1
|
Jaradat SK, Ayoub NM, Al Sharie AH, Aldaod JM. Targeting Receptor Tyrosine Kinases as a Novel Strategy for the Treatment of Triple-Negative Breast Cancer. Technol Cancer Res Treat 2024; 23:15330338241234780. [PMID: 38389413 PMCID: PMC10894558 DOI: 10.1177/15330338241234780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) comprises a group of aggressive and heterogeneous breast carcinoma. Chemotherapy is the mainstay for the treatment of triple-negative tumors. Nevertheless, the success of chemotherapeutic treatments is limited by their toxicity and development of acquired resistance leading to therapeutic failure and tumor relapse. Hence, there is an urgent need to explore novel targeted therapies for TNBC. Receptor tyrosine kinases (RTKs) are a family of transmembrane receptors that are key regulators of intracellular signaling pathways controlling cell proliferation, differentiation, survival, and motility. Aberrant activity and/or expression of several types of RTKs have been strongly connected to tumorigenesis. RTKs are frequently overexpressed and/or deregulated in triple-negative breast tumors and are further associated with tumor progression and reduced survival in patients. Therefore, targeting RTKs could be an appealing therapeutic strategy for the treatment of TNBC. This review summarizes the current evidence regarding the antitumor activity of RTK inhibitors in preclinical models of TNBC. The review also provides insights into the clinical trials evaluating the use of RTK inhibitors for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Sara K. Jaradat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Ahmed H. Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| | - Julia M. Aldaod
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
2
|
Dash A, Vaddamanu G, Karreddula R, Manubolu SSB, Kumari GP, Mulakayala N. Novel N-(3-ethynyl Phenyl)-6,7-bis(2-methoxyethoxy)Quinazoline-4-amine Derivatives: Synthesis, Characterization, Anti-cancer Activity, In-silico and DFT Studies. Anticancer Agents Med Chem 2024; 24:514-532. [PMID: 38288814 DOI: 10.2174/0118715206276286231220055233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND Cancer is one of the most common reasons for mortality in the world. A continuous effort to develop effective anti-cancer drugs with minimum side effects has become necessary. The use of small-molecule drugs has revolutionized cancer research by inhibiting cancer cell survival and proliferation. Quinazolines are a class of bioactive heterocyclic compounds with active pharmacophores in several anti-cancer drugs. Such small molecule inhibitors obstruct the significant signals responsible for cancer cell development, thus blocking these cell signals to prevent cancer development and spread. OBJECTIVE In the current study, novel quinazoline derivatives structurally similar to erlotinib were synthesized and explored as novel anti-cancer agents. METHODS All the synthesized molecules were confirmed by spectroscopic techniques like 1H NMR, 13C NMR, and ESI-MS. Various techniques were applied to study the protein-drug interaction, DFT analysis, Hirshfeld surface, and target prediction. The molecules were screened in vitro for their anti-cancer properties against 60 human tumor cell lines. The growth inhibitory properties of a few compounds were studied against the MCF7 breast cancer cell line. RESULTS The activity of compounds 9f, 9o, and 9s were found to be active. However, compound 9f is more active when compared with other compounds. CONCLUSION Some synthesized compounds were active against different cancer cell lines. The in-vitro study results were found to be in agreement with the predictions from in-silico data. The selected molecules were further subjected to get the possible mechanism of action against different cancer cells.
Collapse
Affiliation(s)
- Amitananda Dash
- Sri Sathya Sai Institute of Higher Learning, Anantapur, 500 001, Andhra Pradesh, India
| | | | - Raja Karreddula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Andhra Pradesh State, Kurnool Dist, Nandyal, 518501, India
| | | | - G Pavana Kumari
- Sri Sathya Sai Institute of Higher Learning, Anantapur, 500 001, Andhra Pradesh, India
| | | |
Collapse
|
3
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
5
|
Budi HS, Ahmad FN, Achmad H, Ansari MJ, Mikhailova MV, Suksatan W, Chupradit S, Shomali N, Marofi F. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res Ther 2022; 13:40. [PMID: 35093187 PMCID: PMC8800342 DOI: 10.1186/s13287-022-02719-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Due to the overexpression or amplification of human epidermal growth factor receptor 2 (HER2) with poor prognosis in a myriad of human tumors, recent studies have focused on HER2-targeted therapies. Deregulation in HER2 signaling pathways is accompanied by sustained tumor cells growth concomitant with their migration and also tumor angiogenesis and metastasis by stimulation of proliferation of a network of blood vessels. A large number of studies have provided clear evidence that the emerging HER2-directed treatments could be the outcome of patients suffering from HER2 positive breast and also gastric/gastroesophageal cancers. Thanks to its great anti-tumor competence, immunotherapy using HER2-specific chimeric antigen receptor (CAR) expressing immune cell has recently attracted increasing attention. Human T cells and also natural killer (NK) cells can largely be found in the tumor microenvironment, mainly contributing to the tumor immune surveillance. Such properties make them perfect candidate for genetically modification to express constructed CARs. Herein, we will describe the potential targets of the HER2 signaling in tumor cells to clarify HER2-mediated tumorigenesis and also discuss recent findings respecting the HER2-specific CAR-expressing immune cells (CAR T and CAR NK cell) for the treatment of HER2-expressing tumors.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132 Indonesia
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Chen D, Ye Y, Guo S, Yao K. Progress in the Research and Targeted Therapy of ErbB/HER Receptors in Urothelial Bladder Cancer. Front Mol Biosci 2022; 8:800945. [PMID: 35004854 PMCID: PMC8735837 DOI: 10.3389/fmolb.2021.800945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Bladder cancer is a lethal malignancy and a majority of bladder cancer arise from urothelial cells. Infiltration and metastasis are barriers for the radical cystectomy to achieve favored outcome and are the main cause of death. Systemic therapy, including chemotherapy, targeted therapy, and immunotherapy, is fundamental for these patients. erbB/HER receptors are found to be overexpressed in a subgroup of urothelial carcinoma, targeting erbB/HER receptors in these patients was found to be an efficient way in the era of genetic testing. To evaluate the role of erbB/HER receptors in bladder cancer, we reviewed the literature and ongoing clinical trials as regards to this topic to unveil the context of erbB/HER receptors in bladder cancer, which probably help to solidate the theoretical basis and might instruct further research.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunlin Ye
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shengjie Guo
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kao Yao
- Department of Urology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
8
|
Hung CC, Huang HI, Hung CM, Moi SH. Identification of Candidate Genes in Early-Stage Invasive Ductal Carcinoma Patients with High-Risk Mortality Using Genes Commonly Involved in Breast Cancer: A Retrospective Study. Public Health Genomics 2021; 25:1-10. [PMID: 34634790 DOI: 10.1159/000519140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Invasive ductal carcinoma (IDC) of the breast is a heterogeneous disease characterized by multiple subtypes. IDC survival is highly impacted by tumor burden, molecular subtypes, and gene profiles. Gene mutation is a type of genomic instability regarded as having a considerable effect on IDC prognosis. Using integrated survival analysis, this study identified candidate genes and a high-risk group of patients with early-stage IDC to provide further understanding of the genetic characteristics associated with poor survival. METHODS The gene mutation profiles, baseline demographics, clinicopathologic variables, and treatment characteristics of the early-stage IDC subpopulation were downloaded from an open access data platform. These data were analyzed for a total of 444 patients. In total, 40 genes commonly involved in IDC were listed, and the genes exhibiting significant differences (as estimated using the log-rank test) were selected as the candidate genes. RESULTS The patients were divided into control, low-risk, and high-risk groups according to their gene mutation profiles. The 5-year overall survival rates of low-risk, control, and high-risk patients were 97.4%, 96.1%, and 73.0%, respectively. The high-risk group had a significantly higher risk of poor overall -survival (adjusted hazard ratio = 6.57, 95% confidence interval = 1.51-28.7, p = 0.012) than that of the control group, and the low-risk group did not have a significant survival difference compared with control group. CONCLUSIONS This study proposed an integrative approach for the identification of candidate genes for risk assessment of overall survival in these patients through typical survival analysis methods. The 14 candidate genes selected are particularly involved in cell-cycle processes, deoxyribonucleic acid repair, and drug resistance; their mutations were found to be generally associated with disease progression or therapeutic resistance, which is commonly associated with poor overall survival outcomes in IDC.
Collapse
Affiliation(s)
- Chih-Chiang Hung
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Cosmetology, College of Human Science and Social Innovation, Hungkuang University, Taichung, Taiwan
| | - Hsin-I Huang
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Zhu L, Fang Z, Jin Y, Chang W, Huang M, Chen Y, Yao Y. Circulating ERBB3 levels are inversely associated with the risk of overweight-related hypertension: a cross-sectional study. BMC Endocr Disord 2021; 21:130. [PMID: 34176482 PMCID: PMC8237455 DOI: 10.1186/s12902-021-00793-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hypertension and overweight are independent risk factors for cardiovascular disease, and overweight increase the risk of developing high blood pressure. ERBB3( also known as HER3) plays a considerable role in the development of cardiovascular diseases. However, the effect of ERBB3 levels in hypertensive overweight patients is unknown. The aim of this study was to assess the association between ERBB3 levels and hypertension in overweight Chinese patients. METHODS We evaluated the height,weight, blood pressure, biochemical indicators, and ERBB3 levels in 128 Chinese adults aged 33-79 years. Plasma ERBB3 levels were assessed by the enzyme-linked immunosorbent assay, and body mass index(BMI) was calculated as body weight divided by height squared. Participants were allocated into three groups according to blood pressure and BMI: healthy control (CNT, n = 31; normotensive and non-overweight), hypertension (HT, n = 33; hypertension and non-overweight), and hypertension with overweight (HTO, n = 64; hypertension and overweight). Statistical significance was defined as a two-tailed P < 0.05. RESULTS There was no significant difference in mean ERBB3 levels among the three groups, although a linear decrease from CNT (1.13 ± 0.36), HT (1.03 ± 0.36), to HTO (0.84 ± 0.26 ng/mL) was observed in men (P = 0.007). Among the drinking population, the ERBB3 level was significantly reduced in the HTO group as compared with those of the CNT and HT groups (0.76 ± 0.23 versus 1.18 ± 0.37 and 1.20 ± 0.30, respectively). ERBB3 levels were negatively correlated with diastolic blood pressure in men (r= - 0.293, P = 0.012), smoking (r= - 0.47, P = 0.004), and drinking (r = - 0.387, P = 0.008). BMI in men and among drinkers, and uric acid among drinkers were negatively correlated with ERBB3 levels. Multivariate conditional logistic regression showed that plasma ERBB3 levels were associated with a reduced risk of HTO in men [odds ratio (OR) 0.054; 95 % confidence interval (CI): 0.007-0.412) and drinkers (OR 0.002; 95 % CI: 0.000-0.101). CONCLUSIONS ERBB3 may contribute to the pathogenesis of hypertension in overweight patients, with BMI, gender, and drinking all potentially modulating the process.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
| | - Zhengmei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
| | - Yuelong Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
| | - Weiwei Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
| | - Mengyun Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China.
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China.
| | - Yingshui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China.
- Institute of Chronic Disease Prevention and Control,Wannan Medical College, No. 22, Wenchang Road, Anhui, 241002, Wuhu, China.
- Department of Medicine, Anhui College of Traditional Chinese Medicine, No.18, Wuxia Shanxi Road, Anhui, 241003, Wuhu, China.
| |
Collapse
|
10
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
11
|
Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci 2020; 264:118699. [PMID: 33137368 DOI: 10.1016/j.lfs.2020.118699] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Despite the conventional reputation of neutrophils to have antibacterial properties, recent studies have put emphasis and are interested in the role of neutrophils in the spread and treatment of cancer. It has been shown that the infiltration of neutrophils, either by exerting pro- or anti-tumoral effects, probably affects tumor prognosis. Tumor-associated neutrophils (TANs) probably participate in tumor promotion and development in different ways, such as increasing genomic instability, induction of immunosuppression, and increasing angiogenesis. Despite major advances in breast cancer treatment, it is the second leading cause of death in American women. It has been revealed that inflammation is a fundamental issue in the treatment of this cancer because tumor growth, invasion, metastasis, and vascularization can be affected by inflammatory factors. It is demonstrated that enhanced neutrophil to lymphocyte ratio probably contributes to the raised rate of mortality and decreased survival among breast cancer cases. The present review explores the biology of TANs, their suspected interactions in the breast cancer microenvironment, and their functions in preserving the tumor microenvironment and progression of tumors. Furthermore, their potential as therapeutic targets and clinical biomarkers has been discussed in this paper.
Collapse
|
12
|
Xia W, Liu Y, Du Y, Cheng T, Hu X, Li X. MicroRNA-423 Drug Resistance and Proliferation of Breast Cancer Cells by Targeting ZFP36. Onco Targets Ther 2020; 13:769-782. [PMID: 32158228 PMCID: PMC6986407 DOI: 10.2147/ott.s217745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS The effects of microRNA-423 on proliferation and drug resistance of breast cancer cells were explored, the downstream target genes of miR-423 and the targeted regulatory relationship between them were studied. METHODS RT-qPCR was used to detect the expression of miR-423 in breast cancer tissues and cell lines, and the transfection efficiency of miR-423 inhibitory vector miR-423-inhibitor was constructed and verified. CCK-8 and colony formation assays were used to examine the effect of miR-423 on tumor cell proliferation. Target gene prediction and screening and luciferase reporter assay were used to verify downstream target genes of miR-432. The mRNA and protein expression of miR-423target gene ZFP36 was detected by RT-qPCR and Western blotting. RESULTS The expression of miR-423 was significantly higher than that in normal tissues. Compared to the non-malignant mammary epithelial cell line MCF-10A, the expression of miR-423 was significantly raised in MCR-7 and MCF-7/ADR cells. ZFP36 was a downstream target gene of miR-423 and negatively correlated with the expression of miR-423 in breast cancer. The knockdown of miR-423 can significantly enhance the cytotoxicity of the drug, increase the apoptotic rate of MCF-7/ADR cells. miR-423 was capable of activating the Wnt/β-catenin signaling pathway leading to chemoresistance and proliferation, whereas overexpression of ZFP36 reduced drug resistance and proliferation. CONCLUSION miR-423 acted as an oncogene to promote tumor cell proliferation and migration. ZFP36 was a downstream target gene of miR-423, and miR-423 inhibited the expression of ZFP36 via Wnt/β-catenin signaling pathway of breast cancer cells.
Collapse
Affiliation(s)
- Wenfei Xia
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Yaying Du
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Teng Cheng
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Xiaopeng Hu
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| | - Xingrui Li
- Department of Breast and Thyroid Surgery, Division of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, People’s Republic of China
| |
Collapse
|
13
|
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019; 11:cancers11121826. [PMID: 31756933 PMCID: PMC6966464 DOI: 10.3390/cancers11121826] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) family contains four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3 and Her4/ErbB4) and 13 secreted polypeptide ligands. EGFRs are overexpressed in many solid tumors, including breast, pancreas, head-and-neck, prostate, ovarian, renal, colon, and non-small-cell lung cancer. Such overexpression produces strong stimulation of downstream signaling pathways, which induce cell growth, cell differentiation, cell cycle progression, angiogenesis, cell motility and blocking of apoptosis.The high expression and/or functional activation of EGFRs correlates with the pathogenesis and progression of several cancers, which make them attractive targets for both diagnosis and therapy. Several approaches have been developed to target these receptors and/or the EGFR modulated effects in cancer cells. Most approaches include the development of anti-EGFRs antibodies and/or small-molecule EGFR inhibitors. This review presents the state-of-the-art and future prospects of targeting EGFRs to treat breast cancer.
Collapse
Affiliation(s)
- Amaia Eleonora Maennling
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, 6229 MD Maastricht, The Netherlands
| | - Marcus Niebert
- Department of Molecular Cytology and Functional Genomics, Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Torsten Klockenbring
- Department of Biological Sensing and Detection, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-64199930570
| |
Collapse
|
14
|
Obaid H, Kannappan S, Gupta M, Ruan Y, Zhang C, Bose P, Narendran A. In Vitro Investigation Demonstrates IGFR/VEGFR Receptor Cross Talk and Potential of Combined Inhibition in Pediatric Central Nervous System Atypical Teratoid Rhabdoid Tumors. Curr Cancer Drug Targets 2019; 20:295-305. [PMID: 31713485 DOI: 10.2174/1568009619666191111153049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor of the central nervous system (CNS ATRT) is a malignancy that commonly affects young children. The biological mechanisms contributing to tumor aggressiveness and resistance to conventional therapies in ATRT are unknown. Previous studies have shown the activity of insulin like growth factor-I receptor (IGF-1R) in ATRT tumor specimens and cell lines. IGF-1R has been shown to cross-talk with other receptor tyrosine kinases (RTKs) in a number of cancer types, leading to enhanced cell proliferation. OBJECTIVE This study aims to evaluate the role of IGF-1 receptor cross-talk in ATRT biology and the potential for therapeutic targeting. METHODS Cell lines derived from CNS ATRT specimens were analyzed for IGF-1 mediated cell proliferation. A comprehensive receptor tyrosine kinase (RTK) screen was conducted following IGF-1 stimulation. Bioinformatic analysis of publicly available cancer growth inhibition data to identify correlation between IC50 of a VEGFR inhibitor and IGF-1R expression. RESULTS Comprehensive RTK screen identified VEGFR-2 cross-activation following IGF-1 stimulation. Bioinformatics analysis demonstrated a positive correlation between IC50 values of VEGFR inhibitor Axitinib and IGF-1R expression, supporting the critical influence of IGF-1R in modulating response to anti-angiogenic therapies. CONCLUSION Overall, our data present a novel experimental framework to evaluate and utilize receptor cross-talk mechanisms to select effective drugs and combinations for future therapeutic trials in ATRT.
Collapse
Affiliation(s)
- Halah Obaid
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Sunand Kannappan
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Mehul Gupta
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Yibing Ruan
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Chunfen Zhang
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Ohlson Research Initiative, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, University of Calgary and the Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, AB, Canada
| |
Collapse
|
15
|
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, Rahimi-Jamnani F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics 2019; 14:38-56. [PMID: 31011631 PMCID: PMC6463744 DOI: 10.1016/j.omto.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the success of monoclonal antibodies (mAbs) to treat some disorders, the monospecific molecular entity of mAbs as well as the presence of multiple factors and pathways involved in the pathogenesis of disorders, such as various malignancies, infectious diseases, and autoimmune disorders, and resistance to therapy have restricted the therapeutic efficacy of mAbs in clinical use. Bispecific antibodies (bsAbs), by concurrently recognizing two targets, can partly circumvent these problems. Serial killing of tumor cells by bsAb-redirected T cells, simultaneous blocking of two antigens involved in the HIV-1 infection, and concurrent targeting of the activating and inhibitory receptors on B cells to modulate autoimmunity are part of the capabilities of bsAbs. After designing and developing a large number of bsAbs for years, catumaxomab, a full-length bsAb targeting EpCAM and CD3, was approved in 2009 to treat EpCAM-positive carcinomas besides blinatumomab, a bispecific T cell engager antibody targeting CD19 and CD3, which was approved in 2014 to treat relapsed or refractory acute lymphoblastic leukemia. Furthermore, approximately 60 bsAbs are under investigation in clinical trials. The current review aims at portraying different formats of the single-chain variable fragment (scFv)-based bsAbs and shedding light on the scFv-based bsAbs in preclinical development, different phases of clinical trials, and the market.
Collapse
Affiliation(s)
- Raoufeh Ahamadi-Fesharaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Yang CW, Cao HH, Guo Y, Feng YM, Zhang N. Identification of Novel Breast Cancer Genes based on Gene Expression Profiles and PPI Data. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164616666190126111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Breast cancer is one of the most common malignancies, and a threat to female health all over the world. However, the molecular mechanism of breast cancer has not been fully discovered yet.Objective:It is crucial to identify breast cancer-related genes, which could provide new biomarker for breast cancer diagnosis as well as potential treatment targets.Methods:Here we used the minimum redundancy-maximum relevance (mRMR) method to select significant genes, then mapped the transcripts of the genes on the Protein-Protein Interaction (PPI) network and traced the shortest path between each pair of two proteins.Results:As a result, we identified 24 breast cancer-related genes whose betweenness were over 700. The GO enrichment analysis indicated that the transcription and oxygen level are very important in breast cancer. And the pathway analysis indicated that most of these 24 genes are enriched in prostate cancer, endocrine resistance, and pathways in cancer.Conclusion:We hope these 24 genes might be useful for diagnosis, prognosis and treatment for breast cancer.
Collapse
Affiliation(s)
- Cheng-Wen Yang
- Tianjin Key Lab of BME Measurement, Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Huan-Huan Cao
- Tianjin Key Lab of BME Measurement, Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Yu Guo
- Tianjin Key Lab of BME Measurement, Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Yuan-Ming Feng
- Tianjin Key Lab of BME Measurement, Department of Biomedical Engineering, Tianjin University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Lab of BME Measurement, Department of Biomedical Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
18
|
Arcidiacono D, Dedja A, Giacometti C, Fassan M, Nucci D, Francia S, Fabris F, Zaramella A, Gallagher EJ, Cassaro M, Rugge M, LeRoith D, Alberti A, Realdon S. Hyperinsulinemia Promotes Esophageal Cancer Development in a Surgically-Induced Duodeno-Esophageal Reflux Murine Model. Int J Mol Sci 2018; 19:1198. [PMID: 29662006 PMCID: PMC5979452 DOI: 10.3390/ijms19041198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 01/10/2023] Open
Abstract
Hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion, Barrett's Esophagus, a possible consequence of Gastro-Esophageal Reflux Disease. Obesity is known to mediate esophageal carcinogenesis through different mechanisms including insulin-resistance leading to hyperinsulinemia, which may mediate cancer progression via the insulin/insulin-like growth factor axis. We used the hyperinsulinemic non-obese FVB/N (Friend leukemia virus B strain) MKR (muscle (M)-IGF1R-lysine (K)-arginine (R) mouse model to evaluate the exclusive role of hyperinsulinemia in the pathogenesis of EAC related to duodeno-esophageal reflux. FVB/N wild-type (WT) and MKR mice underwent jejunum-esophageal anastomosis side-to end with the exclusion of the stomach. Thirty weeks after surgery, the esophagus was processed for histological, immunological and insulin/Insulin-like growth factor 1 (IGF1) signal transduction analyses. Most of the WT mice (63.1%) developed dysplasia, whereas most of the MKR mice (74.3%) developed squamous cell and adenosquamous carcinomas, both expressing Human Epidermal growth factor receptor 2 (HER2). Hyperinsulinemia significantly increased esophageal cancer incidence in the presence of duodenal-reflux. Insulin receptor (IR) and IGF1 receptor (IGF1R) were overexpressed in the hyperinsulinemic condition. IGF1R, through ERK1/2 mitogenic pattern activation, seems to be involved in cancer onset. Hyperinsulinemia-induced IGF1R and HER2 up-regulation could also increase the possibility of forming of IGF1R/HER2 heterodimers to support cell growth/proliferation/progression in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Arben Dedja
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Cinzia Giacometti
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Daniele Nucci
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| | - Simona Francia
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Biomedical Sciences, University of Padua, via Bassi, 58/B, 35131, Padua, Italy.
| | - Federico Fabris
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Alice Zaramella
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Emily J Gallagher
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Mauro Cassaro
- Anatomic Pathology Unit, ULSS 6 Euganea, via Cosma, 1, Camposampiero, 35012 Padua, Italy.
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, via Giustiniani 2, 35128 Padua, Italy.
| | - Derek LeRoith
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA.
| | - Alfredo Alberti
- Venetian Institute of Molecular Medicine-VIMM, via Orus, 2, 35129 Padua, Italy.
- Department of Molecular Medicine, University of Padua, via Gabelli, 63, 35128 Padua, Italy.
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata, 64, 35128 Padua, Italy.
| |
Collapse
|
19
|
Ahmadi M, Sadri-Ardalani F, Amiri MM, Jeddi-Tehrani M, Shabani M, Shokri F. Immunization with HER2 extracellular subdomain proteins induces cellular response and tumor growth inhibition in mice. Immunotherapy 2018; 10:511-524. [PMID: 29562854 DOI: 10.2217/imt-2017-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM We investigated cellular and protective immune responses in mice vaccinated with recombinant HER2 extracellular subdomains. MATERIALS & METHODS Balb/C mice were immunized with recombinant full HER2 extracellular domain and subdomain proteins. Humoral and cellular immune response and antitumor effect was evaluated using a syngeneic mice tumor model. RESULTS All recombinant proteins induced secretion of IL-4 and particularly IFN-γ and IL-17 cytokines. Challenging of immunized mice with stable 4T1-HER2 transfected cells resulted in partial but significant tumor growth inhibition in all groups of mice particularly those immunized with fHER2-ECD together with CPG. CONCLUSION Our results suggest that the recombinant HER2-ECD subdomains induce mainly Th1 and Th17 responses, which seem to contribute to tumor growth inhibition in syngeneic mice.
Collapse
Affiliation(s)
- Moslem Ahmadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fateme Sadri-Ardalani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad M Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
20
|
You K, Yi Y, Kwak SJ, Seong YS. Inhibition of RPTOR overcomes resistance to EGFR inhibition in triple-negative breast cancer cells. Int J Oncol 2018; 52:828-840. [DOI: 10.3892/ijo.2018.4244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kyu You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yong Yi
- ExoCoBio Inc, Seoul 08594, Republic of Korea
| | - Sahng-June Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
21
|
Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 2017; 17:711. [PMID: 29100507 PMCID: PMC5670521 DOI: 10.1186/s12885-017-3695-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background Widely established targeted therapies directed at triple negative breast cancer (TNBC) are missing. Classical chemotherapy remains the systemic treatment option. Cisplatin has been tested in TNBC but bears the disadvantage of resistance development. The purpose of this study was to identify resistance mechanisms in cisplatin-resistant TNBC cell lines and select targeted therapies based on these findings. Methods The TNBC cell lines HCC38 and MDA-MB231 were subjected to intermittent cisplatin treatment resulting in the 3.5-fold cisplatin-resistant subclone HCC38CisR and the 2.1-fold more resistant MDA-MB231CisR. Activation of pro-survival pathways was explored by immunostaining of phospho-receptor tyrosine kinases. Targeted therapies (NVP-AEW541, lapatinib and NVP-BEZ235) against activated pathways were investigated regarding cancer cell growth and cisplatin sensitivity. Results In HCC38CisR and MDA-MB231CisR, phosphorylation of epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) was observed. In HCC38CisR, treatment with NVP-AEW541 increased potency of lapatinib almost seven-fold, but both compounds could not restore cisplatin sensitivity. However, the dual phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 acted synergistically with cisplatin in HCC38CisR and fully restored cisplatin sensitivity. Similarly, NVP-BEZ235 increased cisplatin potency in MDA-MB231CisR. Furthermore, NVP-AEW541 in combination with lapatinib restored cisplatin sensitivity in MDA-MB231CisR. Conclusion Simultaneous inhibition of EGFR and IGF1R in cisplatin-resistant TNBC cell lines was synergistic regarding inhibition of proliferation and induction of apoptosis. Co-treatment with NVP-BEZ235 or with a combination of NVP-AEW541 and lapatinib restored cisplatin sensitivity and may constitute a targeted treatment option for cisplatin-resistant TNBC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3695-5) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Hass H, Masson K, Wohlgemuth S, Paragas V, Allen JE, Sevecka M, Pace E, Timmer J, Stelling J, MacBeath G, Schoeberl B, Raue A. Predicting ligand-dependent tumors from multi-dimensional signaling features. NPJ Syst Biol Appl 2017; 3:27. [PMID: 28944080 PMCID: PMC5607260 DOI: 10.1038/s41540-017-0030-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Targeted therapies have shown significant patient benefit in about 5-10% of solid tumors that are addicted to a single oncogene. Here, we explore the idea of ligand addiction as a driver of tumor growth. High ligand levels in tumors have been shown to be associated with impaired patient survival, but targeted therapies have not yet shown great benefit in unselected patient populations. Using an approach of applying Bagged Decision Trees (BDT) to high-dimensional signaling features derived from a computational model, we can predict ligand dependent proliferation across a set of 58 cell lines. This mechanistic, multi-pathway model that features receptor heterodimerization, was trained on seven cancer cell lines and can predict signaling across two independent cell lines by adjusting only the receptor expression levels for each cell line. Interestingly, for patient samples the predicted tumor growth response correlates with high growth factor expression in the tumor microenvironment, which argues for a co-evolution of both factors in vivo.
Collapse
Affiliation(s)
- Helge Hass
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | | | - Sibylle Wohlgemuth
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zuerich, Zuerich, Switzerland
| | | | - John E. Allen
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
| | - Mark Sevecka
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
| | - Emily Pace
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
- Celgene, San Francisco, CA 94158 USA
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Joerg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zuerich, Zuerich, Switzerland
| | - Gavin MacBeath
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
| | | | - Andreas Raue
- Merrimack Pharmaceuticals, Inc., Cambridge, MA 02139 USA
| |
Collapse
|
23
|
Shi J, Kobayashi LC, Grundy A, Richardson H, SenGupta SK, Lohrisch CA, Spinelli JJ, Aronson KJ. Lifetime moderate-to-vigorous physical activity and ER/PR/HER-defined post-menopausal breast cancer risk. Breast Cancer Res Treat 2017; 165:201-213. [DOI: 10.1007/s10549-017-4323-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/29/2017] [Indexed: 01/13/2023]
|
24
|
Arcidiacono D, Antonello A, Fassan M, Nucci D, Morbin T, Agostini M, Nitti D, Rugge M, Alberti A, Battaglia G, Realdon S. Insulin promotes HER2 signaling activation during Barrett's Esophagus carcinogenesis. Dig Liver Dis 2017; 49:630-638. [PMID: 28185837 DOI: 10.1016/j.dld.2017.01.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insulin-resistance and hyperinsulinemia could have a role in the growing incidence of esophageal adenocarcinoma (EAC) and its pre-cancerous lesion Barrett's Esophagus (BE). HER2 activation has also a pivotal role in EAC carcinogenesis but no data correlate these two phenomena in this disease context. AIMS To investigate the role of hyperinsulinemia in BE-dysplasia-adenocarcinoma sequence and the possible relationship between insulin-mediated and HER2 signaling in EAC development. METHODS Serum insulin, C-peptide, IGF1, glucagon, IL-6, TNF-alpha, leptin, adiponectin and Insulin-Resistance-index were analyzed in 19 patients with gastro-esophageal reflux disease, 51 with BE, 24 with dysplastic-BE and 14 with EAC. Insulin/IGF1/HER2 pathways were analyzed in esophageal biopsies using Luminex® Technology. Insulin effect was also evaluated in EAC-derived OE19 cells. Data were analyzed by Fisher's exact test, Kruskal-Wallis test, Mann-Whitney U-test, Cuzick's test and Spearman correlation coefficient calculation. RESULTS Insulin-Resistance-index, insulin and C-peptide levels increased along with disease progression (p=0.019, p=0.002, p<0.0001, respectively) and correlated with HER2 expression and with downstream mediators phospho-Akt and phospho-mTOR in esophageal tissue. In vitro, insulin was also able to induce cell proliferation through HER2 activation. CONCLUSIONS Our data pinpoint a possible role of hyperinsulinemia in the Barrett's Esophagus metaplasia-dysplasia-adenocarcinoma sequence through HER2 activation in esophageal epithelial cells.
Collapse
Affiliation(s)
- Diletta Arcidiacono
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | | | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | - Daniele Nucci
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Tiziana Morbin
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Marco Agostini
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy; Istituto di Ricerca Pediatrica-Città della Speranza, Padua, Italy; Department of Nanomedicine, The Methodist Hospital Research Institute, Houston, TX, USA.
| | - Donato Nitti
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| | - Alfredo Alberti
- Department of Molecular Medicine, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine-VIMM, Padua, Italy.
| | - Giorgio Battaglia
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| | - Stefano Realdon
- Digestive Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
25
|
Reinholz MM, Chen B, Dueck AC, Tenner K, Ballman K, Riehle D, Jenkins RB, Geiger XJ, McCullough AE, Perez EA. IGF1R Protein Expression Is Not Associated with Differential Benefit to Concurrent Trastuzumab in Early-Stage HER2 + Breast Cancer from the North Central Cancer Treatment Group (Alliance) Adjuvant Trastuzumab Trial N9831. Clin Cancer Res 2017; 23:4203-4211. [PMID: 28533226 DOI: 10.1158/1078-0432.ccr-15-0574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Background: Preclinical evidence indicates that increased insulin-like growth factor receptor-1 (IGF1R) signaling interferes with the action of trastuzumab suggesting a possible mechanism of trastuzumab resistance. Thus, we evaluated IGF1R prevalence, relationship with demographic data, and association with disease-free survival (DFS) of patients randomized to chemotherapy alone (Arm A) or chemotherapy with sequential (Arm B) or concurrent trastuzumab (Arm C) in the prospective phase III HER2+ adjuvant N9831 trial.Experimental Design: IGF1R protein expression was determined in tissue microarray sections (three cores per block; N = 1,197) or in whole tissue sections (WS; N = 537) using IHC (rabbit polyclonal antibody against IGF1R β-subunit). A tumor was considered positive (IGF1R+) if any core or WS had ≥1+ membrane staining in >0% invasive cells. Median follow-up was 8.5 years.Results: Of 1,734 patients, 708 (41%) had IGF1R+ breast tumors. IGF1R+ was associated with younger age (median 48 vs. 51, P = 0.007), estrogen receptor/progesterone receptor positivity (78% vs. 35%, P < 0.001), nodal positivity (89% vs. 83%, P < 0.001), well/intermediate grade (34% vs. 24%, P < 0.001), tumors ≥2 cm (72% vs. 67%, P = 0.02) but not associated with race or tumor histology. IGF1R did not affect DFS within arms. Between Arms A and C, patients with IGF1R+ and IGF1R- tumors had DFS HRs of 0.48 (P ≤ 0.001) and 0.68 (P = 0.009), respectively (Pinteraction = 0.17). Between Arms A and B, patients with IGF1R+ and IGF1R- tumors had DFS HRs of 0.83 (P = 0.25) and 0.69 (P = 0.01), respectively (Pinteraction = 0.42).Conclusions: In contrast to preclinical studies that suggest a decrease in trastuzumab sensitivity in IGF1R+ tumors, our adjuvant data show benefit of adding trastuzumab for patients with either IGF1R+ and IGF1R- breast tumors. Clin Cancer Res; 23(15); 4203-11. ©2016 AACR.
Collapse
Affiliation(s)
- Monica M Reinholz
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Beiyun Chen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Amylou C Dueck
- Section of Biostatistics, Mayo Clinic, Scottsdale, Arizona
| | - Kathleen Tenner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Karla Ballman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Darren Riehle
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Edith A Perez
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
26
|
ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. JOURNAL OF ONCOLOGY 2017; 2017:1532534. [PMID: 28286519 PMCID: PMC5327764 DOI: 10.1155/2017/1532534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/30/2016] [Accepted: 01/17/2017] [Indexed: 12/16/2022]
Abstract
ErbB proteins overexpression, in both normal and mutated forms, is associated with invasive forms of cancer prone to metastasis and with stronger antiapoptotic mechanisms and therefore more challenging to treat. Downstream effectors of ErbB receptors mediating these phenotypic traits include MAPK, STAT, and PI3K/AKT/mTOR pathways. Various phytochemical compounds were studied for their large number of biological effects including anticancer activity. Among these compounds, epigallocatechin-3-gallate (EGCG), the main catechin from green tea leaves, and curcumin, component of the curry powder, constituted the object of numerous studies. Both compounds were shown to act directly either on ErbB expression, or on their downstream signaling molecules. In this paper we aim to review the involvement of ErbB proteins in cancer as well as the biologic activity of EGCG and curcumin in ErbB expressing and overexpressing malignancies. The problems arising in the administration of the two compounds due to their reduced bioavailability when orally administered, as well as the progress made in this field, from using novel formulations to improved dosing regimens or improved synthetic analogs, are also discussed.
Collapse
|
27
|
Ferreira PMP, Pessoa C. Molecular biology of human epidermal receptors, signaling pathways and targeted therapy against cancers: new evidences and old challenges. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000216076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Mao L, Sun AJ, Wu JZ, Tang JH. Involvement of microRNAs in HER2 signaling and trastuzumab treatment. Tumour Biol 2016; 37:15437–15446. [PMID: 27734339 DOI: 10.1007/s13277-016-5405-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022] Open
Abstract
The prognostic value of HER2 has been demonstrated in many human cancer types such us breast cancer, gastric cancer and ovarian cancer. Trastuzumab is the first anti-HER2 monoclonal antibody that has remarkably improved outcomes of patients with HER2-positive breast cancer. For HER2-positive metastatic gastric cancers, the addition of trastuzumab to traditional chemotherapy also significantly prolonged overall survival. However, intrinsic and acquired resistance to trastuzumab is common and results in disease progression. HER2 signaling network and mechanisms underlying the resistance have been broadly investigated in order to develop strategy to overcome the dilemma. Increasing evidence indicates that microRNAs (miRNA), a group of small non-coding RNAs, are involved in HER2 signaling and trastuzumab treatment. This review summarizes all the miRNAs that target HER2 and describes their activity on biological processes. Moreover, miRNAs that regulate trastuzumab resistance and relevant molecular mechanisms are highlighted. MiRNA signatures associated with HER2, miRNAs that mediate trastuzumab activity, and potential miRNA biomarkers of trastuzumab sensitivity are also discussed.
Collapse
Affiliation(s)
- Ling Mao
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Ai-Jun Sun
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Xuzhou medical university, Huai'an, China
| | - Jian-Zhong Wu
- Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jin-Hai Tang
- Department of General Surgery, the Affiliated Jiangsu Cancer Hospital, Nanjing Medical University, 42Bai Zi Ting Road, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
29
|
Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 2016; 411:68-80. [PMID: 27693363 DOI: 10.1016/j.jtbi.2016.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 11/24/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is one of the four members of the epidermal growth factor receptor (EGFR) family and is expressed to facilitate cellular proliferation across various tissue types. Therapies targeting HER2, which is a transmembrane glycoprotein with tyrosine kinase activity, offer promising prospects especially in breast and gastric/gastroesophageal cancer patients. Persistence of both primary and acquired resistance to various routine drugs/antibodies is a disappointing outcome in the treatment of many HER2 positive cancer patients and is a challenge that requires formulation of new and improved strategies to overcome the same. Identification of novel HER2 inhibitors with improved therapeutics index was performed with a highly correlating (r=0.975) ligand-based pharmacophore model (Hypo1) in this study. Hypo1 was generated from a training set of 22 compounds with HER2 inhibitory activity and this well-validated hypothesis was subsequently used as a 3D query to screen compounds in a total of four databases of which two were natural product databases. Further, these compounds were analyzed for compliance with Veber's drug-likeness rule and optimum ADMET parameters. The selected compounds were then subjected to molecular docking and Density Functional Theory (DFT) analysis to discern their molecular interactions at the active site of HER2. The findings thus presented would be an important starting point towards the development of novel HER2 inhibitors using well-validated computational techniques.
Collapse
Affiliation(s)
- Dhrubajyoti Gogoi
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Vishwa Jyoti Baruah
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Amrita Kashyap Chaliha
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Bibhuti Bhushan Kakoti
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Diganta Sarma
- Department of Chemistry, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Alak Kumar Buragohain
- DBT-Bioinformatics Infrastructure Facility, Centre for Biotechnology and Bioinformatics, School of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India.
| |
Collapse
|
30
|
Esparza-López J, Ramos-Elías PA, Castro-Sánchez A, Rocha-Zavaleta L, Escobar-Arriaga E, Zentella-Dehesa A, León-Rodríguez E, Medina-Franco H, Ibarra-Sánchez MDJ. Primary breast cancer cell culture yields intra-tumor heterogeneous subpopulations expressing exclusive patterns of receptor tyrosine kinases. BMC Cancer 2016; 16:740. [PMID: 27645148 PMCID: PMC5028979 DOI: 10.1186/s12885-016-2769-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background It has become evident that intra-tumor heterogeneity of breast cancer impact on several biological processes such as proliferation, migration, cell death and also might contribute to chemotherapy resistance. The expression of Receptor Tyrosine Kinases (RTKs) has not been analyzed in the context of intra-tumor heterogeneity in a primary breast cancer cell culture. Several subpopulations were isolated from the MBCDF (M serial-breast cancer ductal F line) primary breast cancer cells and were successfully maintained in culture and divided in two groups according to their morphology and RTKs expression pattern, and correlated with biological processes like proliferation, migration, anchorage-independent cell growth, and resistance to cytotoxic chemotherapy drugs and tyrosine kinase inhibitors (TKIs). Methods Subpopulations were isolated from MBCDF primary breast cancer cell culture by limiting dilution. RTKs and hormone receptors were examined by Western blot. Proliferation was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT assay). Cell viability was evaluated by Crystal Violet. Migration was assessed using Boyden chambers. Anchorage-independent cell growth was evaluated by colony formation in soft agar. Results Several subpopulations were isolated from the MBCDF breast cancer cells that were divided into two groups according to their morphology. Analysis of RTKs expression pattern showed that HER1, HER3, c-Met and VEGFR2 were expressed exclusively in cells from group 1, but not in cells from group 2. PDGFR was expressed only in cells from group 2, but not in cells from group 1. HER2, HER4, c-Kit, IGF1-R were expressed in all subpopulations. Biological processes correlated with the RTKs expression pattern. Group 2 subpopulations present the highest rate of cell proliferation, migration and anchorage-independent cell growth. Analysis of susceptibility to chemotherapy drugs and TKIs showed that only Paclitaxel and Imatinib behaved differently between groups. Group 1-cells were resistant to both Paclitaxel and Imatinib. Conclusions We demonstrated that subpopulations from MBCDF primary cell culture could be divided into two groups according to their morphology and a RTKs excluding-expression pattern. The differences observed in RTKs expression correlate with the biological characteristics and chemoresistance of each group. These results suggest that intra-tumor heterogeneity contributes to generate groups of subpopulations with a more aggressive phenotype within the tumor. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2769-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Esparza-López
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico
| | - Pier A Ramos-Elías
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico
| | - Andrea Castro-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, CP 04500, Distrito Federal, Mexico
| | - Elizabeth Escobar-Arriaga
- Hospital Ángeles del Pedregal, Camino a Santa Teresa # 1055, México, CP 10700, Distrito Federal, Mexico
| | - Alejandro Zentella-Dehesa
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, CP 04500, Distrito Federal, Mexico
| | - Eucario León-Rodríguez
- Departamento de Hemato-Oncología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico
| | - Heriberto Medina-Franco
- Departamento de Cirugía, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico
| | - María de Jesus Ibarra-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Belisario Domínguez Sección XVI, Delegación Tlalpan, CP 14080, Distrito Federal, Mexico.
| |
Collapse
|
31
|
Shin M, Yang EG, Song HK, Jeon H. Insulin activates EGFR by stimulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells. BMB Rep 2016; 48:342-7. [PMID: 25341922 PMCID: PMC4578621 DOI: 10.5483/bmbrep.2015.48.6.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells.
Collapse
Affiliation(s)
- Miyoung Shin
- Division of Life Sciences, Korea University, Seoul 136-701; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hyun Kyu Song
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Hyesung Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Korea; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
32
|
Kim SS, Choi KM, Kim S, Park T, Cho IC, Lee JW, Lee CK. Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Mol Genet Genomics 2016; 291:831-47. [PMID: 26606930 DOI: 10.1007/s00438-015-1150-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-β), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-β, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Kyung-Mi Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Soyoung Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - In-Cheol Cho
- Subtropical Animal Station, National Institute of Animal Science, Jeju, 690-150, Republic of Korea
| | - Jae-Won Lee
- Department of Statistics, Korea University, Seoul, 136-701, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
33
|
Kaumaya PTP. A paradigm shift: Cancer therapy with peptide-based B-cell epitopes and peptide immunotherapeutics targeting multiple solid tumor types: Emerging concepts and validation of combination immunotherapy. Hum Vaccin Immunother 2016; 11:1368-86. [PMID: 25874884 DOI: 10.1080/21645515.2015.1026495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating "promiscuous" T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types.
Collapse
Affiliation(s)
- Pravin T P Kaumaya
- a Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus , OH , USA
| |
Collapse
|
34
|
Redman JM, Hill EM, AlDeghaither D, Weiner LM. Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67:28-45. [PMID: 25911943 PMCID: PMC4529810 DOI: 10.1016/j.molimm.2015.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/29/2015] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications.
Collapse
Affiliation(s)
- J M Redman
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - E M Hill
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - D AlDeghaither
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - L M Weiner
- Departments of Oncology and Internal Medicine, Georgetown University Medical Center and Lombardi Comprehensive Cancer Center, Washington, DC, United States.
| |
Collapse
|
35
|
A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq. Comput Biol Med 2015; 67:29-40. [PMID: 26492320 DOI: 10.1016/j.compbiomed.2015.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND In complex diseases, alterations of multiple molecular and cellular components in response to perturbations are indicative of disease physiology. While expression level of genes from high-throughput analysis can vary among patients, the common path among disease progression suggests that the underlying cellular sub-processes involving associated genes follow similar fates. Motivated by the interconnected nature of sub-processes, we have developed an automated methodology that combines ideas from biological networks, statistical models, and game theory, to probe connected cellular processes. The core concept in our approach uses probability of change (POC) to indicate the probability that a gene's expression level has changed between two conditions. POC facilitates the definition of change at the neighborhood, pathway, and network levels and enables evaluation of the influence of diseases on the expression. The 'connected' disease-related genes (DRG) identified display coherent and concomitant differential expression levels along paths. RESULTS RNA-Seq and microarray breast cancer subtyping expression data sets were used to identify DRG between subtypes. A machine-learning algorithm was trained for subtype discrimination using the DRG, and the training yielded a set of biomarkers. The discriminative power of the biomarkers was tested using an unseen data set. Biomarkers identified overlaps with disease-specific identified genes, and we were able to classify disease subtypes with 100% and 80% agreement with PAM50, for microarray and RNA-Seq data set respectively. CONCLUSIONS We present an automated probabilistic approach that offers unbiased and reproducible results, thus complementing existing methods in DRG and biomarker discovery for complex diseases.
Collapse
|
36
|
Wang JG, Yu J, Hu JL, Yang WL, Ren H, Ding D, Zhang L, Liu XP. Neurokinin-1 activation affects EGFR related signal transduction in triple negative breast cancer. Cell Signal 2015; 27:1315-24. [DOI: 10.1016/j.cellsig.2015.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 01/30/2023]
|
37
|
CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2015; 151:501-13. [DOI: 10.1007/s10549-015-3414-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023]
|
38
|
Yi YW, You K, Bae EJ, Kwak SJ, Seong YS, Bae I. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int J Oncol 2015; 47:122-32. [PMID: 25955731 PMCID: PMC4735702 DOI: 10.3892/ijo.2015.2982] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/09/2015] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits innate resistance to the EGFR inhibition despite high level expression of EGFR. Recently, we found that the proliferation of basal-like (BL) subtype TNBC cells is synergistically inhibited by combination of EGFR and PI3K/AKT inhibitors. On the contrary, TNBC cells of mesenchymal stem-like (MSL) subtype are resistant to these combinations. To identify potential synthetic lethal interaction of compounds for treatment of MSL subtype TNBC cells, we performed MTT screening of MDA-MB-231 cells with a small library of receptor tyrosine kinase inhibitors (RTKIs) in the presence of gefitinib, an EGFR inhibitor. We identified MET inhibitors as potent RTKIs that caused synthetic lethality in combination with gefitinib in MDA-MB-231 cells. We demonstrated that combination of a MET inhibitor SU11274 with various EGFR inhibitors resulted in synergistic suppression of cell viability (in MTT assay) and cell survival (in colony formation assay) of MSL subtype TNBC cells. We further demonstrated that SU11274 alone induced G2 arrest and gefitinib/SU11274 combination sustained the SU11274-induced G2 arrest in these cells. In addition, SU11274/gefitinib combination synergistically reduced the level of ribosomal protein S6 (RPS6) in MSL subtype TNBC cells. In addition, knockdown of RPS6 itself, in both HS578T and MDA-MB-231, markedly reduced the proliferation of these cells. Taken together, our data suggest that dual targeting of EGFR and MET inhibits the proliferation of MSL subtype TNBC cells through down-regulation of RPS6.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Kyusic You
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Edward Jeong Bae
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sahng-June Kwak
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Sun Seong
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Insoo Bae
- Department of Nanobiomedical Science and BK21 PLUS Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
39
|
Wang HC, Chang FR, Huang TJ, Kuo CY, Tsai YC, Wu CC. (-)-Liriopein B Suppresses Breast Cancer Progression via Inhibition of Multiple Kinases. Chem Res Toxicol 2015; 28:897-906. [PMID: 25856345 DOI: 10.1021/tx500518j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Numerous breast cancer patients who achieve an initial response to HER-targeted therapy rapidly develop resistance within one year, leading to treatment failure. Observations from clinical samples indicate that such resistance correlates with an increase in Src, EGFR, and PI3K/Akt activities and a decrease in PTEN activity. Furthermore, Akt survival signaling activation is also found in tumors treated by toxic chemotherapeutic agents. Because cotreatment with a PI3K inhibitor is a promising strategy to delay acquired resistance by preventing secondary gene activation, we therefore investigated the effects of a newly identified compound, (-)-Liriopein B (LB), on PI3K/Akt signaling activity in breast cancer cells. Our results showed that nontoxic doses of LB are able to inhibit AKT activation in both luminal-like MCF-7 and basal-like MDA-MB-231 breast cancer cells. Low doses of LB also inhibited cell migration, invasion, and cancer-stem cell sphere formation. Suppression of EGF-induced EGFR and ERK1/2 activation by LB might contribute in part to retardation of cancer progression. Furthermore, LB increases sensitivity of MDA-MB-231 cells to gefitinib in vitro, suggesting that EGFR may not be the only target of LB. Finally, a small scale in vitro kinase assay screen demonstrated that LB has a potent inhibitory effect on multiple kinases, including PI3K, Src, EGFR, Tie2, lck, lyn, RTK5, FGFR1, Abl, and Flt. In conclusion, this study demonstrates for the first time that the compound LB improves tumor therapeutic efficacy and suggests LB as a promising candidate for studying new leads in the development of kinase inhibitors.
Collapse
Affiliation(s)
- Hui-Chun Wang
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,‡PhD Program in Translational Medicine, College of Medicine and PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,§Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.,∥Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Fang-Rong Chang
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,∥Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tzu-Jung Huang
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Ying Kuo
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Chi Tsai
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Chung Wu
- †Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,‡PhD Program in Translational Medicine, College of Medicine and PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,∥Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
40
|
Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H, Kroiss M, Quinn DI, Hesseltine E, Ronchi CL, Terzolo M, Choueiri TK, Poondru S, Fleege T, Rorig R, Chen J, Stephens AW, Worden F, Hammer GD. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncol 2015; 16:426-35. [DOI: 10.1016/s1470-2045(15)70081-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Foy KC, Miller MJ, Overholser J, Donnelly SM, Nahta R, Kaumaya PT. IGF-1R peptide vaccines/mimics inhibit the growth of BxPC3 and JIMT-1 cancer cells and exhibit synergistic antitumor effects with HER-1 and HER-2 peptides. Oncoimmunology 2014; 3:e956005. [PMID: 25941587 DOI: 10.4161/21624011.2014.956005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022] Open
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) plays a crucial role in cellular growth, proliferation, transformation, and inhibition of apoptosis. A myriad of human cancer types have been shown to overexpress IGF-1R, including breast and pancreatic adenocarcinoma. IGF-1R signaling interferes with numerous receptor pathways, rendering tumor cells resistant to chemotherapy, anti-hormonal therapy, and epidermal growth factor receptor (EGFR, also known as HER-1) and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2, (ERBB2, best known as HER-2) -targeted therapies. Targeting the IGF:IGF-1R axis with innovative peptide inhibitors and vaccine antibodies thus represents a promising therapeutic strategy to overcome drug resistance and to provide new avenues for individualized and combinatorial treatment strategies. In this study, we designed, synthesized, and characterized several B-cell epitopes from the IGF-1:IGF-1R axis. The chimeric peptide epitopes were highly immunogenic in outbred rabbits, eliciting high levels of peptide vaccine antibodies. The IGF-1R peptide antibodies and peptide mimics inhibited cell proliferation and receptor phosphorylation, induced apoptosis and antibody-dependent cellular cytotoxicity (ADCC), and significantly inhibited tumor growth in the transplantable BxPC-3 pancreatic and JIMT-1 breast cancer models. Our results showed that the peptides and antibodies targeting residues 56-81 and 233-251 are potential therapeutic and vaccine candidates for the treatment of IGF-1R-expressing cancers, including those that are resistant to the HER-2-targeted antibody, trastuzumab. Additionally, we found additive antitumor effects for the combination treatment of the IGF-1R 56-81 epitope with HER-1-418 and HER-2-597 epitopes. Treatment with the IGF-1R/HER-1 or IGF-1R/HER-2 combination inhibited proliferation, invasion, and receptor phosphorylation, and induced apoptosis and ADCC, to a greater degree than single agents.
Collapse
Affiliation(s)
- Kevin Chu Foy
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | - Megan J Miller
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA
| | - Jay Overholser
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA
| | | | - Rita Nahta
- Department of Pharmacology; Emory University ; Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Obstetrics and Gynecology; The Ohio State University ; Columbus, OH USA ; Department of Microbiology; The Ohio State University ; Columbus, OH USA ; James Cancer Hospital and Solove Research Institute and the Comprehensive Cancer Center; The Ohio State University ; Columbus, OH USA
| |
Collapse
|
42
|
Miller MJ, Foy KC, Overholser JP, Nahta R, Kaumaya PT. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Oncoimmunology 2014; 3:e956012. [PMID: 25941588 DOI: 10.4161/21624011.2014.956012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.
Collapse
Key Words
- ADCC, antibody dependent, cellular cytotoxicity
- Antibodies
- ECD, extracellular domain
- ELISA, enzyme-linked immunosorbent assay
- FDA, Federal Drug Administration
- HER-1
- HER-1 (EGFR or ErbB1), human epidermal growth factor receptor
- HER-2
- HER-2 (ErbB2), human epidermal growth factor receptor 2
- HER-3 (ErbB3), human epidermal growth factor receptor 3
- HER-3 (erbb3)
- HER-4 (ErbB4), human epidermal growth factor receptor 4
- HPLC, high-pressure liquid chromatography
- IGF-1R
- Immunotherapy
- MALDI, matrix-assisted laser desorption/ionization
- MVF, Measles virus fusion protein
- RTK, receptor tyrosine kinase
- TKIs, Tyrosine kinase inhibitors.
- immunogenicity
- mAb, monocolonal antibody
- peptide vaccines
- peptidomimetics
- receptor tyrosine kinases
Collapse
Affiliation(s)
- Megan Jo Miller
- Department of Microbiology; The Ohio State University , Columbus, OH USA
| | - Kevin C Foy
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA
| | - Jay P Overholser
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA
| | - Rita Nahta
- Department of Pharmacology; Emory University , Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Microbiology; The Ohio State University , Columbus, OH USA ; Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA ; The James Cancer Hospital and Solove Research Institute; and the Comprehensive Cancer Center; The Ohio State University , Columbus, OH USA
| |
Collapse
|
43
|
Raju U, Molkentine DP, Valdecanas DR, Deorukhkar A, Mason KA, Buchholz TA, Meyn RE, Ang KK, Skinner H. Inhibition of EGFR or IGF-1R signaling enhances radiation response in head and neck cancer models but concurrent inhibition has no added benefit. Cancer Med 2014; 4:65-74. [PMID: 25355701 PMCID: PMC4312119 DOI: 10.1002/cam4.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/24/2014] [Accepted: 08/19/2014] [Indexed: 01/07/2023] Open
Abstract
Interaction between the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGF-1R) has been well established in many cancer types. We investigated the effects of cetuximab (EGFR antibody) and IMC-A12 (IGF-1R antibody) on the response of head and neck squamous cell carcinoma (HNSCC) to radiation therapy (RT). The effects of cetuximab and IMC-A12 on cell viability and radiosensitivity were determined by clonogenic cell survival assay. Formation of nuclear γ-H2AX and 53BP1 foci was monitored by immunofluorescence. Alterations in target signaling were analyzed by Western blots. In vivo tumor growth delay assay was performed to determine the efficacy of triple therapy with IMC-A12, cetuximab, and RT. In vitro data showed that cetuximab differentially affected the survival and the radiosensitivity of HNSCC cells. Cetuximab suppressed DNA repair that was evident by the prolonged presence of nuclear γ-H2AX and 53BP1 foci. IMC-A12 did not have any effect on the cell survival. However, it increased the radiosensitivity of one of the cell lines. EGFR inhibition increased IGF-1R expression levels and also the association between EGFR and IGF-1R. Addition of IMC-A12 to cetuximab did not increase the radiosensitivity of these cells. Tumor xenografts exhibited enhanced response to RT in the presence of either cetuximab or IMC-A12. Concurrent treatment regimen failed to further enhance the tumor response to cetuximab and/or RT. Taken together our data suggest that concomitant inhibition of both EGFR and IGF-1R pathways did not yield additional therapeutic benefit in overcoming resistance to RT.
Collapse
Affiliation(s)
- Uma Raju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Z, Wang J, Ji D, Wang C, Liu R, Wu Z, Liu L, Zhu D, Chang J, Geng R, Xiong L, Fang Q, Li J. Functional genetic approach identifies MET, HER3, IGF1R, INSR pathways as determinants of lapatinib unresponsiveness in HER2-positive gastric cancer. Clin Cancer Res 2014; 20:4559-73. [PMID: 24973425 DOI: 10.1158/1078-0432.ccr-13-3396] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeting human epidermal growth factor receptor 2 (HER2) therapy is currently considered as the standard treatment for HER2-positive (HER2+) advanced gastric cancer. However, as seen in recent clinical trials, most of HER2+ gastric cancer are actually unresponsive to HER2-targeted agents, including lapatinib. The aim of this study is to identify the responsible receptor tyrosine kinases (RTK) potentially conferring lapatinib unresponsiveness in HER2+ gastric cancer and elucidate the molecular mechanism underlying this RTKs-induced resistance. EXPERIMENTAL DESIGN A functional RNAi screen targeting human RTKs and related growth factors was used to identify candidate RTKs conferring lapatinib unresponsiveness in HER2+ gastric cancer cells. Independent siRNAs transfection and corresponding ligands supplement were performed to validate the effects of candidate RTKs on lapatinib sensitivity. Cross-talks of pathways involved were analyzed via Western blot analysis. Cell apoptosis and cell motility were detected using FACS system and Transwell assay. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS MET, HER3, insulin-like growth factor (IGF)-1R, and INSR were identified to mediate lapatinib unresponsiveness in HER2+ gastric cancer cells. Activation of these bypass RTKs attenuated lapatinib-induced apoptosis and suppression of cell motility, mechanistically because of restimulating the shared downstream AKT or ERK signaling, as well as restimulating WNT signaling and epithelial-to-mesenchymal transition (EMT)-like process. Patients' specimens revealed that these unresponsiveness-conferring RTKs were particularly enriched in the majority of patients with HER2+ gastric cancer. CONCLUSIONS MET, HER3, IGF1R, and INSR pathways activation represent novel mechanism underlying lapatinib unresponsiveness in HER2+ gastric cancer. Combination strategy may be recommended in treating patients with HER2+ gastric cancer with these pathways activation.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jiping Wang
- Division of Surgical Oncology, Brigham and Women's Hospital, Boston, Massachusetts. Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Dongmei Ji
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Chenchen Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Rujiao Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Zheng Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Dan Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Ruixuan Geng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Lei Xiong
- 3DBiopharm Biotechnology Co., Ltd., Shanghai, China
| | - Qiangyi Fang
- 3DBiopharm Biotechnology Co., Ltd., Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Shin SJ, Gong G, Lee HJ, Kang J, Bae YK, Lee A, Cho EY, Lee JS, Suh KS, Lee DW, Jung WH. Positive expression of insulin-like growth factor-1 receptor is associated with a positive hormone receptor status and a favorable prognosis in breast cancer. J Breast Cancer 2014; 17:113-20. [PMID: 25013431 PMCID: PMC4090312 DOI: 10.4048/jbc.2014.17.2.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/23/2014] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Insulin-like growth factor 1 receptor (IGF-1R) is commonly expressed in primary breast cancers. Understanding the role of IGF-1R signaling in the different subtypes of breast cancer is important because each subtype has a different outcome and requires different treatment modalities. However, the precise biological significance of IGF-1R expression in cancer cells is still unclear. In this study, we examined the expression of IGF-1R in the different molecular subtypes of breast cancer. The effects of IGF-1R expression on the survival rates and outcomes of breast cancer were also examined. METHODS IGF-1R expression was evaluated immunohistochemically in tissue microarray blocks constructed from 1,198 invasive breast cancer samples collected from six medical institutions. IGF-1R expression was interpreted according to the human epidermal growth factor receptor 2 (HER2)/neu immunohistochemistry scoring system. Scores of 2+ and 3+ were considered positive. RESULTS Positive IGF-1R expression was observed in 65.4% of invasive breast cancer samples. IGF-1R expression was detected in all cancer subtypes (luminal A, 84.4%; luminal B, 75.9%; HER2, 21.2%; triple-negative, 46.6%) and was found to be associated with a positive hormone receptor status and the absence of HER2 amplification (p<0.001). Positive IGF-1R expression was significantly associated with high survival rates (p=0.014). However, a multivariate analysis revealed that the expression levels of IGF-1R did not achieve statistical significance. In the triple-negative cancer subtype, IGF-1R expression was found to be associated with a lower disease-free survival rate (p=0.031). CONCLUSION Positive IGF-1R expression is associated with a favorable prognosis in breast cancer. IGF-1R is frequently expressed in the luminal A/B subtypes of breast cancer, and its expression is related to the hormone receptor status.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Kang
- Department of Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea College of Medicine, Incheon, Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Korea
| | - Ahwon Lee
- Department of Pathology, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun Yoon Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - Kwang-Sun Suh
- Department of Pathology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Dong Wha Lee
- Department of Pathology, Soonchunhyang University Hospital, Seoul, Korea
| | - Woo Hee Jung
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Her3 is associated with poor survival of gastric adenocarcinoma: Her3 promotes proliferation, survival and migration of human gastric cancer mediated by PI3K/AKT signaling pathway. Med Oncol 2014; 31:903. [PMID: 24623015 DOI: 10.1007/s12032-014-0903-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/25/2014] [Indexed: 02/04/2023]
Abstract
ErbB3 (Her3) is a membrane-bound protein which can form heterodimers with other EGF receptor family members with kinase activity. Previous reports identified Her3 as a significant predictor of poor survival in human gastric cancer (GC), but its mechanism has remained unclear. We sought to investigate the mechanism of Her3 in GC and its association with clinical characteristics. Her3 was detected by both real-time PCR and immunohistochemistry (IHC) in 161 GC patients, and its related downstream signaling PI3K/AKT activity and clinical characteristics were accessed by statistical analysis. Her3 siRNA was used in both in vitro and in vivo assay to investigate the mechanism. Her3 expression was significantly increased in human GC compared with adjacent normal gastric tissues as observed by both real-time PCR and IHC. Her3 expression was associated with downstream AKT activation and increased tumor size, metastasis and poor survival in GC patients. Knockdown of Her3 in human GC cell line can inhibit cell proliferation and tumor growth both in vitro and in vivo by inactivation of AKT. Her3 knockdown had no observed impact on Her2 expression or activity. G2/M arrest was investigated due to decreased CyclinB1 and p27(kip1) at T157. Increased apoptosis occurred in Her3 silenced GC cell treated with cisplatin due to decreased BAD at S112. Moreover, Her3 silence can inhibit cell migration in vitro and metastasis in vivo by down-regulating MMPs via PI3K/AKT signaling. Her3 is a new prognostic factor associated with tumor growth and metastasis via PI3K/AKT signaling.
Collapse
|
47
|
Austreid E, Lonning PE, Eikesdal HP. The emergence of targeted drugs in breast cancer to prevent resistance to endocrine treatment and chemotherapy. Expert Opin Pharmacother 2014; 15:681-700. [PMID: 24579888 DOI: 10.1517/14656566.2014.885952] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Deregulated signaling pathways are associated with resistance to chemotherapy and endocrine treatment, providing a rationale for the implementation of novel targeted therapies in breast cancer therapy. Key molecules targeted therapeutically in ongoing clinical breast cancer trials are phosphoinositide 3-kinase-Akt-mammalian target of rapamycin (mTOR), Src, insulin-like growth factor 1 receptor, heat shock protein-90, histone deacetylases, cyclin-dependent kinases (CDKs), Notch and human epidermal growth factor receptors (HERs). AREAS COVERED This review provides an overview of novel targeted agents currently explored in clinical breast cancer trials and registered in ClinicalTrials.gov. The main focus will be on their ability to prevent or reverse endocrine resistance and chemoresistance in breast cancer. EXPERT OPINION HER2 targeted agents have extended survival substantially, both in the adjuvant and metastatic setting, pointing to a crucial dependency on this pathway in HER2-amplified breast cancer, including drug resistance reversal. While data on mTOR inhibitors are encouraging and preliminary results on CDK4/6 and Src inhibitors exciting, so far other targeted agents have been of limited benefit when added in concert with conventional therapies. Future clinical trials should systematically explore biomarkers and defects in functional gene cascades to identify relevant biological mechanisms to be targeted therapeutically in breast cancer.
Collapse
Affiliation(s)
- Eilin Austreid
- University of Bergen, Department of Clinical Science, Section of Oncology , Bergen , Norway
| | | | | |
Collapse
|
48
|
Kang HS, Ahn SH, Mishra SK, Hong KM, Lee ES, Shin KH, Ro J, Lee KS, Kim MK. Association of polymorphisms and haplotypes in the insulin-like growth factor 1 receptor (IGF1R) gene with the risk of breast cancer in Korean women. PLoS One 2014; 9:e84532. [PMID: 24392142 PMCID: PMC3879335 DOI: 10.1371/journal.pone.0084532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/15/2013] [Indexed: 11/18/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays an important role in cancer biology. The IGF 1 receptor (IGF1R) overexpression has been associated with a number of hematological neoplasias and solid tumors including breast cancer. However, molecular mechanism involving IGF1R in carcinogenic developments is clearly not known. We investigated the genetic variations across the IGF1R polymorphism and the risk of breast cancer risk in Korean women. A total of 1418 individuals comprising 1026 breast cancer cases and 392 age-matched controls of Korean were included for the analysis. Genomic DNA was extracted from whole blood and single nucleotide polymorphisms (SNPs) were analyzed on the GoldenGate Assay system by Illumina’s Custom Genetic Analysis service. SNPs were selected for linkage disequilibrium (LD) analysis by Haploview. We genotyped total 51 SNPs in the IGF1R gene and examined for association with breast cancer. All the SNPs investigated were in Hardy-Weinberg equilibrium. These SNPs tested were significantly associated with breast cancer risk, after correction for multiple comparisons by adjusting for age at diagnosis, BMI, age at menarche, and age at first parturition. Among 51 IGF1R SNPs, five intron located SNPs (rs8032477, rs7175052, rs12439557, rs11635251 and rs12916884) with homozygous genotype (variant genotype) were associated with decreased risk of breast cancer. Fisher’s combined p-value for the five SNPs was 0.00032. Three intron located SNPs with heterozygous genotypes also had decreased risk of breast cancer. Seven of the 51 IGF1R SNPs were in LD and in one haplotype block, and were likely to be associated with breast cancer risk. Overall, this case-control study demonstrates statistically significant associations between breast cancer risk and polymorphisms in IGF1R gene.
Collapse
Affiliation(s)
- Han-Sung Kang
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sei Hyun Ahn
- Department of Surgery, Division of Breast and Endocrine Surgery, Asan Medical Center, Seoul, Republic of Korea
| | - Siddhartha Kumar Mishra
- Division of Cancer Epidemiology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyeong-Man Hong
- Division of Cancer Biology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Eun Sook Lee
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Shin
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jungsil Ro
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Mi Kyung Kim
- Division of Cancer Epidemiology, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
Pierobon M, Wulfkuhle J, Liotta LA, Petricoin EF. Integration of Protein Network Activation Mapping Technology for Personalized Therapy. MOLECULAR DIAGNOSTICS AND TREATMENT OF PANCREATIC CANCER 2014:367-383. [DOI: 10.1016/b978-0-12-408103-1.00016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Mazzucchelli S, Truffi M, Fiandra L, Sorrentino L, Corsi F. Targeted approaches for HER2 breast cancer therapy: News from nanomedicine? World J Pharmacol 2014; 3:72. [DOI: 10.5497/wjp.v3.i4.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023] Open
|