1
|
Ren P, Chen M, Liu Q, Wu J, Li R, Lin Z, Li J. Gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes. Br Poult Sci 2024; 65:34-43. [PMID: 37807894 DOI: 10.1080/00071668.2023.2264807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
1. Intramuscular fat (IMF) is a key parameter for chicken meat quality. IMF deposition is driven by genetic, nutritional and management factors, with genetics being the determining factor. Previous whole transcriptome sequencing revealed that microRNA gga-let-7a-3p was related to lipid metabolism in breast muscle. This study further investigated the potential role of gga-let-7a-3p in IMF deposition.2. The mimic and inhibitor of gga-let-7a-3p were individually transfected into chicken intramuscular preadipocytes. Subsequently, the proliferation and differentiation states of the cells were detected. Transcriptome sequencing was performed on cells transfected with gga-let-7a-3p mimic.3. The results indicated that gga-let-7a-3p suppressed the mRNA levels of proliferation and differentiation-related genes, as well as the protein levels. EdU and Oil Red O assays revealed that gga-let-7a-3p restrained preadipocyte proliferation and differentiation. In addition, a total of 333 up-regulated genes and 807 down-regulated genes were identified in cells transfected with gga-let-7a-3p mimic. Using Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis, differential genes were found to be enriched in processes such as the peroxisome proliferator activated receptor (PPAR) signalling pathway and oxidative phosphorylation.4. The study demonstrated that gga-let-7a-3p inhibits the proliferation and differentiation of chicken intramuscular preadipocytes, which provides new understanding to further unravel the function of gga-let-7a-3p.
Collapse
Affiliation(s)
- P Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - M Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Q Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - J Wu
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - R Li
- Institute of Animal Science and Technology of Aba Tibetan and Qiang Autonomous Prefecture, Aba, Sichuan, China
| | - Z Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - J Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
2
|
Hachiya K, Deguchi Y, Hirata T, Arikawa T, Fukai H, Esashi T, Nagasawa K, Mizunoe Y, Nozaki Y, Kobayashi M, Higami Y. Obesity-induced PARIS (ZNF746) accumulation in adipose progenitor cells leads to attenuated mitochondrial biogenesis and impaired adipogenesis. Sci Rep 2023; 13:22990. [PMID: 38151567 PMCID: PMC10752882 DOI: 10.1038/s41598-023-49996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023] Open
Abstract
White adipose tissue (WAT) is critical for whole-body energy metabolism, and its dysfunction leads to various metabolic disorders. In recent years, many studies have suggested that impaired mitochondria may contribute to obesity-related decline in adipose tissue function, but the detailed mechanisms remain unclear. To investigate these mechanisms, we carried out a comprehensive analysis of WAT from mice with diet-induced obesity. We discovered the transcription factor Parkin interactive substrate (PARIS or ZNF746), which suppresses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a key regulator of mitochondrial biogenesis, to be accumulated in adipose progenitor cells from obese mice. Furthermore, we demonstrated that 3T3-L1 preadipocytes with overexpression of PARIS protein exhibited decreased mitochondrial biogenesis and impaired adipogenesis. Our results suggest that the accumulation of PARIS protein may be a novel component in the pathogenesis of obesity-related dysfunction in WAT.
Collapse
Affiliation(s)
- Kazuki Hachiya
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yusuke Deguchi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takuro Hirata
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tomoya Arikawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Hiroto Fukai
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Tatsuhiro Esashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Kota Nagasawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yuhei Mizunoe
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yuka Nozaki
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Masaki Kobayashi
- Department of Nutrition and Food Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Tokyo, Japan
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
3
|
Yu C, Sautchuk R, Martinez J, Eliseev RA. Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis. J Biol Chem 2023; 299:105458. [PMID: 37949231 PMCID: PMC10716586 DOI: 10.1016/j.jbc.2023.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Age-related bone loss is associated with decreased bone formation, increased bone resorption, and accumulation of bone marrow fat. During aging, differentiation potential of bone marrow stromal (a.k.a. mesenchymal stem) cells (BMSCs) is shifted toward an adipogenic lineage and away from an osteogenic lineage. In aged bone tissue, we previously observed pathological opening of the mitochondrial permeability transition pore (MPTP) which leads to mitochondrial dysfunction, oxidative phosphorylation uncoupling, and cell death. Cyclophilin D (CypD) is a mitochondrial protein that facilitates opening of the MPTP. We found earlier that CypD is downregulated during osteogenesis of BMSCs leading to lower MPTP activity and, thus, protecting mitochondria from dysfunction. However, during adipogenesis, a fate alternative to osteogenesis, the regulation of mitochondrial function and CypD expression is still unclear. In this study, we observed that BMSCs have increased CypD expression and MPTP activity, activated glycolysis, and fragmented mitochondrial network during adipogenesis. Adipogenic C/EBPα acts as a transcriptional activator of expression of the CypD gene, Ppif, during this process. Inflammation-associated transcription factor NF-κB shows a synergistic effect with C/EBPα inducing Ppif expression. Overall, we demonstrated changes in mitochondrial morphology and function during adipogenesis. We also identified C/EBPα as a transcriptional activator of CypD. The synergistic activation of CypD by C/EBPα and the NF-κB p65 subunit during this process suggests a potential link between adipogenic signaling, inflammation, and MPTP gain-of-function, thus altering BMSC fate during aging.
Collapse
Affiliation(s)
- Chen Yu
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
4
|
Hasegawa K, Sakamaki Y, Tamaki M, Wakino S. PCK1 Protects against Mitoribosomal Defects in Diabetic Nephropathy in Mouse Models. J Am Soc Nephrol 2023; 34:1343-1365. [PMID: 37199399 PMCID: PMC10400109 DOI: 10.1681/asn.0000000000000156] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
SIGNIFICANCE STATEMENT Renal gluconeogenesis plays an important role in the pathogenesis of diabetic nephropathy (DN). Proximal tubular phosphoenolpyruvate carboxykinase1 (PEPCK1) is the rate-limiting enzyme in gluconeogenesis. However, the functions of PEPCK1 have not been elucidated. We describe the novel role of PEPCK1 as a mitoribosomal protector using Pck1 transgenic (TG) mice and knockout mice. Pck1 blocks excessive glycolysis by suppressing the upregulation of excess HK2 (the rate-limiting enzyme of glycolysis). Notably, Pck1 overexpression retains mitoribosomal function and suppresses renal fibrosis. The renal and mitoribosomal protective roles of Pck1 may provide important clues for understanding DN pathogenesis and provide novel therapeutic targets. BACKGROUND Phosphoenolpyruvate carboxykinase (PEPCK) is part of the gluconeogenesis pathway, which maintains fasting glucose levels and affects renal physiology. PEPCK consists of two isoforms-PEPCK1 and PEPCK2-that the Pck1 and Pck2 genes encode. Gluconeogenesis increases in diabetic nephropathy (DN), escalating fasting and postprandial glucose levels. Sodium-glucose cotransporter-2 inhibitors increase hepatic and renal gluconeogenesis. We used genetically modified mice to investigate whether renal gluconeogenesis and Pck1 activity are renoprotective in DN. METHODS We investigated the expression of Pck1 in the proximal tubule (PTs) of streptozotocin (STZ)-treated diabetic mice. We studied the phenotypic changes in PT-specific transgenic (TG) mice and PT-specific Pck1 conditional knockout (CKO) mice. RESULTS The expression of Pck1 in PTs was downregulated in STZ-treated diabetic mice when they exhibited albuminuria. TG mice overexpressing Pck1 had improved albuminuria, concomitant with the mitigation of PT cell apoptosis and deposition of peritubular type IV collagen. Moreover, CKO mice exhibited PT cell apoptosis and type IV collagen deposition, findings also observed in STZ-treated mice. Renal fibrotic changes in CKO mice were associated with increasing defects in mitochondrial ribosomes (mitoribosomes). The TG mice were protected against STZ-induced mitoribosomal defects. CONCLUSION PCK1 preserves mitoribosomal function and may play a novel protective role in DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
5
|
Hubalek S, Melke J, Pawlica P, Post MJ, Moutsatsou P. Non-ammoniagenic proliferation and differentiation media for cultivated adipose tissue. Front Bioeng Biotechnol 2023; 11:1202165. [PMID: 37555077 PMCID: PMC10405928 DOI: 10.3389/fbioe.2023.1202165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Ammonia (Amm), and its aqueous solved state, ammonium, which is produced from glutamine (Gln) metabolism, is a known inhibitor of stem cell proliferation in vitro. In the context of cultivated beef, primary bovine fibro-adipogenic progenitor cells (FAPs) need to be grown and differentiated for several weeks in vitro for the production of cultivated fat. In this study, the ammonium sensitivity of these cells was investigated by introducing ammonium chloride, which was found to inhibit their proliferation when above 5 mM and their adipogenic differentiation when above 2 mM. Novel serum-free proliferation and differentiation media were hence developed with the aim to suppress Amm production during expansion and adipogenesis. Glutamine substitutes, such as a-ketoglutarate (aKG), glutamate (Glt) and pyruvate (Pyr) were investigated. It was found that aKG based proliferation medium (PM) was the most effective in promoting and maintaining FAPs growth over several passages while the specific Amm production rate was reduced more than 5-fold. In terms of differentiation capacity, the substitution of glucose (Gluc) and Gln with galactose (Gal) and Pyr was shown to be the most effective in promoting FAPs differentiation into mature adipocytes, resulting in over 2-fold increase of fat volume per cell, while suppressing Amm production. Our findings suggest that FAPs do not require Gln as an essential nutrient but, on the contrary, possess all the necessary metabolic pathways to proliferate and subsequently differentiate in a Gln-free medium, resulting in decreased Amm production rates and seemingly synthesising glutamine de novo. These findings are important for prolonging the lifespan of culture medium, allowing for reduced costs and process interventions.
Collapse
Affiliation(s)
- S. Hubalek
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- CARIM, School of Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - J. Melke
- Mosa Meat BV, Maastricht, Netherlands
| | | | - M. J. Post
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- CARIM, School of Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - P. Moutsatsou
- Mosa Meat BV, Maastricht, Netherlands
- Department of Physiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Klf4-Sirt3/Pparα-Lcad pathway contributes to high phosphate-induced lipid degradation. Cell Commun Signal 2023; 21:5. [PMID: 36624473 PMCID: PMC9830870 DOI: 10.1186/s12964-022-01008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Phosphorus commonly reduces lipid deposition in the vertebrates. However, the underlying mechanisms involved in the process remain unclear. METHODS Yellow catfish were given three experimental diets with dietary phosphate levels of 3.22, 6.47 and 7.99 g Pi kg- 1, respectively, for 8 weeks. The contents of triglyceride, non-esterified free fatty acids, adenosine triphosphate, nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide, enzymatic activities, mRNA and protein expression were determined in the intestinal tissues. Hematoxylin and eosin, Oil Red O staining, and transmission electron microscope were performed for intestinal tissues. Primary intestinal epithelial cells were isolated from yellow catfish intestine. Western blot analysis, Immunoprecipitation assays, Immunofluorescence staining, and RNA extraction and quantitative real-time PCR were decided. Luciferase reporter assays and electrophoretic mobility shift assay were used to evaluate the function of Sirt3, PPARα and Lcad promoters. RESULTS High dietary phosphate intake activated intestinal phosphate absorption and excretion, and reduced lipid deposition through increasing lipolysis in the intestine. Moreover, phosphate incubation increased the mRNA and protein expression of krüppel like factor 4 (klf4), silent mating-type information regulation 2 homolog 3 (sirt3), peroxisome proliferator activated receptor alpha (pparα) and long chain acyl-CoA dehydrogenase (lcad) in the intestinal epithelial cells (IECs), and klf4 knockdown attenuated the phosphate-induced increase of protein levels of Sirt3, Pparα and Lcad. Further investigation found that Klf4 overexpression increased the activity of sirt3 and pparα promoters, which in turn reduced the acetylation and protein level of Lcad. CONCLUSION Dietary Pi excess induced lipid degradation by the activation of the Klf4-Sirt3/Pparα-Lcad pathway in the intestine and primary IECs. Video Abstract.
Collapse
|
7
|
Oki S, Kageyama S, Machihara K, Namba T. Kuanoniamine C Suppresses Adipogenesis and White Adipose Tissue Expansion by Modulating Mitochondrial Function. Biol Pharm Bull 2023; 46:1787-1796. [PMID: 38044097 DOI: 10.1248/bpb.b23-00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Obesity is characterized by the excessive accumulation of fat to adipose tissue, which is related to abnormal increasing white adipose tissue (WAT) in the body, and it upregulates the risk of multiple diseases. Here, kuanoniamine C, which is a pyridoacridine alkaloid, suppressed the differentiation of pre-adipose cells into white adipocytes via the modulation of mitochondrial function, and inhibited WAT expansion in the early phase of high-fat-diet-induced obesity model. Pharmacological analysis revealed that inhibition of mitochondrial respiratory complex II, which new target of kuanoniamine C, activated reactive oxygen species (ROS)-extracellular signal-regulated kinase (ERK)-β-catenin signaling, and this signaling was antagonized by insulin-, IBMX-, and dexamethasone-induced adipogenesis. Therefore, the kuanoniamine C might prevent abnormal WAT expansion even when eating a diet that is not calorie restricted.
Collapse
Affiliation(s)
- Shoma Oki
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| | - Sou Kageyama
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| | - Kayo Machihara
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
| | - Takushi Namba
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| |
Collapse
|
8
|
Burkhardt LM, Bucher CH, Löffler J, Rinne C, Duda GN, Geissler S, Schulz TJ, Schmidt-Bleek K. The benefits of adipocyte metabolism in bone health and regeneration. Front Cell Dev Biol 2023; 11:1104709. [PMID: 36895792 PMCID: PMC9988968 DOI: 10.3389/fcell.2023.1104709] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Patients suffering from musculoskeletal diseases must cope with a diminished quality of life and an increased burden on medical expenses. The interaction of immune cells and mesenchymal stromal cells during bone regeneration is one of the key requirements for the restoration of skeletal integrity. While stromal cells of the osteo-chondral lineage support bone regeneration, an excessive accumulation of cells of the adipogenic lineage is thought to promote low-grade inflammation and impair bone regeneration. Increasing evidence indicates that pro-inflammatory signaling from adipocytes is responsible for various chronic musculoskeletal diseases. This review aims to summarize the features of bone marrow adipocytes by phenotype, function, secretory features, metabolic properties and their impact on bone formation. In detail, the master regulator of adipogenesis and prominent diabetes drug target, peroxisome proliferator-activated receptor γ (PPARG), will be debated as a potential therapeutic approach to enhance bone regeneration. We will explore the possibilities of using clinically established PPARG agonists, the thiazolidinediones (TZDs), as a treatment strategy to guide the induction of a pro-regenerative, metabolically active bone marrow adipose tissue. The impact of this PPARG induced bone marrow adipose tissue type on providing the necessary metabolites to sustain osteogenic-as well as beneficial immune cells during bone fracture healing will be highlighted.
Collapse
Affiliation(s)
- Lisa-Marie Burkhardt
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Julia Löffler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health (BIH) Charité, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
9
|
Jiang Y, Xiang Y, Lin C, Zhang W, Yang Z, Xiang L, Xiao Y, Chen L, Ran Q, Li Z. Multifunctions of CRIF1 in cancers and mitochondrial dysfunction. Front Oncol 2022; 12:1009948. [PMID: 36263222 PMCID: PMC9574215 DOI: 10.3389/fonc.2022.1009948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sustaining proliferative signaling and enabling replicative immortality are two important hallmarks of cancer. The complex of cyclin-dependent kinase (CDK) and its cyclin plays a decisive role in the transformation of the cell cycle and is also critical in the initiation and progression of cancer. CRIF1, a multifunctional factor, plays a pivotal role in a series of cell biological progresses such as cell cycle, cell proliferation, and energy metabolism. CRIF1 is best known as a negative regulator of the cell cycle, on account of directly binding to Gadd45 family proteins or CDK2. In addition, CRIF1 acts as a regulator of several transcription factors such as Nur77 and STAT3 and partly determines the proliferation of cancer cells. Many studies showed that the expression of CRIF1 is significantly altered in cancers and potentially regarded as a tumor suppressor. This suggests that targeting CRIF1 would enhance the selectivity and sensitivity of cancer treatment. Moreover, CRIF1 might be an indispensable part of mitoribosome and is involved in the regulation of OXPHOS capacity. Further, CRIF1 is thought to be a novel target for the underlying mechanism of diseases with mitochondrial dysfunctions. In summary, this review would conclude the latest aspects of studies about CRIF1 in cancers and mitochondria-related diseases, shed new light on targeted therapy, and provide a more comprehensive holistic view.
Collapse
Affiliation(s)
- Yangzhou Jiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Chuanchuan Lin
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Lixin Xiang
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burn and Combined Injuries, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Hernández MH, Dos Santos E, Rodriguez Y, Priou C, Berveiller P, Vialard F, Dieudonné MN. Influence of maternal obesity on human trophoblast differentiation: The role of mitochondrial status. Reprod Biol 2022; 22:100650. [DOI: 10.1016/j.repbio.2022.100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
11
|
IRX5 promotes adipogenesis of hMSCs by repressing glycolysis. Cell Death Dis 2022; 8:204. [PMID: 35428362 PMCID: PMC9012830 DOI: 10.1038/s41420-022-00986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
AbstractIroquois homeobox transcription factor 5 (IRX5) plays a pivotal role in extramedullary adipogenesis, but little is known about the effects of IRX5 on adipogenesis of human bone marrow-derived mesenchymal stem cells (hMSCs). In this study, we aimed to determine the effect of IRX5 on hMSCs adipogenesis. By means of qPCR analysis, we determined that IRX5 expression was elevated during adipogenic commitment of hMSCs. The biologic role of IRX5 was further investigated by employing a gain/loss-of-function strategy using an in vitro lentivirus-based system. IRX5 overexpression promoted adipogenesis whereas IRX5 knockdown reduced the adipogenic phenotype. RNA-seq and metabolomics revealed that IRX5 overexpression repressed glycolysis. Dual-luciferase assay results showed that IRX5 overexpression transcriptionally activates peroxisome proliferator-activated receptor gamma coactivator (PGC-1α). Metformin and PGC-1α inhibitor reversed IRX5-induced adipogenesis and glycolytic inhibition. Collectively, IRX5 facilitates adipogenic differentiation of hMSCs by transcriptionally regulating PGC-1α and inhibiting glycolysis, revealing a potential target to control bone marrow-derived mesenchymal stem cells (BMSCs) fate decision and bone homeostasis.
Collapse
|
12
|
Kornicka-Garbowska K, Bourebaba L, Röcken M, Marycz K. Inhibition of protein tyrosine phosphatase improves mitochondrial bioenergetics and dynamics, reduces oxidative stress, and enhances adipogenic differentiation potential in metabolically impaired progenitor stem cells. Cell Commun Signal 2021; 19:106. [PMID: 34732209 PMCID: PMC8565043 DOI: 10.1186/s12964-021-00772-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) and low molecular weight protein tyrosine phosphatase (LMPTP) are implicated in the development of metabolic disorders. Yet, their role in progenitor stem cell adipogenic differentiation and modulation of mitochondrial dynamics remains elusive. METHODS In this study, we decided to investigate whether inhibition of PTP1B and LMPTP enhance adipogenic differentiation of metabolically impaired progenitor stem cells via modulation of mitochondrial bioenergetics and dynamics. Cells were cultured under adipogenic conditions in the presence of PTP1B and LMPTP inhibitors, and were subjected to the analysis of the main adipogenic-related and mitochondrial-related genes using RT-qPCR. Protein levels were established with western blot while mitochondrial morphology with MicroP software. RESULTS Selective inhibitors of both PTP1B and MPTP enhanced adipogenic differentiation of metabolically impaired progenitor stem cells. We have observed enhanced expression of PPARy and adiponectin in treated cells. What is more, increased antioxidative defence and alternations in mitochondrial bioenergetics were observed. We have found that inhibition of PTP1B as well as C23 activates oxidative phosphorylation and enhances mitochondrial fusion contributing to enhanced adipogenesis. CONCLUSIONS The presented data provides evidence that the application of PTP1B and LMPTP inhibitors enhances adipogenesis through the modulation of mitochondrial dynamics. Video abstract.
Collapse
Affiliation(s)
- Katarzyna Kornicka-Garbowska
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B Street, A7 building, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B Street, A7 building, 50-375 Wroclaw, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig University, 35392 Giessen, Germany
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Norwida 27B Street, A7 building, 50-375 Wroclaw, Poland
- International Institute of Translational Medicine, Malin, Jesionowa 11, 55-114 Wisznia Mała, Poland
| |
Collapse
|
13
|
Divoux A, Eroshkin A, Erdos E, Sandor K, Osborne TF, Smith SR. DNA Methylation as a Marker of Body Shape in Premenopausal Women. Front Genet 2021; 12:709342. [PMID: 34394195 PMCID: PMC8358448 DOI: 10.3389/fgene.2021.709342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Preferential accumulation of fat in the gluteo-femoral (GF) depot (pear shape) rather than in the abdominal (A) depot (apple shape), protects against the development of metabolic diseases but the underlying molecular mechanism is still unknown. Recent data, including our work, suggest that differential epigenetic marking is associated with regulation of genes attributed to distinct fat distribution. Here, we aimed to compare the genomic DNA methylation signatures between apple and pear-shaped premenopausal women. To investigate the contribution of upper and lower body fat, we used paired samples of A-FAT and GF-FAT, analyzed on the BeadChip Methylation Array and quantified the differentially methylated sites between the 2 groups of women. We found unique DNA methylation patterns within both fat depots that are significantly different depending on the body fat distribution. Around 60% of the body shape specific DNA methylation sites identified in adipose tissue are maintained ex vivo in cultured preadipocytes. As it has been reported before in other cell types, we found only a hand full of genes showing coordinated differential methylation and expression levels. Finally, we determined that more than 50% of the body shape specific DNA methylation sites could also be detected in whole blood derived DNA. These data reveal a strong DNA methylation program associated with adipose tissue distribution with the possibility that a simple blood test could be used as a predictive diagnostic indicator of young women who are at increased risk for progressing to the apple body shape with a higher risk of developing obesity related complications. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT02728635 and https://clinicaltrials.gov/ct2/show/NCT02226640, identifiers NCT02728635 and NCT02226640.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | | | - Edina Erdos
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Katalin Sandor
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Timothy F. Osborne
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| |
Collapse
|
14
|
Camacho-Cardenosa M, Quesada-Gómez JM, Camacho-Cardenosa A, Leal A, Dorado G, Torrecillas-Baena B, Casado-Díaz A. Effects of normobaric cyclic hypoxia exposure on mesenchymal stem-cell differentiation-pilot study on bone parameters in elderly. World J Stem Cells 2020; 12:1667-1690. [PMID: 33505607 PMCID: PMC7789125 DOI: 10.4252/wjsc.v12.i12.1667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSC) of bone marrow are the progenitor of osteoblasts and adipocytes. MSC tend to differentiate into adipocytes, instead of osteoblasts, with aging. This favors the loss of bone mass and development of osteoporosis. Hypoxia induces hypoxia inducible factor 1α gene encoding transcription factor, which regulates the expression of genes related to energy metabolism and angiogenesis. That allows a better adaptation to low O2 conditions. Sustained hypoxia has negative effects on bone metabolism, favoring bone resorption. Yet, surprisingly, cyclic hypoxia (CH), short times of hypoxia followed by long times in normoxia, can modulate MSC differentiation and improve bone health in aging. AIM To evaluate the CH effect on MSC differentiation, and whether it improves bone mineral density in elderly. METHODS MSC cultures were induced to differentiate into osteoblasts or adipocytes, in CH (3% O2 for 1, 2 or 4 h, 4 d a week). Extracellular-matrix mineralization and lipid-droplet formation were studied in MSC induced to differentiate into osteoblast or adipocytes, respectively. In addition, gene expression of marker genes, for osteogenesis or adipogenesis, have been quantified by quantitative real time polymerase chain reaction. The in vivo studies with elderly (> 75 years old; n = 10) were carried out in a hypoxia chamber, simulating an altitude of 2500 m above sea level, or in normoxia, for 18 wk (36 CH sessions of 16 min each). Percentages of fat mass and bone mineral density from whole body, trunk and right proximal femur (femoral, femoral neck and trochanter) were assessed, using dual-energy X-ray absorptiometry. RESULTS CH (4 h of hypoxic exposure) inhibited extracellular matrix mineralization and lipid-droplet formation in MSC induced to differentiate into osteoblasts or adipocytes, respectively. However, both parameters were not significantly affected by the other shorter hypoxia times assessed. The longest periods of hypoxia downregulated the expression of genes related to extracellular matrix formation, in MSC induced to differentiate into osteoblasts. Interestingly, osteocalcin (associated to energy metabolism) was upregulated. Vascular endothelial growth factor an expression and low-density lipoprotein receptor related protein 5/6/dickkopf Wnt signaling pathway inhibitor 1 (associated to Wnt/β-catenin pathway activation) increased in osteoblasts. Yet, they decreased in adipocytes after CH treatments, mainly with the longest hypoxia times. However, the same CH treatments increased the osteoprotegerin/receptor activator for nuclear factor kappa B ligand ratio in both cell types. An increase in total bone mineral density was observed in elderly people exposed to CH, but not in specific regions. The percentage of fat did not vary between groups. CONCLUSION CH may have positive effects on bone health in the elderly, due to its possible inhibitory effect on bone resorption, by increasing the osteoprotegerin / receptor activator for nuclear factor kappa B ligand ratio.
Collapse
Affiliation(s)
| | - José Manuel Quesada-Gómez
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | | | - Alejo Leal
- Servicio de Traumatología, Hospital de Cáceres, Cáceres 10004, Spain
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba-CIBERFES, 14071 Córdoba, Spain
| | - Bárbara Torrecillas-Baena
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Antonio Casado-Díaz
- CIBER De Fragilidad Y Envejecimiento Saludable (CIBERFES), Unidad De Gestión Clínica De Endocrinología Y Nutrición, Instituto Maimónides De Investigación Biomédica De Córdoba, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| |
Collapse
|
15
|
Choi S, Goswami N, Schmidt F. Comparative Proteomic Profiling of 3T3-L1 Adipocyte Differentiation Using SILAC Quantification. J Proteome Res 2020; 19:4884-4900. [PMID: 32991178 DOI: 10.1021/acs.jproteome.0c00475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adipocyte differentiation is a general physiological process that is also critical for metabolic syndrome. In spite of extensive study in the past two decades, adipogenesis is a still complex cellular process that is accompanied by complicated molecular mechanisms. Here, we performed SILAC-based quantitative global proteomic profiling of 3T3-L1 adipocyte differentiation. We report protein changes to the proteome profiles, with 354 proteins exhibiting significant increase and 56 proteins showing decrease in our statistical analysis. Our results show that adipocyte differentiation is involved not only in metabolic processes by increasing TCA cycle, fatty acid synthesis, lipolysis, acetyl-CoA production, antioxidants, and electron transport, but also in nicotinamide metabolism, cristae formation, mitochondrial protein import, and Ca2+ transport into mitochondria and ER. A search for Chromosome-Centric Human Proteome Project (C-HPP) using neXtprot highlighted one protein with a protein existence uncertain (PE5) and 17 proteins as functionally uncharacterized protein existence 1 (uPE1). This study provides quantitative information on proteome changes in adipogenic differentiation, which is helpful in improving our understanding of the processes of adipogenesis.
Collapse
Affiliation(s)
- Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Neha Goswami
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, PO 24144 Doha, Qatar
| |
Collapse
|
16
|
Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. Int J Mol Sci 2020; 21:ijms21093374. [PMID: 32397676 PMCID: PMC7246988 DOI: 10.3390/ijms21093374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions. Their clinical and genetic variability makes the identification of reliable and specific biomarkers very challenging. Until now, only a few studies have focused on the effect of a defective oxidative phosphorylation functioning on the cell’s secretome, although it could be a promising approach for the identification and pre-selection of potential circulating biomarkers for mitochondrial diseases. Here, we review the insights obtained from secretome studies with regard to oxidative phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify mitochondrial diseases. We propose two new biomarkers to be taken into account in future diagnostic trials.
Collapse
|
17
|
Shin JM, Ko JW, Choi CW, Lee Y, Seo YJ, Lee JH, Kim CD. Deficiency of Crif1 in hair follicle stem cells retards hair growth cycle in adult mice. PLoS One 2020; 15:e0232206. [PMID: 32330194 PMCID: PMC7182249 DOI: 10.1371/journal.pone.0232206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hair growth is the cyclically regulated process that is characterized by growing phase (anagen), regression phase (catagen) and resting phase (telogen). Hair follicle stem cells (HFSCs) play pivotal role in the control of hair growth cycle. It has been notified that stem cells have the distinguished metabolic signature compared to differentiated cells, such as the preference to glycolysis rather than mitochondrial respiration. Crif1 is a mitochondrial protein that regulates the synthesis and insertion of oxidative phosphorylation (OXPHOS) polypeptides to inner membrane of mitochondria. Several studies demonstrate that tissue-specific knockout of Crif1 leads to mitochondrial dysfunction. In this study, we investigated the effect of mitochondrial dysfunction in terms of Crif1 deficiency on the hair growth cycle of adult mice. We created two kinds of inducible conditional knockout (icKO) mice. In epidermal specific icKO mice (Crif1 K14icKO), hair growth cycle was significantly retarded compared to wild type mice. Similarly, HFSC specific icKO mice (Crif1 K15icKO) showed significant retardation of hair growth cycle in depilation-induced anagen model. Interestingly, flow cytometry revealed that HFSC populations were maintained in Crif1 K15icKO mice. These results suggest that mitochondrial function in HFSCs is important for the progression of hair growth cycle, but not for maintenance of HFSCs.
Collapse
Affiliation(s)
- Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jung-Woo Ko
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chong-Won Choi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
18
|
Choi MJ, Jung SB, Lee SE, Kang SG, Lee JH, Ryu MJ, Chung HK, Chang JY, Kim YK, Hong HJ, Kim H, Kim HJ, Lee CH, Mardinoglu A, Yi HS, Shong M. An adipocyte-specific defect in oxidative phosphorylation increases systemic energy expenditure and protects against diet-induced obesity in mouse models. Diabetologia 2020; 63:837-852. [PMID: 31925461 DOI: 10.1007/s00125-019-05082-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Mitochondrial oxidative phosphorylation (OxPhos) is essential for energy production and survival. However, the tissue-specific and systemic metabolic effects of OxPhos function in adipocytes remain incompletely understood. METHODS We used adipocyte-specific Crif1 (also known as Gadd45gip1) knockout (AdKO) mice with decreased adipocyte OxPhos function. AdKO mice fed a normal chow or high-fat diet were evaluated for glucose homeostasis, weight gain and energy expenditure (EE). RNA sequencing of adipose tissues was used to identify the key mitokines affected in AdKO mice, which included fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). For in vitro analysis, doxycycline was used to pharmacologically decrease OxPhos in 3T3L1 adipocytes. To identify the effects of GDF15 and FGF21 on the metabolic phenotype of AdKO mice, we generated AdKO mice with global Gdf15 knockout (AdGKO) or global Fgf21 knockout (AdFKO). RESULTS Under high-fat diet conditions, AdKO mice were resistant to weight gain and exhibited higher EE and improved glucose tolerance. In vitro pharmacological and in vivo genetic inhibition of OxPhos in adipocytes significantly upregulated mitochondrial unfolded protein response-related genes and secretion of mitokines such as GDF15 and FGF21. We evaluated the metabolic phenotypes of AdGKO and AdFKO mice, revealing that GDF15 and FGF21 differentially regulated energy homeostasis in AdKO mice. Both mitokines had beneficial effects on obesity and insulin resistance in the context of decreased adipocyte OxPhos, but only GDF15 regulated EE in AdKO mice. CONCLUSIONS/INTERPRETATION The present study demonstrated that the adipose tissue adaptive mitochondrial stress response affected systemic energy homeostasis via cell-autonomous and non-cell-autonomous pathways. We identified novel roles for adipose OxPhos and adipo-mitokines in the regulation of systemic glucose homeostasis and EE, which facilitated adaptation of an organism to local mitochondrial stress.
Collapse
Affiliation(s)
- Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Saet-Byel Jung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Seong Eun Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ju Hee Lee
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Min Jeong Ryu
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| |
Collapse
|
19
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic analyses of the anti-adipogenic effects of oleuropein in human mesenchymal stem cells. Food Funct 2017; 8:1254-1270. [PMID: 28243663 DOI: 10.1039/c7fo00045f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extra virgin olive oil has positive effects on health. Oleuropein is a polyphenolic compound present in olive-tree leaves, fruits (olives) and olive oil. It is responsible for the relevant organoleptic and biological properties of olive oil, including antiadipogenic properties. Thus, the effects of oleuropein on the adipogenesis of human bone-marrow mesenchymal stem cells were studied by transcriptomics and differential gene-expression analyses. Oleuropein could upregulate expression of 60% of adipogenesis-repressed genes. Besides, it could activate signaling pathways such as Rho and β-catenin, maintaining cells at an undifferentiated stage. Our data suggest that mitochondrial activity is reduced by oleuropein, mostly during adipogenic differentiation. These results shed light on oleuropein activity on cells, with potential application as a "nutraceutical" for the prevention and treatment of diseases such as obesity and osteoporosis.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain. and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Campus Rabanales C5-1-O1, 14071 Córdoba, Spain
| | - Sören Müller
- GenXPro, Altenhoferallee 3, 60438 Frankfurt Main, Germany
| | - Peter Winter
- GenXPro, Altenhoferallee 3, 60438 Frankfurt Main, Germany
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain. and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain and CIBER de Fragilidad y Envejecimiento Saludable, Spain
| |
Collapse
|
20
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
21
|
Llobet L, Bayona-Bafaluy MP, Pacheu-Grau D, Torres-Pérez E, Arbones-Mainar JM, Navarro MÁ, Gómez-Díaz C, Montoya J, López-Gallardo E, Ruiz-Pesini E. Pharmacologic concentrations of linezolid modify oxidative phosphorylation function and adipocyte secretome. Redox Biol 2017; 13:244-254. [PMID: 28600981 PMCID: PMC5466587 DOI: 10.1016/j.redox.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
The oxidative phosphorylation system is important for adipocyte differentiation. Therefore, xenobiotics inhibitors of the oxidative phosphorylation system could affect adipocyte differentiation and adipokine secretion. As adipokines impact the overall health status, these xenobiotics may have wide effects on human health. Some of these xenobiotics are widely used therapeutic drugs, such as ribosomal antibiotics. Because of its similarity to the bacterial one, mitochondrial translation system is an off-target for these compounds. To study the influence of the ribosomal antibiotic linezolid on adipokine production, we analyzed its effects on adipocyte secretome. Linezolid, at therapeutic concentrations, modifies the levels of apolipoprotein E and several adipokines and proteins related with the extracellular matrix. This antibiotic also alters the global methylation status of human adipose tissue-derived stem cells and, therefore, its effects are not limited to the exposure period. Besides their consequences on other tissues, xenobiotics acting on the adipocyte oxidative phosphorylation system alter apolipoprotein E and adipokine production, secondarily contributing to their systemic effects. Linezolid decreases oxidative phosphorylation system capacity. Linezolid reduces adipocyte differentiation from human adipose-derived stem cells. Linezolid modifies APOE, adipokine and extracellular matrix proteins levels. Linezolid changes DNA methylation of human adipose tissue-derived stem cells. Xenobiotics, acting on adipocyte oxidative phosphorylation, affect human health.
Collapse
Affiliation(s)
- Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Humboldtalle 23, 37073 Göttingen, Germany.
| | - Elena Torres-Pérez
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - José M Arbones-Mainar
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Unidad de Investigación Traslacional, Instituto Aragones de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - M Ángeles Navarro
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Covadonga Gómez-Díaz
- Servicio de Otorrinolaringología, Hospital Universitario Miguel Servet, Paseo de Isabel la Católica 1-3, 50009 Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain; Fundación ARAID, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
22
|
Targeted deletion of Crif1 in mouse epidermis impairs skin homeostasis and hair morphogenesis. Sci Rep 2017; 7:44828. [PMID: 28317864 PMCID: PMC5357846 DOI: 10.1038/srep44828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/14/2017] [Indexed: 12/27/2022] Open
Abstract
The epidermis, which consists mainly of keratinocytes, acts as a physical barrier to infections by regulating keratinocyte proliferation and differentiation. Hair follicles undergo continuous cycling to produce new one. Therefore, optimum supply of energy from the mitochondria is essential for maintaining skin homeostasis and hair growth. CRIF1 is a mitochondrial protein that regulates mitoribosome-mediated synthesis and insertion of mitochondrial oxidative phosphorylation polypeptides into the mitochondrial membrane in mammals. Recent studies reveal that conditional knockout (cKO) of Crif1 in specific tissues of mice induced mitochondrial dysfunction. To determine whether the mitochondrial function of keratinocytes affects skin homeostasis and hair morphogenesis, we generated epidermis-specific Crif1 cKO mice. Deletion of Crif1 in epidermis resulted in impaired mitochondrial function and Crif1 cKO mice died within a week. Keratinocyte proliferation and differentiation were markedly inhibited in Crif1 cKO mice. Furthermore, hair follicle morphogenesis of Crif1 cKO mice was disrupted by down-regulation of Wnt/β-catenin signaling. These results demonstrate that mitochondrial function in keratinocytes is essential for maintaining epidermal homeostasis and hair follicle morphogenesis.
Collapse
|
23
|
Lai CS, Wu JC, Ho CT, Pan MH. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/02/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Ching-Shu Lai
- Department of Seafood Science; National Kaohsiung Marine University; Kaohsiung Taiwan
| | - Jia-Ching Wu
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
| | - Chi-Tang Ho
- Department of Food Science; Rutgers University; New Brunswick NJ USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology; National Taiwan University; Taipei Taiwan
- Department of Medical Research, China Medical University Hospital; China Medical University; Taichung Taiwan
- Department of Health and Nutrition Biotechnology; Asia University; Taichung Taiwan
| |
Collapse
|
24
|
Casado-Díaz A, Anter J, Müller S, Winter P, Quesada-Gómez JM, Dorado G. Transcriptomic Analyses of Adipocyte Differentiation From Human Mesenchymal Stromal-Cells (MSC). J Cell Physiol 2016; 232:771-784. [PMID: 27349923 DOI: 10.1002/jcp.25472] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
Abstract
Adipogenesis is a physiological process required for fat-tissue development, mainly involved in regulating the organism energetic-state. Abnormal distribution-changes and dysfunctions in such tissue are associated to different pathologies. Adipocytes are generated from progenitor cells, via a complex differentiating process not yet well understood. Therefore, we investigated differential mRNA and miRNA expression patterns of human mesenchymal stromal-cells (MSC) induced and not induced to differentiate into adipocytes by next (second)-generation sequencing. A total of 2,866 differentially expressed genes (101 encoding miRNA) were identified, with 705 (46 encoding miRNA) being upregulated in adipogenesis. They were related to different pathways, including PPARG, lipid, carbohydrate and energy metabolism, redox, membrane-organelle biosynthesis, and endocrine system. Downregulated genes were related to extracellular matrix and cell migration, proliferation, and differentiation. Analyses of mRNA-miRNA interaction showed that repressed miRNA-encoding genes can act downregulating PPARG-related genes; mostly the PPARG activator (PPARGC1A). Induced miRNA-encoding genes regulate downregulated genes related to TGFB1. These results shed new light to understand adipose-tissue differentiation and physiology, increasing our knowledge about pathologies like obesity, type-2 diabetes and osteoporosis. J. Cell. Physiol. 232: 771-784, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Jaouad Anter
- Dep. Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus de Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
25
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
Llobet L, Toivonen JM, Montoya J, Ruiz-Pesini E, López-Gallardo E. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood. Dis Model Mech 2015; 8:1441-55. [PMID: 26398948 PMCID: PMC4631789 DOI: 10.1242/dmm.021774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022] Open
Abstract
Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. Summary: Some medical drugs and environmental chemical pollutants acting on the oxidative phosphorylation system can alter adipocyte differentiation and adipogenesis and, thus, have important consequences for human health.
Collapse
Affiliation(s)
- Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013-Zaragoza, Spain Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013-Zaragoza, Spain CIBER de Enfermedades Raras (CIBERER), Universidad de Zaragoza, 50013-Zaragoza, Spain
| | - Janne M Toivonen
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013-Zaragoza, Spain Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013-Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013-Zaragoza, Spain Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013-Zaragoza, Spain CIBER de Enfermedades Raras (CIBERER), Universidad de Zaragoza, 50013-Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013-Zaragoza, Spain Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013-Zaragoza, Spain CIBER de Enfermedades Raras (CIBERER), Universidad de Zaragoza, 50013-Zaragoza, Spain Fundación ARAID, Universidad de Zaragoza, 50013-Zaragoza, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013-Zaragoza, Spain Instituto de Investigación Sanitaria de Aragón, Universidad de Zaragoza, 50013-Zaragoza, Spain CIBER de Enfermedades Raras (CIBERER), Universidad de Zaragoza, 50013-Zaragoza, Spain
| |
Collapse
|
27
|
Involvement of estrogen-related receptor-γ and mitochondrial content in intrauterine growth restriction and preeclampsia. Fertil Steril 2015; 104:483-90. [DOI: 10.1016/j.fertnstert.2015.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/28/2022]
|
28
|
Kim YK, Joung KH, Ryu MJ, Kim SJ, Kim H, Chung HK, Lee MH, Lee SE, Choi MJ, Chang JY, Hong HJ, Kim KS, Lee SH, Kweon GR, Kim H, Lee CH, Kim HJ, Shong M. Disruption of CR6-interacting factor-1 (CRIF1) in mouse islet beta cells leads to mitochondrial diabetes with progressive beta cell failure. Diabetologia 2015; 58:771-80. [PMID: 25660120 DOI: 10.1007/s00125-015-3506-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/30/2014] [Indexed: 12/25/2022]
Abstract
AIM/HYPOTHESIS Although mitochondrial oxidative phosphorylation (OxPhos) dysfunction is believed to be responsible for beta cell dysfunction in insulin resistance and mitochondrial diabetes, the mechanisms underlying progressive beta cell failure caused by defective mitochondrial OxPhos are largely unknown. METHODS We examined the in vivo phenotypes of beta cell dysfunction in beta cell-specific Crif1 (also known as Gadd45gip1)-deficient mice. CR6-interacting factor-1 (CRIF1) is a mitochondrial protein essential for the synthesis and formation of the OxPhos complex in the inner mitochondrial membrane. RESULTS Crif1(beta-/-) mice exhibited impaired glucose tolerance with defective insulin secretion as early as 4 weeks of age without defects in islet structure. At 11 weeks of age, Crif1(beta-/-) mice displayed characteristic ultrastructural mitochondrial abnormalities as well as severe glucose intolerance. Furthermore, islet area and insulin content was decreased by approximately 50% compared with wild-type mice. Treatment with the glucoregulatory drug exenatide, a glucagon-like peptide-1 (GLP-1) agonist, was not sufficient to preserve beta cell function in Crif1(beta-/-) mice. CONCLUSIONS/INTERPRETATION Our results indicate that mitochondrial OxPhos dysfunction triggers progressive beta cell failure that is not halted by treatment with a GLP-1 agonist. The Crif1(beta-/-) mouse is a useful model for the study of beta cell failure caused by mitochondrial OxPhos dysfunction.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 301-721, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Poidatz D, Dos Santos E, Gronier H, Vialard F, Maury B, De Mazancourt P, Dieudonné MN. Trophoblast syncytialisation necessitates mitochondrial function through estrogen-related receptor-γ activation. Mol Hum Reprod 2014; 21:206-16. [PMID: 25376642 DOI: 10.1093/molehr/gau102] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human pregnancy needs a correct placentation which depends on adequate cytotrophoblast proliferation, differentiation and invasion. In this study, using specific mitochondrial respiratory chain inhibitors, we observed a decrease of hormone production (hCG and leptin) and cell fusion of human primary villous cytotrophoblasts (CT). These results demonstrated that mitochondria are involved in the control of CT differentiation process. Moreover, we also observed a decrease of mitochondrial mass associated with an increase of mitochondrial DNA during CT differentiation. Furthermore, lactate production increased during CT differentiation suggesting that anaerobic metabolism was enhanced in differentiated CTs, and that the role of mitochondria in CT fusion is not only related to its energetic function. Otherwise, the orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is known to orchestrate transcriptional control of energy metabolism genes. In this study, using RNA knockdown and transcriptional activation with DY131 (an ERRγ agonist), we clearly demonstrated that ERRγ promotes hormone production and cell fusion indicating that ERRγ is a key positive transcriptional factor involved in CT differentiation. Finally, we showed that ERRγ promotes mitochondrial biogenesis and function during CT differentiation, and that the role of ERRγ during trophoblast differentiation is mainly mediated by the control of mitochondrial functions.
Collapse
Affiliation(s)
- Dorothée Poidatz
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Esther Dos Santos
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France Service de biologie médicale, CHI de Poissy-st-Germain, 78300 Poissy, France
| | - Héloïse Gronier
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - François Vialard
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, CHI de Poissy-st-Germain, 78300 Poissy, France
| | - Benoit Maury
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France
| | - Philippe De Mazancourt
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France Service de biochimie et génétique moléculaire, Hôpital A. Paré, 92100 Boulogne, France
| | - Marie-Noëlle Dieudonné
- UPRES-EA 2493, Université de Versailles-St Quentin, UFR des sciences de la santé, 2 avenue de la source de la Bièvre, 78180 Montigny le Bretonneux, France
| |
Collapse
|
30
|
CRIF1 deficiency induces p66shc-mediated oxidative stress and endothelial activation. PLoS One 2014; 9:e98670. [PMID: 24906005 PMCID: PMC4048193 DOI: 10.1371/journal.pone.0098670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/01/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathophysiology of various cardiovascular diseases. CRIF1 is a protein present in the mitochondria associated with large mitoribosomal subunits, and CRIF1 knockdown induces mitochondrial dysfunction and promotes ROS production. p66shc is a redox enzyme implicated in mitochondrial ROS generation and translation of oxidative signals and, therefore, is a key factor for oxidative stress in endothelial cells. In this study, we investigated whether mitochondrial dysfunction induced by CRIF1 knockdown induces p66shc stimulation and plays any role in mitochondrial dysfunction-induced endothelial activation. Knockdown of CRIF1 decreased the expression of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, III and IV, leading to increased mitochondrial ROS (mtROS) and hyperpolarization of the mitochondrial membrane potential. Knockdown of CRIF1 also stimulated phosphorylation of p66shc and increased cytosolic ROS in endothelial cells. Furthermore, the expression of vascular cell adhesion molecule-1 and endoplasmic reticulum stress proteins were increased upon CRIF1 knockdown in endothelial cells. However, p66shc knockdown blunted the alteration in mitochondrial dynamics and ROS production in CRIF1 knockdown endothelial cells. In addition, p66shc knockdown reduced the CRIF1 knockdown-induced increases in adhesion between monocytes and endothelial cells. Taken together, these results suggest that CRIF1 knockdown partially induces endothelial activation via increased ROS production and phosphorylation of p66shc.
Collapse
|