1
|
Cattaneo AM, Kwadha CA, Pullmann-Lindsley H, Erdei AL, Pitts RJ, Walker WB. Functional Characterization of a Female-Biased Chemoreceptor of the Codling Moth (Cydia pomonella) Responding to Aldehydes and Other Volatile Compounds. J Chem Ecol 2025; 51:28. [PMID: 40000511 PMCID: PMC11861427 DOI: 10.1007/s10886-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
With the advent of semiochemical-based control strategies used to mitigate damage of agricultural pest moths, many studies have focused on the function of male-specific putative pheromone receptors (PRs). In this investigation, we instead isolated, heterologously expressed, and functionally characterized a female-biased candidate PR, CpomOR22, from the codling moth, Cydia pomonella. Using transgenic Drosophila melanogaster for single sensillum recording (SSR) and gas-chromatographic SSR, we tested both synthetic ligands and various apple headspace extracts, identifying saturated and unsaturated aldehydes (nonanal, decanal, undecanal, dodecanal; (Z)-4-undecenal and (Z)-6-undecenal) among the most active ligands. Parallel experiments expressing CpomOR22 in Xenopus oocytes confirmed the binding of nonanal, decanal and undecanal and revealed lactones (γ-undecalactone and δ-dodecalactone) and several carboxylic acids as additional active compounds. The renowned ecological importance of aldehydes for the codling moth and the potential for newly identified ligands, such as lactones, may inform innovative control strategies based on novel semiochemicals to interfere with the female-specific chemosensory systems of this insect.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Department of Plant Protection Biology, Chemical Ecology. Lomma - Campus Alnarp, Swedish University of Agricultural Sciences, 234 56, Alnarp, Sweden.
| | - Charles A Kwadha
- Department of Plant Protection Biology, Chemical Ecology. Lomma - Campus Alnarp, Swedish University of Agricultural Sciences, 234 56, Alnarp, Sweden
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695-7616, USA
| | - Heidi Pullmann-Lindsley
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, USA
- Department of Biological and Molecular Sciences, George Fox University, 414 N Meridian Street, Newberg, OR, 97132, USA
| | - Anna L Erdei
- Department of Plant Protection Biology, Chemical Ecology. Lomma - Campus Alnarp, Swedish University of Agricultural Sciences, 234 56, Alnarp, Sweden
| | - R Jason Pitts
- Department of Biology, Baylor University, 101 Bagby Avenue, Waco, TX, 76706, USA
| | - William B Walker
- Department of Plant Protection Biology, Chemical Ecology. Lomma - Campus Alnarp, Swedish University of Agricultural Sciences, 234 56, Alnarp, Sweden.
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA.
| |
Collapse
|
2
|
Ramírez-Ordorica A, Adame-Garnica SG, Ramos-Aboites HE, Winkler R, Macías-Rodríguez L. Volatile Semiochemicals Emitted by Beauveria bassiana Modulate Larval Feeding Behavior and Food Choice Preference in Spodoptera frugiperda (Lepidoptera: Noctuidae). J Fungi (Basel) 2024; 10:438. [PMID: 38921424 PMCID: PMC11204931 DOI: 10.3390/jof10060438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Beauveria bassiana is an entomopathogenic fungus that parasitizes and kills insects. The role of volatile organic compounds (VOCs) emitted by B. bassiana acting as semiochemicals during its interaction with lepidopterans is poorly explored. Here, we studied the effect of VOCs from B. bassiana and 3-methylbutanol (as a single compound) on the feeding behavior of L2 larvae of Spodoptera frugiperda in sorghum plants. Additionally, we assessed whether fungal VOCs induce chemical modifications in the plants that affect larval food preferences. Metabolomic profiling of plant tissues was performed by mass spectrometry and bioassays in a dual-choice olfactometer. The results showed that the larval feeding behavior was affected by the B. bassiana strain AI2, showing that the insect response is strain-specific. Furthermore, 80 µg of 3-methylbutanol affected the number of bites. The larval feeding choice was dependent on the background context. Fragment spectra and a matching precursor ion mass of 165.882 m/z enabled the putative identification of 4-coumaric acid in sorghum leaves exposed to fungal VOCs, which may be associated with larval deterrent responses. These results provide valuable insights into the bipartite interaction of B. bassiana with lepidopterans through VOC emission, with the plant as a mediator of the interaction.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| | - Hilda Eréndira Ramos-Aboites
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Robert Winkler
- Laboratorio de Análisis Bioquímico e Instrumental, Unidad de Genómica Avanzada, Cinvestav, Km 9.6, Libramiento Norte, Carretera Irapuato-León, Irapuato C.P. 36824, Mexico; (H.E.R.-A.); (R.W.)
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia C.P. 58030, Mexico;
| |
Collapse
|
3
|
Zhou Y, Huang C, Fu G, Tang R, Yang N, Liu W, Qian W, Wan F. Molecular and Functional Characterization of Three General Odorant-Binding Protein 2 Genes in Cydia pomonella (Lepidoptera: Tortricidae). Int J Mol Sci 2024; 25:1746. [PMID: 38339028 PMCID: PMC10855334 DOI: 10.3390/ijms25031746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
General odorant-binding proteins (GOBPs) play a crucial role in the detection of host plant volatiles and pheromones by lepidopterans. Previous studies identified two duplications in the GOBP2 gene in Cydia pomonella. In this study, we employed qRT-PCR, protein purification, and fluorescence competitive binding assays to investigate the functions of three GOBP2 genes in C. pomonella. Our findings reveal that CpomGOBP2a and CpomGOBP2b are specifically highly expressed in antennae, while CpomGOBP2c exhibits high specific expression in wings, suggesting a potential divergence in their functions. Recombinant proteins of CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c were successfully expressed and purified, enabling an in-depth exploration of their functions. Competitive binding assays with 20 host plant volatiles and the sex pheromone (codlemone) demonstrated that CpomGOBP2a exhibits strong binding to four compounds, namely butyl octanoate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), codlemone, and geranylacetone, with corresponding dissolution constants (Ki) of 8.59993 μM, 9.14704 μM, 22.66298 μM, and 22.86923 μM, respectively. CpomGOBP2b showed specific binding to pear ester (Ki = 17.37481 μM), while CpomGOBP2c did not exhibit binding to any tested compounds. In conclusion, our results indicate a functional divergence among CpomGOBP2a, CpomGOBP2b, and CpomGOBP2c. These findings contribute valuable insights for the development of novel prevention and control technologies and enhance our understanding of the evolutionary mechanisms of olfactory genes in C. pomonella.
Collapse
Affiliation(s)
- Yanan Zhou
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guanjun Fu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Tang
- Centre for Resource Insects and Biotechnology, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510220, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
5
|
van der Merwe M, Jukes MD, Knox C, Moore SD, Hill MP. Naturally Occurring Yeasts Associated with Thaumatotibia leucotreta Can Enhance the Efficacy of the Cryptophlebia Leucotreta Granulovirus. Pathogens 2023; 12:1237. [PMID: 37887753 PMCID: PMC10610352 DOI: 10.3390/pathogens12101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Yeasts associated with lepidopteran pests have been shown to play a role in their survival, development, and oviposition preference. It has been demonstrated that combining these yeasts with existing biological control agents can enhance their efficacy. The tortricid Thaumatotibia leucotreta is a phytosanitary pest in the South African citrus industry, with the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) being one of the components that can control this pest. Several yeast species were shown to be associated with T. leucotreta larvae, which affected their behaviour and development. A series of detached fruit bioassays were performed to determine whether the combination of yeast with CrleGV enhances its efficacy. These assays included determining the optimal yeast/virus ratio, testing all isolated yeast species in combination with CrleGV, and further improving yeast/virus formulation by adding an adjuvant. The optimal yeast concentration to use alongside CrleGV was determined to be 106 cells·mL-1. Pichia kluyveri, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomyces cerevisiae in combination with CrleGV reduced larval survival compared to CrleGV alone. The addition of molasses and BREAK-THRU® S 240 to P. kudriavzevii and S. cerevisiae in combination with CrleGV did not notably improve their effectiveness; however, there was an observed decrease in larval survival. In future studies, field trials will be conducted with combinations of CrleGV and P. kudriavzevii or S. cerevisiae to investigate whether these laboratory findings can be replicated in orchard conditions.
Collapse
Affiliation(s)
- Marcel van der Merwe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Michael D. Jukes
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (M.D.J.); (C.K.)
| | - Sean D. Moore
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
- Citrus Research International, P.O. Box 5095, Walmer, Gqeberha 6065, South Africa
| | - Martin P. Hill
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Makhanda 6140, South Africa; (S.D.M.); (M.P.H.)
| |
Collapse
|
6
|
Tallon AK, Manning LA, Mas F. Electrophysiological and Behavioral Responses of Virgin Female Bactrocera tryoni to Microbial Volatiles from Enterobacteriaceae. Microorganisms 2023; 11:1643. [PMID: 37512816 PMCID: PMC10385192 DOI: 10.3390/microorganisms11071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
The Queensland fruit fly (Bactrocera tryoni) is a major polyphagous pest widespread in Australia and several Pacific Islands. Bacteria present on the host plant phyllosphere supply proteins, essential for egg development and female sexual maturity. We investigated the role of microbial volatile organic compounds (MVOCs) emitted by Enterobacteriaceae commonly found on the host plant and in the fly gut in attracting virgin females. Bacteria were cultured on artificial media and natural fruits, at various pH, and MVOCs were collected using different headspace volatile absorbent materials. The olfactory responses of virgin females to bacterial MVOCs were assessed via electrophysiology and behavioral assays. The production of MVOCs was strongly influenced qualitatively by the bacterial strain and the type of media, and it semi-quantitatively varied with pH and time. MVOCs emitted by Klebsiella oxytoca invoked the strongest antennal response and were the most attractive. Among the identified compounds triggering an olfactory response, D-limonene and 2-nonanone were both significantly behaviorally attractive, whereas phenol, nonanal, isoamyl alcohol, and some pyrazines appeared to be repulsive. This study deepens our understanding of the chemical ecology between fruit flies and their bacterial symbionts and paves the way for novel synthetic lures based on specifically MVOCs targeting virgin females.
Collapse
Affiliation(s)
- Anaïs K Tallon
- Department of Wildlife, Fisheries and Aquaculture, University of Mississippi State, Starkville, MS 39762, USA
| | - Lee-Anne Manning
- The New Zealand Institute for Plant and Food Research Ltd., Canterbury Agriculture & Science Centre, 74 Gerald St, Lincoln 7608, New Zealand
| | - Flore Mas
- The New Zealand Institute for Plant and Food Research Ltd., Canterbury Agriculture & Science Centre, 74 Gerald St, Lincoln 7608, New Zealand
| |
Collapse
|
7
|
Cappelli A, Damiani C, Capone A, Bozic J, Mensah P, Clementi E, Spaccapelo R, Favia G, Ricci I. Tripartite interactions comprising yeast-endobacteria systems in the gut of vector mosquitoes. Front Microbiol 2023; 14:1157299. [PMID: 37396392 PMCID: PMC10311912 DOI: 10.3389/fmicb.2023.1157299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
It is shown that bacteria use yeast as a niche for survival in stressful conditions, therefore yeasts may act as temporary or permanent bacterial reservoirs. Endobacteria colonise the fungal vacuole of various osmotolerant yeasts which survive and multiply in sugar-rich sources such as plant nectars. Nectar-associated yeasts are present even in the digestive system of insects and often establish mutualistic symbioses with both hosts. Research on insect microbial symbioses is increasing but bacterial-fungal interactions are yet unexplored. Here, we have focused on the endobacteria of Wickerhamomyces anomalus (formerly Pichia anomala and Candida pelliculosa), an osmotolerant yeast associated with sugar sources and the insect gut. Symbiotic strains of W. anomalus influence larval development and contribute digestive processes in adults, in addition to exerting wide antimicrobial properties for host defence in diverse insects including mosquitoes. Antiplasmodial effects of W. anomalus have been shown in the gut of the female malaria vector mosquito Anopheles stephensi. This discovery highlights the potential of utilizing yeast as a promising tool for symbiotic control of mosquito-borne diseases. In the present study, we have carried out a large Next Generation Sequencing (NGS) metagenomics analysis including W. anomalus strains associated with vector mosquitoes Anopheles, Aedes and Culex, which has highlighted wide and heterogeneous EB communities in yeast. Furthermore, we have disclosed a Matryoshka-like association in the gut of A stephensi that comprises different EB in the strain of W. anomalus WaF17.12. Our investigations started with the localization of fast-moving bacteria-like bodies within the yeast vacuole of WaF17.12. Additional microscopy analyses have validated the presence of alive intravacuolar bacteria and 16S rDNA libraries from WaF17.12 have identified a few bacterial targets. Some of these EB have been isolated and tested for lytic properties and capability to re-infect the yeast cell. Moreover, a selective competence to enter yeast cell has been shown comparing different bacteria. We suggested possible tripartite interactions among EB, W. anomalus and the host, opening new knowledge on the vector biology.
Collapse
Affiliation(s)
- Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Jovana Bozic
- Center for Infectious Disease Dynamics and Huck Institutes of the Life Sciences, Department of Entomology, Penn State University, University Park, PA, United States
| | - Priscilla Mensah
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Emanuela Clementi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, CIRM Italian Malaria Network, Functional Genomic Center (C.U.R.Ge.F), Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Camerino, Italy
| |
Collapse
|
8
|
Nwaefuna AE, Boekhout T, Garcia-Aloy M, Vrhovsek U, Zhou N. Diversity of dung beetle-associated yeasts from pristine environments of Botswana. Yeast 2023; 40:182-196. [PMID: 37096317 DOI: 10.1002/yea.3852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.
Collapse
Affiliation(s)
- Anita E Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Teun Boekhout
- Westerdijk Institute of Fungal Biodiversity, Utrecht, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mar Garcia-Aloy
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
9
|
Guo HG, Miao SZ, Ai PP, Zhang MZ, Yan Z, Du YL. Bioactive volatile compounds from Penicillium digitatum-infected apples: Oviposition attractants for yellow peach moth Conogethes punctiferalis (Lepidoptera: Crambidae). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1119717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionPlant-associated microbes critically shape the dynamics of plant-and insect-associated communities. In previous studies, we reported that the yellow peach moth Conogethes punctiferalis (YPM) preferred to Penicillium digitatum-infected apples (PDA) for oviposition. However, the underlying mechanisms remains unclear.MethodsIn the present study, the behavioral and physiological experiments were conducted to determine how P. digitatum affects the oviposition selection of mated YPM females via altering host plant volatile organic compounds (VOCs).ResultsMated YPM females were attracted to and laid more eggs on PDA than on non-infected apples (NIA), mechanically damaged apples (MDA), and P. digitatum in potato dextrose agar medium (PPD) in the oviposition selection experiments. Four-arm olfactometer assays further confirmed that odors in PDA were responsible for the attractiveness of mated YPM females. Further analyses showed that 38 VOCs were collected and identified from all treatments by GC-MS, with five specific VOCs (methyl 2-methylbutyrate, styrene, methyl caproate, butyl caprylate, and n-tetradecane) emitting from PDA. A principal component analysis (PCA) based on the absolute contents of 38 VOCs revealed a clear separation of PDA from NIA, MDA, and PPD. Moreover, when P. digitatum-induced specific VOCs were added to apples in individual or synthetic blends, there was a significantly higher percentage of mated YPM females to apples with individual or synthetic blends consisting of methyl 2-methylbutyrate, butyl caprylate, or n-tetradecane in Y-tube olfactometer experiments, suggesting that these three specific VOCs acted as predominant olfactory signals for mated YPM females to PDA.DiscussionTaken together, the microbe P. digitatum was an important driver of the interactions between YPMs and host plants by altering plant volatiles. These findings may form the basis for developing attractant baits for field trapping YPMs in the future.
Collapse
|
10
|
Piesik D, Bocianowski J, Kotwica K, Lemańczyk G, Piesik M, Ruzsanyi V, Mayhew CA. Responses of Adult Hypera rumicis L. to Synthetic Plant Volatile Blends. Molecules 2022; 27:molecules27196290. [PMID: 36234827 PMCID: PMC9572268 DOI: 10.3390/molecules27196290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The behavioral responses of Hypera rumicis L. adults to varying blends of synthetic plant volatiles (SPVs) at various concentrations in lieu of single compounds are reported for the first time. For this study, Rumex confertus plants were treated with two blends of SPVs at different quantities that act as either attractants or repellents to insects. Blend 1 (B1) consisted of five green leaf volatiles (GLVs), namely (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexenol, (E)-2-hexenol, and (Z)-3-hexen-1-yl acetate. Blend 2 (B2) contained six plant volatiles, namely (Z)-ocimene, linalool, benzyl acetate, methyl salicylate, β-caryophyllene, and (E)-β-farnesene. Each blend was made available in four different amounts of volatiles, corresponding to each compound being added to 50 µL of hexane in amounts of 1, 5, 25 and 125 ng. The effects of the two blends at the different concentrations on the insects were evaluated using a Y-tube olfactometer. Both sexes of the insects were found to be significantly repelled by the highest volatile levels of B1 and by two levels of B2 (25 and 125 ng). Females were also observed to be repelled using B2 with 5 ng of each volatile. Attraction was observed for both sexes only for B1 at the three lower volatile levels (1, 5 and 25 ng). In additional experiments, using only attractants, unmated females were found to be attracted to males, whereas mated females were only attracted to B1. Both unmated and mated males (previously observed in copula) were attracted only to females.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
- Correspondence: (D.P.); (C.A.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego, 60-637 Poznań, Poland
| | - Karol Kotwica
- Department of Agronomy, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Prof. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
| | - Magdalena Piesik
- Oncology Center of F. Łukaszczyk in Bydgoszcz, 2 I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
| | - Chris A. Mayhew
- Institute for Breath Research, University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020 Innsbruck, Austria
- Correspondence: (D.P.); (C.A.M.)
| |
Collapse
|
11
|
Yeasts from the nests of two Amazonian stingless bees: screening and PCR-RFLP molecular analysis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Guo HG, Han CY, Zhang AH, Yang AZ, Qin XC, Zhang MZ, Du YL. Penicillium fungi mediate behavioral responses of the yellow peach moth, Conogethes punctiferalis (Guenée) to apple fruits via altering the emissions of host plant VOCs. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21895. [PMID: 35373383 DOI: 10.1002/arch.21895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Plant-associated microbes have been reported as important but overlooked drivers of plant-herbivorous insect interactions. Influence of plant-associated microbes on plant-insect interactions is diverse, including beneficial, detrimental, and neutral. Here, we determined the effects of three Penicillium fungi, including Penicillium citrinum, Penicillium sumatrense, and Penicillium digitatum, on the oviposition selection and behavior of the yellow peach moth (YPM), Conogethes punctiferalis (Guenée). Compared with fungi noninfected apples (NIA), mechanically damaged apples (MDA), and P. citrinum in potato dextrose agar medium (PC), the oviposition selection and four-arm olfactometer experiments both showed that mated YPM females preferred to P. citrinum-infected apples (PCA). For P. sumatrense or P. digitatum, we also found that mated YPM females preferred to P. sumatrense-infected apples (PSA) or P. digitatum-infected apples (PDA), respectively. Among three Penicillium fungi-infected apples, the selection rates including oviposition and olfactometer behavior of mated YPM females on PDA were both higher than those on PSA and PCA. Further analyses of host plant volatile organic compounds (VOCs) by GC-MS showed that the absolute contents of ethyl hexanoate and (Z, E)-α-farnesene in PCA, PSA, and PDA were all higher than those in NIA, and a total of 16 novel VOCs were detected in fungi-infected apples (PCA, PSA, and PDA), indicating that fungi infection changed the components and proportions of apple VOCs. Taken together, three Penicillium fungi play significant roles in mediating the host selection of YPMs via altering the emissions of VOCs. These findings will be beneficial for developing formulations for field trapping of YPMs in the future.
Collapse
Affiliation(s)
- Hong-Gang Guo
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Chun-Yu Han
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Ai-Huan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Ai-Zhen Yang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Xiao-Chun Qin
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Min-Zhao Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yan-Li Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
13
|
Piesik D, Lemańczyk G, Bocianowski J, Buszewski B, Vidal S, Mayhew CA. Induction of volatile organic compounds in Triticum aestivum (wheat) plants following infection by different Rhizoctonia pathogens is species specific. PHYTOCHEMISTRY 2022; 198:113162. [PMID: 35278419 DOI: 10.1016/j.phytochem.2022.113162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The most popular means of plant protection is the chemical method, but this control is often connected with the need for repeating chemical treatments. Thus, eco-friendly strategies should be developed where, under the European Green Deal, aromatic plants and their repellent properties seem to constitute a good alternative. In earlier studies, we have shown that insect injury, bacteria infestation and pathogen infection induce plant volatile organic compounds (VOCs) emission, which can provide defensive functions to plants. In this study, Triticum aestivum L. (Poaceae) cv. 'Jenga' wheat plants were intentionally infected with one of four Rhizoctonia species (R. cerealis, R. solani, R. zeae, and R. oryzae). The soil was inoculated by the pathogens during sowing, whereas shoots were inoculated at stage BBCH 33. In greenhouse experiments, we measured VOCs from wheat 3, 7 and 11 days following stem infestation, or 42 days following soil inoculation of Rhizoctonia spp. VOC emissions were found to be largest on days 7 or 11 post-stem inoculation (>3 days post-stem inoculation >42 days post-soil inoculation). T. aestivum infected by pathogens induced five common green leaf volatiles (GLVs), namely (Z)-3-hexenal = (Z)-3-HAL, (E)-2-hexenal = (E)-2-HAL, (Z)-3-hexen-1-ol = (Z)-3- HOL, (E)-2-hexenol = (E)-2-HOL, (Z)-3-hexen-1-yl acetate = (Z)-3-HAC], six common terpenes (β-pinene = β-PIN, β-myrcene = β-MYR, Z-ocimene = Z-OCI, linalool = LIN, benzyl acetate = BAC, β-caryophyllene = β-CAR), and indole = IND. We found that R. cerealis infested T. aestivum emitted the largest amounts of (Z)-3-HAL and (Z)-3-HAC, while T. aestivum infested by R. solani released the largest amount of LIN (7 or 11 days following stem infestation). VOCs released by the T. aestivum after R. cerealis (AGD I) and R. solani (AG 5) infestations were significantly larger in comparison to R. zeae (WAG-Z) and R. oryzae (WAG-O) for the volatiles (Z)-3-HAL, (E)-2-HAL, (Z)-3-HOL, (E)-2-HOL, (Z)-3-HAC, β-PIN, β-MYR, and LIN. With the exception of (E)-2-HOL, β-MYR, LIN, BAC, β-CAR, the other VOCs were emitted in similar amounts by infected T. aestivum 3 days following stem and soil inoculation. The quantities of induced VOCs were higher at days 7 and 11 than at 3 days post-infection, and greater when T. aestivum was infected with Rhizoctonia on the stem base than through the soil.
Collapse
Affiliation(s)
- Dariusz Piesik
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland.
| | - Grzegorz Lemańczyk
- Bydgoszcz University of Science and Technology, Department of Biology and Plant Protection, 7 Prof. Kaliskiego Ave., 85-796, Bydgoszcz, Poland
| | - Jan Bocianowski
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, 28 Wojska Polskiego, 60-637, Poznań, Poland
| | - Bogusław Buszewski
- Nicolaus Copernicus University, Faculty of Chemistry, Chair of Environmental Chemistry Bioanalytics, 7 Gagarina, 87-100, Toruń, Poland
| | - Stefan Vidal
- Georg-August-University Goettingen, Department of Crop Sciences, Agricultural, Entomology, 6 Grisebachstrasse, 37077, Goettingen, Germany
| | - Chris A Mayhew
- University of Innsbruck and Tiroler Krebsforschungsinstitut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| |
Collapse
|
14
|
Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. INSECTS 2022; 13:insects13030243. [PMID: 35323541 PMCID: PMC8954841 DOI: 10.3390/insects13030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
Collapse
|
15
|
Bizarria R, Pagnocca FC, Rodrigues A. Yeasts in the attine ant-fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast 2021; 39:25-39. [PMID: 34473375 DOI: 10.1002/yea.3667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
16
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
17
|
Piesik D, Bocianowski J, Sendel S, Krawczyk K, Kotwica K. Beetle Orientation Responses of Gastrophysa viridula and Gastrophysa polygoni (Coleoptera: Chrysomelidae) to a Blend of Synthetic Volatile Organic Compounds. ENVIRONMENTAL ENTOMOLOGY 2020; 49:1071-1076. [PMID: 32737504 DOI: 10.1093/ee/nvaa082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The invasive weed Rumex confertus Willd. (mossy sorrel) is eaten and severely defoliated by oligophagous Gastrophysa viridula Deg. (dock leaf beetle) and Gastrophysa polygoni L. (knotweed leaf beetle). The most popular methods of plant protection involve the application of chemicals, but such methods often require repeated chemical treatments. Aromatic plants may constitute an eco-friendly alternative strategy owing to their repellent properties. To date, single compounds have been tested rather than blends; however, there is a need to investigate mixtures of compounds, because insects are subjected to blends of odors derived from their surrounding environments. The aim of the current study was to investigate behavioral responses of the dock leaf beetle and knotweed leaf beetle to a blend of synthetic plant volatile organic compounds. Plants were treated with standard repellents (a blend of volatile organic compounds) at two different concentrations (10 ng min-1 and 1,000 ng min-1). For further experiments, four rates (1 ng min-1, 10 ng min-1, 100 ng min-1, and 1,000 ng min-1 in 50 µl) were evaluated using a 4-way olfactometer. Leaf beetles of both sexes were repelled by the highest three concentrations tested. Female dock leaf beetles were also repelled by the lowest concentration tested, where individual components could have occasionally attracted insects. These results indicate a difference in responses to individual compounds and mixtures of compounds.
Collapse
Affiliation(s)
- Dariusz Piesik
- UTP University of Science and Technology, Department of Biology and Plant Protection, Laboratory of Entomology, Bydgoszcz, Poland
| | - Jan Bocianowski
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, 28 Wojska Polskiego, Poznań, Poland
| | - Sebastian Sendel
- UTP University of Science and Technology, Department of Biology and Plant Protection, Laboratory of Entomology, Bydgoszcz, Poland
| | - Krzysztof Krawczyk
- Institute of Plant Protection-National Research Institute, Department of Molecular Biology and Biotechnology, 20 Władysława Węgorka, Poznań, Poland
| | - Karol Kotwica
- UTP University of Science and Technology, Department of Agronomy, Bydgoszcz, Poland
| |
Collapse
|
18
|
Abstract
Yeasts are unicellular fungi that harbour a large biodiversity of thousands of species, of which particularly ascomycetous yeasts are instrumental to human food and beverage production. There is already a large body of evidence showing that insects play an important role for yeast ecology, for their dispersal to new habitats and for breeding and overwintering opportunities. Here, we sought to investigate a potential role of the terrestrial snails Cepaea hortensis and C. nemoralis, which in Europe are often found in association with human settlements and gardens, in yeast ecology. Surprisingly, even in a relatively limited culture-dependent sampling size of over 150 isolates, we found a variety of yeast genera, including species frequently isolated from grape must such as Hanseniaspora, Metschnikowia, Meyerozyma and Pichia in snail excrements. We typed the isolates using standard ITS-PCR-sequencing, sequenced the genomes of three non-conventional yeasts H. uvarum, Meyerozyma guilliermondii and P. kudriavzevii and characterized the fermentation performance of these three strains in grape must highlighting their potential to contribute to novel beverage fermentations. Aggravatingly, however, we also retrieved several human fungal pathogen isolates from snail excrements belonging to the Candida clade, namely Ca. glabrata and Ca. lusitaniae. Overall, our results indicate that diverse yeasts can utilise snails as taxis for dispersal. This courier service may be largely non-selective and thus depend on the diet available to the snails.
Collapse
|
19
|
Meriggi N, Di Paola M, Cavalieri D, Stefanini I. Saccharomyces cerevisiae - Insects Association: Impacts, Biogeography, and Extent. Front Microbiol 2020; 11:1629. [PMID: 32760380 PMCID: PMC7372139 DOI: 10.3389/fmicb.2020.01629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Over the last few years, an increasing number of studies have reported the existence of an association between the budding yeast Saccharomyces cerevisiae and insects. The discovery of this relationship has called into question the hypothesis that S. cerevisiae is unable to survive in nature and that the presence of S. cerevisiae strains in natural specimens is the result of contamination from human-related environments. S. cerevisiae cells benefit from this association as they find in the insect intestine a shelter, but also a place where they can reproduce themselves through mating, the latter being an event otherwise rarely observed in natural environments. On the other hand, insects also take advantage in hosting S. cerevisiae as they rely on yeasts as nutriment to properly develop, to localize suitable food, and to enhance their immune system. Despite the relevance of this relationship on both yeast and insect ecology, we are still far from completely appreciating its extent and effects. It has been shown that other yeasts are able to colonize only one or a few insect species. Is it the same for S. cerevisiae cells or is this yeast able to associate with any insect? Similarly, is this association geographically or topographically limited in areas characterized by specific physical features? With this review, we recapitulate the nature of the S. cerevisiae-insect association, disclose its extent in terms of geographical distribution and species involved, and present YeastFinder, a cured online database providing a collection of information on this topic.
Collapse
Affiliation(s)
| | - Monica Di Paola
- Department of Biology, University of Florence, Florence, Italy
| | | | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Siavoshi F, Sahraee M, Heydari S, Sarrafnejad A, Saniee P, Tavakolian A, Heidarian S. Sugar-Rich Foods Carry Osmotolerant Yeasts with Intracellular Helicobacter Pylori and Staphylococcus spp. Middle East J Dig Dis 2020; 12:182-193. [PMID: 33062224 PMCID: PMC7548095 DOI: 10.34172/mejdd.2020.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/06/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sugar-rich foods are of the main components of daily human meals. These foods with high sugar and low water content kill bacteria. However, osmotolerant yeasts survive and multiply. The aim of this study was to examine the occurrence of intracellular Helicobacter pylori (H. pylori) and Staphylococcus spp. in yeast isolates from sugar-rich foods. METHODS Thirty-two yeast isolates from fresh fruits, dried fruits, commercial foods, and miscellaneous foods were identified by the sequencing of amplified products of 26S rDNA. Fluorescence microscopy and LIVE/DEAD bacterial viability kit were used to examine the occurrence of live bacteria inside the yeast's vacuole. Immunofluorescence assay was used to confirm the identity of intracellular bacteria as H. pylori and Staphylococcus . Polymerase chain reaction (PCR) was used for the detection of 16S rDNA of H. pylori and Staphylococcus in the total DNA of yeasts. RESULTS Yeasts were identified as members of seven genera; Candida, Saccharomyces, Zygosaccharomyces, Pichia, Meyerozyma, Metschnikowia, and Wickerhamomyces. Intravacuolar bacteria were stained green with a bacterial viability kit, revealing that they were alive. Immunofluorescence assay confirmed the identity of intracellular H. pylori and Staphylococcus spp. PCR results revealed that among the 32 isolated yeasts, 53% were H. pylori -positive, 6% were Staphylococcus -positive, 18.7% were positive for both, and 21.8% were negative for both. CONCLUSION Detection of H. pylori - and Staphylococcus -16S rDNA in yeast isolates from dried fruits, and commercial foods showed the occurrence of more than one kind of endosymbiotic bacterium in yeasts' vacuoles. While the establishment of H. pylori and Staphylococcus in yeast is a sophisticated survival strategy, yeast serves as a potent bacterial reservoir.
Collapse
Affiliation(s)
- Farideh Siavoshi
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Marzieh Sahraee
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Samira Heydari
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| | - Abdolfattah Sarrafnejad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Saniee
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Atefeh Tavakolian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran
| | - Sheida Heidarian
- Department of Microbiology, School of Biology, University College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
Koerte S, Keesey IW, Easson MLAE, Gershenzon J, Hansson BS, Knaden M. Variable dependency on associated yeast communities influences host range inDrosophilaspecies. OIKOS 2020. [DOI: 10.1111/oik.07180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Koerte
- Max Planck Inst. for Chemical Ecology, Dept of Evolutionary Neuroethology Hans‐Knöll‐Straße 8 DE‐07745 Jena Germany
| | - Ian W. Keesey
- Max Planck Inst. for Chemical Ecology, Dept of Evolutionary Neuroethology Hans‐Knöll‐Straße 8 DE‐07745 Jena Germany
| | | | | | - Bill S. Hansson
- Max Planck Inst. for Chemical Ecology, Dept of Evolutionary Neuroethology Hans‐Knöll‐Straße 8 DE‐07745 Jena Germany
| | - Markus Knaden
- Max Planck Inst. for Chemical Ecology, Dept of Evolutionary Neuroethology Hans‐Knöll‐Straße 8 DE‐07745 Jena Germany
| |
Collapse
|
22
|
Baig F, Farnier K, Piper AM, Speight R, Cunningham JP. Yeasts Influence Host Selection and Larval Fitness in Two Frugivorous Carpophilus Beetle Species. J Chem Ecol 2020; 46:675-687. [DOI: 10.1007/s10886-020-01167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
|
23
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
24
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
25
|
Mozūraitis R, Aleknavičius D, Vepštaitė-Monstavičė I, Stanevičienė R, Emami SN, Apšegaitė V, Radžiutė S, Blažytė-Čereškienė L, Servienė E, Būda V. Hippophae rhamnoides berry related Pichia kudriavzevii yeast volatiles modify behaviour of Rhagoletis batava flies. J Adv Res 2019; 21:71-77. [PMID: 32071775 PMCID: PMC7015468 DOI: 10.1016/j.jare.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Pichia kudriavzevii yeasts were isolated from ripe Hippophae rhamnoides berries. Thirty-five yeast volatiles were identified from the headspace of P. kudriavzevii. Esters and alcohols contributed by 32% and 66% to the total blend amount. Ten of those volatiles elicited antenna responses of Rhagoletis batava flies. Mixture of synthetic olfactory active compounds attracted R. batava males and females.
Olfactory cues have a large impact on insect behaviour and fitness consequently showing potential in pest management. Yeast released volatiles are used by insects as olfactory cues for finding feeding and oviposition sites. The yeast strain SB-16-15 was isolated from spontaneous fermentation of Hippophae rhamnoides berries and identified as Pichia kudriavzevii. Thirty-nine volatiles were sampled from the headspace of P. kudriavzevii yeasts by solid phase micro extraction and identified by gas chromatography and mass spectrometry techniques. Ten of those volatiles elicited antennal responses of Rhagoletis batava flies, one of the most serious pest of H. rhamnoides berries. In the two-choice experiments, R. batava flies preferred the mixture composed of nine synthetic compounds analogous to electroanntenographic active volatiles released by the yeasts compare to the solvent control. Female flies were significantly attracted to the mixture at the concentration 0.1 µL mL−1 and showed no preference to the mixture at the concentration 1 µL mL−1 versus control while males reacted positively to the synthetic blend at the concentration 1 µL mL−1. Herein, for the first time, behaviour modifying effect of H. rhamnoides berry related yeast volatiles was shown suggesting these semiochemicals have potential in use for monitoring R. batava flies.
Collapse
Affiliation(s)
- Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Dominykas Aleknavičius
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Iglė Vepštaitė-Monstavičė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Ramunė Stanevičienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Seyedeh Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE 106 91 Stockholm, Sweden
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Laima Blažytė-Čereškienė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| | - Vincas Būda
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
26
|
Murgier J, Everaerts C, Farine JP, Ferveur JF. Live yeast in juvenile diet induces species-specific effects on Drosophila adult behaviour and fitness. Sci Rep 2019; 9:8873. [PMID: 31222019 PMCID: PMC6586853 DOI: 10.1038/s41598-019-45140-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
The presence and the amount of specific yeasts in the diet of saprophagous insects such as Drosophila can affect their development and fitness. However, the impact of different yeast species in the juvenile diet has rarely been investigated. Here, we measured the behavioural and fitness effects of three live yeasts (Saccharomyces cerevisiae = SC; Hanseniaspora uvarum = HU; Metschnikowia pulcherrima = MP) added to the diet of Drosophila melanogaster larvae. Beside these live yeast species naturally found in natural Drosophila populations or in their food sources, we tested the inactivated "drySC" yeast widely used in Drosophila research laboratories. All flies were transferred to drySC medium immediately after adult emergence, and several life traits and behaviours were measured. These four yeast diets had different effects on pre-imaginal development: HU-rich diet tended to shorten the "egg-to-pupa" period of development while MP-rich diet induced higher larval lethality compared to other diets. Pre- and postzygotic reproduction-related characters (copulatory ability, fecundity, cuticular pheromones) varied according to juvenile diet and sex. Juvenile diet also changed adult food choice preference and longevity. These results indicate that specific yeast species present in natural food sources and ingested by larvae can affect their adult characters crucial for fitness.
Collapse
Affiliation(s)
- Juliette Murgier
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Claude Everaerts
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-Pierre Farine
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Jean-François Ferveur
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup-UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
27
|
Madden AA, Epps MJ, Fukami T, Irwin RE, Sheppard J, Sorger DM, Dunn RR. The ecology of insect-yeast relationships and its relevance to human industry. Proc Biol Sci 2019; 285:rspb.2017.2733. [PMID: 29563264 DOI: 10.1098/rspb.2017.2733] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 01/03/2023] Open
Abstract
Many species of yeast are integral to human society. They produce many of our foods, beverages and industrial chemicals, challenge us as pathogens, and provide models for the study of our own biology. However, few species are regularly studied and much of their ecology remains unclear, hindering the development of knowledge that is needed to improve the relationships between humans and yeasts. There is increasing evidence that insects are an essential component of ascomycetous yeast ecology. We propose a 'dispersal-encounter hypothesis' whereby yeasts are dispersed by insects between ephemeral, spatially disparate sugar resources, and insects, in turn, obtain the benefits of an honest signal from yeasts for the sugar resources. We review the relationship between yeasts and insects through three main examples: social wasps, social bees and beetles, with some additional examples from fruit flies. Ultimately, we suggest that over the next decades, consideration of these ecological and evolutionary relationships between insects and yeasts will allow prediction of where new yeast diversity is most likely to be discovered, particularly yeasts with traits of interest to human industry.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA
| | - Mary Jane Epps
- Department of Biology, Mary Baldwin University, 101 East Frederick Street, Staunton, VA 24401, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA
| | - John Sheppard
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27606, USA
| | - D Magdalena Sorger
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA.,Research & Collections, North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, David Clark Labs, 100 Brooks Avenue, Raleigh, NC 27607, USA.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
28
|
|
29
|
Babcock T, Borden J, Gries R, Carroll C, Moore M, Gries G. Lachancea thermotolerans, a Yeast Symbiont of Yellowjackets, Enhances Attraction of Three Yellowjacket Species (Hymenoptera: Vespidae) to Fruit Powder. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1553-1559. [PMID: 30239659 DOI: 10.1093/ee/nvy139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Previously, we showed that the symbiotic yeast Lachancea thermotolerans (Filippov) (Saccharomycetales: Saccharomycetaceae) is attractive to its Vespula (Hymenoptera: Vespidae) yellowjacket hosts when grown on media supplemented with grape juice. We hypothesized that "Concerto", a commercial strain of this yeast, could be combined with fruit powder to form a shelf-stable bait for trapping yellowjackets. Using molecular techniques, we first confirmed that Concerto yeast is indeed the species L. thermotolerans. We then tested whether: 1) Concerto yeast produces volatiles similar to those produced by L. thermotolerans isolated from yellowjackets, 2) Concerto yeast enhances attraction of yellowjackets to fruit powder, 3) a Concerto yeast/fruit powder bait interacts synergistically with a yellowjacket semiochemical lure, and 4) a synthetic analog blend of Concerto-produced volatiles attracts yellowjackets. Using gas chromatography-mass spectrometry, we demonstrated that the chemical composition of Concerto-produced volatiles closely resembles that produced by a yellowjacket-isolated strain of L. thermotolerans. In field experiments, addition of Concerto to fruit powder doubled its attractiveness to yellowjackets. Addition of the Concerto/fruit powder bait to a heptyl butyrate-based wasp lure revealed a weak additive effect. A three-component synthetic analog blend of volatiles identified from the Concerto/fruit powder bait attracted Vespula pensylvanica (Saussure), but no other yellowjacket species. Our results suggest that commercial L. thermotolerans in combination with fruit powder could be used as a yellowjacket bait, and that addition of yeast-produced volatiles to a commercial wasp lure may improve its attractiveness to V. pensylvanica. Further research should determine why the synthetic volatile blend failed to attract Vespula species other than V. pensylvanica.
Collapse
Affiliation(s)
- Tamara Babcock
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John Borden
- JHB Consulting, 6552 Carnegie Street, Burnaby, BC, Canada
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cassandra Carroll
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Margo Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
30
|
Cattaneo AM. Current Status on the Functional Characterization of Chemosensory Receptors of Cydia pomonella (Lepidoptera: Tortricidae). Front Behav Neurosci 2018; 12:189. [PMID: 30210318 PMCID: PMC6120436 DOI: 10.3389/fnbeh.2018.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Cydia pomonella (Lepidoptera: Tortricidae) is a major pest of apple, pear and walnuts. For its control, alternative strategies targeting the olfactory system, like mating disruption, have been combined with insecticide applications. The efficacy of these strategies headed the direction of efforts for the functional characterization of codling moth chemosensory receptors to implement further control methods based on chemical sensing. With the advent of transcriptomic analysis, partial and full-length coding sequences of chemosensory receptors have been identified in antennal transcriptomes of C. pomonella. Extension of partial coding sequences to full-length by polymerase chain reaction (PCR)-based techniques and heterologous expression in empty neurons of Drosophila melanogaster and in Human Embryonic Kidney cells allowed functional studies to investigate receptor activation and ligand binding modalities (deorphanization). Among different classes of antennal receptors, several odorant receptors of C. pomonella (CpomORs) have been characterized as binding kairomones (CpomOR3), pheromones (CpomOR6a) and compounds emitted by non-host plants (CpomOR19). Physiological and pharmacological studies of these receptors demonstrated their ionotropic properties, by forming functional channels with the co-receptor subunit of CpomOrco. Further investigations reported a novel insect transient receptor potential (TRPA5) expressed in antennae and other body parts of C. pomonella as a complex pattern of ribonucleic acid (RNA) splice-forms, with a possible involvement in sensing chemical stimuli and temperature. Investigation on chemosensory mechanisms in the codling moth has practical outcomes for the development of control strategies and it inspired novel trends to control this pest by integrating alternative methods to interfere with insect chemosensory communication.
Collapse
Affiliation(s)
- Alberto Maria Cattaneo
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
31
|
Sobhy IS, Baets D, Goelen T, Herrera-Malaver B, Bosmans L, Van den Ende W, Verstrepen KJ, Wäckers F, Jacquemyn H, Lievens B. Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. FRONTIERS IN PLANT SCIENCE 2018; 9:1009. [PMID: 30061909 PMCID: PMC6055026 DOI: 10.3389/fpls.2018.01009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 06/21/2018] [Indexed: 05/29/2023]
Abstract
Floral nectar is commonly inhabited by microorganisms, mostly yeasts and bacteria, which can have a strong impact on nectar chemistry and scent. Yet, little is known about the effects of nectar microbes on the behavior and survival of insects belonging to the third trophic level such as parasitoids. Here, we used five nectar-inhabiting yeast species to test the hypothesis that yeast species that almost solely occur in nectar, and therefore substantially rely on floral visitors for dispersal, produce volatile compounds that enhance insect attraction without compromising insect life history parameters, such as survival. Experiments were performed using two nectar specialist yeasts (Metschnikowia gruessii and M. reukaufii) and three generalist species (Aureobasidium pullulans, Hanseniaspora uvarum, and Sporobolomyces roseus). Saccharomyces cerevisiae was included as a reference yeast. We compared olfactory responses of the generalist aphid parasitoid Aphidius ervi (Haliday) (Hymenoptera: Braconidae) when exposed to these microorganisms inoculated in synthetic nectar. Nectar-inhabiting yeasts had a significant impact on nectar chemistry and produced distinct volatile blends, some of which were attractive, while others were neutral or repellent. Among the different yeast species tested, the nectar specialists M. gruessii and M. reukaufii were the only species that produced a highly attractive nectar to parasitoid females, which simultaneously had no adverse effects on longevity and survival of adults. By contrast, parasitoids that fed on nectars fermented with the reference strain, A. pullulans, H. uvarum or S. roseus showed shortest longevity and lowest survival. Additionally, nectars fermented by A. pullulans or S. roseus were consumed significantly less, suggesting a lack of important nutrients or undesirable changes in the nectar chemical profiles. Altogether our results indicate that nectar-inhabiting yeasts play an important, but so far largely overlooked, role in plant-insect interactions by modulating the chemical composition of nectar, and may have important ecological consequences for plant pollination and biological control of herbivorous insects.
Collapse
Affiliation(s)
- Islam S. Sobhy
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Dieter Baets
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Beatriz Herrera-Malaver
- VIB Lab for Systems Biology and Centre of Microbial and Plant Genetics Lab for Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Lien Bosmans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Kevin J. Verstrepen
- VIB Lab for Systems Biology and Centre of Microbial and Plant Genetics Lab for Genetics and Genomics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Felix Wäckers
- Biobest, Westerlo, Belgium
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Hans Jacquemyn
- Laboratory of Plant Conversation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Department of Microbial and Molecular Systems, KU Leuven, Sint-Katelijne Waver, Belgium
| |
Collapse
|
32
|
Jaffe BD, Landolt PJ. Field Experiment of a Three-Chemical Controlled-Release Dispensers to Attract Codling Moth (Cydia pomonella) (Lepidoptera: Tortricidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1268-1274. [PMID: 29546408 DOI: 10.1093/jee/toy045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 06/08/2023]
Abstract
Male and female codling moths, Cydia pomonella (Lepidoptera: Tortricidae), were shown to be attracted to a three-chemical kairomonal lure consisting of pear ester, acetic acid, and n-butyl sulfide. A controlled-release device based on sachets was developed in the laboratory and field tested to optimize the attractiveness of C. pomonella to this combination of attractants, and to decrease material costs associated with the controlled-release of these chemicals. The lure was most effective when pear ester was released from a separate dispenser than when combined acetic acid and n-butyl sulfide. We found that acetic acid and n-butyl sulfide can be combined into one device without decreasing C. pomonella trap catches and that there is minimal pear release rate before trap catch is negatively affected. A sachet-based controlled-release system of pear ester, acetic acid, n-butyl sulfide is a cost-effective alternative to a vial and septa controlled-release system and allows for easier quantification of ideal release rates. A reduction in material costs associated with management are important in promoting the adoption of attract-and-kill and mass-trapping paradigms for C. pomonella management. These findings also have important consequences in interpreting studies that use different loads of pear ester, and emphasize the need to better understand the release rates of attractants.
Collapse
Affiliation(s)
- Benjamin D Jaffe
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, WA
- Department of Entomology, University of Wisconsin, Madison, WI
| | - Peter J Landolt
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, WA
| |
Collapse
|
33
|
Becher PG, Hagman A, Verschut V, Chakraborty A, Rozpędowska E, Lebreton S, Bengtsson M, Flick G, Witzgall P, Piškur J. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 2018; 8:2962-2974. [PMID: 29531709 PMCID: PMC5838033 DOI: 10.1002/ece3.3905] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 01/24/2023] Open
Abstract
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect-associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
Collapse
Affiliation(s)
- Paul G. Becher
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Arne Hagman
- Department of BiologyLund UniversityLundSweden
| | - Vasiliki Verschut
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Amrita Chakraborty
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elżbieta Rozpędowska
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Sébastien Lebreton
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Gerhard Flick
- Department of Agriculture and Food ScienceUniversity of Applied SciencesNeubrandenburgGermany
| | - Peter Witzgall
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Jure Piškur
- Department of BiologyLund UniversityLundSweden
| |
Collapse
|
34
|
Bellutti N, Gallmetzer A, Innerebner G, Schmidt S, Zelger R, Koschier EH. Dietary yeast affects preference and performance in Drosophila suzukii. JOURNAL OF PEST SCIENCE 2018; 91:651-660. [PMID: 29568250 PMCID: PMC5847167 DOI: 10.1007/s10340-017-0932-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/10/2023]
Abstract
Yeasts play an important role in nutrition physiology and host attraction of many Drosophila species, and associations with various yeast species are documented for several drosophilid flies. The pest Drosophila suzukii (Matsumura) has a predominant association with the yeast Hanseniaspora uvarum. However, research has not been conducted on the nutritional physiology of the yeasts associated with D. suzukii (spotted wing drosophila). Therefore, in this study, we determined whether dietary yeast was nutritionally relevant and whether yeast species closely associated with D. suzukii positively affected life-history traits. Our results confirm a crucial role of dietary yeast in the larval development and survival of D. suzukii. Furthermore, we found specific effects of the closely associated yeast species H. uvarum and Candida sp. on larval survival. Observations of the egg-laying behaviour of D. suzukii on cherry fruits artificially colonised with different yeast species revealed that the number of eggs laid increased on fruits colonised with Candida sp. and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Nathalie Bellutti
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Gallmetzer
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Gerd Innerebner
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Silvia Schmidt
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Roland Zelger
- Research Centre for Agriculture and Forestry Laimburg, Pfatten, South Tyrol Italy
| | - Elisabeth Helene Koschier
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
35
|
|
36
|
Giacomuzzi V, Mattheis JP, Basoalto E, Angeli S, Knight AL. Survey of conspecific herbivore-induced volatiles from apple as possible attractants for Pandemis pyrusana (Lepidoptera: Tortricidae). PEST MANAGEMENT SCIENCE 2017; 73:1837-1845. [PMID: 28195388 DOI: 10.1002/ps.4548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies were conducted to identify volatiles released by apple foliage untreated or sprayed with a yeast and from untreated and sprayed foliage with actively feeding larvae of Pandemis pyrusana Kearfott. Field studies then evaluated various combinations of these volatiles when paired with acetic acid as possible adult attractants. RESULTS The most abundant volatiles released following herbivore feeding were four green leaf volatiles (GLVs) and acetic acid. Nineteen volatiles were found to be released in significantly higher amounts from foliage with herbivore damage than from intact leaves. The combination of yeast followed by herbivore injury increased the levels of methyl salicylate and phenylacetonitrile compared with herbivory alone. Levels of acetic acid released were not significantly different among the four treatments. Only phenylacetonitrile and 2-phenylethanol with acetic acid caught similar and significantly more total and female moths than acetic acid alone. Moth catches with 12 other volatiles plus acetic acid were not significantly higher than with acetic acid alone, and were lower than with acetic acid and 2-phenylethanol. CONCLUSION These data show that herbivore injury does not create a unique chemical signal for adults to locate oviposition or rendezvous sites. Instead, moths may cue to the aromatic-acetic acid combination as a nutritional cue to locate sugary resources. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentino Giacomuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - James P Mattheis
- Tree Fruit Research Laboratory, Agricultural Research Service, USDA, Wenatchee, WA, USA
| | - Esteban Basoalto
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio Angeli
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alan L Knight
- Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA
| |
Collapse
|
37
|
Piper AM, Farnier K, Linder T, Speight R, Cunningham JP. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. J Chem Ecol 2017; 43:891-901. [PMID: 28836040 DOI: 10.1007/s10886-017-0877-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Yeast-insect interactions have been well characterized in drosophilid flies, but not in tephritid fruit flies, which include many highly polyphagous pest species that attack ripening fruits. Using the Queensland fruit fly (Bactrocera tryoni) as our model tephritid species, we identified yeast species present in the gut of wild-collected larvae and found two genera, Hanseniaspora and Pichia, were the dominant isolates. In behavioural trials using adult female B. tryoni, a fruit-agar substrate inoculated with Pichia kluyveri resulted in odour emissions that increased the attraction of flies, whereas inoculation with Hanseniaspora uvarum, produced odours that strongly deterred flies, and both yeasts led to decreased oviposition. Larval development trials showed that the fruit-agar substrate inoculated with the 'deterrent odour' yeast species, H. uvarum, resulted in significantly faster larval development and a greater number of adult flies, compared to a substrate inoculated with the 'attractive odour' yeast species, P. kluyveri, and a yeast free control substrate. GC-MS analysis of volatiles emitted by H. uvarum and P. kluyveri inoculated substrates revealed significant quantitative differences in ethyl-, isoamyl-, isobutyl-, and phenethyl- acetates, which may be responsible for the yeast-specific olfactory responses of adult flies. We discuss how our seemingly counterintuitive finding that female B. tryoni flies avoid a beneficial yeast fits well with our understanding of female choice of oviposition sites, and how the contrasting behavioural effects of H. uvarum and P. kluyveri raises interesting questions regarding the role of yeast-specific volatiles as cues to insect vectors. A better understanding of yeast-tephritid interactions could assist in the future management of tephritid fruit fly pests through the formulation of new "attract and kill" lures, and the development of probiotics for mass rearing of insects in sterile insect control programs.
Collapse
Affiliation(s)
- Alexander M Piper
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Kevin Farnier
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Speight
- Queensland University of Technology, Gardens Point, Brisbane, QLD, 4001, Australia
| | - John Paul Cunningham
- Agriculture Victoria Research, AgriBio Centre, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
38
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
39
|
Lenaerts M, Goelen T, Paulussen C, Herrera‐Malaver B, Steensels J, Van den Ende W, Verstrepen KJ, Wäckers F, Jacquemyn H, Lievens B. Nectar bacteria affect life history of a generalist aphid parasitoid by altering nectar chemistry. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12933] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marijke Lenaerts
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Tim Goelen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| | - Beatriz Herrera‐Malaver
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Jan Steensels
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant BiologyBiology DepartmentKU Leuven Leuven Belgium
| | - Kevin J. Verstrepen
- Lab for Systems BiologyVIB Center for Microbiology & Centre of Microbial and Plant Genetics (CMPG) Lab for Genetics and GenomicsDepartment of Microbial and Molecular SystemsKU Leuven Leuven Belgium
| | - Felix Wäckers
- Biobest Westerlo Belgium
- Lancaster Environment CentreLancaster University Lancaster UK
| | - Hans Jacquemyn
- Plant Conservation and Population BiologyBiology DepartmentKU Leuven Leuven Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular SystemsKU Leuven Sint‐Katelijne Waver Belgium
| |
Collapse
|
40
|
Beck JJ, Vannette RL. Harnessing Insect-Microbe Chemical Communications To Control Insect Pests of Agricultural Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:23-28. [PMID: 28073253 DOI: 10.1021/acs.jafc.6b04298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.
Collapse
Affiliation(s)
- John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture , 1700 S.W. 23rd Drive, Gainesville, Florida 32608, United States
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
41
|
Cloonan KR, Andreadis SS, Chen H, Jenkins NE, Baker TC. Attraction, Oviposition and Larval Survival of the Fungus Gnat, Lycoriella ingenua, on Fungal Species Isolated from Adults, Larvae, and Mushroom Compost. PLoS One 2016; 11:e0167074. [PMID: 27936070 PMCID: PMC5147838 DOI: 10.1371/journal.pone.0167074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
We previously showed that the females of the mushroom sciarid, Lycoriella ingenua (Dufour, 1839) (Diptera: Sciaridae), one of the most severe pests of the cultivated white button mushroom, Agaricus bisporus (J.E. Lange) Emil J. Imbach (Agaricales: Agaricaceae), are attracted to the mushroom compost that mushrooms are grown on and not to the mushrooms themselves. We also showed that females are attracted to the parasitic green mold, Trichoderma aggressivum. In an attempt to identify what is in the mushroom compost that attracts female L. ingenua, we isolated several species of fungi from adult males and females, third instar larvae, and mushroom compost itself. We then analyzed the attraction of females to these substrates using a static-flow two choice olfactometer, as well as their oviposition tendencies in another type of assay under choice and no-choice conditions. We also assessed the survival of larvae to adulthood when first instar larvae were placed on each of the isolated fungal species. We found that female flies were attracted most to the mycoparasitic green mold, T. aggressivum, to Penicilium citrinum isolated from adult female bodies, and to Scatylidium thermophilium isolated from the mushroom compost. Gravid female flies laid the most eggs on T. aggressivum, Aspergillus flavus isolated from third instar larval frass, Aspergillus fumigatus isolated from adult male bodies, and on P. citrinum. This egg-laying trend remained consistent under no-choice conditions as females aged. First instar larvae developed to adulthood only on S. thermophilium and Chaetomium sp. isolated from mushroom compost, and on P. citrinum. Our results indicate that the volatiles from a suite of different fungal species act in tandem in the natural setting of mushroom compost, with some first attracting gravid female flies and then others causing them to oviposit. The ecological context of these findings is important for creating an optimal strategy for using possible semiochemicals isolated from these fungal species to better monitor and control this pestiferous mushroom fly species.
Collapse
Affiliation(s)
- Kevin R. Cloonan
- Department of Entomology, Penn State University, University Park, PA, United States of America
| | - Stefanos S. Andreadis
- Department of Entomology, Penn State University, University Park, PA, United States of America
| | - Haibin Chen
- Institute of Health and Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang Province, P. R. China
| | - Nina E. Jenkins
- Department of Entomology, Penn State University, University Park, PA, United States of America
| | - Thomas C. Baker
- Department of Entomology, Penn State University, University Park, PA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Cha DH, Mieles AE, Lahuatte PF, Cahuana A, Lincango MP, Causton CE, Tebbich S, Cimadom A, Teale SA. Identification and Optimization of Microbial Attractants for Philornis downsi, an Invasive Fly Parasitic on Galapagos Birds. J Chem Ecol 2016; 42:1101-1111. [PMID: 27744622 DOI: 10.1007/s10886-016-0780-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/07/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
We investigated the role of olfactory cues from actively fermenting yeast (Saccharomyces cerevisiae) in attraction of adult Philornis downsi and identified two synergistically attractive yeast volatiles. Larvae of this invasive fly parasitize the hatchlings of passerines and threaten the Galapagos avifauna. Gas chromatography coupled with electroantennographic detection (GC-EAD), coupled gas chromatography-mass spectrometry (GC-MS), and field trapping experiments were used to identify volatile compounds from a yeast-sugar solution. EAD responses were consistently elicited by 14 yeast volatiles. In a series of field trapping experiments, a mixture of the 14 EAD-active compounds was similarly attractive to P. downsi when compared to the yeast-sugar solution, and we found that acetic acid and ethanol were essential for attraction. A mixture of 0.03 % acetic acid and 3 % ethanol was as attractive as the 14-component blend, but was not as attractive as the yeast-sugar solution. Philornis downsi showed positive and negative dose-responses to acetic acid in the ranges of 0.01 ~ 0.3 % and 0.3 ~ 9 %, respectively. Further optimization showed that the mixture of 1 % acetic acid and 3 % ethanol was as attractive as the yeast-sugar solution. Both mixtures of acetic acid and ethanol were more selective than the yeast-sugar solution in terms of non-target moths and Polistes versicolor wasps captured. These results indicate that acetic acid and ethanol produced by yeasts are crucial for P. downsi attraction to fermented materials on which they feed as adults and can be used to manage this invasive fly in Galapagos.
Collapse
Affiliation(s)
- Dong H Cha
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA.,USDA-ARS, US Pacific Basin Agricultural Research Laboratory, 64 Nowelo St., Hilo, HI, USA
| | - Alejandro E Mieles
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Paola F Lahuatte
- Charles Darwin Foundation for the Galapagos Islands, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Andrea Cahuana
- Charles Darwin Foundation for the Galapagos Islands, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Marie Piedad Lincango
- Charles Darwin Foundation for the Galapagos Islands, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador.,Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador
| | - Charlotte E Causton
- Charles Darwin Foundation for the Galapagos Islands, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Sabine Tebbich
- Department of Behavioural Biology, University of Vienna, 1090, Vienna, Austria
| | - Arno Cimadom
- Department of Behavioural Biology, University of Vienna, 1090, Vienna, Austria
| | - Stephen A Teale
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
43
|
Schaeffer RN, Mei YZ, Andicoechea J, Manson JS, Irwin RE. Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12762] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Robert N. Schaeffer
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755 USA
| | - Yu Zhu Mei
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755 USA
| | - Jonathan Andicoechea
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755 USA
| | - Jessamyn S. Manson
- Department of Biology University of Virginia Charlottesville Virginia22904 USA
| | - Rebecca E. Irwin
- Department of Biological Sciences Dartmouth College Hanover New Hampshire03755 USA
| |
Collapse
|
44
|
Knight AL, Basoalto E, Yee W, Hilton R, Kurtzman CP. Adding yeasts with sugar to increase the number of effective insecticide classes to manage Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in cherry. PEST MANAGEMENT SCIENCE 2016; 72:1482-90. [PMID: 26454150 DOI: 10.1002/ps.4171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Drosophila suzukii is a major pest of cherry in the western United States. We evaluated whether the addition of sugary baits could improve the efficacy of two classes of insecticides not considered to be sufficiently effective for this pest, diamides and spinosyns, in laboratory and field trials in cherry. RESULTS Adding cane sugar alone or in combination with the yeasts Saccharomyces cerevisiae or Aureobasidium pullulans significantly improved insecticide efficacy. However, the significance of adding yeasts to the sugar plus insecticide on fly mortality varied with respect to both the insecticide and yeast species. The addition of S. cerevisiae to sugar also did not significantly reduce egg densities in fruit compared with sugar alone. The addition of a yeast plus sugar significantly reduced egg densities in three field trials with cyantraniliprole and in two out of three trials with spinosad. CONCLUSION The addition of cane sugar with or without yeast can improve the effectiveness of diamide and spinosyn insecticides for D. suzukii in cherry. Inclusion of these two insecticides in D. suzukii management programs may alleviate the strong selection pressure currently being imposed on a few mode-of-action insecticide classes used by growers to maintain fly suppression over long continuous harvest periods of mixed cultivars. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Alan L Knight
- Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA
| | - Esteban Basoalto
- Instituto de Producción y Sanidad Vegetal, Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Wee Yee
- Yakima Agricultural Research Laboratory, Agricultural Research Service, USDA, Wapato, WA, USA
| | - Rick Hilton
- Southern Oregon Research and Extension Center, Oregon State University, Medford, OR, USA
| | - Cletus P Kurtzman
- Bacterial Foodborne Pathogens and Mycology Research Unit, Agricultural Research Service, USDA, Peoria, IL, USA
| |
Collapse
|
45
|
Saunders ME, Luck GW. Combining Costs and Benefits of Animal Activities to Assess Net Yield Outcomes in Apple Orchards. PLoS One 2016; 11:e0158618. [PMID: 27391022 PMCID: PMC4938594 DOI: 10.1371/journal.pone.0158618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/13/2016] [Indexed: 11/24/2022] Open
Abstract
Diverse animal communities influence ecosystem function in agroecosystems through positive and negative plant-animal interactions. Yet, past research has largely failed to examine multiple interactions that can have opposing impacts on agricultural production in a given context. We collected data on arthropod communities and yield quality and quantity parameters (fruit set, yield loss and net outcomes) in three major apple-growing regions in south-eastern Australia. We quantified the net yield outcome (accounting for positive and negative interactions) of multiple animal activities (pollination, fruit damage, biological control) across the entire growing season on netted branches, which excluded vertebrate predators of arthropods, and open branches. Net outcome was calculated as the number of undamaged fruit at harvest as a proportion of the number of blossoms (i.e., potential fruit yield). Vertebrate exclusion resulted in lower levels of fruit set and higher levels of arthropod damage to apples, but did not affect net outcomes. Yield quality and quantity parameters (fruit set, yield loss, net outcomes) were not directly associated with arthropod functional groups. Model variance and significant differences between the ratio of pest to beneficial arthropods between regions indicated that complex relationships between environmental factors and multiple animal interactions have a combined effect on yield. Our results show that focusing on a single crop stage, species group or ecosystem function/service can overlook important complexity in ecological processes within the system. Accounting for this complexity and quantifying the net outcome of ecological interactions within the system, is more informative for research and management of biodiversity and ecosystem services in agricultural landscapes.
Collapse
Affiliation(s)
- Manu E. Saunders
- Institute for Land Water and Society, Charles Sturt University, PO Box 789, Albury, NSW, 2640, Australia
- * E-mail:
| | - Gary W. Luck
- Institute for Land Water and Society, Charles Sturt University, PO Box 789, Albury, NSW, 2640, Australia
| |
Collapse
|
46
|
Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P, Becher PG. Enhanced yeast feeding following mating facilitates control of the invasive fruit pestDrosophila suzukii. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12688] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Boyd A. Mori
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Alix B. Whitener
- Department of Entomology; WSU Tree Fruit Research and Extension Center; 1100 N. Western Avenue Wenatchee WA 98801 USA
| | - Yannick Leinweber
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Santosh Revadi
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Elizabeth H. Beers
- Department of Entomology; WSU Tree Fruit Research and Extension Center; 1100 N. Western Avenue Wenatchee WA 98801 USA
| | - Peter Witzgall
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| | - Paul G. Becher
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Box 102 23053 Alnarp Sweden
| |
Collapse
|
47
|
Drosophila Food-Associated Pheromones: Effect of Experience, Genotype and Antibiotics on Larval Behavior. PLoS One 2016; 11:e0151451. [PMID: 26987117 PMCID: PMC4795598 DOI: 10.1371/journal.pone.0151451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Animals ubiquitously use chemical signals to communicate many aspects of their social life. These chemical signals often consist of environmental cues mixed with species-specific signals-pheromones-emitted by conspecifics. During their life, insects can use pheromones to aggregate, disperse, choose a mate, or find the most suitable food source on which to lay eggs. Before pupariation, larvae of several Drosophila species migrate to food sources depending on their composition and the presence of pheromones. Some pheromones derive from microbiota gut activity and these food-associated cues can enhance larval attraction or repulsion. To explore the mechanisms underlying the preference (attraction/repulsion) to these cues and clarify their effect, we manipulated factors potentially involved in larval response. In particular, we found that the (i) early exposure to conspecifics, (ii) genotype, and (iii) antibiotic treatment changed D. melanogaster larval behavior. Generally, larvae-tested either individually or in groups-strongly avoided food processed by other larvae. Compared to previous reports on larval attractive pheromones, our data suggest that such attractive effects are largely masked by food-associated compounds eliciting larval aversion. The antagonistic effect of attractive vs. aversive compounds could modulate larval choice of a pupariation site and impact the dispersion of individuals in nature.
Collapse
|
48
|
Groba HF, Castelo MK. Host gut microorganisms' cues mediate orientation behaviour in the larva of the parasitoid Mallophora ruficauda. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:81-90. [PMID: 26521818 DOI: 10.1017/s0007485315000838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The robber fly Mallophora ruficauda is one of the most important apicultural pests in the Pampas region of Argentina. This species is a parasitoid of scarab beetle larvae. Females lay eggs away from the host, and the larvae perform active search behaviour toward Cyclocephala signaticollis third instar larvae, parasitoid's preferred host. This behaviour is mediated by host-related chemical cues produced in hosts' fermentation chamber. Also, C. signaticollis larvae are attracted to fermentation chamber extracts. As scarab larvae have microbe-rich fermentation chamber, it has been suggested that microorganisms could be involved in the production of these semiochemicals. The aims of this work were first to ascertain the presence of microorganisms in the fermentation chamber of C. signaticollis larvae and second to determine the role of microorganisms in the orientation response of parasitoid and host larvae. We found that microorganisms-free C. signaticollis larvae showed deterioration in their development and did not produce the attractive semiochemicals. Therefore, we isolated fermentation chamber microorganisms of host larvae by means of different cultures media, and then, assayed different microorganisms' stimuli by binary choice tests. We were able to isolate microorganisms and determine that M. ruficauda larvae are attracted to semiochemicals from protein degradation in the fermentation chamber. However, C. signaticollis larvae were not attracted to any semiochemicals associated with microorganisms' activity in the fermentation chamber. Although we were unable to elucidate the exact role of gut microorganisms in host behaviour, we discuss their relevance in parasitoid host-seeking behaviour and host conspecific interaction in M. ruficauda-C. signaticollis system.
Collapse
Affiliation(s)
- H F Groba
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP),Departamento de Ecología,Genética y Evolución- Instituto IEGEBA (CONICET - UBA),Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires,Intendente Güiraldes 2160,Ciudad Universitaria,Pabellón II,(C1428EHA) Ciudad de Buenos Aires,Argentina
| | - M K Castelo
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP),Departamento de Ecología,Genética y Evolución- Instituto IEGEBA (CONICET - UBA),Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires,Intendente Güiraldes 2160,Ciudad Universitaria,Pabellón II,(C1428EHA) Ciudad de Buenos Aires,Argentina
| |
Collapse
|
49
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Andreadis SS, Witzgall P, Becher PG. Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|