1
|
Cesanelli L, Saveikis D, Conte D, Satkunskiene D. Discipline-specific adaptation patterns in respiratory and lower limb musculotendinous structures: cyclists vs. basketball players. J Sports Med Phys Fitness 2025; 65:493-506. [PMID: 39466165 DOI: 10.23736/s0022-4707.24.16429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study aimed at assessing how chronic exposure to specific exercise training (high-intensity intervals vs. endurance), comparing experienced basketball-players (BP, N.=16), cyclists (CY, N.=16), and non-specifically trained individuals (CN, N.=16), influences the structural and functional characteristics of both lower limb and respiratory musculotendinous structures. METHODS Vastus lateralis, gastrocnemius lateralis, and medialis, diaphragm muscles, as well as patellar tendon and Achilles tendon, were assessed using B-mode ultrasonography. Maximal voluntary isometric and passive torque measurements were conducted in the knee-extensors and plantar-flexors. Additionally, a subset of participants (N.=10 for each group) underwent a fatigue-inducing exercise-till-exhaustion protocol, and the strength of lower limb and respiratory muscles was evaluated immediately before and after the trial. RESULTS Athletes had bigger and stronger musculotendinous structures and greater endurance to fatigue than CN (P<0.05). BP had bigger plantar-flexors and diaphragm, greater fascicles length, more explosive plantar-flexors and respiratory muscles and bigger tendons than CY (P<0.05). On the other hand, CY showed greater muscle pennation angle and greater endurance to fatigue for both, lower limb, and respiratory muscles (P<0.05). CONCLUSIONS The present study emphasizes that chronic and specific exercise training leads to distinctive adaptations, not only in lower limb musculotendinous structures but also in other components such as respiratory muscles.
Collapse
Affiliation(s)
- Leonardo Cesanelli
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania -
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania -
| | - Deividas Saveikis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Daniele Conte
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
- Department of Coaching Science, Lithuanian Sports University, Kaunas, Lithuania
| | - Danguole Satkunskiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
2
|
Turkel I, Kubat GB, Fatsa T, Acet O, Ozerklig B, Yazgan B, Simsek G, Singh KK, Kosar SN. Acute treadmill exercise induces mitochondrial unfolded protein response in skeletal muscle of male rats. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149532. [PMID: 39675514 DOI: 10.1016/j.bbabio.2024.149532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Mitochondria are often referred to as the energy centers of the cell and are recognized as key players in signal transduction, sensing, and responding to internal and external stimuli. Under stress conditions, the mitochondrial unfolded protein response (UPRmt), a conserved mitochondrial quality control mechanism, is activated to maintain mitochondrial and cellular homeostasis. As a physiological stimulus, exercise-induced mitochondrial perturbations trigger UPRmt, coordinating mitochondria-to-nucleus communication and initiating a transcriptional program to restore mitochondrial function. The aim of this study was to evaluate the UPRmt signaling response to acute exercise in skeletal muscle. Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min on a 0 % grade. Plantaris muscles were collected from both sedentary and exercise groups at various times: immediately (0), and at 1, 3, 6, 12, and 24 h post-exercise. Reactive oxygen species (ROS) production was assessed using hydrogen peroxide assay and dihydroethidium staining. Additionally, the mRNA and protein expression of UPRmt markers were measured using ELISA and real-time PCR. Mitochondrial activity was assessed using succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) staining. Our results demonstrated that acute exercise increased ROS production and upregulated UPRmt markers at both gene and protein levels. Moreover, skeletal muscle exhibited an increase in mitochondrial activity in response to exercise, as indicated by SDH and COX staining. These findings suggest that acute treadmill exercise is sufficient to induce ROS production, activate UPRmt signaling, and enhance mitochondrial activity in skeletal muscle, expanding our understanding of mitochondrial adaptations to exercise.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ozgu Acet
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Canada
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Michel JM, Godwin JS, Kerr NR, Childs TE, Booth FW, Mobley CB, Hughes DC, Roberts MD. Skeletal muscle atrophy induced by aging and disuse atrophy are strongly associated with the upregulation of the endoplasmic stress protein CHOP in rats. Mol Biol Rep 2025; 52:322. [PMID: 40100290 PMCID: PMC11919930 DOI: 10.1007/s11033-025-10415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND While canonical anabolic and proteolytic pathways have been well examined in the context of skeletal muscle proteostasis, the roles of endoplasmic reticulum stress (ERS) and the induced unfolded protein response (UPR) are underappreciated. Thus, we aimed to determine whether aging and/or disuse atrophy in rats altered skeletal muscle ERS/UPR markers. METHODS AND RESULTS Soleus (SOL) and plantaris (PLT) muscles of 3-month-old (mo), 6 mo, 12 mo, 18 mo, and 24 mo rats (9-10 per group, 48 in total) were analyzed for UPR proteins with further analysis performed on the protein CHOP. The gastrocnemius muscles of 4 mo rats that had undergone hindlimb immobilization (HLI, n = 12) or sham casting (CTL, n = 12) were analyzed for similar targets as well as more extensive CHOP-related targets. CHOP protein was greater in the PLT and SOL of 18 and 24 mo rats versus other age groups (P < 0.05). Moreover, negative correlations existed between CHOP expression and normalized PLT (R=-0.702, P < 0.001) and SOL (R=-0.658, P < 0.001) muscle weights in all rats analyzed at different ages. CHOP protein expression was also greater in the gastrocnemius of HLI versus CTL rats (P < 0.001), and a negative correlation existed between CHOP protein expression and normalized muscle weights in these rats (R=-0.814, P < 0.001). Nuclear CHOP protein levels (P < 0.010) and genes transcriptionally regulated by CHOP were also greater in HLI versus CTL rats (P < 0.001) implicating transcriptional activity of CHOP is elevated during disuse atrophy. CONCLUSIONS CHOP is operative during aging- and disuse-induced skeletal muscle atrophy in rodents, and more research is needed to determine if CHOP is a key mechanistic driver of these processes.
Collapse
Affiliation(s)
- J Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | - Nathan R Kerr
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | | | - David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, USA.
- Edward Via College of Osteopathic Medicine, Auburn, AL, USA.
- School of Kinesiology Director, Nutrabolt Applied and Molecular Physiology Laboratory, Auburn University, 301 Wire Road, Office 286, Auburn, AL, 36849, USA.
| |
Collapse
|
4
|
Gasser B, Frey WO, Valdivieso P, Scherr J, Kopf J, Spörri J, Flück M. Are the Positions in the Word Ranking of Competitive Alpine Skiers Explainable by Prominent Polymorphisms in Regulatory Genes of Mechanical and Metabolic Muscle Functioning? RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2025; 96:192-200. [PMID: 39173035 DOI: 10.1080/02701367.2024.2387040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Background: The success of competitive alpine skiers with respective to their world ranking (WR) positions might be associated with prominent gene polymorphisms. Methods: Twenty-six competitive alpine skiers were followed from 2015 to 2019 for their WR positions (FIS-ranking). Using PCR, the genotypes of ACE-I/D, TNC, ACTN3, and PTK2 were identified. The correlations between the discipline-specific WR position (slalom-SL, giant slalom-GS, super G-SG, downhill-DH, and alpine combined-AC) and gene polymorphisms were analyzed concerning an influence with multivariate regression models. Results: The WR position and the ACE gene as well as the copy number of the ACE I-allele exhibited reciprocal relationships for speed specialists (SG and DH) but not for technical specialists (SL and GS). Similarly, the gene polymorphisms ACTN3 and (partly) PTK2 were associated with the WR position in disciplines characterized by a high number of turns (technical specialists-SL and GS) and speed (speed-specialists-SG and DH), respectively. Conclusions: Our findings emphasize the contributions of aerobic and cardiovascular metabolism in fueling muscle work and recovering from muscle fatigue for competitive success in slalom-driven skiing disciplines and highlight the contributions of sequence variants in the genes ACE, TNC, and ACTN3.
Collapse
Affiliation(s)
| | | | | | | | - Juana Kopf
- Balgrist University Hospital, University of Zurich
| | - Jörg Spörri
- Balgrist University Hospital, University of Zurich
| | - Martin Flück
- University of Zurich
- University of Fribourg
- Swiss Federal Institute of Sport - BASPO
| |
Collapse
|
5
|
Swalsingh G, Pani P, Senapati U, Sahu B, Pani S, Pati B, Rout S, Bal NC. Intramuscular administration of fractalkine modulates mitochondrial properties and promotes fast glycolytic phenotype. Biofactors 2025; 51:e2092. [PMID: 39052304 DOI: 10.1002/biof.2092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A newly categorized myokine called fractalkine (CX3CL1) has been associated with divergent conditions such as obesity, tissue inflammation, and exercise. CX3CL1 works through specific membrane-bound receptors (CX3CR1) found in various tissues including skeletal muscles. Studies indicate CX3CL1 induces muscles to uptake energy substrates thereby improving glucose utilization and countering diabetes. Here, we tested if the administration of purified CX3CL1 directly into mice skeletal muscles affects its histoarchitecture, mitochondrial activity, and expression of metabolic proteins. We analyzed four muscles: two upper-limb (quadriceps, hamstrings) and two lower-limb (tibialis anterior, gastrocnemius), contralateral leg muscles were taken as controls. The effects of CX3CL1 treatment on histoarchitecture, mitochondrial activity, and expression of metabolic proteins in muscles were characterized. We used histochemical staining succinate dehydrogenase (SDH)/cytochrome c oxidase (COX), myosin ATPase, alkaline phosphatase (ALP) to evaluate the mitochondrial activity, fiber types, and vascularization in the muscles, respectively. Western blotting was used to evaluate the expression of proteins associated with mitochondrial metabolism (OXPHOS), glycolysis, and vascularization. Overall, this study indicates CX3CL1 primarily modulates mitochondrial metabolism and shifts substrate preference toward glucose in the skeletal muscle. Evidence also supports that CX3CL1 stimulates the relative composition of fast fiber types, influencing selection of energy substrates in the skeletal muscle.
Collapse
Affiliation(s)
| | - Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Harris DR, Cardaci TD, Ismaeel A, Church DD, Heileson JL, Machek SB. Editorial: Sports nutrition: muscle adaptation via supplementation and other nutritional strategies. Front Nutr 2024; 11:1539316. [PMID: 39749352 PMCID: PMC11694595 DOI: 10.3389/fnut.2024.1539316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Dillon R. Harris
- Department of Kinesiology and Sport Management, Texas A and M University, College Station, TX, United States
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David D. Church
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Steven B. Machek
- California State University, Monterey Bay, Seaside, CA, United States
| |
Collapse
|
7
|
Fazio E, Bionda A, Attard G, Medica P, La Fauci D, Amato A, Liotta L, Lopreiato V. Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds. Animals (Basel) 2024; 14:3336. [PMID: 39595388 PMCID: PMC11591377 DOI: 10.3390/ani14223336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Lactation in dairy cows implies comprehensive endocrine and metabolic changes including a systemic electrolytic reaction. Previous studies have rarely considered these specific demands due to the influence of lactation periods. Therefore, this study aimed to assess the effects of early, middle, and late lactation phases on the dynamic changes in serum concentrations of progesterone (P4), 17β-oestradiol (E2), cortisol, and some electrolytes (Ca++, Mg++, Na+, K+, Cl-, Pi) and biochemical parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), total bilirubin, urea, and iron (Fe++) in 10 Holstein, 10 Brown Swiss, and 10 Modicana multiparous healthy dairy cows (4.2 ± 1.7 years of age) sampled at 60-day intervals throughout lactation. Lactation induced significant changes in the concentrations of P4, which peaked at >120-180 days, decreased at >240-300 days, and increased again after 300 days. Cortisol showed an opposite trend to P4, with concentrations progressively decreasing, except for the phase between >240 and 300 days, and a steep drop at >300 days compared to previous phases. Na+ concentrations showed the lowest values at 0-60 d and the highest ones at >180-240 days, whereas Mg++ showed the highest values at >60-120 d and the lowest at >300 d. Significant correlations were found between P4 with cortisol, Cl- and K+, and cortisol with Ca++ and LDH. Significant differences in average concentrations of AST, ALT, LDH, Ca++, Mg++, and Fe++ were observed among different dairy cow breeds. Understanding the dynamic changes in hormone levels, electrolytes, and biochemical parameters during different lactation phases, while considering breed differences in dairy cows, is crucial for improving herd health management and milk production in commercial dairy farms.
Collapse
Affiliation(s)
- Esterina Fazio
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Milan University, Via Celoria 2, 20133 Milan, Italy;
| | - George Attard
- Department of Rural Sciences and Food Systems, University of Malta, 2080 Msida, Malta;
| | - Pietro Medica
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Deborah La Fauci
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Annalisa Amato
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Luigi Liotta
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy; (P.M.); (D.L.F.); (A.A.); (L.L.); (V.L.)
| |
Collapse
|
8
|
Burny C, Potočnjak M, Hestermann A, Gartemann S, Hollmann M, Schifferdecker-Hoch F, Markanovic N, Di Sanzo S, Günsel M, Solis-Mezarino V, Voelker-Albert M. Back pain exercise therapy remodels human epigenetic profiles in buccal and human peripheral blood mononuclear cells: an exploratory study in young male participants. Front Sports Act Living 2024; 6:1393067. [PMID: 39478832 PMCID: PMC11521823 DOI: 10.3389/fspor.2024.1393067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Background With its high and increasing lifetime prevalence, back pain represents a contemporary challenge for patients and healthcare providers. Monitored exercise therapy is a commonly prescribed treatment to relieve pain and functional limitations. However, the benefits of exercise are often gradual, subtle, and evaluated by subjective self-reported scores. Back pain pathogenesis is interlinked with epigenetically mediated processes that modify gene expression without altering the DNA sequence. Therefore, we hypothesize that therapy effects can be objectively evaluated by measurable epigenetic histone posttranslational modifications and proteome expression. Because epigenetic modifications are dynamic and responsive to environmental exposure, lifestyle choices-such as physical activity-can alter epigenetic profiles, subsequent gene expression, and health traits. Instead of invasive sampling (e.g., muscle biopsy), we collect easily accessible buccal swabs and plasma. The plasma proteome provides a systemic understanding of a person's current health state and is an ideal snapshot of downstream, epigenetically regulated, changes upon therapy. This study investigates how molecular profiles evolve in response to standardized sport therapy and non-controlled lifestyle choices. Results We report that the therapy improves agility, attenuates back pain, and triggers healthier habits. We find that a subset of participants' histone methylation and acetylation profiles cluster samples according to their therapy status, before or after therapy. Integrating epigenetic reprogramming of both buccal cells and peripheral blood mononuclear cells (PBMCs) reveals that these concomitant changes are concordant with higher levels of self-rated back pain improvement and agility gain. Additionally, epigenetic changes correlate with changes in immune response plasma factors, reflecting their comparable ability to rate therapy effects at the molecular level. We also performed an exploratory analysis to confirm the usability of molecular profiles in (1) mapping lifestyle choices and (2) evaluating the distance of a given participant to an optimal health state. Conclusion This pre-post cohort study highlights the potential of integrated molecular profiles to score therapy efficiency. Our findings reflect the complex interplay of an individual's background and lifestyle upon therapeutic exposure. Future studies are needed to provide mechanistic insights into back pain pathogenesis and lifestyle-based epigenetic reprogramming upon sport therapy intervention to maintain therapeutic effects in the long run.
Collapse
Affiliation(s)
| | - Mia Potočnjak
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | | | | | | - Simone Di Sanzo
- EpiQMAx GmbH, Planegg, Germany
- Moleqlar Analytics GmbH, Munich, Germany
| | | | | | | |
Collapse
|
9
|
Wang J, Zhang Q, Chen W, Fu H, Zhang M, Fan Y. The effect of flywheel complex training with eccentric-overload on muscular adaptation in elite female volleyball players. PeerJ 2024; 12:e17079. [PMID: 38525282 PMCID: PMC10961060 DOI: 10.7717/peerj.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
This study aimed to compare the effects of 8 weeks (24 sessions) between flywheel complex training with eccentric overload and traditional complex training of well-trained volleyball players on muscle adaptation, including hypertrophy, strength, and power variables. Fourteen athletes were recruited and randomly divided into the flywheel complex training with an eccentric-overload group (FCTEO, n = 7) and the control group (the traditional complex training group, TCT, n = 7). Participants performed half-squats using a flywheel device or Smith machine and drop jumps, with three sets of eight repetitions and three sets of 12 repetitions, respectively. The variables assessed included the muscle thickness at the proximal, mid, and distal sections of the quadriceps femoris, maximal half-squats strength (1RM-SS), squat jump (SJ), countermovement jump (CMJ), and three-step approach jump (AJ). In addition, a two-way repeated ANOVA analysis was used to find differences between the two groups and between the two testing times (pre-test vs. post-test). The indicators of the FCTEO group showed a significantly better improvement (p < 0.05) in CMJ (height: ES = 0.648, peak power: ES = 0.750), AJ (height: ES = 0.537, peak power: ES = 0.441), 1RM-SS (ES = 0.671) compared to the TCT group and the muscle thicknes at the mid of the quadriceps femoris (ES = 0.504) after FCTEO training. Since volleyball requires lower limb strength and explosive effort during repeated jumps and spiking, these results suggest that FCTEO affects muscular adaptation in a way that improves performance in well-trained female volleyball players.
Collapse
Affiliation(s)
- Jiaoqin Wang
- Capital University of Physical Education and Sports, Beijing, China
- Beijing Sport University, Beijing, China
| | - Qiang Zhang
- Capital University of Physical Education and Sports, Beijing, China
| | | | - Honghao Fu
- Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Beijing Sport University, Beijing, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, China
| |
Collapse
|
10
|
Song P, Zhao J, Li F, Zhao X, Feng J, Su Y, Wang B, Zhao J. Vitamin A regulates mitochondrial biogenesis and function through p38 MAPK-PGC-1α signaling pathway and alters the muscle fiber composition of sheep. J Anim Sci Biotechnol 2024; 15:18. [PMID: 38310300 PMCID: PMC10838450 DOI: 10.1186/s40104-023-00968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Vitamin A (VA) and its metabolite, retinoic acid (RA), are of great interest for their wide range of physiological functions. However, the regulatory contribution of VA to mitochondrial and muscle fiber composition in sheep has not been reported. METHOD Lambs were injected with 0 (control) or 7,500 IU VA palmitate into the biceps femoris muscle on d 2 after birth. At the age of 3 and 32 weeks, longissimus dorsi (LD) muscle samples were obtained to explore the effect of VA on myofiber type composition. In vitro, we investigated the effects of RA on myofiber type composition and intrinsic mechanisms. RESULTS The proportion of type I myofiber was greatly increased in VA-treated sheep in LD muscle at harvest. VA greatly promoted mitochondrial biogenesis and function in LD muscle of sheep. Further exploration revealed that VA elevated PGC-1α mRNA and protein contents, and enhanced the level of p38 MAPK phosphorylation in LD muscle of sheep. In addition, the number of type I myofibers with RA treatment was significantly increased, and type IIx myofibers was significantly decreased in primary myoblasts. Consistent with in vivo experiment, RA significantly improved mitochondrial biogenesis and function in primary myoblasts of sheep. We then used si-PGC-1α to inhibit PGC-1α expression and found that si-PGC-1α significantly abrogated RA-induced the formation of type I myofibers, mitochondrial biogenesis, MitoTracker staining intensity, UQCRC1 and ATP5A1 expression, SDH activity, and enhanced the level of type IIx muscle fibers. These data suggested that RA improved mitochondrial biogenesis and function by promoting PGC-1α expression, and increased type I myofibers. In order to prove that the effect of RA on the level of PGC-1α is caused by p38 MAPK signaling, we inhibited the p38 MAPK signaling using a p38 MAPK inhibitor, which significantly reduced RA-induced PGC-1α and MyHC I levels. CONCLUSION VA promoted PGC-1α expression through the p38 MAPK signaling pathway, improved mitochondrial biogenesis, and altered the composition of muscle fiber type.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Fanqinyu Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xiaoyi Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jinxin Feng
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Yuan Su
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
11
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P2Y1 and P2Y2 receptors differ in their role in the regulation of signaling pathways during unloading-induced rat soleus muscle atrophy. Arch Biochem Biophys 2024; 751:109844. [PMID: 38043889 DOI: 10.1016/j.abb.2023.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.
Collapse
Affiliation(s)
- Ksenia A Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
12
|
Kim HJ, Jung DW, Williams DR. Age Is Just a Number: Progress and Obstacles in the Discovery of New Candidate Drugs for Sarcopenia. Cells 2023; 12:2608. [PMID: 37998343 PMCID: PMC10670210 DOI: 10.3390/cells12222608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Sarcopenia is a disease characterized by the progressive loss of skeletal muscle mass and function that occurs with aging. The progression of sarcopenia is correlated with the onset of physical disability, the inability to live independently, and increased mortality. Due to global increases in lifespan and demographic aging in developed countries, sarcopenia has become a major socioeconomic burden. Clinical therapies for sarcopenia are based on physical therapy and nutritional support, although these may suffer from low adherence and variable outcomes. There are currently no clinically approved drugs for sarcopenia. Consequently, there is a large amount of pre-clinical research focusing on discovering new candidate drugs and novel targets. In this review, recent progress in this research will be discussed, along with the challenges that may preclude successful translational research in the clinic. The types of drugs examined include mitochondria-targeting compounds, anti-diabetes agents, small molecules that target non-coding RNAs, protein therapeutics, natural products, and repositioning candidates. In light of the large number of drugs and targets being reported, it can be envisioned that clinically approved pharmaceuticals to prevent the progression or even mitigate sarcopenia may be within reach.
Collapse
Affiliation(s)
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| | - Darren Reece Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea;
| |
Collapse
|
13
|
Warneke K, Lohmann LH, Lima CD, Hollander K, Konrad A, Zech A, Nakamura M, Wirth K, Keiner M, Behm DG. Physiology of Stretch-Mediated Hypertrophy and Strength Increases: A Narrative Review. Sports Med 2023; 53:2055-2075. [PMID: 37556026 PMCID: PMC10587333 DOI: 10.1007/s40279-023-01898-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Increasing muscle strength and cross-sectional area is of crucial importance to improve or maintain physical function in musculoskeletal rehabilitation and sports performance. Decreases in muscular performance are experienced in phases of reduced physical activity or immobilization. These decrements highlight the need for alternative, easily accessible training regimens for a sedentary population to improve rehabilitation and injury prevention routines. Commonly, muscle hypertrophy and strength increases are associated with resistance training, typically performed in a training facility. Mechanical tension, which is usually induced with resistance machines and devices, is known to be an important factor that stimulates the underlying signaling pathways to enhance protein synthesis. Findings from animal studies suggest an alternative means to induce mechanical tension to enhance protein synthesis, and therefore muscle hypertrophy by inducing high-volume stretching. Thus, this narrative review discusses mechanical tension-induced physiological adaptations and their impact on muscle hypertrophy and strength gains. Furthermore, research addressing stretch-induced hypertrophy is critically analyzed. Derived from animal research, the stretching literature exploring the impact of static stretching on morphological and functional adaptations was reviewed and critically discussed. No studies have investigated the underlying physiological mechanisms in humans yet, and thus the underlying mechanisms remain speculative and must be discussed in the light of animal research. However, studies that reported functional and morphological increases in humans commonly used stretching durations of > 30 min per session of the plantar flexors, indicating the importance of high stretching volume, if the aim is to increase muscle mass and maximum strength. Therefore, the practical applicability seems limited to settings without access to resistance training (e.g., in an immobilized state at the start of rehabilitation), as resistance training seems to be more time efficient. Nevertheless, further research is needed to generate evidence in different human populations (athletes, sedentary individuals, and rehabilitation patients) and to quantify stretching intensity.
Collapse
Affiliation(s)
- Konstantin Warneke
- Institute for Exercise, Sport and Health, Leuphana University, Universitätsallee 1, 21335, Lüneburg, Deutschland, Germany.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
- Institute of Sport Science, Alpen-Adria University Klagenfurt, Klagenfurt, Germany.
| | - Lars H Lohmann
- University Sports Center, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Camila D Lima
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Andreas Konrad
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Astrid Zech
- Department of Human Motion Science and Exercise Physiology, Friedrich Schiller University, Jena, Germany
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, Ozaki, Kanzaki, Saga, Japan
| | - Klaus Wirth
- Institute of Sport Science, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Michael Keiner
- Department of Sport Science, German University of Health and Sport, Ismaning, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
14
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
15
|
Gasser B, Wagner J, Schoch R, Schmidt-Trucksäss A. Skeletal muscle and heart failure - What is the relationship between central versus peripheral affections? Nutr Metab Cardiovasc Dis 2023; 33:1907-1913. [PMID: 37500344 DOI: 10.1016/j.numecd.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND AIM Heart failure is considered as a systemic disease as beside the heart, skeletal muscle is affected. METHODS AND RESULTS In this retrospective case-control study 64 men and 15 women with heart failure as well as an individually pairwise matched sample by sex, age and body mass index of healthy individuals from the COmPLETE cohort study performed an exhaustive cardiopulmonary exercise test, strength tests and anthropometric measurements. V̇O2peak was 28.6% lower in male and 24.6% lower in female patients with heart failure as compared to healthy controls. Strength parameters are significantly higher for counter movement jump in male subjects. In females, significant differences were detected for mid-thigh pull in healthy versus patients with heart failure. Skeletal muscle mass of patients was in male as well as female 3.7% lower than in controls. Furthermore, the function of skeletal muscle seems impaired as the ability to accelerate is significantly lower in affected male with a heart pathology. CONCLUSION It seems that severe affections (approx. 25 to 30%) on cardiocirculatory level are associated with moderate to low affections on functional and structural capacity on skeletal muscle level. Further, as in the male cohort with a heart pathology acceleration meaning 'fast' contracting is impaired, it is suggested, that the central limitations respectively the low perfusion of skeletal muscle over years yield to adaptions on muscle cell level ingoing with a decreased ability of fast contracting. It is therefore suggested, that the central circulatory limitations in patients with heart failure, respectively the low perfusion of skeletal muscle over years, promote maladaptation's in the periphery.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland.
| | - Jonathan Wagner
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Raphael Schoch
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sport and Exercise Medicine, Section Rehabilitative and Regenerative Sport Medicine, University of Basel, Grosse Allee 6, CH-4052 Basel, Switzerland
| |
Collapse
|
16
|
Vanmunster M, Rojo-Garcia AV, Pacolet A, Jonkers I, Koppo K, Lories R, Suhr F. Prolonged mechanical muscle loading increases mechanosensor gene and protein levels and causes a moderate fast-to-slow fiber type switch in mice. J Appl Physiol (1985) 2023; 135:918-931. [PMID: 37675473 DOI: 10.1152/japplphysiol.00204.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Mechanosensing and subsequent mechanotransduction are indispensable for muscle plasticity. Nevertheless, a scarcity of literature exists regarding an all-encompassing understanding of the muscle mechanosensing machinery's response to prolonged loading, especially in conditions that resemble a natural physiological state of skeletal muscle. This study aimed to comprehensively explore the effects of prolonged mechanical loading on mechanosensitive components, skeletal muscle characteristics, and metabolism-related gene clusters. Twenty male C57BL/6J mice were randomly divided into two groups: control and prolonged mechanical loading. To induce prolonged mechanical loading on the triceps brachii (TRI) and biceps brachii (BIC) muscles, a 14-day period of tail suspension was implemented. In TRI only, prolonged mechanical loading caused a mild fast-to-slow fiber type shift together with increased mechanosensor gene and protein levels. It also increased transcription factors associated with slow muscle fibers while decreasing those related to fast-type muscle gene expression. Succinate dehydrogenase activity, a marker of muscle oxidative capacity, and genes involved in oxidative and mitochondrial turnover increased, whereas glycolytic-related genes decreased. Moreover, prolonged mechanical loading stimulated markers of muscle protein synthesis. Taken together, our data show a collective muscle-specific increase in mechanosensor gene and protein levels upon a period of prolonged mechanical loading in conditions that reflect a more natural physiological state of skeletal muscle in mice. We provide additional proof-of-concept that prolonged tail suspension-induced loading of the forelimbs triggers a muscle-specific fast-to-slow fiber type switch, and this coincides with increased protein synthesis-related signaling.NEW & NOTEWORTHY This study provides a comprehensive overview of the effects of prolonged loading on mechanosensitive components in conditions that better reflect the natural physiological state of skeletal muscle. Although the muscle mechanosensing machinery has been widely acknowledged for its responsiveness to altered loading, an inclusive understanding of its response to prolonged loading remains scarce. Our results show a fast-to-slow fiber type shift and an upregulation of mechanosensor gene and protein levels following prolonged loading.
Collapse
Affiliation(s)
- Mathias Vanmunster
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | | | - Alexander Pacolet
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Ilse Jonkers
- Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Frank Suhr
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
18
|
Pharaoh G, Ostrom EL, Stuppard R, Campbell M, Borghardt JM, Franti M, Filareto A, Marcinek DJ. A novel mitochondrial complex I ROS inhibitor partially improves muscle regeneration in adult but not old mice. Redox Biol 2023; 64:102770. [PMID: 37295159 PMCID: PMC10267642 DOI: 10.1016/j.redox.2023.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
It is unclear whether mitochondrial dysfunction and redox stress contribute to impaired age-related muscle regenerative capacity. Here we characterized a novel compound, BI4500, that inhibits the release of reactive oxygen species (ROS) from the quinone site in mitochondrial complex I (site IQ). We tested the hypothesis that ROS release from site IQ contributes to impaired regenerative capacity in aging muscle. Electron transfer system site-specific ROS production was measured in adult and aged mouse isolated muscle mitochondria and permeabilized gastrocnemius fibers. BI4500 inhibited ROS production from site IQ in a concentration-dependent manner (IC50 = ∼985 nM) by inhibiting ROS release without impairing complex I-linked respiration. In vivo BI4500 treatment decreased ROS production from site IQ. Muscle injury and sham injury were induced using barium chloride or vehicle injection to the tibialis anterior (TA) muscle in adult and aged male mice. On the same day as injury, mice began a daily gavage of 30 mg/kg BI4500 (BI) or placebo (PLA). Muscle regeneration (H&E, Sirius Red, Pax7) was measured at 5 and 35 days after injury. Muscle injury increased centrally nucleated fibers (CNFs) and fibrosis with no treatment or age effect. There was a significant age by treatment interaction for CNFs at 5- and 35-days post injury with significantly more CNFs in BI adults compared to PLA adults. Muscle fiber cross-sectional area (CSA) recovered significantly more in adult BI mice (-89 ± 365 μm2) compared to old PLA (-599 ± 153 μm2) and old BI (-535 ± 222 μm2, mean ± SD). In situ TA force recovery was measured 35 days after injury and was not significantly different by age or treatment. Inhibition of site IQ ROS partially improves muscle regeneration in adult but not old muscle demonstrating a role for CI ROS in the response to muscle injury. Site IQ ROS does not contribute to impaired regenerative capacity in aging.
Collapse
Affiliation(s)
- Gavin Pharaoh
- Department of Radiology, University of Washington School of Medicine, USA
| | - Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, USA
| | - Matthew Campbell
- Department of Radiology, University of Washington School of Medicine, USA
| | - Jens Markus Borghardt
- Research DMPK, Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Michael Franti
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Antonio Filareto
- Research Beyond Borders, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, USA.
| |
Collapse
|
19
|
Gasser B, Frey WO, Valdivieso P, Scherr J, Spörri J, Flück M. Association of Gene Variants with Seasonal Variation in Muscle Strength and Aerobic Capacity in Elite Skiers. Genes (Basel) 2023; 14:1165. [PMID: 37372345 PMCID: PMC10298717 DOI: 10.3390/genes14061165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The training of elite skiers follows a systematic seasonal periodization with a preparation period, when anaerobic muscle strength, aerobic capacity, and cardio-metabolic recovery are specifically conditioned to provide extra capacity for developing ski-specific physical fitness in the subsequent competition period. We hypothesized that periodization-induced alterations in muscle and metabolic performance demonstrate important variability, which in part is explained by gene-associated factors in association with sex and age. Methods: A total of 34 elite skiers (20.4 ± 3.1 years, 19 women, 15 men) underwent exhaustive cardiopulmonary exercise and isokinetic strength testing before and after the preparation and subsequent competition periods of the World Cup skiing seasons 2015-2018. Biometric data were recorded, and frequent polymorphisms in five fitness genes, ACE-I/D (rs1799752), TNC (rs2104772), ACTN3 (rs1815739), and PTK2 (rs7460, rs7843014), were determined with specific PCR reactions on collected DNA. Relative percentage changes of cardio-pulmonary and skeletal muscle metabolism and performance over the two seasonal periods were calculated for 160 data points and subjected to analysis of variance (ANOVA) to identify hypothesized and novel associations between performance alterations and the five respective genotypes and determine the influence of age × sex. A threshold of 0.1 for the effect size (h2) was deemed appropriate to identify relevant associations and motivate a post hoc test to localize effects. Results: The preparation and competition periods produced antidromic functional changes, the extent of which varied with increasing importance for anaerobic strength, aerobic performance, cardio-metabolic efficiency, and cardio-metabolic/muscle recovery. Only peak RER (-14%), but not anaerobic strength and peak aerobic performance, and parameters characterizing cardio-metabolic efficiency, differed between the first and last studied skiing seasons because improvements over the preparation period were mostly lost over the competition period. A number of functional parameters demonstrated associations of variability in periodic changes with a given genotype, and this was considerably influenced by athlete "age", but not "sex". This concerned age-dependent associations between periodic changes in muscle-related parameters, such as anaerobic strength for low and high angular velocities of extension and flexion and blood lactate concentration, with rs1799752 and rs2104772, whose gene products relate to sarcopenia. By contrast, the variance in period-dependent changes in body mass and peak VO2 with rs1799752 and rs2104772, respectively, was independent of age. Likely, the variance in periodic changes in the reliance of aerobic performance on lactate, oxygen uptake, and heart rate was associated with rs1815739 independent of age. These associations manifested at the post hoc level in genotype-associated differences in critical performance parameters. ACTN3 T-allele carriers demonstrated, compared to non-carriers, largely different periodic changes in the muscle-associated parameters of aerobic metabolism during exhaustive exercise, including blood lactate and respiration exchange ratio. The homozygous T-allele carriers of rs2104772 demonstrated the largest changes in extension strength at low angular velocity during the preparation period. Conclusions: Physiological characteristics of performance in skiing athletes undergo training period-dependent seasonal alterations the extent of which is largest for muscle metabolism-related parameters. Genotype associations for the variability in changes of aerobic metabolism-associated power output during exhaustive exercise and anaerobic peak power over the preparation and competition period motivate personalized training regimes. This may help to predict and maximize the benefit of physical conditioning of elite skiers based on chronological characteristics and the polymorphisms of the ACTN3, ACE, and TNC genes investigated here.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Physical Activity and Health, University of Basel, 4052 Basel, Switzerland
| | | | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Balgrist Campus, University of Zurich, 8008 Zurich, Switzerland;
| | - Johannes Scherr
- University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.S.); (J.S.)
| | - Jörg Spörri
- University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.S.); (J.S.)
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Martin Flück
- Department of Sport, Physical Activity and Health, University of Basel, 4052 Basel, Switzerland
- Laboratory for Muscle Plasticity, Balgrist Campus, University of Zurich, 8008 Zurich, Switzerland;
- Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Swiss Federal Institute of Sport—BASPO, 2532 Magglingen, Switzerland
| |
Collapse
|
20
|
Turkel I, Ozerklig B, Yılmaz M, Ulger O, Kubat GB, Tuncer M. Mitochondrial transplantation as a possible therapeutic option for sarcopenia. J Mol Med (Berl) 2023:10.1007/s00109-023-02326-3. [PMID: 37209146 DOI: 10.1007/s00109-023-02326-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
With advancing age, the skeletal muscle phenotype is characterized by a progressive loss of mass, strength, and quality. This phenomenon, known as sarcopenia, has a negative impact on quality of life and increases the risk of morbidity and mortality in older adults. Accumulating evidence suggests that damaged and dysfunctional mitochondria play a critical role in the pathogenesis of sarcopenia. Lifestyle modifications, such as physical activity, exercise, and nutrition, as well as medical interventions with therapeutic agents, are effective in the management of sarcopenia and offer solutions to maintain and improve skeletal muscle health. Although a great deal of effort has been devoted to the identification of the best treatment option, these strategies are not sufficient to overcome sarcopenia. Recently, it has been reported that mitochondrial transplantation may be a possible therapeutic approach for the treatment of mitochondria-related pathological conditions such as ischemia, liver toxicity, kidney injury, cancer, and non-alcoholic fatty liver disease. Given the role of mitochondria in the function and metabolism of skeletal muscle, mitochondrial transplantation may be a possible option for the treatment of sarcopenia. In this review, we summarize the definition and characteristics of sarcopenia and molecular mechanisms associated with mitochondria that are known to contribute to sarcopenia. We also discuss mitochondrial transplantation as a possible option. Despite the progress made in the field of mitochondrial transplantation, further studies are needed to elucidate the role of mitochondrial transplantation in sarcopenia. KEY MESSAGES: Sarcopenia is the progressive loss of skeletal muscle mass, strength, and quality. Although the specific mechanisms that lead to sarcopenia are not fully understood, mitochondria have been identified as a key factor in the development of sarcopenia. Damaged and dysfunctional mitochondria initiate various cellular mediators and signaling pathways, which largely contribute to the age-related loss of skeletal muscle mass and strength. Mitochondrial transplantation has been reported to be a possible option for the treatment/prevention of several diseases. Mitochondrial transplantation may be a possible therapeutic option for improving skeletal muscle health and treating sarcopenia. Mitochondrial transplantation as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Merve Yılmaz
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Gasser B, Niederseer D, Frey WO, Catuogno S, Flück M. ACE-I/D Allele Modulates Improvements of Cardiorespiratory Function and Muscle Performance with Interval-Type Exercise. Genes (Basel) 2023; 14:1100. [PMID: 37239460 PMCID: PMC10218657 DOI: 10.3390/genes14051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Background: The prominent insertion/deletion polymorphism in the gene for the major modulator of tissue perfusion, angiotensin-converting enzyme (ACE-I/D) is associated with variability in adjustments in cardiac and skeletal muscle performance with standard forms of endurance and strength type training. Here, we tested whether the ACE-I/D genotype would be associated with variability in the effects of interval-type training on peak and aerobic performance of peripheral muscle and cardio-vasculature and post-exercise recovery. Methods: Nine healthy subjects (39.0 ± 14.7 years of age; 64.6 ± 16.1 kg, 173.6 ± 9.9) completed eight weeks of interval training on a soft robotic device based on repeated sets of a pedaling exercise at a matched intensity relative to their peak aerobic power output. Prior to and post-training, peak anaerobic and aerobic power output was assessed, mechanical work and metabolic stress (oxygen saturation and hemoglobin concentrations of Musculus vastus lateralis (VAS) and Musculus gastrocnemius (GAS), blood lactate and factors setting cardiac output such as heart rate, systolic and diastolic blood pressure were monitored during ramp-incremental exercise and interval exercise with the calculation of areas under the curve (AUC), which were put in relation to the produced muscle work. Genotyping was performed based on I- and D-allele-specific polymerase chain reactions on genomic DNA from mucosal swaps. The significance of interaction effects between training and ACE I-allele on absolute and work-related values was assessed with repeated measures ANOVA. Results: Subjects delivered 87% more muscle work/power, 106% more cardiac output, and muscles experienced ~72% more of a deficit in oxygen saturation and a ~35% higher passage of total hemoglobin during single interval exercise after the eight weeks of training. Interval training affected aspects of skeletal muscle metabolism and performance, whose variability was associated with the ACE I-allele. This concerned the economically favorable alterations in the work-related AUC for the deficit of SmO2 in the VAS and GAS muscles during the ramp exercise for the I-allele carriers and opposing deteriorations in non-carriers. Conversely, oxygen saturation in the VAS and GAS at rest and during interval exercise was selectively improved after training for the non-carriers of the I-allele when the AUC of tHb per work during interval exercise deteriorated in the carriers. Training also improved aerobic peak power output by 4% in the carriers but not the non-carriers (p = 0.772) of the ACE I-allele while reducing negative peak power (-27.0%) to a lesser extent in the ACE I-allele carriers than the non-carriers. Variability in cardiac parameters (i.e., the AUC of heart rate and glucose during ramp exercise, was similar to the time to recovery of maximal tHb in both muscles after cessation of ramp exercise, only associated with the ACE I-allele but not training per se. Diastolic blood pressure and cardiac output during recovery from exhaustive ramp exercise demonstrated a trend for training-associated differences in association with the ACE I-allele. Discussion: The exercise-type dependent manifestation of antidromic adjustments in leg muscle perfusion and associated local aerobic metabolism between carriers and non-carriers of the ACE I-allele with the interval-training highlight that non-carriers of the I-allele do not present an essential handicap to improve perfusion-related aerobic muscle metabolism but that the manifestation of responsiveness depends on the produced work. Conclusions: The deployed interval-type of exercise produced ACE I-allele-related differences in the alterations of negative anaerobic performance and perfusion-related aerobic muscle metabolism, which manifestation is exercise specific. The training-invariant ACE I-allele-associated differences in heart rate and blood glucose concentration emphasize that the repeated impact of the interval stimulus, despite a near doubling of the initial metabolic load, was insufficient to overturn ACE-related genetic influences on cardiovascular function.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport, Universität Basel, CH-4052 Basel, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, CH-8008 Zurich, Switzerland;
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, CH-8008 Zurich, Switzerland; (W.O.F.); (S.C.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, CH-8008 Zurich, Switzerland
- Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
22
|
Unsihuay D, Hu H, Qiu J, Latorre-Palomino A, Yang M, Yue F, Yin R, Kuang S, Laskin J. Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types. Chem Sci 2023; 14:4070-4082. [PMID: 37063787 PMCID: PMC10094364 DOI: 10.1039/d2sc06020e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 μm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in phospholipids was found in oxidative fibers whereas more saturated acyl chains in phospholipids were found in glycolytic fibers which suggests an effect of the membrane fluidity on the metabolic properties of skeletal myofibers.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Philadelphia PA 19104 USA
| | - Hang Hu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | | | - Manxi Yang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
23
|
Sztretye M, Singlár Z, Ganbat N, Al-Gaadi D, Szabó K, Köhler ZM, Dux L, Keller-Pintér A, Csernoch L, Szentesi P. Unravelling the Effects of Syndecan-4 Knockdown on Skeletal Muscle Functions. Int J Mol Sci 2023; 24:ijms24086933. [PMID: 37108098 PMCID: PMC10138797 DOI: 10.3390/ijms24086933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.
Collapse
Affiliation(s)
- Mónika Sztretye
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Zoltán Singlár
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nyamkhuu Ganbat
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dána Al-Gaadi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kitti Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Márton Köhler
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
24
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
25
|
Zaripova KА, Belova SP, Shenkman BS, Nemirovskaya TL. The Role of P2Y Receptors in the Regulation of Atrophic Processes in Rat Skeletal Muscles under Unloading. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Barsky ST, Monks DA. Myocytic androgen receptor overexpression does not affect sex differences in adaptation to chronic endurance exercise. Biol Sex Differ 2022; 13:59. [PMID: 36274144 PMCID: PMC9590152 DOI: 10.1186/s13293-022-00471-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
Muscle-specific androgen receptor (AR) overexpression (HSAAR transgene) in sedentary male rats results in reduced adiposity, increased mitochondrial enzyme activity, and selective increase in Type 2b myofiber size. Here, we tested chronic endurance exercise interactions with this phenotype in both sexes. Across 9 weeks, rats ran 5×/week on motorized running wheels at increasing speeds and durations. Exercise reduced fat mass in all groups, but sex affected endurance exercise outcomes such that absolute lean mass increased only in females and total body mass decreased only in males. Expected sex differences were observed with males exhibiting greater total body and lean mass; absolute and relative fat mass; bone mineral density; extensor digitorum longus (EDL) myofiber size and glycolytic proportion; but lesser Type 2a and Type 1 myosin expression in tibialis anterior. Observed HSAAR outcomes were not altered by sex, with transgenic rats having greater lean mass, Type 2a myosin expression in soleus, and glycolytic myofiber size in EDL. Tibialis AR content was independently affected by sex, HSAAR, and exercise. No sex differences were observed in tibialis AR expression in wild-type rats, although HSAAR males had greater AR content than HSAAR females. We identified a moderate correlation between AR expression and glycolytic myofiber size, but not whole-body composition. Overall, results suggest myocytic AR overexpression and chronic exercise, despite sharing a similar phenotype to adaptation, are mediated by distinct mechanisms. Further, this study illustrates sex differences in adaptation to chronic endurance exercise, and suggests sex-similarity in the relationship between muscle AR and exercise response. Adaptations in bone, lean, and total mass after forced endurance exercise are sex-dependent in rats. Sex differences in muscle fiber-type size and proportion, lean body mass, and bone density are independent of exercise in rats. Myocytic AR overexpression promotes lean body mass and glycolytic myofiber size in both sexes. Skeletal muscle AR protein is elevated by chronic endurance exercise in rats, and these changes in AR content are correlated with improved glycolytic myofiber size.
Collapse
|
27
|
Viecelli C, Ewald CY. The non-modifiable factors age, gender, and genetics influence resistance exercise. FRONTIERS IN AGING 2022; 3:1005848. [PMID: 36172603 PMCID: PMC9510838 DOI: 10.3389/fragi.2022.1005848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 06/13/2023]
Abstract
Muscle mass and force are key for movement, life quality, and health. It is well established that resistance exercise is a potent anabolic stimulus increasing muscle mass and force. The response of a physiological system to resistance exercise is composed of non-modifiable (i.e., age, gender, genetics) and modifiable factors (i.e., exercise, nutrition, training status, etc.). Both factors are integrated by systemic responses (i.e., molecular signaling, genetic responses, protein metabolism, etc.), consequently resulting in functional and physiological adaptations. Herein, we discuss the influence of non-modifiable factors on resistance exercise: age, gender, and genetics. A solid understanding of the role of non-modifiable factors might help to adjust training regimes towards optimal muscle mass maintenance and health.
Collapse
Affiliation(s)
- Claudio Viecelli
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Collin Y. Ewald
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
28
|
Washington TA, Haynie WS, Schrems ER, Perry RA, Brown LA, Williams BM, Rosa-Caldwell ME, Lee DE, Brown JL. Effects of PGC-1α overexpression on the myogenic response during skeletal muscle regeneration. SPORTS MEDICINE AND HEALTH SCIENCE 2022; 4:198-208. [PMID: 36090923 PMCID: PMC9453693 DOI: 10.1016/j.smhs.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10–20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.
Collapse
Affiliation(s)
- Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
- Corresponding author. University of Arkansas Department of Health, Human Performance, and Recreation, 155 Stadium Dr. HPER 309, Fayetteville, AR, 72701, USA.
| | - Wesley S. Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eleanor R. Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Richard A. Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lemuel A. Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Breanna M. Williams
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Megan E. Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - David E. Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jacob L. Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
29
|
Mengeste AM, Nikolić N, Dalmao Fernandez A, Feng YZ, Nyman TA, Kersten S, Haugen F, Kase ET, Aas V, Rustan AC, Thoresen GH. Insight Into the Metabolic Adaptations of Electrically Pulse-Stimulated Human Myotubes Using Global Analysis of the Transcriptome and Proteome. Front Physiol 2022; 13:928195. [PMID: 35874526 PMCID: PMC9298736 DOI: 10.3389/fphys.2022.928195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.e. 2 ms, 10 V, and 0.1 Hz for 24 h), whereas myotubes from middle-aged women and men were exposed to protocol 2 (i.e. 2 ms, 30 V, and 1 Hz for 48 h). Fuel handling as well as the transcriptome, cellular proteome, and secreted proteins of EPS-treated myotubes from young male subjects were analyzed using a combination of high-throughput RNA sequencing, high-resolution liquid chromatography-tandem mass spectrometry, oxidation assay, and immunoblotting. The data showed that oxidative metabolism was enhanced in EPS-exposed myotubes from young male subjects. Moreover, a total of 81 differentially regulated proteins and 952 differentially expressed genes (DEGs) were observed in these cells after EPS protocol 1. We also found 61 overlapping genes while comparing the DEGs to mRNA expression in myotubes from the middle-aged group exposed to protocol 2, assessed by microarray. Gene ontology (GO) analysis indicated that significantly regulated proteins and genes were enriched in biological processes related to glycolytic pathways, positive regulation of fatty acid oxidation, and oxidative phosphorylation, as well as muscle contraction, autophagy/mitophagy, and oxidative stress. Additionally, proteomic identification of secreted proteins revealed extracellular levels of 137 proteins were changed in myotubes from young male subjects exposed to EPS protocol 1. Selected putative myokines were measured using ELISA or multiplex assay to validate the results. Collectively, our data provides new insight into the transcriptome, proteome and secreted proteins alterations following in vitro exercise and is a valuable resource for understanding the molecular mechanisms and regulatory molecules mediating the beneficial metabolic effects of exercise.
Collapse
Affiliation(s)
- Abel M Mengeste
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Nataša Nikolić
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Andrea Dalmao Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuan Z Feng
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands
| | - Fred Haugen
- Department of Work Psychology and Physiology, STAMI-The National Institute of Occupational Health, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Vigdis Aas
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Arild C Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Physical Activity Modulates miRNAs Levels and Enhances MYOD Expression in Myoblasts. Stem Cell Rev Rep 2022; 18:1865-1874. [PMID: 35316486 PMCID: PMC9209351 DOI: 10.1007/s12015-022-10361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Stem cells functions are regulated by different factors and non-conding RNAs, such as microRNA. MiRNAsplay an important role in modulating the expression of genes involved in the commitment and differentiation of progenitor cells. MiRNAs are post transcriptional regulators which may be modulated by physical exercise. MiRNAs, by regulating different signaling pathways, play an important role in myogenesis as well as in muscle activity. MiRNAs quantification may be considered for evaluating physical performance or muscle recovery. With the aim to identify specific miRNAs potentially involved in myogenesis and modulated by physical activity, we investigated miRNAs expression following physical performance in Peripheral Blood Mononuclear Cells (PBMCs) and in sera of half marathon (HM) runnners. The effect of runners sera on Myogenesis in in vitro cellular models was also explored. Therefore, we performed Microarray Analysis and Real Time PCR assays, as well as in vitro cell cultures analysis to investigate myogenic differentiation. Our data demonstrated gender-specific expression patterns of PBMC miRNAs before physical performance. In particular, miR223-3p, miR26b-5p, miR150-5p and miR15-5p expression was higher, while miR7a-5p and miR7i-5p expression was lower in females compared to males. After HM, miR152-3p, miR143-3p, miR27a-3p levels increased while miR30b-3p decreased in both females and males: circulating miRNAs mirrored these modulations. Furthermore, we also observed that the addition of post-HM participants sera to cell cultures exerted a positive effect in stimulating myogenesis. In conclusion, our data suggest that physical activity induces the modulation of myogenesis-associated miRNAs in bothfemales and males, despite the gender-associated different expression of certain miRNAs, Noteworthy, these findings might be useful for evaluating potential targets for microRNA based-therapies in diseases affecting the myogenic stem cells population.
Collapse
|
31
|
Gasser B, Franchi MV, Ruoss S, Frei A, Popp WL, Niederseer D, Catuogno S, Frey WO, Flück M. Accelerated Muscle Deoxygenation in Aerobically Fit Subjects During Exhaustive Exercise Is Associated With the ACE Insertion Allele. Front Sports Act Living 2022; 4:814975. [PMID: 35295536 PMCID: PMC8918772 DOI: 10.3389/fspor.2022.814975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Introduction The insertion/deletion (I/D) polymorphism in the gene for the major regulator of vascular tone, angiotensin-converting enzyme-insertion/deletion (ACE-I/D) affects muscle capillarization and mitochondrial biogenesis with endurance training. We tested whether changes of leg muscle oxygen saturation (SmO2) during exhaustive exercise and recovery would depend on the aerobic fitness status and the ACE I/D polymorphism. Methods In total, 34 healthy subjects (age: 31.8 ± 10.2 years, 17 male, 17 female) performed an incremental exercise test to exhaustion. SmO2 in musculus vastus lateralis (VAS) and musculus gastrocnemius (GAS) was recorded with near-IR spectroscopy. Effects of the aerobic fitness status (based on a VO2peak cutoff value of 50 ml O2 min−1 kg−1) and the ACE-I/D genotype (detected by PCR) on kinetic parameters of muscle deoxygenation and reoxygenation were assessed with univariate ANOVA. Results Deoxygenation with exercise was comparable in VAS and GAS (p = 0.321). In both leg muscles, deoxygenation and reoxygenation were 1.5-fold higher in the fit than the unfit volunteers. Differences in muscle deoxygenation, but not VO2peak, were associated with gender-independent (p > 0.58) interaction effects between aerobic fitness × ACE-I/D genotype; being reflected in a 2-fold accelerated deoxygenation of VAS for aerobically fit than unfit ACE-II genotypes and a 2-fold higher deoxygenation of GAS for fit ACE-II genotypes than fit D-allele carriers. Discussion Aerobically fit subjects demonstrated increased rates of leg muscle deoxygenation and reoxygenation. Together with the higher muscle deoxygenation in aerobically fit ACE-II genotypes, this suggests that an ACE-I/D genotype-based personalization of training protocols might serve to best improve aerobic performance.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
- *Correspondence: Benedikt Gasser
| | - Martino V. Franchi
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Severin Ruoss
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Annika Frei
- Departement für Bewegung und Sport – Universität Basel, Basel, Switzerland
| | - Werner L. Popp
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Catuogno
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Walter O. Frey
- Swiss Olympic Medical Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Martin Flück
| |
Collapse
|
32
|
Differences in Knee Extensors’ Muscle–Tendon Unit Passive Stiffness, Architecture, and Force Production in Competitive Cyclists Versus Runners. J Appl Biomech 2022; 38:412-423. [DOI: 10.1123/jab.2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
To describe the possible effects of chronic specific exercise training, the present study compared the anthropometric variables, muscle–tendon unit (MTU) architecture, passive stiffness, and force production capacity between a group of competitive cyclists and runners. Twenty-seven competitive male cyclists (n = 16) and runners (n = 11) participated. B-mode ultrasound evaluation of the vastus lateralis muscle and patellar tendon as well as passive stiffness of the knee extensors MTU were assessed. The athletes then performed a test of knee extensor maximal voluntary isometric contractions. Cyclists displayed greater thigh girths, vastus lateralis pennation angle and muscle thickness, patellar tendon cross-sectional area, and MTU passive stiffness than runners (P < .05). Knee extensor force production capacity also differed significantly, with cyclists showing greater values compared with runners (P < .05). Overall, the direct comparison of these 2 populations revealed specific differences in the MTU, conceivably related to the chronic requirements imposed through the training for the different disciplines.
Collapse
|
33
|
Supriya R, Singh KP, Gao Y, Gu Y, Baker JS. Effect of Exercise on Secondary Sarcopenia: A Comprehensive Literature Review. BIOLOGY 2021; 11:biology11010051. [PMID: 35053049 PMCID: PMC8773430 DOI: 10.3390/biology11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Sarcopenia is an inevitable component of aging. It is officially recognized as a muscle disease with an ICD-10-MC diagnosis code that can be used to bill for care in some countries. Sarcopenia can be classified into primary or age-related sarcopenia and secondary sarcopenia. The condition is referred to as secondary sarcopenia when any other comorbidities are present in conjunction with aging. Secondary sarcopenia is more prevalent than primary sarcopenia and requires special attention. Exercise interventions may help in our understanding and prevention of sarcopenia with a specific morbidity Glomerular filtration rate that exercise improves muscle mass, quality or physical function in elderly subjects with cancer, type 2 diabetes, kidney diseases and lung diseases. In this review, we summarize recent research that has studied the impact of exercise on patients with secondary sarcopenia, specifically those with one comorbid condition. We did not discover any exercise intervention specifically for subjects with secondary sarcopenia (with one comorbidity). Even though there is a strong argument for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney diseases, lung diseases and many more, very few studies have reported baseline sarcopenia assessments. Based on the trials summarized in this review, we may propose but not conclude that resistance, aerobic, balance training or even walking can be useful in subjects with secondary sarcopenia with only one comorbidity due to the limited number of trials. This review is significant because it reveals the need for broad-ranging research initiatives involving secondary sarcopenic patients and highlights a large secondary sarcopenia research gap. Abstract Background: Sarcopenia has been recognized as an inevitable part of aging. However, its severity and the age at which it begins cannot be predicted by age alone. The condition can be categorized into primary or age-related sarcopenia and secondary sarcopenia. Sarcopenia is diagnosed as primary when there are no other specific causes. However, secondary sarcopenia occurs if other factors, including malignancy or organ failure, are evident in addition to aging. The prevalence of secondary sarcopenia is far greater than that of primary sarcopenia and requires special attention. To date, nutrition and exercise have proven to be the best methods to combat this disease. The impact of exercise on subjects suffering from sarcopenia with a specific morbidity is worthy of examination for understanding and prevention. The purpose of this review, therefore, is to summarize recent research that has investigated the impact of exercise in patients with secondary sarcopenia, specifically with one comorbidity. Methods: Pubmed, Web of Science, Embase and Medline databases were searched comprehensively with no date limit for randomized controlled trials. The literature was specifically searched for clinical trials in which subjects were sarcopenic with only one comorbidity participating in an exercise intervention. The most visible comorbidities identified and used in the search were lung disease, kidney disease, heart disease, type 2 diabetes, cancer, neurological diseases, osteoporosis and arthritis. Results: A total of 1752 studies were identified that matched the keywords. After removing duplicates, there were 1317 articles remaining. We extracted 98 articles for full screening. Finally, we included 21 relevant papers that were used in this review. Conclusion: Despite a strong rationale for using exercise to improve muscle mass, quality or physical function in subjects with cancer, type 2 diabetes, kidney disease, lung disease and many more, baseline sarcopenia evaluation has been reported in very few trials. The limited number of studies does not allow us to conclude that exercise can improve sarcopenia in patients with other comorbidities. This review highlights the necessity for wide-ranging research initiatives involving secondary sarcopenic patients.
Collapse
Affiliation(s)
- Rashmi Supriya
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
- Correspondence:
| | - Kumar Purnendu Singh
- FEBT, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani 12120, Thailand;
| | - Yang Gao
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
| | - Julien S. Baker
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China; (Y.G.); (Y.G.); (J.S.B.)
- Centre for Health and Exercise Science Research, Sarcopenia Research Unit, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong 999077, Hong Kong
| |
Collapse
|
34
|
The Role of GDF15 as a Myomitokine. Cells 2021; 10:cells10112990. [PMID: 34831213 PMCID: PMC8616340 DOI: 10.3390/cells10112990] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Growth differentiation factor 15 (GDF15) is a cytokine best known for affecting systemic energy metabolism through its anorectic action. GDF15 expression and secretion from various organs and tissues is induced in different physiological and pathophysiological states, often linked to mitochondrial stress, leading to highly variable circulating GDF15 levels. In skeletal muscle and the heart, the basal expression of GDF15 is very low compared to other organs, but GDF15 expression and secretion can be induced in various stress conditions, such as intense exercise and acute myocardial infarction, respectively. GDF15 is thus considered as a myokine and cardiokine. GFRAL, the exclusive receptor for GDF15, is expressed in hindbrain neurons and activation of the GDF15–GFRAL pathway is linked to an increased sympathetic outflow and possibly an activation of the hypothalamic-pituitary-adrenal (HPA) stress axis. There is also evidence for peripheral, direct effects of GDF15 on adipose tissue lipolysis and possible autocrine cardiac effects. Metabolic and behavioral outcomes of GDF15 signaling can be beneficial or detrimental, likely depending on the magnitude and duration of the GDF15 signal. This is especially apparent for GDF15 production in muscle, which can be induced both by exercise and by muscle disease states such as sarcopenia and mitochondrial myopathy.
Collapse
|
35
|
de Meeûs d'Argenteuil C, Boshuizen B, Vidal Moreno de Vega C, Leybaert L, de Maré L, Goethals K, De Spiegelaere W, Oosterlinck M, Delesalle C. Comparison of Shifts in Skeletal Muscle Plasticity Parameters in Horses in Three Different Muscles, in Answer to 8 Weeks of Harness Training. Front Vet Sci 2021; 8:718866. [PMID: 34733900 PMCID: PMC8558477 DOI: 10.3389/fvets.2021.718866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Training-induced follow-up of multiple muscle plasticity parameters in postural stability vs. locomotion muscles provides an integrative physiological view on shifts in the muscular metabolic machinery. It can be expected that not all muscle plasticity parameters show the same expression time profile across muscles. This knowledge is important to underpin results of metabolomic studies. Twelve non-competing Standardbred mares were subjected to standardized harness training. Muscle biopsies were taken on a non-training day before and after 8 weeks. Shifts in muscle fiber type composition and muscle fiber cross-sectional area (CSA) were compared in the m. pectoralis, the m. vastus lateralis, and the m. semitendinosus. In the m. vastus lateralis, which showed most pronounced training-induced plasticity, two additional muscle plasticity parameters (capillarization and mitochondrial density) were assessed. In the m. semitendinosus, additionally the mean minimum Feret's diameter was assessed. There was a significant difference in baseline profiles. The m. semitendinosus contained less type I and more type IIX fibers compatible with the most pronounced anaerobic profile. Though no baseline fiber type-specific and overall mean CSA differences could be detected, there was a clear post-training decrease in fiber type specific CSA, most pronounced for the m. vastus lateralis, and this was accompanied by a clear increase in capillary supply. No shifts in mitochondrial density were detected. The m. semitendinosus showed a decrease in fiber type specific CSA of type IIAX fibers and a decrease of type I fiber Feret's diameter as well as mean minimum Feret's diameter. The training-induced increased capillary supply in conjunction with a significant decrease in muscle fiber CSA suggests that the muscular machinery models itself toward an optimal smaller individual muscle fiber structure to receive and process fuels that can be swiftly delivered by the circulatory system. These results are interesting in view of the recently identified important fuel candidates such as branched-chain amino acids, aromatic amino acids, and gut microbiome-related xenobiotics, which need a rapid gut-muscle gateway to reach these fibers and are less challenging for the mitochondrial system. More research is needed with that respect. Results also show important differences between muscle groups with respect to baseline and training-specific modulation.
Collapse
Affiliation(s)
- Constance de Meeûs d'Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorie de Maré
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| | - Klara Goethals
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Research Group Biometrics, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maarten Oosterlinck
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Research Group of Comparative Physiology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
36
|
Genetically Encoded Biosensors to Monitor Intracellular Reactive Oxygen and Nitrogen Species and Glutathione Redox Potential in Skeletal Muscle Cells. Int J Mol Sci 2021; 22:ijms221910876. [PMID: 34639217 PMCID: PMC8509583 DOI: 10.3390/ijms221910876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen and nitrogen species (RONS) play an important role in the pathophysiology of skeletal muscle and are involved in the regulation of intracellular signaling pathways, which drive metabolism, regeneration, and adaptation in skeletal muscle. However, the molecular mechanisms underlying these processes are unknown or partially uncovered. We implemented a combination of methodological approaches that are funded for the use of genetically encoded biosensors associated with quantitative fluorescence microscopy imaging to study redox biology in skeletal muscle. Therefore, it was possible to detect and monitor RONS and glutathione redox potential with high specificity and spatio-temporal resolution in two models, isolated skeletal muscle fibers and C2C12 myoblasts/myotubes. Biosensors HyPer3 and roGFP2-Orp1 were examined for the detection of cytosolic hydrogen peroxide; HyPer-mito and HyPer-nuc for the detection of mitochondrial and nuclear hydrogen peroxide; Mito-Grx1-roGFP2 and cyto-Grx1-roGFP2 were used for registration of the glutathione redox potential in mitochondria and cytosol. G-geNOp was proven to detect cytosolic nitric oxide. The fluorescence emitted by the biosensors is affected by pH, and this might have masked the results; therefore, environmental CO2 must be controlled to avoid pH fluctuations. In conclusion, genetically encoded biosensors and quantitative fluorescence microscopy provide a robust methodology to investigate the pathophysiological processes associated with the redox biology of skeletal muscle.
Collapse
|
37
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
38
|
Nemirovskaya TL. The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
McKendry J, Stokes T, Mcleod JC, Phillips SM. Resistance Exercise, Aging, Disuse, and Muscle Protein Metabolism. Compr Physiol 2021; 11:2249-2278. [PMID: 34190341 DOI: 10.1002/cphy.c200029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle is the organ of locomotion, its optimal function is critical for athletic performance, and is also important for health due to its contribution to resting metabolic rate and as a site for glucose uptake and storage. Numerous endogenous and exogenous factors influence muscle mass. Much of what is currently known regarding muscle protein turnover is owed to the development and use of stable isotope tracers. Skeletal muscle mass is determined by the meal- and contraction-induced alterations of muscle protein synthesis and muscle protein breakdown. Increased loading as resistance training is the most potent nonpharmacological strategy by which skeletal muscle mass can be increased. Conversely, aging (sarcopenia) and muscle disuse lead to the development of anabolic resistance and contribute to the loss of skeletal muscle mass. Nascent omics-based technologies have significantly improved our understanding surrounding the regulation of skeletal muscle mass at the gene, transcript, and protein levels. Despite significant advances surrounding the mechanistic intricacies that underpin changes in skeletal muscle mass, these processes are complex, and more work is certainly needed. In this article, we provide an overview of the importance of skeletal muscle, describe the influence that resistance training, aging, and disuse exert on muscle protein turnover and the molecular regulatory processes that contribute to changes in muscle protein abundance. © 2021 American Physiological Society. Compr Physiol 11:2249-2278, 2021.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan C Mcleod
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Hering GO, Stepan J. The Maximal Lactate Steady State Workload Determines Individual Swimming Performance. Front Physiol 2021; 12:668123. [PMID: 33981254 PMCID: PMC8107465 DOI: 10.3389/fphys.2021.668123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
The lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSSW) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSSW in a single-exercise test. When approaching the LT, we found that minute variations in swimming speed had considerable effects on blood lactate concentration ([La-]). The LT was characterized by a sudden increase in [La-], while the MLSSW occurred after a subsequent workload reduction, as indicated by a rapid cessation of blood lactate accumulation. Determination of the MLSSW by this so-called "individual lactate threshold" (ILT)-test was highly reproducible and valid in a constant speed test. Mean swimming speed in 800 and 1,500 m competition (S-Comp) was 3.4% above MLSSW level and S-Comp, and the difference between S-Comp and the MLSSW (Δ S-Comp/MLSSW) were higher for long-distance swimmers (800-1,500 m) than for short- and middle-distance swimmers (50-400 m). Moreover, Δ S-Comp/MLSSW varied significantly between subjects and had a strong influence on overall swimming performance. Our results demonstrate that the MLSSW determines individual swimming performance, reflects endurance capacity in the sub- to supra-threshold range, and is therefore appropriate to adjust training intensity in moderate to severe domains of exercise.
Collapse
Affiliation(s)
- Gernot O Hering
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany
| | - Jens Stepan
- Department of Sport and Health Science, University of Konstanz, Konstanz, Germany.,Department of Obstetrics and Gynaecology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
41
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
42
|
Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun 2021; 12:1294. [PMID: 33637766 PMCID: PMC7910585 DOI: 10.1038/s41467-021-21621-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.
Collapse
|
43
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
44
|
Monti E, Toniolo L, Marcucci L, Bondì M, Martellato I, Šimunič B, Toninello P, Franchi MV, Narici MV, Reggiani C. Are muscle fibres of body builders intrinsically weaker? A comparison with single fibres of aged-matched controls. Acta Physiol (Oxf) 2021; 231:e13557. [PMID: 32921001 DOI: 10.1111/apha.13557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022]
Abstract
AIM Skeletal muscles of Body Builders (BB) represent an interesting model to study muscle mass gains in response to high volume resistance training. It is debated whether muscle contractile performance improves in proportion to mass. Here, we aim to assess whether muscle hypertrophy does not occur at the expense of performance. METHODS Six BB and Six untrained controls (CTRL) were recruited. Cross-sectional area (CSA) and maximum voluntary contraction (MVC) of quadriceps femoris muscle (QF) and CSA and architecture of vastus lateralis (VL) were determined. Moreover, a biopsy was taken from VL mid-portion and single fibres were analysed. RESULTS QF CSA and MVC were 32% (n.s., P = .052) and 58% (P = .009) higher in BB than in CTRL, respectively. VL CSA was 37% higher in BB (P = .030). Fast 2A fibres CSA was 24% (P = .048) greater in BB than in CTRL, when determined in immunostained sections of biopsy samples. Single permeabilized fast fibres CSA was 37% (n.s., P = .052) higher in BB than in CTRL, and their force was slightly higher in BB (n.s.), while specific tension (P0 ) was 19% (P = .024) lower. The lower P0 was not explained either by lower myosin content or by impaired calcium diffusion. Conversely, the swelling caused by skinning-induced permeabilization was different and, when used to correct P0 , differences between populations disappeared. CONCLUSIONS The results show that high degree of muscle hypertrophy is not detrimental for force generation capacity, as increases in fibre size and force are strictly proportional once the differential swelling response is accounted for.
Collapse
Affiliation(s)
- Elena Monti
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Luana Toniolo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Michela Bondì
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Ivan Martellato
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Bostjan Šimunič
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
| | - Paolo Toninello
- Clinic of Plastic Surgery Padova University Hospital Padova Italy
| | | | - Marco V. Narici
- Department of Biomedical Sciences University of Padova Padova Italy
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
- CIR‐MYO Myology Centre Department of Biomedical Sciences University of Padua Padova Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences University of Padova Padova Italy
- Science and Research Centre Koper Institute for Kinesiology Research Koper Slovenia
| |
Collapse
|
45
|
Gasser B, Fitze D, Franchi M, Frei A, Niederseer D, Schmied CM, Catuogno S, Frey W, Flück M. The Cardiovascular Response to Interval Exercise Is Modified by the Contraction Type and Training in Proportion to Metabolic Stress of Recruited Muscle Groups. SENSORS 2020; 21:s21010173. [PMID: 33383837 PMCID: PMC7795051 DOI: 10.3390/s21010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023]
Abstract
Background: Conventional forms of endurance training based on shortening contractions improve aerobic capacity but elicit a detriment of muscle strength. We hypothesized that eccentric interval training, loading muscle during the lengthening phase of contraction, overcome this interference and potentially adverse cardiovascular reactions, enhancing both muscle metabolism and strength, in association with the stress experienced during exercise. Methods: Twelve healthy participants completed an eight-week program of work-matched progressive interval-type pedaling exercise on a soft robot under predominately concentric or eccentric load. Results: Eccentric interval training specifically enhanced the peak power of positive anaerobic contractions (+28%), mitigated the strain on muscle’s aerobic metabolism, and lowered hemodynamic stress during interval exercise, concomitant with a lowered contribution of positive work to the target output. Concentric training alone lowered blood glucose concentration during interval exercise and mitigated heart rate and blood lactate concentration during ramp exercise. Training-induced adjustments for lactate and positive peak power were independently correlated (p < 0.05, |r| > 0.7) with indices of metabolic and mechanical muscle stress during exercise. Discussion: Task-specific improvements in strength and muscle’s metabolic capacity were induced with eccentric interval exercise lowering cardiovascular risk factors, except for blood glucose concentration, possibly through altered neuromuscular coordination.
Collapse
Affiliation(s)
- Benedikt Gasser
- Departement für Sport, Bewegung und Gesundheit—Abteilung Rehabilitative und Regenerative Sportmedizin—Universität Basel—Birsstrasse, 320B CH, 4052 Basel, Switzerland;
| | - Daniel Fitze
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martino Franchi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy;
| | - Annika Frei
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - David Niederseer
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Christian M. Schmied
- Sports Cardiology Section, Department of Cardiology, University Heart Center Zurich, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (D.N.); (C.M.S.)
| | - Silvio Catuogno
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Walter Frey
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Departement of Orthopaedics Balgrist Campus, University of Zurich Lengghalde, 8008 Zürich, Switzerland; (D.F.); (A.F.); (S.C.); (W.F.)
- Balgrist University Hospital Forchstrasse 319, 8008 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
46
|
Hansson KA, Eftestøl E, Bruusgaard JC, Juvkam I, Cramer AW, Malthe-Sørenssen A, Millay DP, Gundersen K. Myonuclear content regulates cell size with similar scaling properties in mice and humans. Nat Commun 2020; 11:6288. [PMID: 33293572 PMCID: PMC7722898 DOI: 10.1038/s41467-020-20057-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle fibers are the largest cells in the body, and one of its few syncytia. Individual cell sizes are variable and adaptable, but what governs cell size has been unclear. We find that muscle fibers are DNA scarce compared to other cells, and that the nuclear number (N) adheres to the relationship N = aVb where V is the cytoplasmic volume. N invariably scales sublinearly to V (b < 1), making larger cells even more DNA scarce. N scales linearly to cell surface in adult humans, in adult and developing mice, and in mice with genetically reduced N, but in the latter the relationship eventually fails when they reach adulthood with extremely large myonuclear domains. Another exception is denervation-atrophy where nuclei are not eliminated. In conclusion, scaling exponents are remarkably similar across species, developmental stages and experimental conditions, suggesting an underlying scaling law where DNA-content functions as a limiter of muscle cell size.
Collapse
Affiliation(s)
- Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Inga Juvkam
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alyssa W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Anders Malthe-Sørenssen
- Center for Integrative Neuroplasticity, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | |
Collapse
|
47
|
Canei J, Nonclercq D. Morphological study of the integument and corporal skeletal muscles of two psammophilous members of Scincidae (Scincus scincus and Eumeces schneideri). J Morphol 2020; 282:230-246. [PMID: 33165963 PMCID: PMC7839682 DOI: 10.1002/jmor.21298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Sand deserts are common biotopes on the earth's surface. Numerous morphological and physiological adaptations have appeared to cope with the peculiar conditions imposed by sandy substrates, such as abrasion, mechanical resistance and the potential low oxygen levels. The psammophilous scincids (Lepidosauria) Scincus scincus and Eumeces schneideri are among those. S. scincus is a species frequently used to study displacement inside a sandy substrate. E. schneideri is a species phylogenetically closely related to S. scincus with a similar lifestyle. The aims of this study focus on the morphology of the integument and the muscular system. Briefly, we describe interspecific differences at the superficial architecture of the scales pattern and the thickness of the integument. We highlight a high cellular turnover rate at the level of the basal germinal layer of the epidermis, which, we suggest, corresponds to an adaptation to cutaneous wear caused by abrasion. We demonstrate the presence of numerous cutaneous holocrine glands whose secretion probably plays a role in the flow of sand along the integument. Several strata of osteoderms strengthen the skin. We characterize the corporal (M. longissimus dorsi and M. rectus abdominus) and caudal muscular fibers using immunohistochemistry, and quantify them using morphometry. The musculature exhibits a high proportion of glycolytic fast fibers that allow rapid burying and are well adapted to this mechanically resistant and oxygen‐poor substrate. Oxidative slow fibers are low in abundance, less than 10% in S. scincus, but a little higher in E. schneideri.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
48
|
Emphasizing Task-Specific Hypertrophy to Enhance Sequential Strength and Power Performance. J Funct Morphol Kinesiol 2020; 5:jfmk5040076. [PMID: 33467291 PMCID: PMC7739346 DOI: 10.3390/jfmk5040076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
While strength is indeed a skill, most discussions have primarily considered structural adaptations rather than ultrastructural augmentation to improve performance. Altering the structural component of the muscle is often the aim of hypertrophic training, yet not all hypertrophy is equal; such alterations are dependent upon how the muscle adapts to the training stimuli and overall training stress. When comparing bodybuilders to strength and power athletes such as powerlifters, weightlifters, and throwers, while muscle size may be similar, the ability to produce force and power is often inequivalent. Thus, performance differences go beyond structural changes and may be due to the muscle's ultrastructural constituents and training induced adaptations. Relative to potentiating strength and power performances, eliciting specific ultrastructural changes should be a variable of interest during hypertrophic training phases. By focusing on task-specific hypertrophy, it may be possible to achieve an optimal amount of hypertrophy while deemphasizing metabolic and aerobic components that are often associated with high-volume training. Therefore, the purpose of this article is to briefly address different types of hypertrophy and provide directions for practitioners who are aiming to achieve optimal rather than maximal hypertrophy, as it relates to altering ultrastructural muscular components, to potentiate strength and power performance.
Collapse
|
49
|
Hedgehog signaling is necessary and sufficient to mediate craniofacial plasticity in teleosts. Proc Natl Acad Sci U S A 2020; 117:19321-19327. [PMID: 32719137 PMCID: PMC7431006 DOI: 10.1073/pnas.1921856117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Phenotypic plasticity has emerged as an important concept in evolutionary biology. It is thought to contribute to an organism’s ability to adapt to environmental change within a single generation, which may facilitate survival and increase fitness. Furthermore, plasticity has the potential to bias the direction and/or speed of evolution by changing patterns of phenotypic variation and exposing new genetic variation to selection (i.e., flexible stem evolution). Our understanding of this important phenomenon is incomplete owing to limited knowledge of the molecular underpinnings of reaction norm evolution. Using the teleost feeding apparatus as a model, we explore this open question and show that the Hh signaling pathway underlies the ability of this structure to respond plastically to alternate feeding regimes. Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.
Collapse
|
50
|
Straight CR, Fedewa MV, Toth MJ, Miller MS. Improvements in skeletal muscle fiber size with resistance training are age-dependent in older adults: a systematic review and meta-analysis. J Appl Physiol (1985) 2020; 129:392-403. [PMID: 32702280 DOI: 10.1152/japplphysiol.00170.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As studies examining the hypertrophic effects of resistance training (RT) at the cellular level have produced inconsistent results, we performed a systematic review and meta-analysis to investigate muscle fiber size before and after a structured RT intervention in older adults. A random-effects model was used to calculate mean effect size (ES) and 95% confidence intervals (CI). Thirty-five studies were included (age range: 59.0-88.5 yr), and 44 and 30 effects were used to estimate RT impact on myosin heavy chain (MHC) I and II fiber size. RT produced moderate-to-large increases in MHC I (ES = +0.51, 95%CI +0.31 to +0.71; P < 0.001) and II (ES = +0.81, 95%CI +0.56 to +1.05; P < 0.001) fiber size, with men and women having a similar response. Age was negatively associated with change in muscle fiber size for both fiber types (MHC I: R2 = 0.11, β = -0.33, P = 0.002; MHC II: R2 = 0.10, β = -0.32, P = 0.04), indicating a less robust hypertrophic response as age increases in older adults. Unexpectedly, a higher training intensity (defined as percentage of one-repetition maximum) was associated with a smaller increase in MHC II fiber size (R2 = 15.09%, β = -0.39, P = 0.01). Notably, MHC II fiber subtypes (IIA, IIX, IIAX) were examined less frequently, but RT improved their size. Overall, our findings indicate that RT induces cellular hypertrophy in older adults, although the effect is attenuated with increasing age. In addition, hypertrophy of MHC II fibers was reduced with higher training intensity, which may suggest a failure of muscle fibers to hypertrophy in response to high loads in older adults.
Collapse
Affiliation(s)
- Chad R Straight
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Michael V Fedewa
- Department of Kinesiology, University of Alabama, Tuscaloosa, Alabama
| | - Michael J Toth
- Departments of Medicine, Molecular Physiology and Biophysics, and Orthopedics and Rehabilitation, University of Vermont, Burlington, Vermont
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|