1
|
Liu J, Li Z, Li Z, Wang A, Liao X, Liu Z, Wu J. Fudosteine attenuates lung inflammation in mice with PM2.5-induced asthma exacerbation by inhibiting pyroptosis via the NLRP3/caspase-1/GSDMD pathway. Toxicol Appl Pharmacol 2025; 499:117346. [PMID: 40228672 DOI: 10.1016/j.taap.2025.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
This study aimed to explore the potential preventive effects of fudosteine (Fud) on PM2.5-induced asthma exacerbations in a murine model. BALB/c mice were randomly allocated into six groups: control, Fud, ovalbumin (OVA), OVA+Fud, OVA+PM2.5, and OVA+PM2.5 + Fud. An asthma model was established through OVA sensitization and challenge. Compared to the OVA group, PM2.5 exposure exacerbated allergic asthma, as evidenced by increased collagen fiber deposition, goblet cell metaplasia, mucus secretion, heightened airway inflammation, elevated total cell and eosinophil counts, and upregulated levels of interleukin (IL)-1β, IL-18, and NLRP3 expression in lung tissues. Notably, fudosteine treatment mitigated these pathological changes. Western blot analysis revealed that fudosteine significantly reduced the expression of NLRP3, caspase-1, gasdermin D (GSDMD), cleaved-caspase-1, and cleaved-GSDMD in lung tissues. In conclusion, fudosteine alleviated lung inflammation, collagen deposition, and mucus secretion in PM2.5-induced asthma exacerbation, potentially by inhibiting the NLRP3 inflammasome-mediated pyroptosis pathway.
Collapse
Affiliation(s)
- Jianling Liu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhongpeng Li
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhangwen Li
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Aili Wang
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiaoyang Liao
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhangquan Liu
- Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Jian Wu
- School of Medicine South China University of Technology, Guangzhou, Guangdong 510000, China; Second Department of Elderly Respiratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Wang Z, Xu Q, Hou L, He Z, Christian M, Dai X. Food-derived polysaccharides and anti-obesity effects through enhancing adipose thermogenesis: structure-activity relationships, mechanisms, and regulation of gut microecology. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 40351151 DOI: 10.1080/10408398.2025.2500675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Polysaccharides represent a crucial and extensively utilized bioactive fraction in natural products, which are employed in the treatment of metabolic disorders due to their significant therapeutic potential. Recently, food-derived polysaccharides (FPs) have emerged as significant substances in obesity management, valued for their ability to activate thermogenic fat. This review discusses the correlation between the structural features of FPs and their efficacy in combating obesity. Moreover, the molecular mechanism by which FPs regulate thermogenic fat and how the intestinal microecology induces thermogenic fat activity is elucidated. The anti-obesity effects of FPs depend on their structure, including molecular weight, composition, linkages, conformation, and branching. Furthermore, FPs regulate fat thermogenesis via multiple mechanisms, including AMPK, p38, AKT, PGC-1α-FNDC5/irisin, and miRNA signaling pathways. Importantly, gut microbiota, together with its associated metabolites and gut-derived hormones, are pivotal in the regulatory control of brown fat by FPs. This work provides an in-depth examination of how adipose tissue thermogenesis contributes to the anti-obesity effects of FPs, shedding light on their potential in preventing obesity and informing the formulation of natural weight-loss remedies.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qiyu Xu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lijuan Hou
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Mark Christian
- School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
3
|
Tsou TC, Yeh SC, Tsai FY, Chen PY. Palmitic acid and lipopolysaccharide induce macrophage TNFα secretion, suppressing browning regulators and mitochondrial respiration in adipocytes. Toxicol Appl Pharmacol 2025; 500:117389. [PMID: 40348028 DOI: 10.1016/j.taap.2025.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Obesity and its associated pro-inflammatory activity contribute significantly to metabolic dysfunction. In contrast, browning of white adipose tissue (WAT) generally improves metabolic health. Our prior research suggested that macrophage-derived pro-inflammatory cytokines suppress key regulators of browning-adrenergic receptor β3 (Adrb3) and peroxisome proliferator-activated receptor γ (Pparg)-as well as energy metabolism mediators-insulin receptor substrate 1 (Irs1) and hormone-sensitive lipase (Lipe)-in diet-induced obese mice. To explore this mechanism, we developed an in vitro model using RAW264.7 macrophages and 3T3-L1 adipocytes exposed to palmitic acid (PA) and/or lipopolysaccharide (LPS). PA (200 μM) and LPS (1.0 μg/ml) synergistically promoted M1 polarization of macrophages and secretion of pro-inflammatory cytokines, with tumor necrosis factor-α (TNFα), C-C motif chemokine ligand 2 (CCL2), CCL5, and interleukin-6 (IL-6) being predominant. Conditioned media from both control and PA-treated macrophages, when exposed to LPS ≥0.01 μg/ml, significantly downregulated Adrb3, Pparg, Irs1, and Lipe in adipocytes. At physiologically relevant LPS levels (≤0.001 μg/ml), PA-treated macrophage media exerted greater suppression of these genes than controls. Among the cytokines, TNFα emerged as the primary mediator, significantly reducing expression of the four key regulators. Furthermore, adipocytes treated with TNFα exhibited significant reductions in both uncoupling protein 1 (Ucp1) expression and mitochondrial respiration. These findings demonstrate that exposure to obesity-associated factors (PA and LPS) induces macrophage-derived TNFα, which suppresses browning and mitochondrial function in adipocytes. This mechanism may inform new therapeutic strategies targeting TNFα to alleviate obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Szu-Ching Yeh
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Feng-Yuan Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Pei-Yu Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
4
|
Shen X, Chen X, Zhong S, Zhang Y, Zhou X, Lan C, Lin J, Zheng L, Yan S. TLR4 mediates glucolipotoxicity-induced mitochondrial dysfunction in osteoblasts by enhancing NLRP3-MAVS expression and interaction. Int Immunopharmacol 2025; 153:114438. [PMID: 40101421 DOI: 10.1016/j.intimp.2025.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Mitochondrial dysfunction is a critical mechanism underlying diabetic bone loss, which is driven by the inhibition of osteoblast differentiation due to glucolipotoxicity. The molecular mechanisms through which glucolipotoxicity induces mitochondrial dysfunction remain poorly understood. In this study, we observed an upregulation of Toll-like receptor 4 (TLR4) expression in osteoblasts subjected to glycolipotoxic conditions, which was associated with mitochondrial dysfunction. Proteomic analysis revealed that TLR4 plays a crucial role in glucolipotoxicity and is closely linked to mitochondrial function in osteoblasts. Knockdown of TLR4 was found to alleviate osteoblast differentiation disorders and mitochondrial dysfunction as well as mitochondria-mediated apoptosis induced by glucolipotoxicity. In contrast, overexpression of TLR4 exacerbated the detrimental effects of glucolipotoxicity. Mechanistically, glucolipotoxicity activates TLR4, resulting in increased expression of NLRP3 (NOD-like receptor protein 3) and MAVS (Mitochondrial antiviral signaling protein), which promotes the interaction between NLRP3 and MAVS. This cascade leads to increased intracellular reactive oxygen species, decreased ATP levels, elevated expression of Caspase-1, GSDMD, Bax, and reduced expression of the anti-apoptotic protein Bcl-2. Furthermore, TLR4 knockout was shown to mitigate bone loss in diabetic rats. Proteomic analysis revealed that the improvement in the expression of proteins related to mitochondrial function and osteogenic function in diabetic rats is associated with TLR4 knockout. Diabetic osteoporosis may be associated with increased TLR4 expression and disturbed oxidative phosphorylation. In conclusion, glucolipotoxicity activates TLR4, which subsequently induces the expression and interaction of NLRP3-MAVS, leading to mitochondrial dysfunction and inhibition of osteoblast differentiation. This process contributes to bone mass loss in diabetes.
Collapse
Affiliation(s)
- Ximei Shen
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaoyuan Chen
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shuai Zhong
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yongze Zhang
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xuan Zhou
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chao Lan
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jiebin Lin
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lifeng Zheng
- Department of Orthopedics, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Sunjie Yan
- Deprtment of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Clinical Research Center for Metabolic Diseases of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Diabetes Research Institute of Fujian Province, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
5
|
Bonfante ILP, Segantim HDS, Mendonça KNS, de Oliveira MAB, Monfort-Pires M, Duft RG, da Silva Mateus KC, Chacon-Mikahil MPT, Ramos CD, Velloso LA, Cavaglieri CR. Better cardiometabolic/inflammatory profile is associated with differences in the supraclavicular adipose tissue activity of individuals with T2DM. Endocrine 2025; 87:1011-1021. [PMID: 39627400 DOI: 10.1007/s12020-024-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/25/2024] [Indexed: 02/22/2025]
Abstract
PURPOSE Brown adipose tissue (BAT), located in the supraclavicular region, has been associated with a better cardiometabolic profile and reduced risk of developing non-communicable chronic diseases (NCD), in addition to being associated with a healthier phenotype in obesity. However, it is unknown whether greater supraclavicular adipose tissue activity could be associated with a healthier metabolic profile in people already diagnosed with type 2 diabetes (T2DM). Thus, the present work evaluated if supraclavicular adipose tissue activity is associated with metabolic and molecular markers in individuals with T2DM. METHODS Based on a cluster study, individuals with T2DM were divided into groups according to high or low-standard uptake value (SUV) evaluated in the supraclavicular adipose tissue area by [18F]-fluorodeoxyglucose and positron emission tomography-computed tomography (18F-FDG-PET/CT) after mild cold exposure). Functional, biochemical, inflammatory, and molecular markers were measured. RESULTS When we evaluated the whole sample, women showed higher SUV, which favored a difference between groups in sex-related markers. On the other hand, volunteers in the high-SUV group showed lower BMI, monocytes count, triglycerides/glucose index (TYG-index) and z score of metabolic syndrome (MS) values, as well as lower triglycerides, and VLDL concentrations. Moreover, they also had enhanced expression of thermogenic genes in subcutaneous fat. When analyzing only women, the differences in markers associated with sex disappear, and a lower count of leukocytes, platelets, along with lower TYG-index, z score of MS values, and triglycerides, VLDL, LDL, and TNFα concentrations were observed in women with the high SUV. In addition, higher expression of thermogenic genes and BECN1 were detected. CONCLUSION Higher supraclavicular adipose tissue SUV in individuals with T2DM is associated with a better cardiometabolic/inflammatory profile and expression of thermogenic genes. CLINICAL TRIAL REGISTRATION UTN: U1111-1202-1476 - 08/20/2020.
Collapse
Affiliation(s)
- Ivan Luiz Padilha Bonfante
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil.
- Postdoctoral Researcher Program (PPPD), University of Campinas, Campinas, Brazil.
| | - Higor da Silva Segantim
- Higher Interdisciplinary Training Program (PROFIS), University of Campinas, Campinas, SP, Brazil
| | | | | | - Milena Monfort-Pires
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Turku Pet Centre, University of Turku, Turku, Finland
| | - Renata Garbellini Duft
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil
- The Rowett Institute of Nutrition and Health, University of Aberdeen, Ashgrove Rd W, Aberdeen, Scotland, UK
| | | | | | - Celso Darío Ramos
- Department of Radiology, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- Laboratory of Cell Signaling, Department of Internal Medicine, University of Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Cláudia Regina Cavaglieri
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
6
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
7
|
Huang L, Zhu L, Zhao Z, Jiang S. Hyperactive browning and hypermetabolism: potentially dangerous element in critical illness. Front Endocrinol (Lausanne) 2024; 15:1484524. [PMID: 39640882 PMCID: PMC11617193 DOI: 10.3389/fendo.2024.1484524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Brown/beige adipose tissue has attracted much attention in previous studies because it can improve metabolism and combat obesity through non-shivering thermogenesis. However, recent studies have also indicated that especially in critical illness, overactivated brown adipose tissue or extensive browning of white adipose tissue may bring damage to individuals mainly by exacerbating hypermetabolism. In this review, the phenomenon of fat browning in critical illness will be discussed, along with the potential harm, possible regulatory mechanism and corresponding clinical treatment options of the induction of fat browning. The current research on fat browning in critical illness will offer more comprehensive understanding of its biological characteristics, and inspire researchers to develop new complementary treatments for the hypermetabolic state that occurs in critically ill patients.
Collapse
Affiliation(s)
- Lu Huang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Department of Plastic and Reconstructive Surgery, Taizhou Enze Hospital, Taizhou, China
| | - Zhenxiong Zhao
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Shenglu Jiang
- Department of Basic Medical Sciences, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
8
|
Vasek D, Holicek P, Galatik F, Kratochvilova A, Porubska B, Somova V, Fikarova N, Hajkova M, Prevorovsky M, Zurmanova JM, Krulova M. Immune response to cold exposure: Role of γδ T cells and TLR2-mediated inflammation. Eur J Immunol 2024; 54:e2350897. [PMID: 38988146 DOI: 10.1002/eji.202350897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.
Collapse
Affiliation(s)
- Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Peter Holicek
- Sotio Biotech, Prague, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Kratochvilova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Fikarova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
9
|
Laviano HD, Gómez G, Núñez Y, García-Casco JM, Benítez RM, de Las Heras-Molina A, Gómez F, Sánchez-Esquiliche F, Martínez-Fernández B, González-Bulnes A, Rey AI, López-Bote CJ, Muñoz M, Óvilo C. Maternal dietary antioxidant supplementation regulates weaned piglets' adipose tissue transcriptome and morphology. PLoS One 2024; 19:e0310399. [PMID: 39264906 PMCID: PMC11392410 DOI: 10.1371/journal.pone.0310399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Antioxidant supplementation in critical periods may be useful for improvement of piglet early viability and development. We have evaluated the effects of maternal perinatal diet inclusion of a high vitamin E level (VE, 100 mg all-rac-α-tocopheryl acetate /kg), hydroxytyrosol (HT, 1.5 mg/kg), or their combination (VEHT), in comparison to a control diet (C, 30 mg all-rac-α-tocopheryl acetate /kg), on the offspring homeostasis and metabolism, analysing the weaned piglets' adipose tissue transcriptome and adipocyte morphology. Diets were provided to pregnant Iberian sows (n = 48, 12 per treatment) from gestation day 85 to weaning (28 days postpartum) and 48 piglets (n = 12 per treatment) were sampled 5 days postweaning for dorsal subcutaneous adipose tissue analyses. RNA obtained from 6 animals for each diet was used for paired-end RNA sequencing. Results show that supplementation of sows' diet with either vitamin E or hydroxytyrosol had substantial effects on weaned piglet adipose transcriptome, with 664 and 587 genes being differentially expressed, in comparison to C, respectively (q-value<0.10, Fold Change>1.5). Genes upregulated in C were mainly involved in inflammatory and immune response, as well as oxidative stress, and relevant canonical pathways and upstream regulators involved in these processes were predicted as activated, such as TNF, IFNB or NFKB. Vitamin E, when supplemented alone at high dose, activated lipid biosynthesis functions, pathways and regulators, this finding being accompanied by increased adipocyte size. Results suggest an improved metabolic and antioxidant status of adipose tissue in animals born from sows supplemented with individual antioxidants, while the combined supplementation barely affected gene expression, with VEHT showing a prooxidant/proinflamatory functional profile similar to C animals. Different hypothesis are proposed to explain this unexpected result. Findings allow a deeper understanding of the processes taking place in adipose tissue of genetically fat animals and the role of antioxidants in the regulation of fat cells function.
Collapse
Affiliation(s)
- Hernán D Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Toledo, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | | | - Rita M Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Ana de Las Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Ana I Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Clemente J López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Bakinowska E, Krompiewski M, Boboryko D, Kiełbowski K, Pawlik A. The Role of Inflammatory Mediators in the Pathogenesis of Obesity. Nutrients 2024; 16:2822. [PMID: 39275140 PMCID: PMC11396809 DOI: 10.3390/nu16172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity is a pandemic of the 21st century, and the prevalence of this metabolic condition has enormously increased over the past few decades. Obesity is associated with a number of comorbidities and complications, such as diabetes and cardiovascular disorders, which can be associated with severe and fatal outcomes. Adipose tissue is an endocrine organ that secretes numerous molecules and proteins that are capable of modifying immune responses. The progression of obesity is associated with adipose tissue dysfunction, which is characterised by enhanced inflammation and apoptosis. Increased fat-tissue mass is associated with the dysregulated secretion of substances by adipocytes, which leads to metabolic alterations. Importantly, the adipose tissue contains immune cells, the profile of which changes with the progression of obesity. For instance, increasing fat mass enhances the presence of the pro-inflammatory variants of macrophages, major sources of tumour necrosis factor α and other inflammatory mediators that promote insulin resistance. The pathogenesis of obesity is complex, and understanding the pathophysiological mechanisms that are involved may provide novel treatment methods that could prevent the development of serious complications. The aim of this review is to discuss current evidence describing the involvement of various inflammatory mediators in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariusz Krompiewski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
11
|
Yan K. Recent advances in the effect of adipose tissue inflammation on insulin resistance. Cell Signal 2024; 120:111229. [PMID: 38763181 DOI: 10.1016/j.cellsig.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Obesity is one of the major risk factors for diabetes. Excessive accumulation of fat leads to inflammation of adipose tissue, which can increase the risk of developing diabetes. Obesity-related chronic inflammation can result in anomalies in glucose-lipid metabolism and insulin resistance, and it is a major cause of β-cell dysfunction in diabetes mellitus. Thus, a long-term tissue inflammatory response is crucial for metabolic diseases, particularly type 2 diabetes. Chronic inflammation associated with obesity increases oxidative stress, secretes inflammatory factors, modifies endocrine variables, and interferes with insulin signalling pathways, all of which contribute to insulin resistance and glucose tolerance. Insulin resistance and diabetes are ultimately caused by chronic inflammation in the stomach, pancreas, liver, muscle, and fat tissues. In this article, we systematically summarize the latest research progress on the mechanisms of adipose tissue inflammation and insulin resistance, as well as the mechanisms of cross-talk between adipose tissue inflammation and insulin resistance, with a view to providing some meaningful therapeutic strategies for the treatment of insulin resistance by controlling adipose tissue inflammation.
Collapse
Affiliation(s)
- Kaiyi Yan
- The Second Clinical College of China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
12
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
13
|
Arrari F, Jabri MA, Ayari A, Dakhli N, Ben Fayala C, Boubaker S, Sebai H. Amino acid HPLC-FLD analysis of spirulina and its protective mechanism against the combination of obesity and colitis in wistar rats. Heliyon 2024; 10:e30103. [PMID: 38694088 PMCID: PMC11061748 DOI: 10.1016/j.heliyon.2024.e30103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Objective The cafeteria diet (CD), designed as an experimental diet mimicking the obesogenic diet, may contribute to the pathogenesis of inflammatory bowel diseases (IBD). This study delves into the influence of spirulina (SP) on obesity associated with colitis in Wistar rats. Methods The amino acids composition of SP was analyzed using HPLC-FLD. Animals were equally separated into eight groups, each containing seven animals and treated daily for eight weeks as follows: Control diet (SD), cafeteria diet (CD) group, CD + SP (500 mg/kg) and SD + SP. Ulcerative colitis was provoked by rectal injection of acetic acid (AA) (3 % v/v, 5 ml/kg b.w.) on the last day of treatment in the following groups: SD + AA, SD + AA + SP, CD + AA, and CD + AA + SP. Results Findings revealed that UC and/or CD increased the abdominal fat, weights gain, and colons. Moreover, severe colonic alteration, perturbations in the serum metabolic parameters associated with an oxidative stress state in the colonic mucosa, defined by overproduction of reactive oxygen species (ROS) and increased levels of plasma scavenging activity (PSA). Additionally, obesity exacerbated the severity of AA-induced UC promoting inflammation marked by the overexpression of pro-inflammatory cytokines. Significantly, treatment with SP provided notable protection against inflammation severity, reduced histopathological alterations, attenuated lipid peroxidation (MDA), and enhanced antioxidant enzyme activities (CAT, SOD, and GPX) along with non-enzymatic antioxidants (GSH and SH-G). Conclusions Thus, the antioxidant effects and anti-inflammatory proprieties of SP could be attributed to its richness in amino acids, which could potentially mitigate inflammation severity in obese subjects suffering from ulcerative colitis. These results imply that SP hold promise as a therapeutic agent for managing of UC, particularly in individuals with concomitant obesity. Understanding SP's mechanisms of action may lead novel treatment strategies for inflammatory bowel diseases and hyperlipidemia in medical research.
Collapse
Affiliation(s)
- Fatma Arrari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Mohamed-Amine Jabri
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Ala Ayari
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Nouha Dakhli
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| | - Chayma Ben Fayala
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Samir Boubaker
- Laboratoire d'anatomie Pathologique Humaine et Expérimentale, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia
| | - Hichem Sebai
- Université de Jendouba, Institut Supérieur de Biotechnologie de Béja, LR: Physiologie Fonctionnelle et Valorisation des Bio-Ressources, 9000, Béja, Tunisia
| |
Collapse
|
14
|
Yang C, Yang Q, Xie Z, Peng X, Liu H, Xie C. Association of systemic immune-inflammation-index with all-cause and cause-specific mortality among type 2 diabetes: a cohort study base on population. Endocrine 2024; 84:399-411. [PMID: 38048013 PMCID: PMC11076376 DOI: 10.1007/s12020-023-03587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/28/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE There have been limited studies examining the prospective association between the Systemic Immune-Inflammation Index (SII), a novel inflammatory marker, and mortality among individuals with diabetes in the United States. METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES), a representative sample of US adults, linked with information from the National Death Index. RESULTS Our study included 8697 individuals from NHANES spanning the years 1999 to 2018. SII was calculated by dividing the platelet count by the neutrophil count and then dividing that result by the lymphocyte count. We employed multivariable Cox proportional hazards regression analysis to investigate the associations between SII levels and all-cause as well as cause-specific mortality, while adjusting for potential confounding factors. SII levels were categorized into quartiles based on the study population distribution. Over a median follow-up period of 94.8 months (with a maximum of 249 months), we observed a total of 2465 all-cause deaths, 853 deaths from cardiovascular causes, 424 deaths from cancer, and 88 deaths related to chronic kidney disease. After adjusting for multiple variables, higher SII levels were significantly and non-linearly associated with an increased risk of all-cause mortality in Quartile 4 (HR 1.74, 95% CI 1.15-2.63, P for trend = 0.043) when Quartile 1 was used as the reference group. Additionally, we identified a linear association between SII and cardiovascular mortality, with a 70% higher risk of cardiovascular mortality in Quartile 4 (HR 1.70, 95% CI 1.18-3.30, P for trend = 0.041) compared to Quartile 1. CONCLUSION Our findings indicate that SII is significantly associated with an elevated risk of all-cause and cardiovascular mortality in US adults with diabetes.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| | - Qiangfei Yang
- Jianyang City People's Hospital, Chengdu, 610040, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China
| | - Xi Peng
- State Key Laboratory of Biotherapy, West China Hospital, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China.
| |
Collapse
|
15
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Feng F, Ko HA, Truong TMT, Song WJ, Ko EJ, Kang I. Ginsenoside Rg3, enriched in red ginseng extract, improves lipopolysaccharides-induced suppression of brown and beige adipose thermogenesis with mitochondrial activation. Sci Rep 2024; 14:9157. [PMID: 38644456 PMCID: PMC11033271 DOI: 10.1038/s41598-024-59758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 μM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.
Collapse
Affiliation(s)
- Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Hyun-A Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea
| | - Thi My Tien Truong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
| | - Woo-Jin Song
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea
- College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
17
|
Zhang Y, Zhang B, Sun X. The molecular mechanism of macrophage-adipocyte crosstalk in maintaining energy homeostasis. Front Immunol 2024; 15:1378202. [PMID: 38650945 PMCID: PMC11033412 DOI: 10.3389/fimmu.2024.1378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between macrophages and adipocytes in adipose tissue are critical for the regulation of energy metabolism and obesity. Macrophage polarization induced by cold or other stimulations can drive metabolic reprogramming of adipocytes, browning, and thermogenesis. Accordingly, investigating the roles of macrophages and adipocytes in the maintenance of energy homeostasis is critical for the development of novel therapeutic approaches specifically targeting macrophages in metabolic disorders such as obesity. Current review outlines macrophage polarization not only regulates the release of central nervous system and inflammatory factors, but controls mitochondrial function, and other factor that induce metabolic reprogramming of adipocytes and maintain energy homeostasis. We also emphasized on how the adipocytes conversely motivate the polarization of macrophage. Exploring the interactions between adipocytes and macrophages may provide new therapeutic strategies for the management of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yudie Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
包 汉, 王 苏, 吕 穆, 王 永, 姜 萍, 李 晓. [Activation of α7 nAChR improves white fat homeostasis and promotes beige adipogenesis and thermogenesis in obese mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:499-506. [PMID: 38597441 PMCID: PMC11006706 DOI: 10.12122/j.issn.1673-4254.2024.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on β3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS Forty obese C57BL/6J mice were randomized into high-fat feeding group, β3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1β, IL-10 and TGF-β in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1β, and lowered expression of Arg-1 mRNA and IL-10 and TGF-β proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1β expressions, increased IL-10 and TGF-β expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by β3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.
Collapse
Affiliation(s)
- 汉生 包
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 苏童 王
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 穆杰 吕
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 永成 王
- 山东中医药大学附属医院,山东 济南 250014Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - 萍 姜
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 晓 李
- 山东中医药大学附属医院,山东 济南 250014Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
19
|
Luo J, Chen M, Ji H, Su W, Song W, Zhang D, Su W, Liu S. Hypolipidemic and Anti-Obesity Effect of Anserine on Mice Orally Administered with High-Fat Diet via Regulating SREBP-1, NLRP3, and UCP-1. Mol Nutr Food Res 2024; 68:e2300471. [PMID: 38400696 DOI: 10.1002/mnfr.202300471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Indexed: 02/25/2024]
Abstract
To investigate the efficacy of anserine on antiobesity, C57BL/6 mice are orally administered with a high-fat diet (HFD) and different doses of anserine (60, 120, and 240 mg/kg/day) for 16 weeks. Body weight, lipid, and epididymal fat content in mice are measured, and their liver damage is observed. The results display that the body weight, epididymal fat content, and low-density lipoprotein cholesterol (LDL-C) content in anserine groups are decreased by 4.36-18.71%, 7.57-35.12%, and 24.32-44.40%, respectively. To further investigate the antiobesity mechanism of anserine, the expression of SREBP-1, NLRP3, NF-κB p65 (p65), and p-NF-κB p65 (p-p65) proteins in the liver and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1-α) and UCP-1 proteins in brown adipose tissue (BAT) is analyzed by Western blot. Results show that anserine can significantly decrease the expression of the NLRP3, p65, p-p65, and the SREBP-1 proteins and increase the expression of the PGC1-α and UCP-1 proteins. This study demonstrates that anserine lowered blood lipids and prevented obesity; its antiobesity mechanism may be related to the activation of brown fat by inflammation.
Collapse
Affiliation(s)
- Jing Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, P. R. China
- Key Laboratory of Advanced Processing of Aquatic, Product of Guangdong Higher Education Institution, Zhanjiang, 524088, P. R. China
| | - Weifeng Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, 524088, P. R. China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, P. R. China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang, 524088, P. R. China
- Key Laboratory of Advanced Processing of Aquatic, Product of Guangdong Higher Education Institution, Zhanjiang, 524088, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
20
|
Wu Y, Li Y, Sun M, Yu F, Liu H, Xu J, Tang X. FAP deficiency enhances thermogenesis and attenuates metabolic inflammation in diet-induced obesity. Obesity (Silver Spring) 2024; 32:528-539. [PMID: 38100123 DOI: 10.1002/oby.23955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Fibroblast activation protein α (FAP) is expressed in normal adipose tissue and related to some pleiotropic metabolic regulators. However, the exact role and mechanism of FAP in obesity and related metabolic disorders are not well understood. METHODS FAP knockout mice were fed a normal diet or a high-fat diet (HFD) for 12 weeks. FAP knockout mice or wild-type mice treated with an FAP inhibitor were subjected to cold stress for 5 days. RESULTS FAP deficiency protected mice against HFD-induced obesity and obesity-associated metabolic dysfunction, including glucose intolerance, insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Notably, FAP deficiency largely reversed obesity-induced adipose tissue macrophage accumulation and M1-M2 imbalance in white adipose tissue (WAT). Moreover, energy expenditure was significantly higher in FAP-deficient mice fed an HFD. Both FAP deficiency and inhibition increased cold tolerance through enhancing WAT beiging. CONCLUSIONS This study demonstrated that FAP deficiency protects mice against diet-induced obesity and related metabolic dysfunction. Furthermore, the protective effects are probably mediated via the promotion of WAT beiging and suppression of inflammation.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Yun Li
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Miao Sun
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Fangliu Yu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Hui Liu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Jingyun Xu
- Department of Parasitology, Wannan Medical College, Wuhu, China
| | - Xingli Tang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| |
Collapse
|
21
|
Wu S, Qiu C, Ni J, Guo W, Song J, Yang X, Sun Y, Chen Y, Zhu Y, Chang X, Sun P, Wang C, Li K, Han X. M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1. Nat Commun 2024; 15:1646. [PMID: 38388532 PMCID: PMC10883921 DOI: 10.1038/s41467-024-45899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Adipose tissue macrophages can promote beige adipose thermogenesis by altering local sympathetic activity. Here, we perform sympathectomy in mice and further eradicate subcutaneous adipose macrophages and discover that these macrophages have a direct beige-promoting function that is independent of sympathetic system. We further identify adipocyte Ets1 as a vital mediator in this process. The anti-inflammatory M2 macrophages suppress Ets1 expression in adipocytes, transcriptionally activate mitochondrial biogenesis, as well as suppress mitochondrial clearance, thereby increasing the mitochondrial numbers and promoting the beiging process. Male adipocyte Ets1 knock-in mice are completely cold intolerant, whereas male mice lacking Ets1 in adipocytes show enhanced energy expenditure and are resistant to metabolic disorders caused by high-fat-diet. Our findings elucidate a direct communication between M2 macrophages and adipocytes, and uncover a function for Ets1 in responding to macrophages and negatively governing mitochondrial content and beige adipocyte formation.
Collapse
Affiliation(s)
- Suyang Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Qiu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China
- Key Laboratory of the Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Ni
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenli Guo
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiyuan Song
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xingyin Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yulin Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yanjun Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunxia Wang
- Laboratory of Critical Care Translational Medicine, Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Kai Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
22
|
Deschemin JC, Ransy C, Bouillaud F, Chung S, Galy B, Peyssonnaux C, Vaulont S. Hepcidin deficiency in mice impairs white adipose tissue browning possibly due to a defect in de novo adipogenesis. Sci Rep 2023; 13:12794. [PMID: 37550331 PMCID: PMC10406828 DOI: 10.1038/s41598-023-39305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/23/2023] [Indexed: 08/09/2023] Open
Abstract
The role of iron in the two major sites of adaptive thermogenesis, namely the beige inguinal (iWAT) and brown adipose tissues (BAT) has not been fully understood yet. Body iron levels and distribution is controlled by the iron regulatory peptide hepcidin. Here, we explored iron homeostasis and thermogenic activity in brown and beige fat in wild-type and iron loaded Hepcidin KO mice. Hepcidin-deficient mice displayed iron overload in both iWAT and BAT, and preferential accumulation of ferritin in stromal cells compared to mature adipocytes. In contrast to BAT, the iWAT of Hepcidin KO animals featured with defective thermogenesis evidenced by an altered beige signature, including reduced UCP1 levels and decreased mitochondrial respiration. This thermogenic modification appeared cell autonomous and persisted after a 48 h-cold challenge, a potent trigger of thermogenesis, suggesting compromised de novo adipogenesis. Given that WAT browning occurs in both mice and humans, our results provide physiological results to interrogate the thermogenic capacity of patients with iron overload disorders.
Collapse
Affiliation(s)
- Jean-Christophe Deschemin
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Céline Ransy
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
| | - Frédéric Bouillaud
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Bruno Galy
- German Cancer Research Center, "Division of Virus-Associated Carcinogenesis", Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sophie Vaulont
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
23
|
Feng X, Wang L, Zhou R, Zhou R, Chen L, Peng H, Huang Y, Guo Q, Luo X, Zhou H. Senescent immune cells accumulation promotes brown adipose tissue dysfunction during aging. Nat Commun 2023; 14:3208. [PMID: 37268694 DOI: 10.1038/s41467-023-38842-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Brown adipose tissue (BAT)-mediated thermogenesis declines with age. However, the underlying mechanism remains unclear. Here we reveal that bone marrow-derived pro-inflammatory and senescent S100A8+ immune cells, mainly T cells and neutrophils, invade the BAT of male rats and mice during aging. These S100A8+ immune cells, coupled with adipocytes and sympathetic nerves, compromise axonal networks. Mechanistically, these senescent immune cells secrete abundant S100A8 to inhibit adipose RNA-binding motif protein 3 expression. This downregulation results in the dysregulation of axon guidance-related genes, leading to impaired sympathetic innervation and thermogenic function. Xenotransplantation experiments show that human S100A8+ immune cells infiltrate mice BAT and are sufficient to induce aging-like BAT dysfunction. Notably, treatment with S100A8 inhibitor paquinimod rejuvenates BAT axon networks and thermogenic function in aged male mice. Our study suggests that targeting the bone marrow-derived senescent immune cells presents an avenue to improve BAT aging and related metabolic disorders.
Collapse
Affiliation(s)
- Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Liwen Wang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Ruoyu Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Linyun Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008, Changsha, Hunan, China
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008, Changsha, Hunan, China.
| |
Collapse
|
24
|
Bang J, Son KH, Heo HR, Park E, Kwak HJ, Uhm KO, Chung MH, Kim YY, Lim HJ. Exogenous 8-Hydroxydeoxyguanosine Attenuates PM 2.5-Induced Inflammation in Human Bronchial Epithelial Cells by Decreasing NLRP3 Inflammasome Activation. Antioxidants (Basel) 2023; 12:1189. [PMID: 37371919 DOI: 10.3390/antiox12061189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Particulate matter 2.5 (PM2.5) induces lung injury by increasing the generation of reactive oxygen species (ROS) and inflammation. ROS aggravates NLRP3 inflammasome activation, which activates caspase-1, IL-1β, and IL-18 and induces pyroptosis; these factors propagate inflammation. In contrast, treatment with exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases RAC1 activity and eventually decreases dinucleotide phosphate oxidase (NOX) and ROS generation. To establish modalities that would mitigate PM2.5-induced lung injury, we evaluated whether 8-OHdG decreased PM2.5-induced ROS generation and NLRP3 inflammasome activation in BEAS-2B cells. CCK-8 and lactate dehydrogenase assays were used to determine the treatment concentration. Fluorescence intensity, Western blotting, enzyme-linked immunosorbent assay, and immunoblotting assays were also performed. Treatment with 80 μg/mL PM2.5 increased ROS generation, RAC1 activity, NOX1 expression, NLRP3 inflammasome (NLRP3, ASC, and caspase-1) activity, and IL-1β and IL-18 levels in cells; treatment with 10 μg/mL 8-OHdG significantly attenuated these effects. Furthermore, similar results, such as reduced expression of NOX1, NLRP3, ASC, and caspase-1, were observed in PM2.5-treated BEAS-2B cells when treated with an RAC1 inhibitor. These results show that 8-OHdG mitigates ROS generation and NLRP3 inflammation by inhibiting RAC1 activity and NOX1 expression in respiratory cells exposed to PM2.5.
Collapse
Affiliation(s)
- Jihye Bang
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Kuk Hui Son
- Gachon University Gil Medical Center, Department of Thoracic and Cardiovascular Surgery, College of Medicine, Gachon University, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Hye-Ryeon Heo
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Eunsook Park
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Hyun-Jeong Kwak
- Major of Life Science, Division of Bioconvergence, College of Convergence and Integrated Science, Kyonggi University, 154-42 Gwanggosan-ro, Yeongtong-gu, Suwon-si 16227, Republic of Korea
| | - Kyung-Ok Uhm
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Myung-Hee Chung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea
| | - Young-Youl Kim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Hyun Joung Lim
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Osong Health Technology Administration Complex 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| |
Collapse
|
25
|
Das A, Pathak MP, Pathak K, Saikia R, Gogoi U. Herbal medicine for the treatment of obesity-associated asthma: a comprehensive review. Front Pharmacol 2023; 14:1186060. [PMID: 37251328 PMCID: PMC10213975 DOI: 10.3389/fphar.2023.1186060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is fast growing as a global pandemic and is associated with numerous comorbidities like cardiovascular disease, hypertension, diabetes, gastroesophageal reflux disease, sleep disorders, nephropathy, neuropathy, as well as asthma. Studies stated that obese asthmatic subjects suffer from an increased risk of asthma, and encounter severe symptoms due to a number of pathophysiology. It is very vital to understand the copious relationship between obesity and asthma, however, a clear and pinpoint pathogenesis underlying the association between obesity and asthma is scarce. There is a plethora of obesity-asthma etiologies reported viz., increased circulating pro-inflammatory adipokines like leptin, resistin, and decreased anti-inflammatory adipokines like adiponectin, depletion of ROS controller Nrf2/HO-1 axis, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) associated macrophage polarization, hypertrophy of WAT, activation of Notch signaling pathway, and dysregulated melanocortin pathway reported, however, there is a very limited number of reports that interrelates these pathophysiologies. Due to the underlying complex pathophysiologies exaggerated by obese conditions, obese asthmatics respond poorly to anti-asthmatic drugs. The poor response towards anti-asthmatic drugs may be due to the anti-asthmatics approach only that ignores the anti-obesity target. So, aiming only at the conventional anti-asthmatic targets in obese-asthmatics may prove to be futile until and unless treatment is directed towards ameliorating obesity pathogenesis for a holistic approach towards amelioration of obesity-associated asthma. Herbal medicines for obesity as well as obesity-associated comorbidities are fast becoming safer and more effective alternatives to conventional drugs due to their multitargeted approach with fewer adverse effects. Although, herbal medicines are widely used for obesity-associated comorbidities, however, a limited number of herbal medicines have been scientifically validated and reported against obesity-associated asthma. Notable among them are quercetin, curcumin, geraniol, resveratrol, β-Caryophyllene, celastrol, tomatidine to name a few. In view of this, there is a dire need for a comprehensive review that may summarize the role of bioactive phytoconstituents from different sources like plants, marine as well as essential oils in terms of their therapeutic mechanisms. So, this review aims to critically discuss the therapeutic role of herbal medicine in the form of bioactive phytoconstituents against obesity-associated asthma available in the scientific literature to date.
Collapse
Affiliation(s)
- Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
26
|
Omran F, Murphy AM, Younis AZ, Kyrou I, Vrbikova J, Hainer V, Sramkova P, Fried M, Ball G, Tripathi G, Kumar S, McTernan PG, Christian M. The impact of metabolic endotoxaemia on the browning process in human adipocytes. BMC Med 2023; 21:154. [PMID: 37076885 PMCID: PMC10116789 DOI: 10.1186/s12916-023-02857-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Dysfunctional adipose tissue (AT) is known to contribute to the pathophysiology of metabolic disease, including type 2 diabetes mellitus (T2DM). This dysfunction may occur, in part, as a consequence of gut-derived endotoxaemia inducing changes in adipocyte mitochondrial function and reducing the proportion of BRITE (brown-in-white) adipocytes. Therefore, the present study investigated whether endotoxin (lipopolysaccharide; LPS) directly contributes to impaired human adipocyte mitochondrial function and browning in human adipocytes, and the relevant impact of obesity status pre and post bariatric surgery. METHODS Human differentiated abdominal subcutaneous (AbdSc) adipocytes from participants with obesity and normal-weight participants were treated with endotoxin to assess in vitro changes in mitochondrial function and BRITE phenotype. Ex vivo human AbdSc AT from different groups of participants (normal-weight, obesity, pre- and 6 months post-bariatric surgery) were assessed for similar analyses including circulating endotoxin levels. RESULTS Ex vivo AT analysis (lean & obese, weight loss post-bariatric surgery) identified that systemic endotoxin negatively correlated with BAT gene expression (p < 0.05). In vitro endotoxin treatment of AbdSc adipocytes (lean & obese) reduced mitochondrial dynamics (74.6% reduction; p < 0.0001), biogenesis (81.2% reduction; p < 0.0001) and the BRITE phenotype (93.8% reduction; p < 0.0001). Lean AbdSc adipocytes were more responsive to adrenergic signalling than obese AbdSc adipocytes; although endotoxin mitigated this response (92.6% reduction; p < 0.0001). CONCLUSIONS Taken together, these data suggest that systemic gut-derived endotoxaemia contributes to both individual adipocyte dysfunction and reduced browning capacity of the adipocyte cell population, exacerbating metabolic consequences. As bariatric surgery reduces endotoxin levels and is associated with improving adipocyte functionality, this may provide further evidence regarding the metabolic benefits of such surgical interventions.
Collapse
Affiliation(s)
- Farah Omran
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - Alice M Murphy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Awais Z Younis
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry, CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | | | | | | | | | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Gyanendra Tripathi
- Human Sciences Research Centre, College of Life and Natural Sciences, University of Derby, Derby, DE22 1GB, UK
| | - Sudhesh Kumar
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip G McTernan
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Mark Christian
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
27
|
Miranda CS, Silva-Veiga FM, Fernandes-da-Silva A, Guimarães Pereira VR, Martins BC, Daleprane JB, Martins FF, Souza-Mello V. Peroxisome proliferator-activated receptors-alpha and gamma synergism modulate the gut-adipose tissue axis and mitigate obesity. Mol Cell Endocrinol 2023; 562:111839. [PMID: 36581062 DOI: 10.1016/j.mce.2022.111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIM To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Collapse
Affiliation(s)
- Carolline Santos Miranda
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Flávia Maria Silva-Veiga
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aline Fernandes-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vitória Regina Guimarães Pereira
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics (LEING), Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Hildebrandt X, Ibrahim M, Peltzer N. Cell death and inflammation during obesity: "Know my methods, WAT(son)". Cell Death Differ 2023; 30:279-292. [PMID: 36175539 PMCID: PMC9520110 DOI: 10.1038/s41418-022-01062-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a state of low-grade chronic inflammation that causes multiple metabolic diseases. During obesity, signalling via cytokines of the TNF family mediate cell death and inflammation within the adipose tissue, eventually resulting in lipid spill-over, glucotoxicity and insulin resistance. These events ultimately lead to ectopic lipid deposition, glucose intolerance and other metabolic complications with life-threatening consequences. Here we review the literature on how inflammatory responses affect metabolic processes such as energy homeostasis and insulin signalling. This review mainly focuses on the role of cell death in the adipose tissue as a key player in metabolic inflammation.
Collapse
Affiliation(s)
- Ximena Hildebrandt
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Mohamed Ibrahim
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nieves Peltzer
- University of Cologne, Faculty of Medicine, Centre for Molecular Medicine Cologne (CMMC); Department of Translational Genomics and; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
29
|
Sun J, Li Y. Pyroptosis and respiratory diseases: A review of current knowledge. Front Immunol 2022; 13:920464. [PMID: 36248872 PMCID: PMC9561627 DOI: 10.3389/fimmu.2022.920464] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is a relatively newly discovered programmed cell death accompanied by an inflammatory response. In the classical view, pyroptosis is mediated by caspases-1,-4,-5,-11 and executed by GSDMD, however, recently it was demonstrated that caspase-3 and-8 also participate in the process of pyroptosis, by cleaving GSDMD/E and GSDMD respectively. Different from autophagy and apoptosis, many pores are formed on the cell membrane during pyroptosis, which makes the cell membrane lose its integrity, eventually leading to the release of cytokines interleukin(IL)-1β and IL-18. When the body is infected with pathogens or exposed to some stimulations, pyroptosis could play an immune defense role. It is found that pyroptosis exists widely in infectious and inflammatory respiratory diseases such as acute lung injury, bronchial dysplasia, chronic obstructive pulmonary disease, and asthma. Excessive pyroptosis may accompany airway inflammation, tissue injury, and airway damage, and induce an inflammatory reaction, leading to more serious damage and poor prognosis of respiratory diseases. This review summarizes the relationship between pyroptosis and related respiratory diseases.
Collapse
|
30
|
Spivak I, Fluhr L, Elinav E. Local and systemic effects of microbiome‐derived metabolites. EMBO Rep 2022; 23:e55664. [PMID: 36031866 PMCID: PMC9535759 DOI: 10.15252/embr.202255664] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Commensal microbes form distinct ecosystems within their mammalian hosts, collectively termed microbiomes. These indigenous microbial communities broadly expand the genomic and functional repertoire of their host and contribute to the formation of a “meta‐organism.” Importantly, microbiomes exert numerous biochemical reactions synthesizing or modifying multiple bioactive small molecules termed metabolites, which impact their host's physiology in a variety of contexts. Identifying and understanding molecular mechanisms of metabolite–host interactions, and how their disrupted signaling can contribute to diseases, may enable their therapeutic application, a modality termed “postbiotic” therapy. In this review, we highlight key examples of effects of bioactive microbe‐associated metabolites on local, systemic, and immune environments, and discuss how these may impact mammalian physiology and associated disorders. We outline the challenges and perspectives in understanding the potential activity and function of this plethora of microbially associated small molecules as well as possibilities to harness them toward the promotion of personalized precision therapeutic interventions.
Collapse
Affiliation(s)
- Igor Spivak
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Medical Clinic III University Hospital Aachen Aachen Germany
| | - Leviel Fluhr
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
| | - Eran Elinav
- Systems Immunology Department Weizmann Institute of Science Rehovot Israel
- Microbiome & Cancer Division, DKFZ Heidelberg Germany
| |
Collapse
|
31
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
32
|
Adipose Tissue Aging and Metabolic Disorder, and the Impact of Nutritional Interventions. Nutrients 2022; 14:nu14153134. [PMID: 35956309 PMCID: PMC9370499 DOI: 10.3390/nu14153134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose tissue is the largest and most active endocrine organ, involved in regulating energy balance, glucose and lipid homeostasis and immune function. Adipose tissue aging processes are associated with brown adipose tissue whitening, white adipose tissue redistribution and ectopic deposition, resulting in an increase in age-related inflammatory factors, which then trigger a variety of metabolic syndromes, including diabetes and hyperlipidemia. Metabolic syndrome, in turn, is associated with increased inflammatory factors, all-cause mortality and cognitive impairment. There is a growing interest in the role of nutritional interventions in adipose tissue aging. Nowadays, research has confirmed that nutritional interventions, involving caloric restriction and the use of vitamins, resveratrol and other active substances, are effective in managing adipose tissue aging’s adverse effects, such as obesity. In this review we summarized age-related physiological characteristics of adipose tissue, and focused on what nutritional interventions can do in improving the retrogradation and how they do this.
Collapse
|
33
|
Della Guardia L, Shin AC. White and brown adipose tissue functionality is impaired by fine particulate matter (PM2.5) exposure. J Mol Med (Berl) 2022; 100:665-676. [PMID: 35286401 PMCID: PMC9110515 DOI: 10.1007/s00109-022-02183-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Lucio Della Guardia
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, via Fratelli Cervi 93, 20090, Segrate, Milano, Italy.
| | - Andrew C Shin
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
34
|
Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity 2022; 55:31-55. [PMID: 35021057 PMCID: PMC8773457 DOI: 10.1016/j.immuni.2021.12.013] [Citation(s) in RCA: 908] [Impact Index Per Article: 302.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023]
Abstract
Obesity leads to chronic, systemic inflammation and can lead to insulin resistance (IR), β-cell dysfunction, and ultimately type 2 diabetes (T2D). This chronic inflammatory state contributes to long-term complications of diabetes, including non-alcoholic fatty liver disease (NAFLD), retinopathy, cardiovascular disease, and nephropathy, and may underlie the association of type 2 diabetes with other conditions such as Alzheimer's disease, polycystic ovarian syndrome, gout, and rheumatoid arthritis. Here, we review the current understanding of the mechanisms underlying inflammation in obesity, T2D, and related disorders. We discuss how chronic tissue inflammation results in IR, impaired insulin secretion, glucose intolerance, and T2D and review the effect of inflammation on diabetic complications and on the relationship between T2D and other pathologies. In this context, we discuss current therapeutic options for the treatment of metabolic disease, advances in the clinic and the potential of immune-modulatory approaches.
Collapse
Affiliation(s)
- Theresa V. Rohm
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Jerrold M. Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, CH-4031 Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.,Correspondence:
| |
Collapse
|
35
|
Agueda-Oyarzabal M, Emanuelli B. Immune Cells in Thermogenic Adipose Depots: The Essential but Complex Relationship. Front Endocrinol (Lausanne) 2022; 13:839360. [PMID: 35360060 PMCID: PMC8963988 DOI: 10.3389/fendo.2022.839360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 01/09/2023] Open
Abstract
Brown adipose tissue (BAT) is a unique organ in mammals capable of dissipating energy in form of heat. Additionally, white adipose tissue (WAT) can undergo browning and perform thermogenesis. In recent years, the research community has aimed to harness thermogenic depot functions for new therapeutic strategies against obesity and the metabolic syndrome; hence a comprehensive understanding of the thermogenic fat microenvironment is essential. Akin to WAT, immune cells also infiltrate and reside within the thermogenic adipose tissues and perform vital functions. As highly plastic organs, adipose depots rely on crucial interplay with these tissue resident cells to conserve their healthy state. Evidence has accumulated to show that different immune cell populations contribute to thermogenic adipose tissue homeostasis and activation through complex communicative networks. Furthermore, new studies have identified -but still not fully characterized further- numerous immune cell populations present in these depots. Here, we review the current knowledge of this emerging field by describing the immune cells that sway the thermogenic adipose depots, and the complex array of communications that influence tissue performance.
Collapse
|
36
|
Cheung WW, Hao S, Zheng R, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. Targeting interleukin-1 for reversing fat browning and muscle wasting in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2021; 12:1296-1311. [PMID: 34196133 PMCID: PMC8517356 DOI: 10.1002/jcsm.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS We generated Ctns-/- Il1β-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS Skeletal muscle expression of IL-1β was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1β-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Pediatrics, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and ChildrenAffiliated Women and Children's Hospital of Chengdu Medical CollegeChengduChina
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoLa JollaCAUSA
| | - Robert H. Mak
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
37
|
Yan S, Kumari M, Xiao H, Jacobs C, Kochumon S, Jedrychowski M, Chouchani E, Ahmad R, Rosen ED. IRF3 reduces adipose thermogenesis via ISG15-mediated reprogramming of glycolysis. J Clin Invest 2021; 131:144888. [PMID: 33571167 DOI: 10.1172/jci144888] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose thermogenesis is repressed in obesity, reducing the homeostatic capacity to compensate for chronic overnutrition. Inflammation inhibits adipose thermogenesis, but little is known about how this occurs. Here we showed that the innate immune transcription factor IRF3 is a strong repressor of thermogenic gene expression and oxygen consumption in adipocytes. IRF3 achieved this by driving expression of the ubiquitin-like modifier ISG15, which became covalently attached to glycolytic enzymes, thus reducing their function and decreasing lactate production. Lactate repletion was able to restore thermogenic gene expression, even when the IRF3/ISG15 axis was activated. Mice lacking ISG15 phenocopied mice lacking IRF3 in adipocytes, as both had elevated energy expenditure and were resistant to diet-induced obesity. These studies provide a deep mechanistic understanding of how the chronic inflammatory milieu of adipose tissue in obesity prevents thermogenic compensation for overnutrition.
Collapse
Affiliation(s)
- Shuai Yan
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Manju Kumari
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Shihab Kochumon
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Edward Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Munro P, Rekima S, Loubat A, Duranton C, Pisani DF, Boyer L. Impact of thermogenesis induced by chronic β3-adrenergic receptor agonist treatment on inflammatory and infectious response during bacteremia in mice. PLoS One 2021; 16:e0256768. [PMID: 34437647 PMCID: PMC8389438 DOI: 10.1371/journal.pone.0256768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
White adipocytes store energy differently than brown and brite adipocytes which dissipate energy under the form of heat. Studies have shown that adipocytes are able to respond to bacteria thanks to the presence of Toll-like receptors at their surface. Despite this, little is known about the involvement of each class of adipocytes in the infectious response. We treated mice for one week with a β3-adrenergic receptor agonist to induce activation of brown adipose tissue and brite adipocytes within white adipose tissue. Mice were then injected intraperitoneally with E. coli to generate acute infection. The metabolic, infectious and inflammatory parameters of the mice were analysed during 48 hours after infection. Our results shown that in response to bacteria, thermogenic activity promoted a discrete and local anti-inflammatory environment in white adipose tissue characterized by the increase of the IL-1RA secretion. More generally, activation of brown and brite adipocytes did not modify the host response to infection including no additive effect with fever and an equivalent bacteria clearance and inflammatory response. In conclusion, these results suggest an IL-1RA-mediated immunomodulatory activity of thermogenic adipocytes in response to acute bacterial infection and open a way to characterize their effect along more chronic infection as septicaemia.
Collapse
Affiliation(s)
| | - Samah Rekima
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | - Agnès Loubat
- Université Côte d’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, Nice, France
- * E-mail: (DFP); (LB)
| | - Laurent Boyer
- Université Côte d’Azur, Inserm, C3M, Nice, France
- * E-mail: (DFP); (LB)
| |
Collapse
|
39
|
Cheung WW, Zheng R, Hao S, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. The role of IL-1 in adipose browning and muscle wasting in CKD-associated cachexia. Sci Rep 2021; 11:15141. [PMID: 34302016 PMCID: PMC8302616 DOI: 10.1038/s41598-021-94565-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/29/2021] [Indexed: 10/25/2022] Open
Abstract
Cytokines such as IL-6, TNF-α and IL-1β trigger inflammatory cascades which may play a role in the pathogenesis of chronic kidney disease (CKD)-associated cachexia. CKD was induced by 5/6 nephrectomy in mice. We studied energy homeostasis in Il1β-/-/CKD, Il6-/-/CKD and Tnfα-/-/CKD mice and compared with wild type (WT)/CKD controls. Parameters of cachexia phenotype were completely normalized in Il1β-/-/CKD mice but were only partially rescued in Il6-/-/CKD and Tnfα-/-/CKD mice. We tested the effects of anakinra, an IL-1 receptor antagonist, on CKD-associated cachexia. WT/CKD mice were treated with anakinra (2.5 mg/kg/day, IP) or saline for 6 weeks and compared with WT/Sham controls. Anakinra normalized food intake and weight gain, fat and lean mass content, metabolic rate and muscle function, and also attenuated molecular perturbations of energy homeostasis in adipose tissue and muscle in WT/CKD mice. Anakinra decreased serum and muscle expression of IL-6, TNF-α and IL-1β in WT/CKD mice. Anakinra attenuated browning of white adipose tissue in WT/CKD mice. Moreover, anakinra normalized gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in WT/CKD mice. This was accompanied by correcting the increased muscle wasting signaling pathways while promoting the decreased myogenesis process in gastrocnemius of WT/CKD mice. We performed qPCR analysis for the top 20 differentially expressed muscle genes previously identified via RNAseq analysis in WT/CKD mice versus controls. Importantly, 17 differentially expressed muscle genes were attenuated in anakinra treated WT/CKD mice. In conclusion, IL-1 receptor antagonism may represent a novel targeted treatment for adipose tissue browning and muscle wasting in CKD.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and Children, and Affiliated Women and Children's Hospital of Chengdu Medical College, Sichuan, China
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego, USA
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California, San Diego, 9500 Gilman Drive, MC 0831, La Jolla, CA, 92093-0831, USA.
| |
Collapse
|
40
|
Li X, Li X. Obesity Promotes Experimental Colitis by Increasing Oxidative Stress and Mitochondrial Dysfunction in the Colon. Inflammation 2021; 43:1884-1892. [PMID: 32495128 DOI: 10.1007/s10753-020-01261-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although obesity is associated with inflammatory bowel disease (IBD), the underlying molecular mechanism still remains unclear. In this study, we evaluated the effects of high-fat diet (HFD)-induced obesity on the development of experimental colitis in mice. The C57BL/6 mice were fed with a HFD for 12 weeks to develop obesity. The concentrations of free fatty acids (FFA), triglycerides, and cholesterol in plasma were significantly increased in HFD-fed mice compared to low-fat diet (LFD)-fed mice. We found that HFD-induced obesity could exacerbate 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-induced experimental colitis in mice resembling Crohn's disease (CD). HFD-fed mice showed shorter colon length, higher clinical scores and histological scores, more production of mucosal tumor necrosis factor-α (TNF-α), and greater destruction of colonic epithelial barrier than LFD-fed mice after TNBS induction. HFD feeding also promoted reactive oxygen species (ROS) production in colonic epithelial cells, thus activating the pro-apoptotic pathway to damage colonic epithelial barrier induced by TNBS. After HCT116 cells were treated with palmitate acid (PA) and/or TNF-α for 24 h, the combination of PA and TNF-α increased ROS production, promoted mitochondrial dysfunction, and activated the pro-apoptotic pathway, but these effects were markedly attenuated by a ROS inhibitor. Taken together, these observations suggest that HFD-induced obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction, which triggers the activation of pro-apoptotic pathway in the colon.
Collapse
Affiliation(s)
- Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, 110122, China
| | - Xin Li
- Department of Chemistry, School of Fundamental Sciences, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
41
|
Okla M, Kassem M. Thermogenic potentials of bone marrow adipocytes. Bone 2021; 143:115658. [PMID: 32979539 DOI: 10.1016/j.bone.2020.115658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow adipose tissue (MAT) is a unique fat depot located in proximity to bone surfaces and exerts regulatory functions in the skeleton. Recent studies have demonstrated that MAT responds to changes in whole-body energy metabolism, such as in obesity and anorexia nervosa, where MAT expands, resulting in deleterious effects on the skeleton. Interestingly, MAT shares properties with both brown and white adipose tissues but exhibits distinct features with regard to lipid metabolism and insulin sensitivity. Recent reports have addressed the capacity of MAT to undergo browning, which could be an attractive strategy for preventing excessive MAT accumulation within the skeleton. In this review, we summarize studies addressing the browning phenomenon of MAT and its regulation by a number of pathophysiological conditions. Moreover, we discuss the relationship between adaptive thermogenesis and bone health. Understanding the thermogenic potentials of MAT will delineate the biological importance of this organ and unravel its potential for improving bone health and whole-body energy metabolism.
Collapse
Affiliation(s)
- Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Department of Molecular Endocrinology, KMEB, University of Southern Denmark, Odense University Hospital, 5000 Odense C, Denmark; Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Wei (魏彤) T, Gao (高晶) J, Huang (黄程淋) C, Song (宋蓓) B, Sun (孙孟炜) M, Shen (沈伟利) W. SIRT3 (Sirtuin-3) Prevents Ang II (Angiotensin II)-Induced Macrophage Metabolic Switch Improving Perivascular Adipose Tissue Function. Arterioscler Thromb Vasc Biol 2021; 41:714-730. [PMID: 33327751 DOI: 10.1161/atvbaha.120.315337] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Infiltrated macrophages actively promote perivascular adipose tissue remodeling and represent a dominant population in the perivascular adipose tissue microenvironment of hypertensive mice. However, the role of macrophages in initiating metabolic inflammation remains uncertain. SIRT3 (sirtuin-3), a NAD-dependent deacetylase, is sensitive to metabolic status and mediates adaptation responses. In this study, we investigated the role of SIRT3-mediated metabolic shift in regulating NLRP3 (Nod-like receptor family pyrin domain-containing 3) inflammasome activation. Approach and Results: Here, we report that Ang II (angiotensin II) accelerates perivascular adipose tissue inflammation and fibrosis, accompanied by NLRP3 inflammasome activation and IL (interleukin)-1β secretion in myeloid SIRT3 knockout (SIRT3-/-) mice. This effect is associated with adipose tissue mitochondrial dysfunction. In vitro studies indicate that the deletion of SIRT3 in bone marrow-derived macrophages induces IL-1β production by shifting the metabolic phenotype from oxidative phosphorylation to glycolysis. Mechanistically, SIRT3 deacetylates and activates PDHA1 (pyruvate dehydrogenase E1 alpha) at lysine 83, and the loss of SIRT3 leads to PDH activity decrease and lactate accumulation. Knocking down LDHA (lactate dehydrogenase A) or using carnosine, a buffer against lactic acid, attenuates IL-1β secretion. Furthermore, the blockade of IL-1β from macrophages into brown adipocytes restores thermogenic markers and mitochondrial oxygen consumption. Moreover, NLRP3 knockout (NLRP3-/-) mice exhibited reduced IL-1β production while rescuing the mitochondrial function of brown adipocytes and alleviating perivascular adipose tissue fibrosis. CONCLUSIONS SIRT3 represents a potential therapeutic target to attenuate NLRP3-related inflammation. Pharmacological targeting of glycolytic metabolism may represent an effective therapeutic approach.
Collapse
Affiliation(s)
- Tong Wei (魏彤)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Jing Gao (高晶)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Chenglin Huang (黄程淋)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Bei Song (宋蓓)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Mengwei Sun (孙孟炜)
- Department of Cardiovascular Medicine, Department of Hypertension, and Department of General Practice, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China (T.W., J.G., C.H., B.S., W.S.)
| | - Weili Shen (沈伟利)
- Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports
Science, China (M.S.)
| |
Collapse
|
43
|
Qi HM, Cao Q, Liu Q. TLR4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the NLRP3 inflammasome. Am J Transl Res 2021; 13:314-325. [PMID: 33527026 PMCID: PMC7847527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Backgroud: Toll-like receptor 4 (TLR4), a key mediator of inflammatory responses, which is associated with vascular remodeling. The association between TLR4 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the regulation of vascular smooth muscle cell (VSMC) proliferation remains unclear. This study was to explore the role and underlying mechanisms of TLR4 in the proliferation of VSMC in hypertension. METHODS VSMC proliferation after TLR4 overexpression or downregulation was determined by CCK-8, EdU Incorporation and colony formation assays. Western blots were carried out to investigate the expression of TLR4 and NLRP3 inflammasome components in VSMCs. Next, blood pressure measurements and Hematoxylin and Eosin (HE) staining assays were performed in spontaneously hypertensive rats (SHR). Media thickness (M) and diameter lumen (L) were measured as indicators of vascular remodeling. The expression of TLR4, PCNA and NLRP3 inflammasome complex was analyzed by Western blots in the aorta of SHR. RESULTS We showed that TLR4 overexpression with cDNA enhanced, while knockdown of TLR4 with shRNA inhibited Ang II-induced VSMC proliferation. Besides, TLR4 overexpression upregulated the proteion expression of the NLRP3 inflammasome components including NLRP3, ASC and caspase-1, whereas their corresponding levels of expression were observed to decrease in TLR4 shRNA-transfected VSMCs. Knockdown of TLR4 attenuated vascular remodeling, blood pressure (BP) and the levels of NLRP3, ASC, caspase-1, IL-1β and IL-18 in SHR aortas. CONCLUSION This study revealed that TLR4 regulated Ang II-induced VSMC proliferation through modulating the NLRP3 inflammasome. Knockdown of TLR4 attenuated the BP and vascular remodeling by inhibiting the expression of the NLRP3 inflammasome component in SHR. Our results support that TLR4 regulates VSMC proliferation in hypertension via triggering the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hui-Meng Qi
- Department of General Practice, The First Hospital of China Medical UniversityShenyang, China
| | - Qin Cao
- Department of Gastroenterolog, The First Hospital of China Medical UniversityShenyang, China
| | - Qiang Liu
- Department of Nephrology, The First Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
44
|
ZhuGe DL, Javaid HMA, Sahar NE, Zhao YZ, Huh JY. Fibroblast growth factor 2 exacerbates inflammation in adipocytes through NLRP3 inflammasome activation. Arch Pharm Res 2020; 43:1311-1324. [PMID: 33245516 DOI: 10.1007/s12272-020-01295-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammation in adipose tissue is the hallmark of obesity and a major risk factor for the development of obesity-induced insulin resistance. NLRP3 inflammasome regulates the maturation and secretion of pro-inflammatory cytokines, such as IL-1β and IL-18, and was recently discovered to be involved in obesity-related metabolic diseases. Fibroblast growth factors (FGFs) such as FGF1, FGF10, and FGF21 are adipokines that regulate adipocyte development and metabolism, but reports on the effect of other FGFs on adipocytes are lacking. In the present study, the novel role of FGF2 in NLRP3 inflammasome activation was elucidated. Our results showed that FGF2 levels were increased during adipocyte differentiation and in the adipose tissue of high-fat diet (HFD)-induced obese mice. Recombinant FGF2 treatment upregulated inflammasome markers such as NLRP3, which was further exaggerated by TNF-ɑ treatment. Interestingly, β-Klotho, a co-receptor of FGF21, was significantly decreased by FGF2 treatment. Results from mice confirmed the positive correlation between FGF2 and NLRP3 expression in epididymal and subcutaneous adipose tissue, while exercise training effectively reversed HFD-induced NLRP3 expression as well as FGF2 levels in both adipose depots. Our results suggest that FGF2 is an adipokine that may exacerbate the inflammatory response in adipocytes through NLRP3 inflammasome activation.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/drug effects
- Adipocytes/immunology
- Adipocytes/metabolism
- Adipogenesis/drug effects
- Animals
- Disease Models, Animal
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Klotho Proteins
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Obesity/genetics
- Obesity/immunology
- Obesity/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/agonists
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/agonists
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction
- Subcutaneous Fat/drug effects
- Subcutaneous Fat/immunology
- Subcutaneous Fat/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- De-Li ZhuGe
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hafiz Muhammad Ahmad Javaid
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Namood E Sahar
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ying-Zheng Zhao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
45
|
AlZaim I, Hammoud SH, Al-Koussa H, Ghazi A, Eid AH, El-Yazbi AF. Adipose Tissue Immunomodulation: A Novel Therapeutic Approach in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med 2020; 7:602088. [PMID: 33282920 PMCID: PMC7705180 DOI: 10.3389/fcvm.2020.602088] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a critical regulator of systemic metabolism and bodily homeostasis as it secretes a myriad of adipokines, including inflammatory and anti-inflammatory cytokines. As the main storage pool of lipids, subcutaneous and visceral adipose tissues undergo marked hypertrophy and hyperplasia in response to nutritional excess leading to hypoxia, adipokine dysregulation, and subsequent low-grade inflammation that is characterized by increased infiltration and activation of innate and adaptive immune cells. The specific localization, physiology, susceptibility to inflammation and the heterogeneity of the inflammatory cell population of each adipose depot are unique and thus dictate the possible complications of adipose tissue chronic inflammation. Several lines of evidence link visceral and particularly perivascular, pericardial, and perirenal adipose tissue inflammation to the development of metabolic syndrome, insulin resistance, type 2 diabetes and cardiovascular diseases. In addition to the implication of the immune system in the regulation of adipose tissue function, adipose tissue immune components are pivotal in detrimental or otherwise favorable adipose tissue remodeling and thermogenesis. Adipose tissue resident and infiltrating immune cells undergo metabolic and morphological adaptation based on the systemic energy status and thus a better comprehension of the metabolic regulation of immune cells in adipose tissues is pivotal to address complications of chronic adipose tissue inflammation. In this review, we discuss the role of adipose innate and adaptive immune cells across various physiological and pathophysiological states that pertain to the development or progression of cardiovascular diseases associated with metabolic disorders. Understanding such mechanisms allows for the exploitation of the adipose tissue-immune system crosstalk, exploring how the adipose immune system might be targeted as a strategy to treat cardiovascular derangements associated with metabolic dysfunctions.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Safaa H. Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | - Houssam Al-Koussa
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Alaa Ghazi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Ali H. Eid
- Department of Pharmacology and Therapeutics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Munro P, Dufies O, Rekima S, Loubat A, Duranton C, Boyer L, Pisani DF. Modulation of the inflammatory response to LPS by the recruitment and activation of brown and brite adipocytes in mice. Am J Physiol Endocrinol Metab 2020; 319:E912-E922. [PMID: 32954821 DOI: 10.1152/ajpendo.00279.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies have shown that the recruitment and activation of thermogenic adipocytes, which are brown and beige/brite, reduce the mass of adipose tissue and normalize abnormal glycemia and lipidemia. However, the impact of these adipocytes on the inflammatory state of adipose tissue is still not well understood, especially in response to endotoxemia, which is a major aspect of obesity and metabolic diseases. First, we analyzed the phenotype and metabolic function of white and brite primary adipocytes in response to lipopolysaccharide (LPS) treatment in vitro. Then, 8-wk-old male BALB/c mice were treated for 1 wk with a β3-adrenergic receptor agonist (CL316,243, 1 mg/kg/day) to induce recruitment and activation of brown and brite adipocytes and were subsequently injected with LPS (Escherichia coli lipopolysaccharide, 100 μg/mouse ip) to generate acute endotoxemia. The metabolic and inflammatory parameters of the mice were analyzed 6 h later. Our results showed that in response to LPS, thermogenic activity promoted a local anti-inflammatory environment with high secretion of IL-1 receptor antagonist (IL-1RA) without affecting other anti- or proinflammatory cytokines. Interestingly, activation of brite adipocytes reduced the LPS-induced secretion of leptin. However, thermogenic activity and adipocyte function were not altered by LPS treatment in vitro or by acute endotoxemia in vivo. In conclusion, these results suggest an IL-1RA-mediated immunomodulatory activity of thermogenic adipocytes specifically in response to endotoxemia. This encourages potential therapy involving brown and brite adipocytes for the treatment of obesity and associated metabolic diseases.NEW & NOTEWORTHY Recruitment and activation of brown and brite adipocytes in the adipose tissue of mice lead to a local low-grade anti-inflammatory phenotype in response to acute endotoxemia without alteration of adipocyte phenotype and function.
Collapse
Affiliation(s)
| | | | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | - Agnès Loubat
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | | | | | |
Collapse
|
47
|
López-Reyes A, Martinez-Armenta C, Espinosa-Velázquez R, Vázquez-Cárdenas P, Cruz-Ramos M, Palacios-Gonzalez B, Gomez-Quiroz LE, Martínez-Nava GA. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front Immunol 2020; 11:570251. [PMID: 33193349 PMCID: PMC7662564 DOI: 10.3389/fimmu.2020.570251] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Several countries around the world have faced an important obesity challenge for the past four decades as the result of an obesogenic environment. This disease has a multifactorial origin and it is associated with multiple comorbidities including type 2 diabetes, hypertension, osteoarthritis, metabolic syndrome, cancer, and dyslipidemia. With regard to dyslipidemia, hypertriglyceridemia is a well-known activator of the NLRP3 inflammasome, triggering adipokines and cytokines secretion which in addition induce a systemic inflammatory state that provides an adequate scenario for infections, particularly those mediated by viruses such as HIV, H1N1 influenza, and SARS-CoV-2. The SARS-CoV-2 infection causes the coronavirus disease 2019 (COVID-19) and it is responsible for the pandemic that we are currently living. COVID-19 causes an aggressive immune response known as cytokine release syndrome or cytokine storm that causes multiorgan failure and in most cases leads to death. In the present work, we aimed to review the molecular mechanisms by which obesity-associated systemic inflammation could cause a more severe clinical presentation of COVID-19. The SARS-CoV-2 infection could potentiate or accelerate the pre-existing systemic inflammatory state of individuals with obesity, via the NLRP3 inflammasome activation and the release of pro-inflammatory cytokines from cells trough Gasdermin-pores commonly found in cell death by pyroptosis.
Collapse
Affiliation(s)
- Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Ciudad de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Ciudad de México, México
| | - Carlos Martinez-Armenta
- Postgrado en Biología Experimental, Dirección de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | | | - Paola Vázquez-Cárdenas
- Centro de Innovación Médica Aplicada, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| | - Marlid Cruz-Ramos
- Cátedras de Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Cancerología, Ciudad de México, México
| | - Berenice Palacios-Gonzalez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Luis Enrique Gomez-Quiroz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| |
Collapse
|
48
|
Wang L, Hu J, Zhou H. Macrophage and Adipocyte Mitochondrial Dysfunction in Obesity-Induced Metabolic Diseases. World J Mens Health 2020; 39:606-614. [PMID: 33151047 PMCID: PMC8443980 DOI: 10.5534/wjmh.200163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is one of major health burdens of modern society as it contributes to the growing prevalence of its related comorbidities, such as diabetes, cardiovascular diseases, and some cancers. A series of innate immune cells, especially macrophages, and adipocytes have been implicated in the pathogenesis of obesity. Mitochondrial dysfunction, which is induced by obesity, are critical mediators in initiating inflammation in macrophages and adipocytes, and subsequent systemic insulin resistance. In this review, we discuss new findings on how obesity impairs mitochondrial function in macrophages and adipocytes and how this dysfunction contributes to obesity and its comorbidities. We also summarize drugs that treat metabolic diseases by targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Jie Hu
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China
| | - Haiyan Zhou
- Department of Metabolism and Endocrinology, the Second Xiangya Hospital, Central South University, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Hunan, China.
| |
Collapse
|
49
|
The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem J 2020; 477:1089-1107. [PMID: 32202638 DOI: 10.1042/bcj20190472] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Adipose tissue regulates metabolic homeostasis by participating in endocrine and immune responses in addition to storing and releasing lipids from adipocytes. Obesity skews adipose tissue adipokine responses and degrades the coordination of adipocyte lipogenesis and lipolysis. These defects in adipose tissue metabolism can promote ectopic lipid deposition and inflammation in insulin-sensitive tissues such as skeletal muscle and liver. Sustained caloric excess can expand white adipose tissue to a point of maladaptation exacerbating both local and systemic inflammation. Multiple sources, instigators and propagators of adipose tissue inflammation occur during obesity. Cross-talk between professional immune cells (i.e. macrophages) and metabolic cells (i.e. adipocytes) promote adipose tissue inflammation during metabolic stress (i.e. metaflammation). Metabolic stress and endogenous danger signals can engage pathogen recognition receptors (PRRs) of the innate immune system thereby activating pro-inflammatory and stress pathways in adipose tissue. The Nod-like receptor protein 3 (NLRP3) inflammasome can act as a metabolic danger sensor to a wide range of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs). Activation of the NLRP3 inflammasome facilitates caspase-1 dependent production of the pro-inflammatory cytokines IL-1β and IL-18. Activation of the NLRP3 inflammasome can promote inflammation and pyroptotic cell death, but caspase-1 is also involved in adipogenesis. This review discusses the role of the NLRP3 inflammasome in adipose tissue immunometabolism responses relevant to metabolic disease. Understanding the potential sources of NLRP3 activation and consequences of NLRP3 effectors may reveal therapeutic opportunities to break or fine-tune the connection between metabolism and inflammation in adipose tissue during obesity.
Collapse
|
50
|
Vinaik R, Barayan D, Jeschke MG. NLRP3 Inflammasome in Inflammation and Metabolism: Identifying Novel Roles in Postburn Adipose Dysfunction. Endocrinology 2020; 161:5868467. [PMID: 32790834 PMCID: PMC7426001 DOI: 10.1210/endocr/bqaa116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Inflammasomes are multiprotein complexes that respond to pathogen or host associated damage markers, leading to caspase-1 maturation and processing of pro-inflammatory cytokines. Initially, inflammasomes were implicated primarily in inflammatory and infectious conditions. However, increasing evidence demonstrates broader roles beyond inflammation, including regulation of adipose tissue metabolism after burns. Here, we conducted a search for articles on PubMed, Web of Science, Embase, Scopus, and UpToDate with applied search strategies including a combination of "burns," "trauma," "(NLRP3) inflammasome," "metabolic conditions," "white adipose tissue," "macrophages," "browning," and "lipolysis" and included papers from 2000 to 2020. We discuss unexpected roles for NLRP3, the most characterized inflammasome to date, as a key metabolic driver in a variety of conditions. In particular, we highlight the function of NLRP3 inflammasome in burn trauma, which is characterized by both hyperinflammation and hypermetabolism. We identify a critical part for NLRP3 activation in macrophage dynamics and delineate a novel role in postburn white adipose tissue remodeling, a pathological response associated with hypermetabolism and poor clinical outcomes. Mechanistically, how inflammation and inflammasome activation is linked to postburn hypermetabolism is a novel concept to contemplate, and herein we provide evidence of an immunometabolic crosstalk between adipocytes and infiltrating macrophages.
Collapse
Affiliation(s)
| | | | - Marc G Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Department of Immunology, University of Toronto, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sunnybrook Research Institute, Toronto, Canada
- Correspondence: Marc G. Jeschke, MD, PhD, Director Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre; Division of Plastic Surgery, Department of Surgery, Department of Immunology, University of Toronto; Sunnybrook Research Institute, 2075 Bayview Ave., Rm. D704, Toronto, ON, CANADA, M4N 3M5. E-mail:
| |
Collapse
|