The aim of the current study was to examine the effect of spermidine treatment concomitant with cold stress on the elongation of Camellia sinensis pollen tube. When exogenous spermidine (0.05 mM) was applied concomitantly with cold stress, pollen germination rate and pollen tube length were significantly increased in comparison with cold stressed pollen tubes. In addition, spermidine treatment concomitantly with cold stress reduced pollen tube abnormalities induced by cold stress. Besides, cold-induced disorganizations of actin filaments were ameliorated after spermidine treatment along with cold stress because anisotropy levels of actin filaments in shank and apex of pollen tubes decreased. Changes in cold-induced callose distribution in the pollen tube cell wall were partially recovered after spermidine/cold stress treatment. Other cold-induced effects (decrease in Ca2+ content, reduction of pH gradient, accumulation of ROS) were reverted to adequate levels after spermidine treatment in conjunction with cold stress, indicating that pollen tubes are able to cope with stress. Thus, spermidine treatment reorganized the growth pattern of pollen tubes by modulating Ca2+ and ROS homeostasis, actin cytoskeleton organization, and cell wall deposition in Camellia sinensis pollen tubes under cold stress.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
14
|
Guo J, Yang Z. Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2428-2438. [PMID: 32173729 PMCID: PMC7178420 DOI: 10.1093/jxb/eraa134] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/06/2023]
Abstract
Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.
Collapse
Affiliation(s)
- Jingzhe Guo
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
- Correspondence:
| |
Collapse
|
15
|
Qu X, Wang Q, Wang H, Huang S. Visualization of Actin Organization and Quantification in Fixed Arabidopsis Pollen Grains and Tubes. Bio Protoc 2020; 10:e3509. [PMID: 33654717 DOI: 10.21769/bioprotoc.3509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 11/02/2022] Open
Abstract
Although it is widely accepted that actin plays an important role in regulating pollen germination and pollen tube growth, how actin exactly performs functions remains incompletely understood. As the function of actin is dictated by its spatial organization, it is the key to reveal how exactly actin distributes in space in pollen cells. Here we describe the protocol of revealing and quantifying the spatial organization of actin using fluorescent phalloidin-staining in fixed Arabidopsis pollen grains and pollen tubes. We also introduce the method of assessing the stability and/or turnover rate of actin filaments in pollen cells using the treatment of latrunculin B.
Collapse
Affiliation(s)
- Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiyan Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Diao M, Li X, Huang S. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. SCIENCE CHINA-LIFE SCIENCES 2019; 63:239-250. [PMID: 31240522 DOI: 10.1007/s11427-019-9532-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique "apical actin structure" in the pollen tube.
Collapse
Affiliation(s)
- Min Diao
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- iHuman Institute, Shanghai Tech University, Shanghai, 201210, China
| | - Xin Li
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Zhang R, Qu X, Zhang M, Jiang Y, Dai A, Zhao W, Cao D, Lan Y, Yu R, Wang H, Huang S. The Balance between Actin-Bundling Factors Controls Actin Architecture in Pollen Tubes. iScience 2019; 16:162-176. [PMID: 31181400 PMCID: PMC6556835 DOI: 10.1016/j.isci.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
How actin-bundling factors cooperatively regulate shank-localized actin bundles remains largely unexplored. Here we demonstrate that FIM5 and PLIM2a/PLIM2b decorate shank-localized actin bundles and that loss of function of PLIM2a and/or PLIM2b suppresses phenotypes associated with fim5 mutants. Specifically, knockout of PLIM2a and/or PLIM2b partially suppresses the disorganized actin bundle and intracellular trafficking phenotype in fim5 pollen tubes. PLIM2a/PLIM2b generates thick but loosely packed actin bundles, whereas FIM5 generates thin but tight actin bundles that tend to be cross-linked into networks in vitro. Furthermore, PLIM2a/PLIM2b and FIM5 compete for binding to actin filaments in vitro, and PLIM2a/PLIM2b decorate disorganized actin bundles in fim5 pollen tubes. These data together suggest that the disorganized actin bundles in fim5 mutants are at least partially due to gain of function of PLIM2a/PLIM2b. Our data suggest that the balance between FIM5 and PLIM2a/PLIM2b is crucial for the normal bundling and organization of shank-localized actin bundles in pollen tubes. The transcription of PLIM2a and PLIM2b is upregulated in fim5 pollen tubes Downregulation of PLIM2a and/or PLIM2b suppresses the defects in fim5 pollen tubes Both FIM5 and PLIM2a/PLIM2b decorate shank-localized actin filaments FIM5 can inhibit the binding of PLIM2a and PLIM2b to actin filaments
Collapse
Affiliation(s)
- Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anbang Dai
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dai Cao
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yaxian Lan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hongwei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Qian D, Xiang Y. Actin Cytoskeleton as Actor in Upstream and Downstream of Calcium Signaling in Plant Cells. Int J Mol Sci 2019; 20:ijms20061403. [PMID: 30897737 PMCID: PMC6471457 DOI: 10.3390/ijms20061403] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
In plant cells, calcium (Ca2+) serves as a versatile intracellular messenger, participating in several fundamental and important biological processes. Recent studies have shown that the actin cytoskeleton is not only an upstream regulator of Ca2+ signaling, but also a downstream regulator. Ca2+ has been shown to regulates actin dynamics and rearrangements via different mechanisms in plants, and on this basis, the upstream signaling encoded within the Ca2+ transient can be decoded. Moreover, actin dynamics have also been proposed to act as an upstream of Ca2+, adjust Ca2+ oscillations, and establish cytosolic Ca2+ ([Ca2+]cyt) gradients in plant cells. In the current review, we focus on the advances in uncovering the relationship between the actin cytoskeleton and calcium in plant cells and summarize our current understanding of this relationship.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Zhang S, Wang C, Xie M, Liu J, Kong Z, Su H. Actin Bundles in The Pollen Tube. Int J Mol Sci 2018; 19:ijms19123710. [PMID: 30469514 PMCID: PMC6321563 DOI: 10.3390/ijms19123710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The angiosperm pollen tube delivers two sperm cells into the embryo sac through a unique growth strategy, named tip growth, to accomplish fertilization. A great deal of experiments have demonstrated that actin bundles play a pivotal role in pollen tube tip growth. There are two distinct actin bundle populations in pollen tubes: the long, rather thick actin bundles in the shank and the short, highly dynamic bundles near the apex. With the development of imaging techniques over the last decade, great breakthroughs have been made in understanding the function of actin bundles in pollen tubes, especially short subapical actin bundles. Here, we tried to draw an overall picture of the architecture, functions and underlying regulation mechanism of actin bundles in plant pollen tubes.
Collapse
Affiliation(s)
- Shujuan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Chunbo Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Min Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Jinyu Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Zhe Kong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| | - Hui Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
20
|
Liu C, Zhang Y, Ren H. Actin Polymerization Mediated by AtFH5 Directs the Polarity Establishment and Vesicle Trafficking for Pollen Germination in Arabidopsis. MOLECULAR PLANT 2018; 11:1389-1399. [PMID: 30296598 DOI: 10.1016/j.molp.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 09/27/2018] [Indexed: 05/13/2023]
Abstract
The process of pollen germination is crucial for flowering plant reproduction, but the mechanisms through which pollen grains establish polarity and select germination sites are not well understood. In this study, we report that a formin family protein, AtFH5, is localized to the vesicles and rotates ahead of Lifeact-mEGFP-labeled actin filaments during pollen germination. The translocation of AtFH5 to the plasma membrane initiates the assembly of a collar-like actin structure at the prospective germination site prior to germination. Genetic and pharmacological evidence further revealed an interdependent relationship between the mobility of AtFH5-labeled vesicles and the polymerization of actin filaments: vesicle-localized AtFH5 promotes actin assembly, and the polymerization and elongation of actin filaments, in turn, is essential for the mobility of AtFH5-labeled vesicles in pollen grains. Taken together, our work revealed a molecular mechanism underlying the polarity establishment and vesicle mobility during pollen germination.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Yang Q, Meng D, Gu Z, Li W, Chen Q, Li Y, Yuan H, Yu J, Liu C, Li T. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:41-56. [PMID: 29667261 DOI: 10.1111/tpj.13929] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
In S-RNase-mediated self-incompatibility, S-RNase secreted from the style destroys the actin cytoskeleton of the self-pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S-RNase does not bind or sever filamentous actin (F-actin). In apple (Malus domestica), we identified an actin-binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S-RNase and directly binds and severs F-actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S-RNase inhibits the F-actin-severing activity of MdMVG in vitro. In vivo, the addition of S-RNase to self-pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self-pollination induction in the presence of MdMVG overexpression. By generating 25 single-, double- and triple-point mutations in the amino acid motif E-E-K-E-K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple-point mutant, MdMVG(E167A/E171A/K185A) , that no longer has F-actin-severing activity or interacts with any of the four S-haplotype S-RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S-RNases. We conclude that apple S-RNase interacts with MdMVG to reduce self-pollen tube growth by inhibiting its F-actin-severing activity.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chunsheng Liu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Jia H, Yang J, Liesche J, Liu X, Hu Y, Si W, Guo J, Li J. Ethylene promotes pollen tube growth by affecting actin filament organization via the cGMP-dependent pathway in Arabidopsis thaliana. PROTOPLASMA 2018; 255:273-284. [PMID: 28864968 DOI: 10.1007/s00709-017-1158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Ethylene and cGMP are key regulators of plant developmental processes. In this study, we demonstrate that ethylene or cGMP promote pollen tube growth in a dose-dependent manner. The etr1-1 mutant was found to be insensitive to ethylene with regard to pollen tube growth, while the growth-promoting effect of ethylene in etr2-2, ein4-4, or ein4-7 did not change, suggesting that ethylene signaling was mainly perceived by ETR1. However, the function of cGMP was not inhibited in etr1-1 and pollen tubes became insensitive to ethylene when the endogenous cGMP level was artificially decreased. This shows that cGMP is necessary for the control of pollen tube growth and that it might be a downstream component of ETR1 in the ethylene signaling pathway. Our study also found that ethylene or cGMP increase the actin bundles and elevated the percentage of relative amount of F-actin, while removal of cGMP decreased actin bundles abundance and altered the ratio of F-actin in the tip and base regions of pollen tubes. In conclusion, our data suggests that ethylene functions as the upstream signal of cGMP, and that both signals promote pollen germination and tube growth by regulating F-actin, which is essential for vesicular transport and cytoplasmic streaming.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin, 150000, China
| | - Wantong Si
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, Inner Mongolia University of Science and Technology, Neimenggu, Baotou, 014010, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
23
|
Chang M, Li Z, Huang S. Monomeric G-actin is uniformly distributed in pollen tubes and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:509-519. [PMID: 28845534 DOI: 10.1111/tpj.13668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 05/25/2023]
Abstract
Dynamic assembly and disassembly of the actin cytoskeleton has been implicated in the regulation of pollen germination and subsequent tube growth. It is widely accepted that actin filaments are arrayed into distinct structures within different regions of the pollen tube. Maintenance of the equilibrium between monomeric globular actin (G-actin) and filamentous actin (F-actin) is crucial for actin assembly and array construction, and the local concentration of G-actin thus directly impacts actin assembly. The localization and dynamics of G-actin in the pollen tube, however, remain to be determined conclusively. To address this question, we created a series of fusion proteins between green fluorescent protein (GFP) and the Arabidopsis reproductive actin ACT11. Expression of a fusion protein with GFP inserted after methionine at position 49 within the DNase I-binding loop of ACT11 (GFPMet49 -ACT11) rescued the phenotypes in act11 mutants. Consistent with the notion that the majority of actin is in its monomeric form, GFPMet49 -ACT11 and GFP fusion proteins of four other reproductive actins generated with the same strategy do not obviously label filamentous structures. In further support of the functionality of these fusion proteins, we found that they can be incorporated into filamentous structures in jasplakinolide (Jasp)-treated pollen tubes. Careful observations showed that G-actin is distributed uniformly in the pollen tube and is rapidly redistributed via cytoplasmic streaming during pollen tube growth. Our study suggests that G-actin is readily available in the cytoplasm to support continuous actin polymerization during rapid pollen tube growth.
Collapse
Affiliation(s)
- Ming Chang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhankun Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Jiang Y, Wang J, Xie Y, Chen N, Huang S. ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes. J Cell Sci 2017; 130:3988-4001. [PMID: 29061882 DOI: 10.1242/jcs.207738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022] Open
Abstract
Here, we show that Arabidopsis ADF10 plays an important role in shaping the overall organization of apical actin filaments by promoting their turnover and ordering. ADF10 severs and depolymerizes actin filaments in vitro and is distributed throughout the entire pollen tube. In adf10 mutants, severing and monomer dissociation events for apical actin filaments are reduced, and the apical actin structure extends further toward the tube base than in wild-type tubes. In particular, the percentage of apical actin filaments that form large angles to the tube growth axis is much higher in adf10 pollen tubes, and the actin filaments are more randomly distributed, implying that ADF10 promotes their ordering. Consistent with the role of apical actin filaments in physically restricting the movement of vesicles, the region in which apical vesicles accumulate is enlarged at the tip of adf10 pollen tubes. Both tipward and backward movements of small vesicles are altered within the growth domain of adf10 pollen tubes. Thus, our study suggests that ADF10 shapes the organization of apical actin filaments to regulate vesicle trafficking and pollen tube growth.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yurong Xie
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Naizhi Chen
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Qu X, Zhang R, Zhang M, Diao M, Xue Y, Huang S. Organizational Innovation of Apical Actin Filaments Drives Rapid Pollen Tube Growth and Turning. MOLECULAR PLANT 2017; 10:930-947. [PMID: 28502709 DOI: 10.1016/j.molp.2017.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Polarized tip growth is a fundamental cellular process in many eukaryotes. In this study, we examined the dynamic restructuring of the actin cytoskeleton and its relationship to vesicle transport during pollen tip growth in Arabidopsis. We found that actin filaments originating from the apical membrane form a specialized structure consisting of longitudinally aligned actin bundles at the cortex and inner cytoplasmic filaments with a distinct distribution. Using actin-based pharmacological treatments and genetic mutants in combination with FRAP (fluorescence recovery after photobleaching) technology to visualize the transport of vesicles within the growth domain of pollen tubes, we demonstrated that cortical actin filaments facilitate tip-ward vesicle transport. We also discovered that the inner apical actin filaments prevent backward movement of vesicles, thus ensuring that sufficient vesicles accumulate at the pollen tube tip to support the rapid growth of the pollen tube. The combinatorial effect of cortical and internal apical actin filaments perfectly explains the generation of the inverted "V" cone-shaped vesicle distribution pattern at the pollen tube tip. When pollen tubes turn, apical actin filaments at the facing side undergo depolymerization and repolymerization to reorient the apical actin structure toward the new growth direction. This actin restructuring precedes vesicle accumulation and changes in tube morphology. Thus, our study provides new insights into the functional relationship between actin dynamics and vesicle transport during rapid and directional pollen tube growth.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruihui Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
26
|
Suwińska A, Wasąg P, Zakrzewski P, Lenartowska M, Lenartowski R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. PLANTA 2017; 245:909-926. [PMID: 28078426 PMCID: PMC5391374 DOI: 10.1007/s00425-017-2649-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.
Collapse
Affiliation(s)
- Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
27
|
Li S, Dong H, Pei W, Liu C, Zhang S, Sun T, Xue X, Ren H. LlFH1-mediated interaction between actin fringe and exocytic vesicles is involved in pollen tube tip growth. THE NEW PHYTOLOGIST 2017; 214:745-761. [PMID: 28092406 DOI: 10.1111/nph.14395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 05/15/2023]
Abstract
Pollen tube tip growth is an extreme form of polarized cell growth, which requires polarized exocytosis based on a dynamic actin cytoskeleton. However, the molecular basis for the connection between actin filaments and exocytic vesicles is unclear. Here, we identified a Lilium longiflorum pollen-specific formin (LlFH1) and found that it localized at the apical vesicles and plasma membrane (PM). Overexpression of LlFH1 induced excessive actin cables in the tube tip region, and downregulation of LlFH1 eliminated the actin fringe. Fluorescence recovery after photobleaching (FRAP) analysis revealed that LlFH1-labeled exocytic vesicles exhibited an initial accumulation at the shoulder of the apex and coincided with the leading edge of the actin fringe. Time-lapse analysis suggested that nascent actin filaments followed the emergence of the apical vesicles, implying that LlFH1 at apical vesicles could initiate actin polymerization. Biochemical assays showed that LlFH1 FH1FH2 could nucleate actin polymerization, but then capped the actin filament at the barbed end and inhibited its elongation. However, in the presence of lily profilins, LlFH1 FH1FH2 could accelerate barbed-end actin elongation. In addition, LlFH1 FH1FH2 was able to bundle actin filaments. Thus, we propose that LlFH1 and profilin coordinate the interaction between the actin fringe and exocytic vesicle trafficking during pollen tube growth of lily.
Collapse
Affiliation(s)
- Shanwei Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Huaijian Dong
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Weike Pei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Chaonan Liu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Sha Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Tiantian Sun
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Xiuhua Xue
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
28
|
Hafidh S, Fíla J, Honys D. Male gametophyte development and function in angiosperms: a general concept. PLANT REPRODUCTION 2016; 29:31-51. [PMID: 26728623 DOI: 10.1007/s00497-015-0272-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 05/23/2023]
Abstract
Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - Jan Fíla
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic
| | - David Honys
- Institute of Experimental Botany ASCR, v.v.i., Rozvojová 263, 165 00, Prague 6, Czech Republic.
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
29
|
Zhang M, Zhang R, Qu X, Huang S. Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3407-17. [PMID: 27117336 PMCID: PMC4892729 DOI: 10.1093/jxb/erw160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The actin cytoskeleton is increasingly recognized as a major regulator of pollen tube growth. Actin filaments have distinct distribution patterns and dynamic properties within different regions of the pollen tube. Apical actin filaments are highly dynamic and crucial for pollen tube growth. However, how apical actin filaments are generated and properly constructed remains an open question. Here we showed that Arabidopsis fimbrin5 (FIM5) decorates filamentous structures throughout the entire tube but is apically concentrated. Apical actin structures are disorganized to different degrees in the pollen tubes of fim5 loss-of-function mutants. Further observations suggest that apical actin structures are not constructed properly because apical actin filaments cannot be maintained at the cortex of fim5 pollen tubes. Actin filaments appeared to be more curved in fim5 pollen tubes and this was confirmed by measurements showing that the convolutedness and the rate of change of convolutedness of actin filaments was significantly increased in fim5 pollen tubes. This suggests that the rigidity of the actin filaments may be compromised in fim5 pollen tubes. Further, the apical cell wall composition is altered, implying that tip-directed vesicle trafficking events are impaired in fim5 pollen tubes. Thus, we found that FIM5 decorates apical actin filaments and regulates their organization in order to drive polarized pollen tube growth.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China University of Chinese Academy of Sciences, Beijing 100049 China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University Beijing 100084, China Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084 China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany Chinese Academy of Sciences, Beijing 100093 China Center for Plant Biology, School of Life Sciences, Tsinghua University Beijing 100084, China National Center for Plant Gene Research, Beijing 100101 China
| |
Collapse
|
30
|
Moes D, Hoffmann C, Dieterle M, Moreau F, Neumann K, Papuga J, Furtado AT, Steinmetz A, Thomas C. The pH sensibility of actin-bundling LIM proteins is governed by the acidic properties of their C-terminal domain. FEBS Lett 2015; 589:2312-9. [PMID: 26226417 DOI: 10.1016/j.febslet.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022]
Abstract
Actin-bundling Arabidopsis LIM proteins are subdivided into two subfamilies differing in their pH sensitivity. Widely-expressed WLIMs are active under low and high physiologically-relevant pH conditions, whereas pollen-enriched PLIMs are inactivated by pH values above 6.8. By a domain swapping approach we identified the C-terminal (Ct) domain of PLIMs as the domain responsible for pH responsiveness. Remarkably, this domain conferred pH sensitivity to LIM proteins, when provided "in trans" (i.e., as a single, independent, peptide), indicating that it operates through the interaction with another domain. An acidic 6xc-Myc peptide functionally mimicked the Ct domain of PLIMs and efficiently inhibited LIM actin bundling activity under high pH conditions. Together, our data suggest a model where PLIMs are regulated by an intermolecular interaction between their acidic Ct domain and another, yet unidentified, domain.
Collapse
Affiliation(s)
- Danièle Moes
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Céline Hoffmann
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Monika Dieterle
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Flora Moreau
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Katrin Neumann
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Jessica Papuga
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Angela Tavares Furtado
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - André Steinmetz
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg
| | - Clément Thomas
- Department of Oncology, Luxembourg Institute of Health (L.I.H.), L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
31
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
32
|
Suwińska A, Lenartowski R, Smoliński DJ, Lenartowska M. Molecular evidence that rough endoplasmic reticulum is the site of calreticulin translation in Petunia pollen tubes growing in vitro. PLANT CELL REPORTS 2015; 34:1189-99. [PMID: 25732863 PMCID: PMC4464644 DOI: 10.1007/s00299-015-1777-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/23/2015] [Accepted: 02/17/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE In germinating pollen grains and growing pollen tubes, CRT is translated on ER membrane-bound ribosomes in the regions where its activity is required for stabilization of tip-focused Ca (2+) gradient. Pollen tube growth requires coordination of signaling, exocytosis, and actin cytoskeletal organization. Many of these processes are thought to be controlled by finely tuned regulation of cytoplasmic Ca(2+) in discrete regions of the tube cytoplasm. Most notably, a mechanism must function to maintain a steep gradient of Ca(2+) that exists at the tip of growing pollen tube. Several pieces of evidence point to calreticulin (CRT) as a key Ca(2+)-binding/-buffering protein involved in pollen germination and pollen tube growth. We previously hypothesized that in germinating pollen and growing tubes, CRT is translated on the ribosomes associated with endoplasmic reticulum (ER) in the regions where its activity might be required. In this report, we have addressed this idea by identifying the sites where CRT mRNA, CRT protein, 18S rRNA, and rough ER are localized in Petunia pollen tubes. We observed all four components in the germinal aperture of pollen grains and in subapical regions of elongating tubes. These results seem to support our idea that CRT is translated on ER membrane-bound ribosomes during pollen germination and pollen tube growth. In elongated pollen tubes, we found CRT mainly localized in the subapical zone, where ER and Golgi stacks are abundant. In eukaryotic cells, these organelles serve as mobile intracellular stores of easily releasable Ca(2+), which can be buffered by proteins such as CRT. Therefore, we postulate that subapical-localized CRT is involved in pollen tube growth by maintaining the stable tip-focused Ca(2+) gradient and thus modulating local Ca(2+) concentration within the tube cytoplasm.
Collapse
Affiliation(s)
- Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
33
|
Zhou Z, Shi H, Chen B, Zhang R, Huang S, Fu Y. Arabidopsis RIC1 Severs Actin Filaments at the Apex to Regulate Pollen Tube Growth. THE PLANT CELL 2015; 27:1140-61. [PMID: 25804540 PMCID: PMC4558691 DOI: 10.1105/tpc.114.135400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/13/2015] [Accepted: 03/01/2015] [Indexed: 05/18/2023]
Abstract
Pollen tubes deliver sperms to the ovule for fertilization via tip growth. The rapid turnover of F-actin in pollen tube tips plays an important role in this process. In this study, we demonstrate that Arabidopsis thaliana RIC1, a member of the ROP-interactive CRIB motif-containing protein family, regulates pollen tube growth via its F-actin severing activity. Knockout of RIC1 enhanced pollen tube elongation, while overexpression of RIC1 dramatically reduced tube growth. Pharmacological analysis indicated that RIC1 affected F-actin dynamics in pollen tubes. In vitro biochemical assays revealed that RIC1 directly bound and severed F-actin in the presence of Ca(2+) in addition to interfering with F-actin turnover by capping F-actin at the barbed ends. In vivo, RIC1 localized primarily to the apical plasma membrane (PM) of pollen tubes. The level of RIC1 at the apical PM oscillated during pollen tube growth. The frequency of F-actin severing at the apex was notably decreased in ric1-1 pollen tubes but was increased in pollen tubes overexpressing RIC1. We propose that RIC1 regulates F-actin dynamics at the apical PM as well as the cytosol by severing F-actin and capping the barbed ends in the cytoplasm, establishing a novel mechanism that underlies the regulation of pollen tube growth.
Collapse
Affiliation(s)
- Zhenzhen Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haifan Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Binqing Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Qu X, Jiang Y, Chang M, Liu X, Zhang R, Huang S. Organization and regulation of the actin cytoskeleton in the pollen tube. FRONTIERS IN PLANT SCIENCE 2015; 5:786. [PMID: 25620974 PMCID: PMC4287052 DOI: 10.3389/fpls.2014.00786] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/17/2014] [Indexed: 05/18/2023]
Abstract
Proper organization of the actin cytoskeleton is crucial for pollen tube growth. However, the precise mechanisms by which the actin cytoskeleton regulates pollen tube growth remain to be further elucidated. The functions of the actin cytoskeleton are dictated by its spatial organization and dynamics. However, early observations of the distribution of actin filaments at the pollen tube apex were quite perplexing, resulting in decades of controversial debate. Fortunately, due to improvements in fixation regimens for staining actin filaments in fixed pollen tubes, as well as the adoption of appropriate markers for visualizing actin filaments in living pollen tubes, this issue has been resolved and has given rise to the consensus view of the spatial distribution of actin filaments throughout the entire pollen tube. Importantly, recent descriptions of the dynamics of individual actin filaments in the apical region have expanded our understanding of the function of actin in regulation of pollen tube growth. Furthermore, careful documentation of the function and mode of action of several actin-binding proteins expressed in pollen have provided novel insights into the regulation of actin spatial distribution and dynamics. In the current review, we summarize our understanding of the organization, dynamics, and regulation of the actin cytoskeleton in the pollen tube.
Collapse
Affiliation(s)
- Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua UniversityBeijing, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Ming Chang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Xiaonan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Ruihui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany – Chinese Academy of SciencesBeijing, China
| |
Collapse
|
35
|
Cai G, Parrotta L, Cresti M. Organelle trafficking, the cytoskeleton, and pollen tube growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:63-78. [PMID: 25263392 DOI: 10.1111/jipb.12289] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The pollen tube is fundamental for the reproduction of seed plants. Characteristically, it grows relatively quickly and uni-directionally ("polarized growth") to extend the male gametophyte to reach the female gametophyte. The pollen tube forms a channel through which the sperm cells move so that they can reach their targets in the ovule. To grow quickly and directionally, the pollen tube requires an intense movement of organelles and vesicles that allows the cell's contents to be distributed to sustain the growth rate. While the various organelles distribute more or less uniformly within the pollen tube, Golgi-released secretory vesicles accumulate massively at the pollen tube apex, that is, the growing region. This intense movement of organelles and vesicles is dependent on the dynamics of the cytoskeleton, which reorganizes differentially in response to external signals and coordinates membrane trafficking with the growth rate of pollen tubes.
Collapse
Affiliation(s)
- Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, 53100, Italy
| | | | | |
Collapse
|
36
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
37
|
Huang S, Qu X, Zhang R. Plant villins: versatile actin regulatory proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:40-9. [PMID: 25294278 DOI: 10.1111/jipb.12293] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/01/2014] [Indexed: 05/03/2023]
Abstract
Regulation of actin dynamics is a central theme in cell biology that is important for different aspects of cell physiology. Villin, a member of the villin/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Villins contain six gelsolin homology domains (G1-G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant villins are expressed widely, implying that plant villins play a more general role in regulating actin dynamics. Some plant villins have a defined role in modifying actin dynamics in the pollen tube; most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant villins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cells. In this review, we focus on discussing the biochemical activities and modes of regulation of plant villins. Here, we present current understanding of the functions of plant villins. Finally, we highlight some of the key unanswered questions regarding the functions and regulation of plant villins for future research.
Collapse
Affiliation(s)
- Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | | | | |
Collapse
|
38
|
Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca(2+) concentration. PLANT MOLECULAR BIOLOGY 2014; 86:225-36. [PMID: 25139229 DOI: 10.1007/s11103-014-0220-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/23/2014] [Indexed: 05/10/2023]
Abstract
Cytosolic free calcium ([Ca(2+)]cyt), which is essential during pollen germination and pollen tube growth, can be sensed by calmodulin-like proteins (CMLs). The Arabidopsis thaliana genome encodes over 50 CMLs, the physiological role(s) of most of which are unknown. Here we show that the gene AtCML24 acts as a regulator of pollen germination and pollen tube extension, since the pollen produced by loss-of-function mutants germinated less rapidly than that of wild-type (WT) plants, the rate of pollen tube extension was slower, and the final length of the pollen tube was shorter. The [Ca(2+)]cyt within germinated pollen and extending pollen tubes produced by the cml24 mutant were higher than their equivalents in WT plants, and pollen tube extension was less sensitive to changes in external [K(+)] and [Ca(2+)]. The pollen and pollen tubes produced by cml24 mutants were characterized by a disorganized actin cytoskeleton and lowered sensitivity to the action of latrunculin B. The observations support an interaction between CML24 and [Ca(2+)]cyt and an involvement of CML24 in actin organization, thereby affecting pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
39
|
Meng D, Gu Z, Yuan H, Wang A, Li W, Yang Q, Zhu Y, Li T. The microtubule cytoskeleton and pollen tube Golgi vesicle system are required for in vitro S-RNase internalization and gametic self-incompatibility in apple. PLANT & CELL PHYSIOLOGY 2014; 55:977-89. [PMID: 24503865 DOI: 10.1093/pcp/pcu031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
S-RNase is the female determinant of gametophytic self-incompatibility in apple and is usually considered to be the reason for rejection of pollen. In this study, we investigated the role of microtubules (MTs) in internalization of S-RNases by pollen tubes cultured in vitro. The results showed that S-RNase was imported into the pollen tube where it inhibits pollen tube growth, and that S-RNase is co-localized with the Golgi vesicle during the internalization process. Moreover, MT depolymerization is observed following accumulation of S-RNases in the pollen cytosol. On the other hand, S-RNase was prevented from entering the pollen tube when the pollen was treated with the actin filament (AF) inhibitor latrunculin A (LatA), the MT inhibitor oryzalin, or the MT stabilizer taxol at subtoxic concentrations. These hindered the construction of the MT, with pollen tubes capable of growth under these conditions. Pollen tubes showed improved growth in self-pollinated styles that were pre-treated with taxol. This suggests that cytoskeleton antagonists can prevent S-RNase-mediated inhibition of pollen tubes in vivo by blocking S-RNase internalization. These results suggest that an intact and dynamic cytoskeleton is required for the in vitro internalization of S-RNase, as shown by the effects of various cytoskeleton inhibitors. S-RNase internalization takes place via a membrane/cytoskeleton-based Golgi vesicle system, which can also affect self-incompatibility in apple.
Collapse
Affiliation(s)
- Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hoffmann C, Moes D, Dieterle M, Neumann K, Moreau F, Tavares Furtado A, Dumas D, Steinmetz A, Thomas C. Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1. J Cell Sci 2014; 127:583-98. [PMID: 24284066 DOI: 10.1242/jcs.134536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crosslinking of actin filaments into bundles is essential for the assembly and stabilization of specific cytoskeletal structures. However, relatively little is known about the molecular mechanisms underlying actin bundle formation. The two LIM-domain-containing proteins define a novel and evolutionarily conserved family of actin-bundling proteins whose actin-binding and -crosslinking activities primarily rely on their LIM domains. Using TIRF microscopy, we describe real-time formation of actin bundles induced by tobacco NtWLIM1 in vitro. We show that NtWLIM1 binds to single filaments and subsequently promotes their interaction and zippering into tight bundles of mixed polarity. NtWLIM1-induced bundles grew by both elongation of internal filaments and addition of preformed fragments at their extremities. Importantly, these data are highly consistent with the modes of bundle formation and growth observed in transgenic Arabidopsis plants expressing a GFP-fused Arabidopsis AtWLIM1 protein. Using two complementary live cell imaging approaches, a close relationship between NtWLIM1 subcellular localization and self-association was established. Indeed, both BiFC and FLIM-FRET data revealed that, although unstable NtWLIM1 complexes can sporadically form in the cytosol, stable complexes concentrate along the actin cytoskeleton. Remarkably, disruption of the actin cytoskeleton significantly impaired self-association of NtWLIM1. In addition, biochemical analyses support the idea that F-actin facilitates the switch of purified recombinant NtWLIM1 from a monomeric to a di- or oligomeric state. On the basis of our data, we propose a model in which actin binding promotes the formation and stabilization of NtWLIM1 complexes, which in turn might drive the crosslinking of actin filaments.
Collapse
Affiliation(s)
- Céline Hoffmann
- Centre de Recherche Public-Santé, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:367-79. [PMID: 23906068 DOI: 10.1111/tpj.12300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 05/03/2023]
Abstract
In tip-confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F-actin filament and exocytosis. In this study, we demonstrate that apical F-actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F-actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F-actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
42
|
Jia H, Li J, Zhu J, Fan T, Qian D, Zhou Y, Wang J, Ren H, Xiang Y, An L. Arabidopsis CROLIN1, a novel plant actin-binding protein, functions in cross-linking and stabilizing actin filaments. J Biol Chem 2013; 288:32277-32288. [PMID: 24072702 DOI: 10.1074/jbc.m113.483594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Higher order actin filament structures are necessary for cytoplasmic streaming, organelle movement, and other physiological processes. However, the mechanism by which the higher order cytoskeleton is formed in plants remains unknown. In this study, we identified a novel actin-cross-linking protein family (named CROLIN) that is well conserved only in the plant kingdom. There are six isovariants of CROLIN in the Arabidopsis genome, with CROLIN1 specifically expressed in pollen. In vitro biochemical analyses showed that CROLIN1 is a novel actin-cross-linking protein with binding and stabilizing activities. Remarkably, CROLIN1 can cross-link actin bundles into actin networks. CROLIN1 loss of function induces pollen germination and pollen tube growth hypersensitive to latrunculin B. All of these results demonstrate that CROLIN1 may play an important role in stabilizing and remodeling actin filaments by binding to and cross-linking actin filaments.
Collapse
Affiliation(s)
- Honglei Jia
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jisheng Li
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingen Zhu
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tingting Fan
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuelong Zhou
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiaojiao Wang
- the Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Haiyun Ren
- the Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yun Xiang
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- From the Key Laboratory of Cell Activities and Stress Adaptations of the Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
43
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
44
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, Liu B, Yuan M, Fu Y. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. THE PLANT CELL 2013; 25:851-67. [PMID: 23463774 PMCID: PMC3634693 DOI: 10.1105/tpc.113.110528] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.
Collapse
|
46
|
Pei W, Du F, Zhang Y, He T, Ren H. Control of the actin cytoskeleton in root hair development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 187:10-8. [PMID: 22404828 DOI: 10.1016/j.plantsci.2012.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 05/09/2023]
Abstract
The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development.
Collapse
Affiliation(s)
- Weike Pei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing 100875, China
| | | | | | | | | |
Collapse
|
47
|
Zaidi MA, O'Leary S, Wu S, Gleddie S, Eudes F, Laroche A, Robert LS. A molecular and proteomic investigation of proteins rapidly released from triticale pollen upon hydration. PLANT MOLECULAR BIOLOGY 2012; 79:101-21. [PMID: 22367549 DOI: 10.1007/s11103-012-9897-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/15/2012] [Indexed: 05/08/2023]
Abstract
Analysis of Triticale (×Triticosecale Wittmack cv. AC Alta) mature pollen proteins quickly released upon hydration was performed using two-dimensional gel electrophoresis followed by mass spectrometry. A total of 17 distinct protein families were identified and these included expansins, profilins, and various enzymes, many of which are pollen allergens. The corresponding genes were obtained and expression studies revealed that the majority of these genes were only expressed in developing anthers and pollen. Some genes including glucanase, glutathione peroxidase, glutaredoxin, and a profilin were found to be widely expressed in different reproductive and vegetative tissues. Group 11 pollen allergens, polygalacturonase, and actin depolymerizing factor were characterized for the first time in the Triticeae. This study represents a distinctive combination of proteomic and molecular analyses of the major cereal pollen proteins released upon hydration and therefore at the forefront of pollen-stigma interactions.
Collapse
Affiliation(s)
- Mohsin A Zaidi
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
48
|
Jimenez-Lopez JC, Morales S, Castro AJ, Volkmann D, Rodríguez-García MI, Alché JDD. Characterization of profilin polymorphism in pollen with a focus on multifunctionality. PLoS One 2012; 7:e30878. [PMID: 22348028 PMCID: PMC3279341 DOI: 10.1371/journal.pone.0030878] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/28/2011] [Indexed: 12/20/2022] Open
Abstract
Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.
Collapse
Affiliation(s)
- Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Sonia Morales
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Antonio J. Castro
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Dieter Volkmann
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of Bonn, Bonn, Germany
| | - María I. Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
| | - Juan de D. Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, High Council for Scientific Research, Granada, Spain
- * E-mail:
| |
Collapse
|
49
|
Konrad KR, Wudick MM, Feijó JA. Calcium regulation of tip growth: new genes for old mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:721-30. [PMID: 22000040 DOI: 10.1016/j.pbi.2011.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/08/2023]
Abstract
We review the recent advances on Ca(2+) in tip-growing cells, with a special focus on pollen tubes. New genes for Ca(2+) pumps, channels and sensing proteins have been recently described, with special emphasis on cyclic nucleotide gated channels (CNGCs) and glutamate receptor-like channels (GLRs). We also review the current state of knowledge in what concerns Ca(2+) sensor and relay proteins, where the knowledge of the cell models is less advanced. While these newly described genes offer promise to a better understanding of the spatial and temporal patterns of Ca(2+) signalling that may be relevant for the formation of the phenotype, we discuss the necessity to investigate further links in the network downstream of the Ca(2+) signature, with a special need for mechanisms of feed-back that might render functional feed-back loops approachable by modelling and genetics. Given the available literature, we conclude on the need to investigate more on the role of two specific classes of proteins, the calcium binding protein kinases (CPKs) and the Calcineurin B-like proteins (CBLs) and their regulatory relationships to ion channels (summarized in Figure 3b).
Collapse
Affiliation(s)
- Kai R Konrad
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
50
|
Bou Daher F, Geitmann A. Actin is Involved in Pollen Tube Tropism Through Redefining the Spatial Targeting of Secretory Vesicles. Traffic 2011; 12:1537-51. [DOI: 10.1111/j.1600-0854.2011.01256.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|