1
|
Djanaguiraman M, Anbazhagan V, Dhankher OP, Prasad PVV. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3137. [PMID: 39599346 PMCID: PMC11597231 DOI: 10.3390/plants13223137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The application of nanotechnology in agriculture has increased rapidly. However, the fate and effects of various nanoparticles on the soil, plants, and humans are not fully understood. Reports indicate that nanoparticles exhibit positive and negative impacts on biota due to their size, surface property, concentration within the system, and species or cell type under test. In plants, nanoparticles are translocated either by apoplast or symplast pathway or both. Also, it is not clear whether the nanoparticles entering the plant system remain as nanoparticles or are biotransformed into ionic forms or other organic compounds. Controversial results on the toxicity effects of nanomaterials on the plant system are available. In general, the nanomaterial toxicity was exerted by producing reactive oxygen species, leading to damage or denaturation of various biomolecules. The intensity of cyto- and geno-toxicity depends on the physical and chemical properties of nanoparticles. Based on the literature survey, it is observed that the effects of nanoparticles on the growth, photosynthesis, and primary and secondary metabolism of plants are both positive and negative; the response of these processes to the nanoparticle was associated with the type of nanoparticle, the concentration within the tissue, crop species, and stage of growth. Future studies should focus on addressing the key knowledge gaps in understanding the responses of plants to nanoparticles at all levels through global transcriptome, proteome, and metabolome assays and evaluating nanoparticles under field conditions at realistic exposure concentrations to determine the level of entry of nanoparticles into the food chain and assess the impact of nanoparticles on the ecosystem.
Collapse
Affiliation(s)
- Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Venzhik Y, Deryabin A, Dykman L. Nanomaterials in plant physiology: Main effects in normal and under temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112148. [PMID: 38838991 DOI: 10.1016/j.plantsci.2024.112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health. Nanotechnology, which allows the production of a wide range of nanomaterials (NM), provides novel techniques in this direction. NM include structures less than 100 nm. The review presents data on the methods of NM production, their properties, pathways for arrival in plants and their use in human life. It is shown that NM, due to their unique physical and chemical properties, can cross biological barriers and accumulate in cells of live organisms. The influence of NM on plant organism can be both positive and negative, depending on the NM chemical nature, their size and dose, the object of study, and the environmental conditions. This review provides a comparative analysis of the effect of artificial metal nanoparticles (NPm), the commonly employed NMs in plant physiology, on two important aspects of plant life: photosynthetic apparatus activity and antioxidant system function. According to studies, NM affect not only the functional activity of photosynthetic apparatus, but also structural organization of chloroplats. In addition, the literature analysis reflects the dual action of NM on oxidative processes, and antioxidant status of plants. These facts considerably complicate the ideas about possible mechanisms and further use of NPm in biology. In this regard, data on the effects of NM on plants under abiotic stressors are of great interest. Separate section is devoted to the use of NM as adaptogens that increase plant stress tolerance to unfavorable temperatures. Possible mechanisms of NM effects on plants are discussed, as well as the strategies for their further use in basic science and sustainable agriculture.
Collapse
Affiliation(s)
- Yliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
3
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
4
|
Venzhik Y, Deryabin A, Naraikina N, Zhukova K, Dykman L. The influence of Au-based nanoparticles on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108837. [PMID: 38878389 DOI: 10.1016/j.plaphy.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 μg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Naraikina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya Zhukova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
5
|
Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Alginate and chitosan surface coating reduces the phytotoxicity of CeO 2 nanoparticles to duckweed (Lemna minor L.). CHEMOSPHERE 2024; 362:142649. [PMID: 38901699 DOI: 10.1016/j.chemosphere.2024.142649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Little is known about the effect of surface coatings on the fate and toxicity of CeO2 nanoparticles (NPs) to aquatic plants. In this study, we modified nCeO2 with chitosan (Cs) and alginate (Al) to obtain positively charged nCeO2@Cs and negatively charged nCeO2@Al, respectively, and exposed them to a representative aquatic plant, duckweed (Lemna minor L.). Uncoated nCeO2 could significantly inhibit the growth of duckweed, induce oxidative damage and lead to cell death, whereas nCeO2@Cs and nCeO2@Al exhibited lower toxicity to duckweed. ICP-MS analysis revealed that the Ce content in duckweed from the nCeO2 group was 1.74 and 2.85 times higher than that in the nCeO2@Cs and nCeO2@Al groups, respectively. Microscopic observations indicated that the positively charged nCeO2@Cs was more readily adsorbed on the root surface of duckweed than the negatively charged nCeO2@Al. The results of XANES and LCF demonstrated that a certain percentage of Ce(Ⅳ) was reduced to Ce(Ⅲ) after the interaction of the three NPs with duckweed, but the degree of biotransformation differed among the treatments. Specifically, the absolute contents of Ce(III) produced of nCeO2@Cs and nCeO2@Al through biotransformation were reduced by 55.5% and 83.5%, respectively, compared with that of the nCeO2 group, which might be the key factor for the diminished phytotoxicity of the coated nCeO2 to the duckweed. These findings were valuable for understanding the toxicity of metal-based NPs to aquatic plants and for the synthesis of environmentally friendly nanomaterials.
Collapse
Affiliation(s)
- Xuepeng Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Yang X, Wang Z, Xu J, Zhang C, Gao P, Zhu L. Effects of dissolved organic matter on the environmental behavior and toxicity of metal nanomaterials: A review. CHEMOSPHERE 2024; 358:142208. [PMID: 38704042 DOI: 10.1016/j.chemosphere.2024.142208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Metal nanomaterials (MNMs) have been released into the environment during their usage in various products, and their environmental behaviors directly impact their toxicity. Numerous environmental factors potentially affect the behaviors and toxicity of MNMs with dissolved organic matter (DOM) playing the most essential role. Abundant facts showing contradictory results about the effects of DOM on MNMs, herein the occurrence of DOM on the environmental process change of MNMs such as dissolution, dispersion, aggregation, and surface transformation were summarized. We also reviewed the effects of MNMs on organisms and their mechanisms in the environment such as acute toxicity, oxidative stress, oxidative damage, growth inhibition, photosynthesis, reproductive toxicity, and malformation. The presence of DOM had the potential to reduce or enhance the toxicity of MNMs by altering the reactive oxygen species (ROS) generation, dissolution, stability, and electrostatic repulsion of MNMs. Furthermore, we summarized the factors that affected different toxicity including specific organisms, DOM concentration, DOM types, light conditions, detection time, and production methods of MNMs. However, the more detailed mechanism of interaction between DOM and MNMs needs further investigation.
Collapse
Affiliation(s)
- Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhangjia Wang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
7
|
Yusefi-Tanha E, Fallah S, Pokhrel LR, Rostamnejadi A. Role of particle size-dependent copper bioaccumulation-mediated oxidative stress on Glycine max (L.) yield parameters with soil-applied copper oxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28905-28921. [PMID: 38564134 PMCID: PMC11058571 DOI: 10.1007/s11356-024-33070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Increased impetus on the application of nano-fertilizers to improve sustainable food production warrants understanding of nanophytotoxicity and its underlying mechanisms before its application could be fully realized. In this study, we evaluated the potential particle size-dependent effects of soil-applied copper oxide nanoparticles (nCuO) on crop yield and quality attributes (photosynthetic pigments, seed yield and nutrient quality, seed protein, and seed oil), including root and seed Cu bioaccumulation and a suite of oxidative stress biomarkers, in soybean (Glycine max L.) grown in field environment. We synthesized three distinct sized (25 nm = S [small], 50 nm = M [medium], and 250 nm = L [large]) nCuO with same surface charge and compared with soluble Cu2+ ions (CuCl2) and water-only controls. Results showed particle size-dependent effects of nCuO on the photosynthetic pigments (Chla and Chlb), seed yield, potassium and phosphorus accumulation in seed, and protein and oil yields, with nCuO-S showing higher inhibitory effects. Further, increased root and seed Cu bioaccumulation led to concomitant increase in oxidative stress (H2O2, MDA), and as a response, several antioxidants (SOD, CAT, POX, and APX) increased proportionally, with nCuO treatments including Cu2+ ion treatment. These results are corroborated with TEM ultrastructure analysis showing altered seed oil bodies and protein storage vacuoles with nCuO-S treatment compared to control. Taken together, we propose particle size-dependent Cu bioaccumulation-mediated oxidative stress as a mechanism of nCuO toxicity. Future research investigating the potential fate of varied size nCuO, with a focus on speciation at the soil-root interface, within the root, and edible parts such as seed, will guide health risk assessment of nCuO.
Collapse
Affiliation(s)
- Elham Yusefi-Tanha
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Rostamnejadi
- Faculty of Electromagnetics, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Mahawar L, Živčák M, Barboricova M, Kovár M, Filaček A, Ferencova J, Vysoká DM, Brestič M. Effect of copper oxide and zinc oxide nanoparticles on photosynthesis and physiology of Raphanus sativus L. under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108281. [PMID: 38157834 DOI: 10.1016/j.plaphy.2023.108281] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The study evaluates the impact of two metal oxide nanoparticles: copper oxide (CuO) and zinc oxide (ZnO) on the growth and physiology of Raphanus sativus L. (radish) under salinity stress. Fifteen days old seedlings of R. sativus were subjected to different concentrations of salt stress (0 mM, 150 mM, and 300 mM NaCl) alone and in interaction with 100 mgL-1 metal oxide nanoparticle treatments (CuO and ZnO NPs via foliar spray) for 15 days. The results confirmed the severe effects of salinity stress on the growth and physiology of radish plants by decreasing nutrient uptake, leaf area, and photosystems photochemistry and by increasing proline accumulation, anthocyanin, flavonoids content, and antioxidant enzyme activities which is directly linked to increased oxidative stress. The foliar application of CuO and ZnO NPs alleviated the adverse effects of salt stress on radish plants, as indicated by improving these attributes. Foliar spray of ZnO NPs was found efficient in improving the leaf area, photosynthetic electron transport rate, the PSII quantum yield, proton conductance and mineral content in radish plants under NaCl stress. Besides, ZnO NPs decreased the NaCl-induced oxidative stress by declining proline, anthocyanin, and flavonoids contents and enzymatic activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (GOPX). Thus, our study revealed that ZnO NPs are more effective and have beneficial effects over CuO NPs in promoting growth and reducing the adverse effects of NaCl stress in radish plants.
Collapse
Affiliation(s)
- Lovely Mahawar
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia; Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, 90187, Sweden.
| | - Marek Živčák
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Maria Barboricova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Andrej Filaček
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Jana Ferencova
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Dominika Mlynáriková Vysoká
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia
| | - Marián Brestič
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra, 949 76, Slovakia.
| |
Collapse
|
10
|
Liu Y, Zhao X, Ma Y, Dai W, Song Z, Wang Y, Shen J, He X, Yang F, Zhang Z. Interaction of Cerium Oxide Nanoparticles and Ionic Cerium with Duckweed ( Lemna minor L.): Uptake, Distribution, and Phytotoxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2523. [PMID: 37764551 PMCID: PMC10535116 DOI: 10.3390/nano13182523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
As one of the most widely used nanomaterials, CeO2 nanoparticles (NPs) might be released into the aquatic environment. In this paper, the interaction of CeO2 NPs and Ce3+ ions (0~10 mg/L) with duckweed (Lemna minor L.) was investigated. CeO2 NPs significantly inhibited the root elongation of duckweed at concentrations higher than 0.1 mg/L, while the inhibition threshold of Ce3+ ions was 0.02 mg/L. At high doses, both reduced photosynthetic pigment contents led to cell death and induced stomatal deformation, but the toxicity of Ce3+ ions was greater than that of CeO2 NPs at the same concentration. According to the in situ distribution of Ce in plant tissues by μ-XRF, the intensity of Ce signal was in the order of root > old frond > new frond, suggesting that roots play a major role in the uptake of Ce. The result of XANES showed that 27.6% of Ce(IV) was reduced to Ce(III) in duckweed treated with CeO2 NPs. We speculated that the toxicity of CeO2 NPs to duckweed was mainly due to its high sensitivity to the released Ce3+ ions. To our knowledge, this is the first study on the toxicity of CeO2 NPs to an aquatic higher plant.
Collapse
Affiliation(s)
- Yang Liu
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Xuepeng Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Wanqin Dai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Zhuda Song
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Yun Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Jiaqi Shen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
| | - Fang Yang
- Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (Y.L.); (X.Z.)
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; (W.D.); (Z.S.); (Y.W.); (J.S.); (X.H.)
- School of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
López-Luna J, Nopal-Hormiga Y, López-Sánchez L, Mtz-Enriquez AI, Pariona N. Effect of methods application of copper nanoparticles in the growth of avocado plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163341. [PMID: 37031937 DOI: 10.1016/j.scitotenv.2023.163341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The aim of this greenhouse study was to evaluate root irrigation, foliar spray, and stem injection in order to find the best method for the nanofertilization of avocado plants with green synthesized CuNPs. One-year-old avocado plants were supplied four times (every 15 days) with 0.25 and 0.50 mg/ml of CuNPs through the three fertilization methods. Stem growth and new leaf formation were evaluated over time and after 60 days of CuNPs exposure, several plant traits (root growth, fresh and dry biomass, plant water content, cytotoxicity, photosynthetic pigments, and total Cu accumulation in plant tissues) were evaluated for CuNPs improvement. Regarding the control treatment, stem growth and new leaf appearance were increased by 25 % and 85 %, respectively, by the CuNPs supply methods of foliar spray>stem injection>root irrigation, with little significant differences among NPs concentrations. Avocado plants supplied with 0.25 and 0.50 mg/ml CuNPs maintained a hydric balance and cell viability ranged from 91 to 96 % through the three NPs application methods. TEM did not reveal any ultrastructural organelle changes induced by CuNPs in leaf tissues. The concentrations of CuNPs tested were not high enough to exert deleterious effects on the photosynthetic machinery of avocado plants, but photosynthetic efficiency was also found to be improved. The foliar spray method showed improved uptake and translocation of CuNPs, with almost no loss of Cu. In general, the improvement in plant traits indicated that the foliar spray method was the best for nanofertilization of avocado plants with CuNPs.
Collapse
Affiliation(s)
- Jaime López-Luna
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| | - Yulisa Nopal-Hormiga
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| | - Arturo I Mtz-Enriquez
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Coahuila, Mexico.
| | - Nicolaza Pariona
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| |
Collapse
|
12
|
Nekoukhou M, Fallah S, Pokhrel LR, Abbasi-Surki A, Rostamnejadi A. Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160920. [PMID: 36529390 DOI: 10.1016/j.scitotenv.2022.160920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
High alkaline and low organic carbon hinder micronutrients, such as copper (Cu), bioavailability in (semi-) arid soils, affecting plant nutrient quality and productivity. This study aimed at investigating the potential beneficial effects of foliar Cu oxide nanoparticles (CuONPs) and conventional chelated-Cu applications (0-400 mg Cu/L) on the biomass, physiological biomarkers of plant productivity and oxidative stress, Cu bioaugmentation, and essential oils and secondary metabolites in dragonhead (Dracocephalum moldavica [L.]) grown in Cu-limited alkaline soil in semi-arid condition. Employing a randomized complete block design with three replicates, two different sources of Cu (CuONPs and chelated-Cu), and a wide range of Cu concentrations (0, 40, 80, 160, and 400 mg Cu/L), plants were foliarly treated at day-60 and day-74. At day-120, plants were harvested at the end of the flowering stage. Results showed shoot Cu bioaccumulation, flavonoids and anthocyanin increased in a dose-dependent manner for both Cu compounds, but the beneficial effects were significantly higher with CuONPs compared to chelated-Cu treatments. Further, shoot biomass (23 %), photosynthetic pigments (chlorophyll-a and chlorophyll-b; 77 and 123 %, respectively), and essential oil content and yield (70 and 104 %, respectively) increased significantly with foliar application of 80 mg/L CuONPs compared to equivalent concentration of chelated-Cu, suggesting an optimal threshold beyond which toxicity was observed. Likewise, commercially important secondary metabolites' yield (such as geranyl acetate, geranial, neral, and geraniol) was higher with 80 mg/L CuONPs compared to 160 mg/L chelated-Cu (2.3, 0.5, 2.5, and 7.1 %, respectively). TEM analyses of leaf ultrastructure revealed altered cellular organelles for both compounds at 400 mg/L, corroborating the results of oxidative stress response (malondialdehyde and H2O2). In conclusion, these findings indicate significantly higher efficacy of CuONPs, with an optimal threshold of 80 mg/L, in promoting essential oil and bioactive compound yield in dragonhead and may pave a path for the use of nano-Cu as a sustainable fertilizer promoting agricultural production in semi-arid soils that are micronutrient Cu deficient.
Collapse
Affiliation(s)
- Marjan Nekoukhou
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Sina Fallah
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran.
| | - Lok Raj Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Ali Abbasi-Surki
- Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Rostamnejadi
- Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran
| |
Collapse
|
13
|
Jan N, Majeed N, Ahmad M, Ahmad Lone W, John R. Nano-pollution: Why it should worry us. CHEMOSPHERE 2022; 302:134746. [PMID: 35489464 DOI: 10.1016/j.chemosphere.2022.134746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/05/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles are immensely diverse both in terms of quality and sources of emission into the environment. Nowadays, nanotechnologies are developing and growing at a rapid pace without specific rules and regulations, leading to a severe effect on environment and affecting the labours in outdoor and indoor workplaces. The continue and enormous use of NPs for industrial and commercial purposes, has put a pressing need to think whether the increasing use of these NPs could overcome the severe environmental effects and unknown human health risks. Only a few studies have been carried out to assess the toxic effect of these NPs resulting from their direct or indirect exposure. There is in an increasing clamour to consider environmental implications of NPs and to monitor the outcome of NP during use in biological testing. There remain many open questions for consideration. An adequate research is required to determine the real toxic effect of these NPs on environment and human health. In this review, we have discussed the negative effects of NPs on environment and biosphere at large and the future research required.
Collapse
Affiliation(s)
- Nelofer Jan
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Neelofar Majeed
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Muneeb Ahmad
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Waseem Ahmad Lone
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
14
|
Malea P, Emmanouilidis A, Kevrekidis DP, Moustakas M. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57523-57542. [PMID: 35352227 DOI: 10.1007/s11356-022-19571-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper ion (Cu2+) and copper oxide (CuO) nanoparticle (NP) ecotoxicity are of increasing concern as they are considered to be a potential risk to marine systems. This study represents the first attempt to evaluate CuO NP impacts on the seaweeds and Cu2+ on the chlorophyte Ulva rigida. Effects on oxidative stress, antioxidant defence markers, photosystem II function, thalli growth, and cell viability in U. rigida exposed for 4 up 72 h to1 and 5 mg L-1 Cu2+ and CuO NPs were examined. Hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and growth inhibition seemed to be reliable and early warning markers of toxicity. The most important variables of the principal component analysis (PCA): H2O2 generation, antioxidant stress markers, and growth-based toxicity index, were higher at 1 mg L-1 CuO NPs compared to CuSO4 and at 5 mg L-1 CuSO4 compared to CuO NPs. Intracellular uptake kinetics fit well to the Michaelis-Menten equation. The higher toxicity at 5 mg L-1 CuSO4 compared to 1 mg L-1 was due to the higher Cu uptake with increasing concentration, suggesting and higher accumulation ability. On the contrary, 1 mg L-1 CuO NPs induced more strongly toxicity effects than 5 mg L-1. The relatively stronger effect of CuO NPs at 1 mg L-1 than the respective CuSO4 concentration could be attributed to the higher rate of initial uptake (Vc) and the mean rate of Cu uptake [Cmax/(2 × Km)] at CuO NP treatment. The intracellular seaweed experimental threshold of Cu, which coincided with the onset of oxidative stress, was within the Cu concentration range recorded in Mediterranean Ulva spp., indicating that it may pose a substantial risk to marine environments.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece.
| | - Antonios Emmanouilidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| |
Collapse
|
15
|
Wang X, Hu L, Wu D, Huang T, Zhang B, Cai G, Gao G, Liu Z, Huang X, Zhong Z. Large-scale screening and characterization of Cd accumulation and ultrastructural deformation in duckweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154948. [PMID: 35367551 DOI: 10.1016/j.scitotenv.2022.154948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) pollution in soil, rivers and lakes is a serious problem due to the current industrialization and urbanization in China. Duckweeds are recognized as promising species for Cd phytoremediation. However, intraspecific variations in Cd accumulation in duckweeds remain largely unknown. In this study, 16 accessions selected from 39 geographically isolated duckweed strains were chosen to investigate their Cd remediation abilities. The optimal accession Landoltia punctata named 07SGZP01 (L. punctata 0701) was identified and shown to accumulate maximal Cd in the body while maintaining the highest biomass. The dominant variety treated with different Cd concentrations showed that the biomass of L. punctata 0701 was significantly lower than that of the control group (CK). Cd contents in L. punctata 0701 were substantially increased from 2511.1 to 30,641.01 mg kg-1 with an increase in Cd treatment levels from 0.3 to 20 mg L-1. The transport coefficient (TF) increased as Cd levels increased from 0.3 to 2 mg L-1. In addition, the Cd content in leaves was greater than that in roots (TF > 1) within this Cd concentration range, whereas the Cd content in roots was greater than that in leaves (TF < 1) when the concentration of the Cd treatment was greater than 5 mg L-1. The bioaccumulation factor (BCF) decreased significantly with increasing Cd levels (P < 0.05). The rate of Cd removal in the solution gradually decreased with increasing Cd concentrations, and the removal rate achieved the highest value (75%) when the Cd concentration was 0.5 mg L-1. In addition, Cd treatment (2 mg L-1) not only damaged the ultrastructure of L. punctata 0701, as characterized by chloroplast deformation and cell vacuolation but also caused most of the stomata to close, and the leaf epidermal cells were damaged and ruptured.
Collapse
Affiliation(s)
- Xianglian Wang
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Liang Hu
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Daishe Wu
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| | - Baojun Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, China
| | - Guanjun Cai
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Guiqing Gao
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Zhanmeng Liu
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Xueping Huang
- School of Civil and Architectural Engineering, Nanchang Institute of Technology, Nanchang 330099, China
| | - Zhiyao Zhong
- Jiangxi Provincial Key Laboratory for Restoration of Degraded Ecosystems and Watershed Ecohydrology, Nanchang Institute of Technology, Nanchang 330099, China
| |
Collapse
|
16
|
Koteeswari P, Sagadevan S, Fatimah I, Kassegn Sibhatu A, Izwan Abd Razak S, Leonard E, Soga T. Green synthesis and characterization of copper oxide nanoparticles and their photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Aqeel U, Aftab T, Khan MMA, Naeem M, Khan MN. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. CHEMOSPHERE 2022; 291:132672. [PMID: 34756946 DOI: 10.1016/j.chemosphere.2021.132672] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The application of nanotechnology in agriculture includes the use of nanofertilizers, nanopesticides, and nanoherbicides that enhance plant nutrition without disturbing the soil texture and protect it against microbial infections. Thus, nanotechnology maintains the plant's health by maintaining its soil health. The use of nanoparticles (NPs) in agriculture reduces the chemical spread and nutrient loss and boosts crop yield and productivity. Effect of NPs varies with their applied concentrations, physiochemical properties, and plant species. Various NPs have an impact on the plant to increase biomass productivity, germination rate and their physiology. Also, NPs change the plant molecular mechanisms by altering gene expression. Metal and non-metal oxides of NPs (Au, Ag, ZnO, Fe2O3, TiO2, SiO2, Al2O3, Se, carbon nanotubes, quantum dots) exert an important role in plant growth and development and perform an essential role in stress amelioration. On the other hand, other effects of NPs have also been well investigated by observing their role in growth suppression and inhibition of chlorophyll and photosynthetic efficiency. In this review, we addressed a description of studies that have been made to understand the effects of various kind of NPs, their translocation and interaction with the plants. Also, the phytoremediation approaches of contaminated soil with combined use of NPs for sustainable agriculture is covered.
Collapse
Affiliation(s)
- Umra Aqeel
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
18
|
Sun Y, Yang Y, Tou FY, Niu ZS, Guo XP, Liu C, Yan J, Wu JY, Xu M, Hou LJ, Liu M. Extraction and quantification of metal-containing nanoparticles in marine shellfish based on single particle inductively coupled plasma-mass spectrometry technique. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127383. [PMID: 34879574 DOI: 10.1016/j.jhazmat.2021.127383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
Quantitative characterization of nanoparticles (NPs) in marine shellfish is critical to understanding the risks of bio-accumulation. Based on single particle (sp)ICP-MS and electron microscopy, a standardized protocol was developed to extract Ag, Au, and indigenous Ti-containing NPs from mussels. The optimal parameters are: dry sample extraction with tetramethylammonium hydroxide (TMAH), 5% (v/v) final concentration of TMAH, extraction at 25 ℃ for 12 h, and separation by centrifugation (3000 rpm for 5 min). The particle number recoveries of spiked Ag and Au NPs were 88 ± 0.9% and 95 ± 1.1%, respectively, while Ti-containing NPs had a particle number concentration of 8.2 × 106 particles/mg and an average size of 70 nm in tested mussels. Furthermore, titanium oxide NPs, including rutile, anatase, and Magnéli phases (TixO2x-1) were found ubiquitously in 10 shellfish based on the optimal method. The particle number concentrations and average sizes of the Ti-containing NPs were 2.1 × 106-8.4 × 106 particles/mg and 70-80 nm, respectively. These Ti-containing NPs, such as TiO2, accounted for about half of the Ti mass in shellfish, indicating that marine shellfish may be a significant sink for Ti-containing NPs.
Collapse
Affiliation(s)
- Yuan Sun
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China, Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Fei-Yun Tou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zuo-Shun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xing-Pan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chang Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jia-Yuan Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Institute of Eco-Chongming, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
19
|
Zhang Y, Qi G, Yao L, Huang L, Wang J, Gao W. Effects of Metal Nanoparticles and Other Preparative Materials in the Environment on Plants: From the Perspective of Improving Secondary Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:916-933. [PMID: 35073067 DOI: 10.1021/acs.jafc.1c05152] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The influence of preparation material residues in wastewater and soil on plants has been paid more and more attention by researchers. Secondary metabolites play an important role in the application of plants. It was found that nanomaterials can increase the content of plant secondary metabolites in addition to their role in pharmaceutical preparations. For example, 800 mg/kg copper oxide nanoparticles (NPs) increased the content of p-coumaric acid in cucumber by 225 times. Nanoparticles can cause oxidative stress in plants, increase signal molecule, and upregulate the synthase gene expression, increasing the content of secondary metabolites. The increase of components such as polyphenols and total flavonoids may be related to oxidative stress. This paper reviews the application and mechanism of metal nanomaterials (Ag-NP, ZnO-NP, CeO2-NP, Cds-NP, Mn-NP, CuO-NP) in promoting the synthesis of secondary metabolites from plants. In addition, the effects of some other preparative materials (cyclodextrins and immobilized molds) on plant secondary metabolites are also involved. Finally, possible future research is discussed.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - GeYuan Qi
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Juan Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wenyuan Gao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Rajput VD, Singh A, Minkina T, Rawat S, Mandzhieva S, Sushkova S, Shuvaeva V, Nazarenko O, Rajput P, Komariah, Verma KK, Singh AK, Rao M, Upadhyay SK. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:2727. [PMID: 34961197 PMCID: PMC8707238 DOI: 10.3390/plants10122727] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 09/01/2023]
Abstract
Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Abhishek Singh
- Department of Agricultural Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut 250110, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Sapna Rawat
- Department of Botany, University of Delhi, Delhi 110007, India;
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Victoria Shuvaeva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Olga Nazarenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.M.); (S.S.); (V.S.); (O.N.)
| | - Priyadarshani Rajput
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Komariah
- Soil Science Department, Faculty of Agriculture, Sebelas Maret University, Surakarta 57126, Indonesia;
| | - Krishan K. Verma
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Awani Kumar Singh
- Centre for Protected Cultivation, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Mahesh Rao
- Pusa Campus, ICAR-National Institute for Plant Biotechnology (NIPB), New Delhi 110012, India;
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V.B.S. Purvanhal University, Jaunpur 222003, India;
| |
Collapse
|
21
|
Che X, Ding R, Zhang Q, Li Y, Sun Q, Li Y, Zhang Z, Wang W, Gao H. The severe toxicity of CuO nanoparticles to the photosynthesis of the prokaryotic algae Arthrospira sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54105-54116. [PMID: 34043167 DOI: 10.1007/s11356-021-14341-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
This research first verified that prokaryotic algae are more sensitive to toxicity of CuO nanoparticles (CuO NPs) than eukaryotic algae and that CuO NPs damaged photosynthesis of prokaryotic algae (Arthrospira sp.) but had no effect on respiration. The Cu2+ released by CuO NPs caused a bending deformation of the thylakoid, which was an important cause of the decline in photosynthetic capacity. In addition, the D1 protein was the most susceptible site to CuO NPs. The degradation of D1 protein reduced photosynthetic electron transport, which enhanced the excess excitation energy to cause the accumulation of reactive oxygen species (ROS) to further result in oxidative stress on algae. Dissolved organic matter (DOM) increased the toxicity of CuO NPs to photosynthesis of Arthrospira sp. The damage of photosynthesis caused by CuO NPs is an important reason why CuO NPs have a serious toxicity to algae.
Collapse
Affiliation(s)
- Xingkai Che
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ruirui Ding
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yujie Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Qi Sun
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yuting Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Zishan Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Huiyuan Gao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
22
|
El-Moneim DA, Dawood MFA, Moursi YS, Farghaly AA, Afifi M, Sallam A. Positive and negative effects of nanoparticles on agricultural crops. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:21. [DOI: 10.1007/s41204-021-00117-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/23/2021] [Indexed: 09/02/2023]
|
23
|
Rajput VD, Minkina T, Fedorenko A, Chernikova N, Hassan T, Mandzhieva S, Sushkova S, Lysenko V, Soldatov MA, Burachevskaya M. Effects of Zinc Oxide Nanoparticles on Physiological and Anatomical Indices in Spring Barley Tissues. NANOMATERIALS 2021; 11:nano11071722. [PMID: 34208886 PMCID: PMC8307126 DOI: 10.3390/nano11071722] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present work was to investigate the toxic effects of zinc oxide nanoparticles (ZnO NPs, particle size < 50 nm) on the physiological and anatomical indices of spring barley (Hordeum sativum L.). The results show that ZnO NPs inhibited H. sativum growth by affecting the chlorophyll fluorescence emissions and causing deformations of the stomatal and trichome morphology, alterations to the cellular organizations, including irregularities of the chloroplasts, and disruptions to the grana and thylakoid organizations. There was a lower number of chloroplasts per cell observed in the H. sativum leaf cells treated with ZnO NPs as compared to the non-treated plants. Cytomorphometric quantification revealed that ZnO NPs decreased the size of the chloroplast by 1.5 and 4 times in 300 and 2000 mg/L ZnO NP-treated plants, respectively. The elemental analysis showed higher Zn accumulation in the treated leaf tissues (3.8 and 10.18-fold with 300 and 2000 mg/L ZnO NPs, respectively) than the untreated. High contents of Zn were observed in several spots in ZnO NP-treated leaf tissues using X-ray fluorescence. Deviations in the anatomical indices were significantly correlated with physiological observations. The accumulation of Zn content in plant tissues that originated from ZnO NPs was shown to cause damage to the structural organization of the photosynthetic apparatus and reduced the photosynthetic activities.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
- Correspondence: or ; Tel.: +7-918-589-00-93
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Aleksei Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Natalia Chernikova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Tara Hassan
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| | - Mikhail A. Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Marina Burachevskaya
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (A.F.); (N.C.); (T.H.); (S.M.); (S.S.); (V.L.); (M.B.)
| |
Collapse
|
24
|
Venzhik YV, Moshkov IE, Dykman LA. Influence of Nanoparticles of Metals and Their Oxides on the Photosynthetic Apparatus of Plants. BIOL BULL+ 2021. [DOI: 10.1134/s106235902102014x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Xiong T, Zhang S, Kang Z, Zhang T, Li S. Dose-Dependent Physiological and Transcriptomic Responses of Lettuce ( Lactuca sativa L.) to Copper Oxide Nanoparticles-Insights into the Phytotoxicity Mechanisms. Int J Mol Sci 2021; 22:3688. [PMID: 33916236 PMCID: PMC8036535 DOI: 10.3390/ijms22073688] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex mechanisms involved in plant response to nanoparticles (NPs) is indispensable in assessing the environmental impact of nano-pollutants. Plant leaves can directly intercept or absorb NPs deposited on their surface; however, the toxicity mechanisms of NPs to plant leaves are unclear. In this study, lettuce leaves were exposed to copper oxide nanoparticles (CuO-NPs, 0, 100, and 1000 mg/L) for 15 days, then physiological tests and transcriptomic analyses were conducted to evaluate the negative impacts of CuO-NPs. Both physiological and transcriptomic results demonstrated that CuO-NPs adversely affected plant growth, photosynthesis, and enhanced reactive oxygen species (ROS) accumulation and antioxidant system activity. The comparative transcriptome analysis showed that 2270 and 4264 genes were differentially expressed upon exposure to 100 and 1000 mg/L CuO-NPs. Gene expression analysis suggested the ATP-binding cassette (ABC) transporter family, heavy metal-associated isoprenylated plant proteins (HIPPs), endocytosis, and other metal ion binding proteins or channels play significant roles in CuO-NP accumulation by plant leaves. Furthermore, the variation in antioxidant enzyme transcript levels (POD1, MDAR4, APX2, FSDs), flavonoid content, cell wall structure and components, and hormone (auxin) could be essential in regulating CuO-NPs-induced stress. These findings could help understand the toxicity mechanisms of metal NPs on crops, especially NPs resulting from foliar exposure.
Collapse
Affiliation(s)
| | | | | | | | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China; (T.X.); (S.Z.); (Z.K.); (T.Z.)
| |
Collapse
|
26
|
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111697. [PMID: 33396028 DOI: 10.1016/j.ecoenv.2020.111697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Owing to the unique properties and useful applications in numerous fields, nanomaterials (NMs) received a great attention. The mass production of NMs has raised major concern for the environment. Recently, some altered growth patterns in plants have been reported due to the plant-NMs interactions. However, for NMs safe applications in agriculture and medicine, a comprehensive understanding of bio-nano interactions is crucial. The main goal of this review article is to summarize the results of the toxicological studies that have shown the in vitro and in vivo interactions of NMs with plants. The toxicity mechanisms are briefly discussed in plants as the defense mechanism works to overcome the stress caused by NMs implications. Indeed, the impact of NMs on plants varies significantly with many factors including physicochemical properties of NMs, culture media, and plant species. To investigate the impacts, dose metrics is an important analysis for assaying toxicity and is discussed in the present article to broadly open up different aspects of nanotoxicological investigations. To access reliable quantification and measurement in laboratories, standardized methodologies are crucial for precise dose delivery of NMs to plants during exposure. Altogether, the information is significant to researchers to describe restrictions and future perspectives.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Sepideh Mahjouri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
27
|
Green Synthesis and Characterization of CuO Nanoparticles Derived from Papaya Peel Extract for the Photocatalytic Degradation of Palm Oil Mill Effluent (POME). SUSTAINABILITY 2021. [DOI: 10.3390/su13020796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, the green chemistry based-approach for the synthesis of nanoparticles has shown tremendous promise as an alternative to the costly and environmentally unfriendly chemically synthesized nanoparticles. In this study, copper oxide nanoparticles (CuO NPs) were synthesized through a green approach using the water extract of papaya (Carica papaya L.) peel biowaste as reducing as well as stabilizing agents, and copper (II) nitrate trihydrate salt as a precursor. The structural properties, crystallinity, purity, morphology, and the chemical composition of as-synthesized CuO NPs were analyzed using different analytical methods. The analytical results revealed that the synthesized CuO was observed as spherical-like in particles with measured sizes ranging from 85–140 nm and has monoclinic crystalline phase with good purity. The Fourier transform infrared (FTIR) spectroscopic results confirmed the formation of the Cu-O bond through the involvement of the potential functional groups of biomolecules in papaya peel extract. Regarding photocatalytic activity, the green-synthesized CuO NPs were employed as a photocatalyst for the degradation of palm oil mill effluent (POME) beneath the ultraviolet (UV) light and results showed 66% degradation of the POME was achieved after 3 h exposure to UV irradiation. The phytotoxicity experiment using mung bean (Vigna radiata L.) seed also showed a reduction of toxicity after photodegradation.
Collapse
|
28
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
29
|
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1654. [PMID: 32842495 PMCID: PMC7558820 DOI: 10.3390/nano10091654] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Nanotechnology is a tool that in the last decade has demonstrated multiple applications in several sectors, including agroindustry. There has been an advance in the development of nanoparticulated systems to be used as fertilizers, pesticides, herbicides, sensors, and quality stimulants, among other applications. The nanoencapsulation process not only protects the active ingredient but also can affect the diffusion, interaction, and activity. It is important to evaluate the negative aspects of the use of nanoparticles (NPs) in agriculture. Given the high impact of the nanoparticulated systems in the agro-industrial field, this review aims to address the effects of various nanomaterials on the morphology, metabolomics, and genetic modification of several crops.
Collapse
Affiliation(s)
- Luis A. Paramo
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ana A. Feregrino-Pérez
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Ramón Guevara
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| | - Sandra Mendoza
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, Chemistry Faculty, Universidad Autónoma de Querétaro, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico;
| | - Karen Esquivel
- Graduate and Research Division, Engineering Faculty, Universidad Autónoma de Querétaro, Cerro de las campanas, C.P. 76010, Santiago de Querétaro, Qro., Mexico; (L.A.P.); (A.A.F.-P.); (R.G.)
| |
Collapse
|
30
|
Chen D, Zhang H, Wang Q, Shao M, Li X, Chen D, Zeng R, Song Y. Intraspecific variations in cadmium tolerance and phytoaccumulation in giant duckweed (Spirodela polyrhiza). JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122672. [PMID: 32305716 DOI: 10.1016/j.jhazmat.2020.122672] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/25/2023]
Abstract
Duckweeds are widely recognized for the heavy metal phytoremediation. However, the intraspecific variations in biological responses of duckweeds to heavy metal remain largely unknown. Here, the toxicity and phytoaccumulation of cadmium (Cd) were synchronously evaluated in 30 accessions of giant duckweed (Spirodela polyrhiza) collected from different provenances in Southern China. Exposure to 1 μM Cd decreased relative growth rates of dry weight, fronds number and fronds area, as well as photosynthetic pigment contents, while it increased H2O2 accumulation, lipid peroxidation and activities of anti-oxidant enzymes in the majority of accessions. Cd treatment led to remarkable Cd accumulation but little changes in the starch content in giant duckweed. The biological responses to Cd varied among the accessions. Further correlation analysis indicated that growth traits and Cd concentration were positively correlated with Cd accumulation, while the contents of chlorophyll, H2O2 and MDA were negatively associated with Cd accumulation. Our results proved the great intraspecific variation in Cd tolerance of giant duckweed, suggesting a valuable natural resource for Cd phytoremediation. Moreover, different mechanisms may be exploited by S. polyrhiza for phytoaccumulation, but growth maintenance, Cd uptake and antioxidative enzyme-independent ROS-scavenging under Cd exposure are the common mechanisms contributing to Cd accumulation ability.
Collapse
Affiliation(s)
- Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Qiongli Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Xinyu Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
31
|
Rippner DA, Lien J, Balla H, Guo T, Green PG, Young TM, Parikh SJ. Surface modification induced cuprous oxide nanoparticle toxicity to duckweed at sub-toxic metal concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137607. [PMID: 32213435 DOI: 10.1016/j.scitotenv.2020.137607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Nanoparticle capping agents are critical for controlling the growth, oxidation state, and final particle size during aqueous synthesis. However, despite the known phytotoxicity of cetyltrimethylammonium bromide (CTAB) to plants, it is used to synthesize metal oxide nanoparticles of uniform size and with mesoporous structure. Among the few studies that have investigated how CTAB influences nanoparticle toxicity, CTAB has never been identified as the primary cause of nanoparticle toxicity in environmental systems; rather nanoparticle surface charge or morphology was identified as the driver of toxicity in environmentally relevant systems. In the current study, CTAB release from CTAB surface modified Cu2O nanoparticles (SM-Cu2O NPs) inhibited duckweed (Landoltia punctata) growth, even when administered at subtoxic Cu concentrations. Organic ligands, such as humic acid (HA) and ethylenediaminetetraacetic acid (EDTA), lessened growth inhibition associated with exposure to SM-Cu2O NPs, likely through electrostatic and hydrophobic interactions with CTAB. Such results highlight the need for a more holistic approach to nanoparticle surface modification and improved communication between toxicologists and synthetic chemists to develop green alternatives for nanoparticle synthesis.
Collapse
Affiliation(s)
- Devin A Rippner
- Department of Land, Air and Water Resources, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Jennifer Lien
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Hagr Balla
- Department of Land, Air and Water Resources, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America; Department of Civil and Environmental Engineering, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Ting Guo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Peter G Green
- Department of Civil and Environmental Engineering, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Thomas M Young
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
32
|
Kumar H, Dutta PK. Thioglycolic acid modified chitosan: a template for in-situ synthesis of CdSe QDs for cell imaging. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1766981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Hridyesh Kumar
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - P. K. Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
33
|
Lalau CM, Simioni C, Vicentini DS, Ouriques LC, Mohedano RA, Puerari RC, Matias WG. Toxicological effects of AgNPs on duckweed (Landoltia punctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136318. [PMID: 32050368 DOI: 10.1016/j.scitotenv.2019.136318] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are widely applied in several types of products since they act as a biocide. However, their high level of release into the environment can bring risks to ecosystems. Thus, the toxicity of AgNPs toward duckweed (Landoltia punctata) was investigated by monitoring the growth rate inhibition and the effect on the photosynthetic metabolism through morphological and ultrastructural analysis. The AgNPs were characterized by transmission electron microscopy and the effective diameter (dynamic light scattering) and zeta potential were determined. Plants were grown according to the environmental conditions recommended in ISO/DIS 20079 and then exposed to different concentrations of AgNPs. Inhibition of the growth rate was measured based on the EC50 and changes in the morphology, cellular structures and photosynthetic pigments were evaluated along with the silver accumulation. Although the results showed low growth inhibition when compared to other studies, significant damage to the ultrastructure, decreases in the photosynthetic pigments and starch grains, an increase in the phenolic compounds and physiological changes, such as a loss of color, were observed. Moreover, the accumulation of silver ions was noted and this could lead to bioamplification in consumer organisms, since duckweed belongs to the first level of the food chain.
Collapse
Affiliation(s)
- Cristina M Lalau
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Carmen Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88049-900, CP 476, Brazil
| | - Denice S Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Luciane C Ouriques
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88049-900, CP 476, Brazil.
| | - Rodrigo A Mohedano
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| | - Rodrigo C Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - William G Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina State, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| |
Collapse
|
34
|
Effects of gold nanoparticles on photophysical behaviour of chlorophyll and pheophytin. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Rajput V, Minkina T, Sushkova S, Behal A, Maksimov A, Blicharska E, Ghazaryan K, Movsesyan H, Barsova N. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:147-158. [PMID: 31111333 DOI: 10.1007/s10653-019-00317-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The progressive increase in nanoparticles (NPs) applications and their potential release into the environment because the majority of them end up in the soil without proper care have drawn considerable attention to the public health, which has become an increasingly important area of research. It is required to understand ecological threats of NPs before applications. Once NPs are released into the environment, they are subjected to translocation and go through several modifications, such as bio/geo-transformation which plays a significant role in determination of ultimate fate in the environment. The interaction between plants and NPs is an important aspect of the risk assessment. The plants growing in a contaminated medium may significantly pose a threat to human health via the food chain. Metal oxide NPs ZnO and CuO, the most important NPs, are highly toxic to a wide range of organisms. Exposure and effects of CuO and ZnO NPs on soil biota and human health are critically discussed in this study. The potential benefits and unintentional dangers of NPs to the environment and human health are essential to evaluate and expected to produce less toxic and more degradable NPs to minimize the environmental risk in the future.
Collapse
Affiliation(s)
- Vishnu Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russia.
| | | | | | - Arvind Behal
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Alexey Maksimov
- Rostov Research Institute of Oncology, Rostov-on-Don, 344037, Russia
| | | | | | | | | |
Collapse
|
36
|
Rajput V, Minkina T, Ahmed B, Sushkova S, Singh R, Soldatov M, Laratte B, Fedorenko A, Mandzhieva S, Blicharska E, Musarrat J, Saquib Q, Flieger J, Gorovtsov A. Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:51-96. [PMID: 31286265 DOI: 10.1007/398_2019_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the past two decades, increased production and usage of metallic nanoparticles (NPs) have inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and have become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms is poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants have also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment.
Collapse
Affiliation(s)
- Vishnu Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Bilal Ahmed
- Department of Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mikhail Soldatov
- The Smart Materials Research Center, Southern Federal University, Rostov-on-Don, Russia
| | - Bertrand Laratte
- Département de Conception, Industrialisation, Risque, Décision, Ecole Nationale Supérieure d'Arts et Métiers, Paris, France
| | - Alexey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Javed Musarrat
- Department of Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Andrey Gorovtsov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
37
|
CTAB Surfactant Assisted and High pH Nano-Formulations of CuO Nanoparticles Pose Greater Cytotoxic and Genotoxic Effects. Sci Rep 2019; 9:5880. [PMID: 30971757 PMCID: PMC6458183 DOI: 10.1038/s41598-019-42419-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Toxicity of synthesized nanoparticles is the area of concern to all the researchers due to their possible health implications. Here we synthesized copper oxide nanoparticles (CuO NPs) without surfactant at pH value of 2, 7, 10 and with cetyletrimethylammoniumbromide (CTAB) surfactant at pH 7. Synthesized nanoparticles were characterized for various structural parameters including crystallite size, lattice parameters, strain, phase analysis using X-ray diffraction analysis, and morphological aspects have been analyzed using FESEM and HRTEM imaging. All the four nano-formulations were analyzed for their toxic potential using Allium cepa L. at three different concentrations (0.1, 0.01 and 0.001 g/100 ml). Cytological and genetic parameters including mitotic index, mitotic inhibition, aberrant cells, binucleated cells, micronucleated cells, chromosomal bridges, fragmentation, stickiness, laggards, vagrants, c-mitosis and disturbed spindle were analyzed. Our results revealed a dose dependent increase in cytotoxic parameters including decreased total dividing cells, mitotic index, and increased mitotic inhibition. Genotoxic parameters also increased at higher treatment concentrations including chromosomal aberrations and percent aberrant cells. The pH value at the time of particle synthesis has significant influence on the crystallite size and agglomeration as assessed by XRD, FESEM and HRTEM analysis. The NPs synthesized at pH 2 and 10 were found to be of smaller size and posed more toxic effects as compared to particles synthesized at neutral pH. On the other hand, CTAB assisted CuO NPs synthesized at pH 7 revealed even smaller crystallite sizes and thus boost the toxicity in all the parameters as compared to NPs synthesized without CTAB. The present study suggested an increase in toxic parameters of synthesized CuO NPs with respect to crystallite size which is pH dependent. Addition of CTAB at pH 7 decreased the crystallite as well as particle size and enhanced the toxic potential. Further studies are recommended to analyze the effect of surfactant addition in toxicological studies on CuO NPs.
Collapse
|
38
|
Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1103-1113. [PMID: 30248835 DOI: 10.1016/j.scitotenv.2018.07.211] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The rapid growth of copper oxide nanoparticles (CuO NPs) production and its abundant uses in many industries, and increasing release into an environment from both intentional and unintentional sources, create risks to spring barley (Hordeum sativum distichum), one of the most important staple food crop. Thereby, the aim of this study was to investigate the phytotoxicity of CuO NPs on H. sativum growth in hydroponic system. The CuO NPs inhibited H. sativum growth by affecting the germination rate, root and shoot lengths, maximal quantum yield of photosystem II, and transpiration rate. Structural and ultrastructural examination of H. sativum tissues using light, transmission and scanning electron microscopy showed effects on stomatal aperture and root morphology, metaxylem size and changes in cellular organelles (plastids, mitochondria), as well as in plastoglobules, starch granules, protoplasm, and membranes. The formation of electron-dense materials was noted in the intercellular space of cells of CuO NPs-treated plants. In addition, relative root length was one-third (35%) that of the control, and relative shoot length (10%) was also reduced. Further, the Cu content of roots and leaves of CuO NPs-treated plants was 5.7 and 6.4-folds higher than the control (without CuO NPs), respectively. Presented data were significant at p ≤ 0.05 compared to control. Conclusively, the results provide insights into our understanding of CuO NPs toxicity on H. sativum, and findings could be used for developing strategies for safe disposal of NPs.
Collapse
Affiliation(s)
- Vishnu Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia.
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Alexey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Nadezhda Duplii
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia
| | - Grigory Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don 344090, Russia; Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Konstantin Dvadnenko
- Southern Scientific Center of Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Karen Ghazaryan
- Department of Ecology and Nature Protection, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
39
|
Yue L, Zhao J, Yu X, Lv K, Wang Z, Xing B. Interaction of CuO nanoparticles with duckweed (Lemna minor. L): Uptake, distribution and ROS production sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:543-552. [PMID: 30223239 DOI: 10.1016/j.envpol.2018.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
CuO engineered nanoparticles (NPs) are of increasing concern due to their extensive use in daily life and adverse effect on aquatic organisms. The investigations on the toxicity of CuO NPs to aquatic plants through uptake from roots versus fronds are limited. This paper discusses the interactions of CuO NPs with Lemna minor, a floating plant. After CuO NPs (150 μg L-1) exposure for 7 days, the frond number, frond surface area and dry weights of whole plants significantly decreased by 32%, 47% and 33%; the responses were dose-dependent. Microscopy imaging showed that the epidermis was severely damaged in fronds, edges were severely sloughed off and cell integrity was damaged in roots. Shrinkage of both chloroplast and starch grains were observed in the frond cells. Internalization of CuO NPs in root and frond cells during CuO NPs (1 mg L-1) exposure was confirmed with the root Cu levels of Lemna minor being three times higher than the fronds by using transmission electron microscopy and flame atomic absorption spectrophotometry. Reactive oxygen species, mainly H2O2 (increased by 56%) and ·OH (increased by 57%), accumulated in Lemna minor tissues in response to CuO NPs exposure. Moreover, chloroplasts were confirmed as a site of ROS production. These findings are helpful for better understanding the biological responses of aquatic plants upon NPs exposure.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jian Zhao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Xiaoyu Yu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Kunmiao Lv
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
40
|
Tighe-Neira R, Carmora E, Recio G, Nunes-Nesi A, Reyes-Diaz M, Alberdi M, Rengel Z, Inostroza-Blancheteau C. Metallic nanoparticles influence the structure and function of the photosynthetic apparatus in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:408-417. [PMID: 30064097 DOI: 10.1016/j.plaphy.2018.07.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The applications of nanoparticles continue to expand into areas as diverse as medicine, bioremediation, cosmetics, pharmacology and various industries, including agri-food production. The widespread use of nanoparticles has generated concerns given the impact these nanoparticles - mostly metal-based such as CuO, Ag, Au, CeO2, TiO2, ZnO, Co, and Pt - could be having on plants. Some of the most studied variables are plant growth, development, production of biomass, and ultimately oxidative stress and photosynthesis. A systematic appraisal of information about the impact of nanoparticles on these processes is needed to enhance our understanding of the effects of metallic nanoparticles and oxides on the structure and function on the plant photosynthetic apparatus. Most nanoparticles studied, especially CuO and Ag, had a detrimental impact on the structure and function of the photosynthetic apparatus. Nanoparticles led to a decrease in concentration of photosynthetic pigments, especially chlorophyll, and disruption of grana and other malformations in chloroplasts. Regarding the functions of the photosynthetic apparatus, nanoparticles were associated with a decrease in the photosynthetic efficiency of photosystem II and decreased net photosynthesis. However, CeO2 and TiO2 nanoparticles may have a positive effect on photosynthetic efficiency, mainly due to an increase in electron flow between the photosystems II and I in the Hill reaction, as well as an increase in Rubisco activity in the Calvin and Benson cycle. Nevertheless, the underlying mechanisms are poorly understood. The future mechanistic work needs to be aimed at characterizing the enhancing effect of nanoparticles on the active generation of ATP and NADPH, carbon fixation and its incorporation into primary molecules such as photo-assimilates.
Collapse
Affiliation(s)
- Ricardo Tighe-Neira
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Erico Carmora
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Gonzalo Recio
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Minas Gerais, 36570-900, Viçosa, Brazil
| | - Marjorie Reyes-Diaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Miren Alberdi
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile; Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco, Chile.
| |
Collapse
|
41
|
Yang J, Li G, Bishopp A, Heenatigala PPM, Hu S, Chen Y, Wu Z, Kumar S, Duan P, Yao L, Hou H. A Comparison of Growth on Mercuric Chloride for Three Lemnaceae Species Reveals Differences in Growth Dynamics That Effect Their Suitability for Use in Either Monitoring or Remediating Ecosystems Contaminated With Mercury. Front Chem 2018; 6:112. [PMID: 29713627 PMCID: PMC5911492 DOI: 10.3389/fchem.2018.00112] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a toxic heavy metal that can alter the ecological balance when it contaminates aquatic ecosystems. Previously, researchers have used various Lemnaceae species either to monitor and/or remove heavy metals from freshwater systems. As Hg contamination is a pressing issue for aquatic systems worldwide, we assessed its impact on the growth of three commonly species of Lemnaceae- Lemna gibba 6745, Lemna minor 6580 and Spirodela polyrhiza 5543. We exposed plants to different concentrations of mercuric chloride (HgCl2) and monitored their growth, including relative growth rate, frond number (FN), and fresh weight (FW). These data were coupled with measurements of starch content, levels of photosynthetic pigment and the activities of antioxidant substances. The growth of all three lines showed significant negative correlations with Hg concentrations, and starch content, photosynthetic pigment, soluble protein and antioxidant enzymes levels were all clearly affected. Our results indicate that the L. gibba line used in this study was the most suitable of the three for biomonitoring of water contaminated with Hg. Accumulation of Hg was highest in the S. polyrhiza line with a bioconcentration factor over 1,000, making this line the most suitable of the three tested for use in an Hg bioremediation system.
Collapse
Affiliation(s)
- Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham, United Kingdom
| | - P P M Heenatigala
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Shiqi Hu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Wu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Sunjeet Kumar
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, College of Agricultural Engineering, Nanyang Normal University, Henan, China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, College of Agricultural Engineering, Nanyang Normal University, Henan, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
42
|
Rippner DA, Green PG, Young TM, Parikh SJ. Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:692-698. [PMID: 29241155 DOI: 10.1016/j.envpol.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
With increasing demand for recycled wastewater for irrigation purposes, there is a need to evaluate the potential for manufactured nanomaterials in waste water to impact crop production and agroecosystems. Copper oxide nanoparticles (CuO NPs) have previously been shown to negatively impact the growth of duckweed (Landoltia punctata) a model aquatic plant consumed by water fowl and widely found in agricultural runoff ditches in temperate climates. However, prior studies involving CuO NP toxicity to duckweed have focused on systems without the presence of dissolved organic matter (DOM). In the current study, duckweed growth inhibition was shown to be a function of aqueous Cu2+ concentration. Growth inhibition was greatest from aqueous CuCl2 and, for particles, increased with decreasing CuO particle size. The dissolution of CuO NPs in ½ Hoagland's solution was measured to increase with decreasing particle size and in the presence of Suwannee river humic and fulvic acids (HA; FA). However, the current results suggest that HA, and to a lesser extent, FA, decrease the toxicity of both CuO NPs and free ionized Cu to duckweed, likely by inhibiting Cu availability through Cu-DOM complex formation. Such results are consistent with changes to Cu speciation as predicted by speciation modeling software and suggest that DOM changes Cu speciation and therefore toxicity in natural systems.
Collapse
Affiliation(s)
- Devin A Rippner
- University of California, Davis, Department of Land, Air and Water Resources, One Shields Avenue, Davis, CA, 95616, USA
| | - Peter G Green
- University of California, Davis, Department of Land, Air and Water Resources, One Shields Avenue, Davis, CA, 95616, USA; University of California, Davis, Department of Civil and Environmental Engineering, One Shields Avenue, Davis, CA, 95616, USA
| | - Thomas M Young
- University of California, Davis, Department of Civil and Environmental Engineering, One Shields Avenue, Davis, CA, 95616, USA
| | - Sanjai J Parikh
- University of California, Davis, Department of Land, Air and Water Resources, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
43
|
Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F. Effects of TiO 2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci (China) 2018; 64:130-138. [PMID: 29478632 DOI: 10.1016/j.jes.2016.12.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 11/25/2016] [Accepted: 12/17/2016] [Indexed: 06/08/2023]
Abstract
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles (TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated. Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPS to plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species.
Collapse
Affiliation(s)
- Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran; Department of Materials Science and Nanotechnology, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Mahboubeh Abedi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Roshanak Tarrahi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohammadreza Dadpour
- Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Fatemeh Vafaei
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
44
|
Liu J, Yin P, Zhao L. Adverse effect of nano-TiO2 on the marine macroalgae Gracilaria lemaneiformis (Gracilariales, Rhodophyta): growth and antioxidant activity. RSC Adv 2018; 8:29172-29178. [PMID: 35547966 PMCID: PMC9084502 DOI: 10.1039/c8ra05156a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/07/2018] [Indexed: 11/22/2022] Open
Abstract
Macroalgae, the major contributor of primary productivity in coastal seas, contribute to the material cycle and energy flow in marine ecosystems. The purpose of this work was to evaluate the toxic effect of nano-TiO2 on the growth and antioxidant activity of Gracilaria lemaneiformis. An obvious inhibition of growth was observed in this study. The algae exposed to nano-TiO2 showed a negative growth rate at 20 mg L−1 and 40 mg L−1 during the 15 days exposure. The concentration of soluble protein increased slightly during the first 3 days of exposure, but it gradually diminished thereafter due to the high concentrations of nano-TiO2 and to prolonged exposure. Nano-TiO2 caused oxidative damage in G. lemaneiformis; superoxide anions accumulated, and nitrate reductase activity decreased linearly with the increase in nano-TiO2. Furthermore, extracts of G. lemaneiformis can scavenge DPPH· and hydroxyl radicals for their antioxidant capacity. However, the capacity to scavenge DPPH· and hydroxyl radicals in vitro decreased slightly with the increase in nano-TiO2. The results from this work imply that macroalgae can be an effective biomarker of nano-TiO2 contamination and can be useful indicators to evaluate the oxidative damage of increasing pollutants in marine ecosystems. Macroalgae, the major contributor of primary productivity in coastal seas, contribute to the material cycle and energy flow in marine ecosystems.![]()
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- People's Republic of China
| | - Pinghe Yin
- Research Center of Analytical Testing
- Jinan University
- Guangzhou 510632
- China
| | - Ling Zhao
- Department of Environmental Engineering
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
45
|
Manusadžianas L, Gylytė B, Grigutytė R, Karitonas R, Sadauskas K, Vitkus R, Šiliauskas L, Vaičiūnienė J. Accumulation of copper in the cell compartments of charophyte Nitellopsis obtusa after its exposure to copper oxide nanoparticle suspension. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27653-27661. [PMID: 27830416 DOI: 10.1007/s11356-016-8023-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Cu accumulation in the internodal cell of charophyte Nitellopsis obtusa or its compartments was investigated after 3-h-exposure to lethal effective concentrations (8-day LC50) of CuO nanoparticle (nCuO) suspension or CuSO4 solution, i.e. 100 mg/L nCuO or 3.18 mg Cu/L as CuSO4. In both cases, the major part of Cu accumulated in the cell walls. The presence of CuO NPs in the cell wall and within the cell was visualized by scanning electron microscope images as well as confirmed by energy dispersive X-ray spectrum data. Although a threefold higher intracellular concentration of Cu was found after treatment with nCuO suspension, 3.18 mg Cu/L as CuSO4 induced fast and substantial depolarization of cell membrane potential contrary to that of 100 mg/L nCuO. A delayed effect of nCuO on the survival of the cells was also observed. This suggests that internally accumulated Cu was far less active and further supports the hypothesis of delayed toxicity of internalized nCuO NPs to charophyte cells.
Collapse
Affiliation(s)
- Levonas Manusadžianas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania.
| | - Brigita Gylytė
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania
| | - Reda Grigutytė
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania
| | - Rolandas Karitonas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania
| | - Kazys Sadauskas
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania
| | - Rimantas Vitkus
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 49, LT-08406, Vilnius, Lithuania
| | - Laurynas Šiliauskas
- Nature Research Centre, Institute of Geology and Geography, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Jūratė Vaičiūnienė
- Centre for Physical Sciences and Technology, Institute of Chemistry, A. Goštauto Str. 9, LT-01108, Vilnius, Lithuania
| |
Collapse
|
46
|
Stegemeier JP, Avellan A, Lowry GV. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12114-12122. [PMID: 29017014 DOI: 10.1021/acs.est.7b02972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ag0- and CuO-engineered nanomaterials (ENMs) or their sulfidized forms are introduced into freshwater wetlands through wastewater effluent and agricultural runoff. Knowledge about the rates of transformations of these ENMs in realistic environments and the impact of the form of the incoming ENM (i.e., sulfidized or pristine) on bioavailability and fate is limited. Here, five freshwater wetland mesocosms were exposed to 3 g of total metal as CuO, CuS, Ag0, or Ag2S ENMs or soluble CuNO3 added weekly for 1 month. Total metal and metal speciation was measured in sediment and plant samples collected 1, 3, 6, and 9 months after addition. The form of the added ENM did not affect the metal distribution, and ENMs distributed similarly to added ionic Cu or Ag. For the dosing condition used, ∼50% of the added Ag or Cu metal mass was found in Egeria densa plant tissue, with the remainder primarily in the surficial sediment. Ag0 and CuO ENMs transformed quickly in sediment, with no evidence of CuO and only ∼4% of silver present as Ag0 ENM 1 week after the last ENM addition. In contrast to sediment, Ag0 and CuO ENMs were persistent in E. densa tissues for up to 9 and 6 months, respectively. The persistence of ENMs in E. densa suggests that chronic exposures, or food web transfers, for both the transformed and the initially added ENMs are possible.
Collapse
Affiliation(s)
- John P Stegemeier
- Center for the Environmental Implications of NanoTechnology (CEINT) and ‡Civil & Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Astrid Avellan
- Center for the Environmental Implications of NanoTechnology (CEINT) and ‡Civil & Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Center for the Environmental Implications of NanoTechnology (CEINT) and ‡Civil & Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
47
|
Dolenc Koce J. Effects of exposure to nano and bulk sized TiO 2 and CuO in Lemna minor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:43-49. [PMID: 28843135 DOI: 10.1016/j.plaphy.2017.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles of TiO2 and CuO are among most commonly used nanoparticles, and elevated concentrations of them are expected to be found in all environments, including aquatic. A standard growth inhibition test ISO/CD 20079 was used to determine the toxicity of nano sized and larger micro sized (bulk) particles in the concentrations of 0.1, 1, 10, 100 and 1000 μM CuO and TiO2 on common duckweed (Lemna minor L.). Both nano and bulk CuO particles caused changes in the structure and function of treated plants. The number of fronds and colonies decreased by as much as 78%, the length of roots and fronds decreased by 99% and 14%, respectively. Furthermore, photochemical efficiency was reduced by up to 35%, and the activities of antioxidative enzymes guaiacol peroxidase, ascorbate peroxidase and glutathione reductase increased by more than 240%. The altered physiological state of the CuO exposed plants was also reflected in the elevated occurrence of necrosis and bleaching in the duckweed colonies. Nano sized particles of CuO proved more phytotoxic than bulk particles, and the effects of both studied CuO sizes were concentration dependent. On the other hand, both bulk and nano sized particles of TiO2 caused no severe phytotoxic effects, there was no concentration dependence and they could be considered as non-harmful to common duckweed.
Collapse
Affiliation(s)
- Jasna Dolenc Koce
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
48
|
The Effect of Silver and Copper Nanoparticles on the Condition of English Oak (Quercus robur L.) Seedlings in a Container Nursery Experiment. FORESTS 2017. [DOI: 10.3390/f8090310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Stegemeier JP, Colman BP, Schwab F, Wiesner MR, Lowry GV. Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4936-4943. [PMID: 28383882 DOI: 10.1021/acs.est.6b06491] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems are expected to receive Ag0 and Ag2S nanoparticles (NPs) through anthropogenic waste streams. The speciation of silver in Ag-NPs affects their fate in ecosystems, but its influence on interactions with aquatic plants is still unclear. Here, the Ag speciation and distribution was measured in an aquatic plant, duckweed (Landoltia punctata), exposed to Ag0 or Ag2S NPs, or to AgNO3. The silver distribution in duckweed roots was visualized using synchrotron-based micro X-ray fluorescence (XRF) mapping and Ag speciation was determined using extended X-ray absorption fine structure (EXAFS) spectroscopy. Duckweed exposed to Ag2S-NPs or Ag0-NPs accumulated similar Ag concentrations despite an order of magnitude smaller dissolved Ag fraction measured in the exposure medium for Ag2S-NPs compared to Ag0-NPs. By 24 h after exposure, all three forms of silver had accumulated on and partially in the roots regardless of the form of Ag exposed to the plants. Once associated with duckweed tissue, Ag0-NPs had transformed primarily into silver sulfide and silver thiol species. This suggests that plant defenses were active within or at the root surface. The Ag2S-NPs remained as Ag2S, while AgNO3 exposure led to Ag0 and sulfur-associated Ag species in plant tissue. Thus, regardless of initial speciation, Ag was readily available to duckweed.
Collapse
Affiliation(s)
| | - Benjamin P Colman
- Department of Biology, Duke University , Durham, North Carolina 27708, United States
| | - Fabienne Schwab
- Civil & Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Civil & Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
| | | |
Collapse
|
50
|
Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-Ur-Rehman M, Farid M, Abbas F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:2-16. [PMID: 27267650 DOI: 10.1016/j.jhazmat.2016.05.061] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 05/18/2023]
Abstract
The concentrations of engineered metal and metal oxide nanoparticles (NPs) have increased in the environment due to increasing demand of NPs based products. This is causing a major concern for sustainable agriculture. This review presents the effects of NPs on agricultural crops at biochemical, physiological and molecular levels. Numerous studies showed that metal and metal oxide NPs affected the growth, yield and quality of important agricultural crops. The NPs altered mineral nutrition, photosynthesis and caused oxidative stress and induced genotoxicity in crops. The activities of antioxidant enzymes increased at low NPs toxicity while decreased at higher NPs toxicity in crops. Due to exposure of crop plants to NPs, the concentration of NPs increased in different plant parts including fruits and grains which could transfer to the food chain and pose a threat to human health. In conclusion, most of the NPs have both positive and negative effects on crops at physiological, morphological, biochemical and molecular levels. The effects of NPs on crop plants vary greatly with plant species, growth stages, growth conditions, method, dose, and duration of NPs exposure along with other factors. Further research orientation is also discussed in this review article.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Yong Sik Ok
- Korea Biochar Research Centre and Department of Biological Environment, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama, Iqbal Road, 38000 Faisalabad, Pakistan
| |
Collapse
|