1
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
2
|
Esmaeilpour D, Ghomi M, Zare EN, Sillanpää M. Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy. ACS APPLIED BIO MATERIALS 2025. [PMID: 40354673 DOI: 10.1021/acsabm.5c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
RNA interference (RNAi) has emerged as a transformative approach for cancer therapy, enabling precise gene silencing through small interfering RNA (siRNA). However, the clinical application of siRNA-based treatments faces challenges such as rapid degradation, inefficient cellular uptake, and immune system clearance. Nanotechnology-enhanced siRNA delivery has revolutionized cancer therapy by addressing these limitations, improving siRNA stability, tumor-specific targeting, and therapeutic efficacy. Recent advancements in nanocarrier engineering have introduced innovative strategies to enhance the safety and precision of siRNA-based therapies, offering new opportunities for personalized medicine. This review highlights three key innovations in nanotechnology-enhanced siRNA delivery: artificial intelligence (AI)-driven nanocarrier design, multifunctional nanoparticles for combined therapeutic strategies, and biomimetic nanocarriers for enhanced biocompatibility. AI-driven nanocarriers utilize machine learning algorithms to optimize nanoparticle properties, improving drug release profiles and minimizing off-target effects. Multifunctional nanoparticles integrate siRNA with chemotherapy, immunotherapy, or photothermal therapy, enabling synergistic treatment approaches that enhance therapeutic outcomes and reduce drug resistance. Biomimetic nanocarriers, including exosome-mimicking systems and cell-membrane-coated nanoparticles, improve circulation time, immune evasion, and targeted tumor delivery. These innovations collectively enhance the precision, efficiency, and safety of siRNA-based cancer therapies. The scope and novelty of these advancements lie in their ability to overcome the primary barriers of siRNA delivery while paving the way for clinically viable solutions. This review provides a comprehensive analysis of the latest developments in nanocarrier fabrication, preclinical and clinical studies, and safety assessments. By integrating AI-driven design, multifunctionality, and biomimicry, nanotechnology-enhanced siRNA delivery holds immense potential for the future of precision cancer therapy.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 71345-1583, Iran
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843 Iran
| | - Ehsan Nazarzadeh Zare
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
3
|
Magnabosco C, Santaniello G, Romano G. Microalgae: A Promising Source of Bioactive Polysaccharides for Biotechnological Applications. Molecules 2025; 30:2055. [PMID: 40363860 PMCID: PMC12073197 DOI: 10.3390/molecules30092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/27/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Polysaccharides (PSs) are the most abundant carbohydrates in nature, performing essential biological functions such as immune system regulation, structural support, and cell communication. PSs from marine microalgae have gained increasing attention due to their diverse biological activities and potential applications in various fields, including the human health sector. These natural macromolecules, primarily composed of glucose, xylose, galactose, rhamnose, and fucose, exhibit bioactive properties influenced by their molecular weight, sulfation degree, and structural complexity. Microalgal PSs can function as antiviral, antimicrobial, antioxidant, immunomodulatory, and antitumor agents, making them promising candidates for pharmaceutical and nutraceutical applications. Additionally, their physicochemical properties make them valuable as bioactive ingredients in cosmetics, serving as hydrating agents, UV protectants, and anti-ageing compounds. The production of PSs from microalgae presents a sustainable alternative to terrestrial plants, as microalgae can be cultivated under controlled conditions, ensuring high yield and purity while minimizing environmental impact. Despite their potential, challenges remain in optimizing extraction techniques, enhancing structural characterization, and scaling up production for commercial applications. This review provides an overview of the principal biological activities of PSs from eukaryotic microalgae and their possible use as ingredients for cosmetic applications. Challenges to address to implement their use as products to improve human health and wellbeing are also discussed.
Collapse
Affiliation(s)
- Chiara Magnabosco
- National Research Council-Water Research Institute, Corso Tonolli 50, 28922 Verbania-Pallanza, Italy;
- Science and High Technology Department, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Giovanna Santaniello
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy;
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
4
|
Gerszberg A, Kolek L, Hnatuszko-Konka K. In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae. Int J Mol Sci 2025; 26:3890. [PMID: 40332780 PMCID: PMC12028317 DOI: 10.3390/ijms26083890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Microalgae represent a promising platform for the synthesis of recombinant proteins, particularly in the context of biopharmaceutical applications. Their unique combination of eukaryotic cellular machinery and prokaryotic-like simplicity offers several advantages, including the ability to perform complex post-translational modifications, rapid growth rates, and cost-effective culture conditions. Advances in genome sequencing, genetic engineering tools, and omics technologies have significantly enhanced the feasibility and efficiency of using microalgae for therapeutic protein production. These advancements, coupled with the development of well-established transformation methods and optimized vectors, have enabled the successful expression of various biopharmaceuticals, ranging from vaccines to enzymes. Here, the main stages and current status of the production of exogenic recombinant proteins dedicated to human therapy are presented.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Ludmiła Kolek
- Institute of Ichthyobiology and Aquaculture in Gołysz, Polish Academy of Science, Zaborze, Kalinowa St 2, 43-520 Chybie, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
5
|
Zeng C, Hua S, Zhou J, Zeng T, Chen J, Su L, Jiang A, Zhou M, Tang Z. Oral Microalgae-Based Biosystem to Enhance Irreversible Electroporation Immunotherapy in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409381. [PMID: 39874200 PMCID: PMC12005737 DOI: 10.1002/advs.202409381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/22/2024] [Indexed: 01/30/2025]
Abstract
Irreversible electroporation (IRE) is a novel local tumor ablation technique that can potentially stimulate immune responses. However, IRE alone cannot effectively activate the immune system or prevent distant metastases. Therefore, this study utilized the biocompatibility of Chlorella vulgaris (C. vulgaris) and polydopamine (PDA) adhesive properties to encapsulate a PD-1 inhibitor (PI). The PDA coating protects the drug from degradation by stomach acid and enhances its intestinal absorption. This carrier demonstrates excellent in vivo drug release control and biodistribution, significantly increasing the oral bioavailability of PI. Combining IRE with this natural carrier significantly improves the therapeutic efficacy, which increases the local drug concentration and activates the immune system. This system demonstrates significantly improved therapeutic efficacy against local tumors compared with PI or IRE alone and significantly reduces PI-associated side effects. A convenient oral delivery system is developed using this readily available natural micro-carrier that not only improves the therapeutic effect of IRE but also mitigates its adverse effects, indicating significant potential for clinical applications. This discovery offers a new strategy for hepatocellular carcinoma treatment with the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Shiyuan Hua
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
- Zhejiang University‐Ordos City Etuoke Banner Joint Research CenterZhejiang UniversityHaining314400China
- The National Key Laboratory of Biobased Transportation Fuel TechnologyZhejiang UniversityHangzhou310027China
| | - Jiayu Zhou
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- School of MedicineShihezi UniversityShiheziXinjiang832002China
| | - Tangye Zeng
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Jianke Chen
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Lijian Su
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
| | - Angfeng Jiang
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| | - Min Zhou
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)Zhejiang UniversityHaining314400China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
- Institute of Translational MedicineZhejiang UniversityHangzhou310029China
- Zhejiang University‐Ordos City Etuoke Banner Joint Research CenterZhejiang UniversityHaining314400China
- The National Key Laboratory of Biobased Transportation Fuel TechnologyZhejiang UniversityHangzhou310027China
| | - Zhe Tang
- Department of SurgeryCenter for Cancer Medicinethe Fourth Affiliated Hospital of School of MedicineInternational School of MedicineInternational Institutes of MedicineZhejiang UniversityYiwu322000China
- Department of SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310000China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancerthe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwu322000China
| |
Collapse
|
6
|
Wang R, Wang Z, Zhang M, Zhong D, Zhou M. Application of photosensitive microalgae in targeted tumor therapy. Adv Drug Deliv Rev 2025; 219:115519. [PMID: 39955076 DOI: 10.1016/j.addr.2025.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Microalgae present a novel and multifaceted approach to cancer therapy by modulating the tumor-associated microbiome (TAM) and the tumor microenvironment (TME). Through their ability to restore gut microbiota balance, reduce inflammation, and enhance immune responses, microalgae contribute to improved cancer treatment outcomes. As photosynthetic microorganisms, microalgae exhibit inherent anti-tumor, antioxidant, and immune-regulating properties, making them valuable in photodynamic therapy and tumor imaging due to their capacity to generate reactive oxygen species. Additionally, microalgae serve as effective drug delivery vehicles, leveraging their biocompatibility and unique structural properties to target the TME more precisely. Microalgae-based microrobots further expand their therapeutic potential by autonomously navigating complex biological environments, offering a promising future for precision-targeted cancer treatments. We position microalgae as a multifunctional agent capable of modulating TAM, offering novel strategies to enhance TME and improve the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China
| | - Zhouyue Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Min Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China
| | - Danni Zhong
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China; Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining 314400, China; Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Haining 314400, China.
| |
Collapse
|
7
|
Hosny S, Elshobary ME, El-Sheekh MM. Unleashing the power of microalgae: a pioneering path to sustainability and achieving the sustainable development goals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35885-8. [PMID: 39920498 DOI: 10.1007/s11356-025-35885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
This study explores the remarkable potential of algae in addressing global sustainability challenges. Microalgae, in particular, emerge as sustainability champions. Their applications span an impressive array of industries and processes, including food and feed production, biofuels, cosmetics, pharmaceuticals, and environmental remediation. This versatility positions algae as key players in achieving over 50% of UN Sustainable Development Goals (SDGs) simultaneously, addressing issues such as climate action, clean water and sanitation, affordable and clean energy, and zero hunger. From sequestering carbon, purifying wastewater, and producing clean energy to combating malnutrition, algae demonstrates unparalleled potential. Their ability to flourish in extreme conditions and their rapid growth rates further enhance their appeal for large-scale cultivation. As research advances, innovative applications continue to emerge, such as algae-based bioplastics and dye-sensitized solar cells, promising novel solutions to pressing global issues. This study illuminates how harnessing the power of algae can drive us towards a more resilient, sustainable world. By leveraging algae's multifaceted capabilities, we can tackle climate change, resource scarcity, and economic development concurrently. The research highlights the critical role of algae in promoting circular economy principles and achieving a harmonious balance between human needs and environmental preservation, paving the way for a greener, more sustainable future.
Collapse
Affiliation(s)
- Shimaa Hosny
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, Bremerhaven, 27570, Germany.
| | - Mostafa M El-Sheekh
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
8
|
Vujović T, Paradžik T, Babić Brčić S, Piva R. Unlocking the Therapeutic Potential of Algae-Derived Compounds in Hematological Malignancies. Cancers (Basel) 2025; 17:318. [PMID: 39858100 PMCID: PMC11763723 DOI: 10.3390/cancers17020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Algae are a rich source of bioactive compounds that have a wide range of beneficial effects on human health and can show significant potential in the treatment of hematological malignancies such as leukemia, lymphoma, and multiple myeloma. These diseases often pose a therapeutic challenge despite recent advances in treatment (e.g., the use of immunomodulatory drugs, proteasome inhibitors, CD38 monoclonal antibodies, stem cell transplant, and targeted therapy). A considerable number of patients experience relapses or resistance to the applied therapies. Algal compounds, alone or in combination with chemotherapy or other more advanced therapies, have exhibited antitumor and immunomodulatory effects in preclinical studies that may improve disease outcomes. These include the ability to induce apoptosis, inhibit tumor growth, and improve immune responses. However, most of these studies are conducted in vitro, often without in vivo validation or clinical trials. This paper summarizes the current evidence on the in vitro effects of algae extracts and isolated compounds on leukemia, lymphoma, and myeloma cell lines. In addition, we address the current advances in the application of algae-derived compounds as targeted drug carriers and their synergistic potential against hematologic malignancies.
Collapse
Affiliation(s)
- Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (T.V.); (S.B.B.)
| | - Tina Paradžik
- Department of Physical Chemistry, Rudjer Boskovic Insitute, 10000 Zagreb, Croatia;
| | - Sanja Babić Brčić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (T.V.); (S.B.B.)
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| |
Collapse
|
9
|
Rakhi SF, Reza AHMM, Davies B, Wang J, Qin J, Tang Y. Improvement of growth and lipid accumulation in microalgae with aggregation-induced emission-based nanomaterials towards sustainable lipid production. NANOSCALE 2025; 17:1308-1316. [PMID: 39620719 DOI: 10.1039/d4nr02361g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microalgae are a hot research area owing to their promising applications for sustainable food, biofunctional compounds, and biofuel feedstock. However, low lipid content in algal biomass is still a challenge that needs to be resolved for commercial use. The current approaches are not satisfactory for achieving high growth and lipid accumulation in algal cells. This research aims to understand and evaluate the effects of light spectral shift on growth and lipid biosynthesis in a green microalga, Chlamydomonas reinhardtii. As a novel approach, an aggregation-induced emission luminogen (AIEgen), TPA-A (C21H19NO), was introduced into the culture media for tailoring the wavelength to a specific range to enhance photosynthesis and lipid production. Algal growth almost doubled at 10 μM TPA-A exposure compared to the control. A significant increase (*p < 0.05) in lipid accumulation was observed in the algal cells exposed to TPA-A. The elevated level of chlorophyll was attributed to fast algal growth. Furthermore, this luminogen was highly biocompatible (∼97% cell viability) on the HaCaT cell line at a concentration of 10 μM in under light conditions. No residues of TPA-A were detected after 7 days in culture media, indicating that this AIEgen was easily degradable. This AIE-based nanomaterial overcomes the conventional fluorophores' aggregation-caused quenching effect by providing increased fluorescence with AIEgen. This approach for lipid induction with increased algal growth provides potential for the algal biofactory to produce sustainable bioproducts and eco-friendly biofuels.
Collapse
Affiliation(s)
- Sharmin Ferdewsi Rakhi
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Abdul Hakim Mohammad Mohsinul Reza
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| | - Brynley Davies
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Jianzhong Wang
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| | - Youhong Tang
- College of Science and Engineering, Flinders University, South Australia 5042, Australia.
- Institute for NanoScale Science and Technology, Flinders University, South Australia 5042, Australia
| |
Collapse
|
10
|
Ferdewsi Rakhi S, Mohammad Mohsinul Reza AH, Wang J, Tang Y, Qin J. Enhancement of Growth and Lipid Production in Microalgae Using Aggregation-Induced Emission Based Luminescent Material for Sustainable Food and Fuel. Chem Asian J 2025; 20:e202401077. [PMID: 39375156 DOI: 10.1002/asia.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Aggregation-Induced Emission (AIE) based nanomaterials are progressively gaining momentum owing to their evolvement into an interdisciplinary field ranging from biomass and biomolecule yield to image-guided photodynamic therapy. This study focuses on a novel strategy to enhance growth, lipid accumulation, and in vivo fluorescence visualisation in green microalgae Chlamydomonas reinhardtii using AIE nanoparticles to quantify radical changes. The absorption of AIE photosensitiser (PS), TTMN (C26H17N3S[M]+) was recorded from 420 to 570 nm with a peak at 500 nm, and the emission ranged from 550 to 800 nm with a peak at 650 nm. As a reactive oxygen species (ROS) molecule, H2O2 generation of TTMN in C. reinhardtii cells was detected with AIE nanoprobes TPE-BO (C38H42B2O4). H2O2 accumulation increased with the increase of TTMN concentrations. The maximum growth (2.1×107 cell/mL) was observed at 10 μM TTMN-exposed C. reinhardtii cells. Significant lipid accumulation was found in both 10 and 15 μM TTMN-treated cells. For lipid visualisation, an AIE nanoprobe, 2-DPAN (C24H18N2O) was used, and superior fluorescence was determined and compared with the traditional BODIPY dye. Cytotoxicity analysis of 10 μM TTMN on the HaCat cell line with 86.2 % cell viability revealed its high biocompatibility on living cells. This AIE-based nanotechnology provides a novel approach for microalgae-derived sustainable biomass and eco-friendly biofuel production.
Collapse
Affiliation(s)
- Sharmin Ferdewsi Rakhi
- College of Science and Engineering, Flinders University, South Australia, 5042, Bedford Park, Australia
- Institute for NanoScale Science and Technology, Flinders University, South Australia, 5042, Bedford Park, Australia
| | - Abdul Hakim Mohammad Mohsinul Reza
- College of Science and Engineering, Flinders University, South Australia, 5042, Bedford Park, Australia
- Institute for NanoScale Science and Technology, Flinders University, South Australia, 5042, Bedford Park, Australia
| | - Jianzhong Wang
- College of Science and Engineering, Flinders University, South Australia, 5042, Bedford Park, Australia
- Institute for NanoScale Science and Technology, Flinders University, South Australia, 5042, Bedford Park, Australia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Youhong Tang
- College of Science and Engineering, Flinders University, South Australia, 5042, Bedford Park, Australia
- Institute for NanoScale Science and Technology, Flinders University, South Australia, 5042, Bedford Park, Australia
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia, 5042, Bedford Park, Australia
| |
Collapse
|
11
|
Tsamesidis I, Pappa A, Charisis A, Prentza Z, Theocharis K, Patsias A, Foukas D, Chatzidoukas C, Kalogianni EP. Impact of Chlorella sorokiniana feed additive on poultry growth health and oxidative stress in erythrocytes. Sci Rep 2024; 14:31588. [PMID: 39738085 PMCID: PMC11685776 DOI: 10.1038/s41598-024-76998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/18/2024] [Indexed: 01/01/2025] Open
Abstract
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale. Growth performance parameters (weight, feed conversion ratio (FCR), mortality, European Production Efficiency Index (EPEF)) and the immune system response are examined. In addition, it examines well-being gut health and nutrient absorption related variables via macroscopical and histological analysis. Finally, red blood cell (RBC) morphology and oxidative stress parameters (reactive oxygens species (ROS) and malondialdehyde level) in the whole blood as well as the lipid profile of the adipose tissue are determined. Addition of Chlorella sorokiniana at 0.1% resulted improved growth performance parameters whereas the ROS levels were significantly decreased indicating reduced oxidative stress. Finally, the results of histological analyses of the intestine on parameters related to nutrient absorption correlated with the results on growth performance. On the other hand, addition Chlorella sorokiniana at 1% did not affect significantly the growth performance parameters, resulted in increased footpad dermatitis, increased oxidative stress and alterations in RBC.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece
| | - Anastasia Pappa
- Agricultural Poultry Cooperation of Ioannina "PINDOS", 45500, Rodotopi, Ioannina, Greece
| | - Aggelos Charisis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece
| | - Zoi Prentza
- Agricultural Poultry Cooperation of Ioannina "PINDOS", 45500, Rodotopi, Ioannina, Greece
| | | | - Apostolos Patsias
- Agricultural Poultry Cooperation of Ioannina "PINDOS", 45500, Rodotopi, Ioannina, Greece
| | - Dimitrios Foukas
- Agricultural Poultry Cooperation of Ioannina "PINDOS", 45500, Rodotopi, Ioannina, Greece
| | - Christos Chatzidoukas
- Laboratory of Biochemical and Biotechnological Processes (LB2P), Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), 54124, Thessaloniki, Greece
| | - Eleni P Kalogianni
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
| |
Collapse
|
12
|
Liu S, Kong Z, Guo H, Zhang Y, Han X, Gao Y, Daigger GT, Zhang G, Li R, Liu Y, Zhang P, Song G. Performance, mechanism regulation and resource recycling of bacteria-algae symbiosis system for wastewater treatment: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125019. [PMID: 39326826 DOI: 10.1016/j.envpol.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
The bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer. Additionally, the efficacy of the system in removing nitrogen, phosphorus, and heavy metals, as well as its role in CO2 reduction and bioresource recycling, is thoroughly elaborated. Potential future research of bacteria-algae cell factory producing bioenergy production, feed or fertilizers are summarized. This paper clearly presents effective strategies for efficiently removing pollutants, reducing carbon emissions, and promoting resource recycling in the field of wastewater treatment. It also provides recommendations for further research on utilizing microbial-algal symbiotic systems to remove novel pollutants from wastewater and extract value-added products from the resulting biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Zhihui Kong
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Haoyi Guo
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhong Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Xiaohong Han
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yatong Gao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI, 48109, USA.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Ruihua Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou, 450046, China.
| |
Collapse
|
13
|
Gamal R, Shreadah MA. Marine microalgae and their industrial biotechnological applications: A review. J Genet Eng Biotechnol 2024; 22:100407. [PMID: 39674656 PMCID: PMC11387356 DOI: 10.1016/j.jgeb.2024.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/03/2024] [Accepted: 07/31/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND For use in specialized programs in the food, pharmaceutical, nutraceutical, cosmetic, and animal feed sectors, micro-algal biomass has been generated industrially. They can be grown in closed buildings, such as photobioreactors, or open structures. The utilization of biomass from microalgae for energy production is another crucial topic. Because of the world's diminishing petroleum sources and the greenhouse gas emissions from gasoline lines, it is now obvious that fuels generated from petroleum are not sustainable. RESULTS Microalgae can produce a variety of unique, sustainable biofuels. These include biodiesel made from trans-esterification of microalgal lipids, bioethanol from fermentation of carbohydrates, methane created by anaerobic digestion of algal biomass, and biohydrogen produced by photobiological processes. The idea of using microalgae as a fuel source is not entirely novel. CONCLUSION This analysis emphasizes the significance of recent and noteworthy advancements in the industrial usage of microalgae, with an emphasis on their biotechnological applications.
Collapse
Affiliation(s)
- Reham Gamal
- National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | | |
Collapse
|
14
|
Rajput BK, Ikram SF, Tripathi BN. Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins. PROTOPLASMA 2024; 261:1105-1125. [PMID: 38970700 DOI: 10.1007/s00709-024-01967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Monoclonal antibodies (mAbs) have become indispensable tools in various fields, from research to therapeutics, diagnostics, and industries. However, their production, primarily in mammalian cell culture systems, is cost-intensive and resource-demanding. Microalgae, diverse photosynthetic microorganisms, are gaining attention as a favorable option for manufacturing mAbs and various other recombinant proteins. This review explores the potential of microalgae as a robust expression system for biomanufacturing high-value proteins. It also highlights the diversity of microalgae species suitable for recombinant protein. Nuclear and chloroplast genomes of some microalgae have been engineered to express mAbs and other valuable proteins. Codon optimization, vector construction, and other genetic engineering techniques have significantly improved recombinant protein expression in microalgae. These accomplishments demonstrate the potential of microalgae for biopharmaceutical manufacturing. Microalgal biotechnology holds promise for revolutionizing the production of mAbs and other therapeutic proteins, offering a sustainable and cost-effective solution to address critical healthcare needs.
Collapse
Affiliation(s)
- Balwinder Kaur Rajput
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sana Fatima Ikram
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Bhumi Nath Tripathi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India.
| |
Collapse
|
15
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
16
|
Pua LDCG, Margareth Arrieta L, Rincon Montenegro JC, Di Mare Pareja LA, Triana YP, Reyes AF, Paredes Mendez VN. Enhancing corrosion resistance of biodegradable magnesium with dicalcium phosphate dihydrate and Chlorella sp. biomass. iScience 2024; 27:110761. [PMID: 39314238 PMCID: PMC11418139 DOI: 10.1016/j.isci.2024.110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Magnesium shows promise as a material for temporary fixation, yet its rapid corrosion poses health risks due to metal ion release. To mitigate these concerns, a biofunctionalization approach involving dicalcium phosphate dihydrate (DCPD) compounds and Chlorella sp. biomass was employed via electrodeposition, silanization, and dip-coating. Surface characterization using XRD, FTIR, and SEM confirmed successful deposition and immobilization. Corrosion behavior was assessed through electrochemical, immersion, and atomic absorption tests, revealing improved resistance and reduced Mg2+ ion release. The coatings demonstrated significant enhancement in corrosion resistance, guarding against pitting and cracks. The findings suggest the potential of Mg/DCPD and Mg/DCPD/microalgae coatings in addressing corrosion-related risks in temporary fixation applications, promising improved biocompatibility and longevity for medical implants.
Collapse
Affiliation(s)
| | - Lily Margareth Arrieta
- Department of Mechanical Engineering, Universidad del Norte, Km 5 Via Puerto Colombia, Barranquilla, Colombia
| | | | | | - Yaneth Pineda Triana
- Department of Metallurgical Engineering, Universidad Pedagogica y Tecnologica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Ana Fonseca Reyes
- Department of Mechanical Engineering, Universidad del Norte, Km 5 Via Puerto Colombia, Barranquilla, Colombia
| | - Virginia Nathaly Paredes Mendez
- Mechanical Engineering Department, Universidad del Norte, Km5 Vía Puerto Colombia, Barranquilla, Colombia
- Biomedical Engineering Department, Universidad Simón Bolívar, Barranquilla, Colombia
| |
Collapse
|
17
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
18
|
Delfan M, Radkia F, Juybari RA, Daneshyar S, Willems ME, Saeidi A, Hackney AC, Laher I, Zouhal H. Unveiling the Effects of Interval Resistance Training and Chlorella Vulgaris Supplementation on Meteorin-like Protein and Oxidative Stress in Obese Men. Curr Dev Nutr 2024; 8:104428. [PMID: 39279784 PMCID: PMC11402038 DOI: 10.1016/j.cdnut.2024.104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Dysregulation of adipocyte function occurs in obesity. Meteorin-like protein (Metrnl) is a newly discovered modulator of inflammation, metabolism, and differentiation of human adipocytes. The dietary supplement Chlorella Vulgaris (CV) reduces hyperlipidemia, hyperglycemia, and oxidative stress in clinical trials. Objectives To explore the impact of 12 wks of interval resistance training (IRT) and CV supplementation on plasma levels of Metrnl and oxidative stress in males with obesity. Methods Forty-four obese men (BMI: 32.0 ± 1.5 kg/m2, weight: 101.1 ± 2.2 kg, age: 23-35 years) were randomly assigned into 4 groups (n = 11/group): control (CON), CV supplement (CV), IRT, and CV + IRT (CVIRT). The IRT was performed for 12 wks (3 sessions per week). The treatment consisted of a daily intake of CV (1800 mg capsule) or placebo capsules. Blood samples were collected 48 hours before and after the interventions to analyze biomedical measurements. Results The IRT and CVIRT groups had elevations in plasma Metrnl, superoxide dismutase, and total antioxidant capacity levels (all P < 0.0001), and reductions in malondialdehyde (P < 0.0001). Supplementation with CV significantly reduced malondialdehyde (P < 0.001) and increased total antioxidant capacity (P < 0.0001) but failed to alter superoxide dismutase or Metrnl (P > 0.05). Conclusions Although IRT and its combination with CV hold promise for improving Metrnl levels and oxidative status in obesity, combining IRT and CV do not yield greater benefits than IRT alone. Although standalone CV supplementation could favorably impact certain markers of oxidative stress, the effectiveness of CV supplementation appears to have a relatively limited effect across assessed biomarkers and requires further investigation.
Collapse
Affiliation(s)
- Maryam Delfan
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Radkia
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Raheleh Amadeh Juybari
- Department of Exercise Physiology, Faculty of Sport Sciences, Alzahra University, Tehran, Iran
| | - Saeed Daneshyar
- Department of Physical Education, Hamedan University of Technology, Hamedan, Iran
| | - Mark Et Willems
- Institute of Applied Sciences, University of Chichester, Chichester, United Kingdom
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé), Rennes, France
- Institut International des Sciences du Sport, Irodouer, France
| |
Collapse
|
19
|
Rivera-Serrano BV, Cabanillas-Salcido SL, Cordero-Rivera CD, Jiménez-Camacho R, Norzagaray-Valenzuela CD, Calderón-Zamora L, De Jesús-González LA, Reyes-Ruiz JM, Farfan-Morales CN, Romero-Utrilla A, Ruíz-Ruelas VM, Camberos-Barraza J, Camacho-Zamora A, De la Herrán-Arita AK, Angulo-Rojo C, Guadrón-Llanos AM, Rábago-Monzón ÁR, Perales-Sánchez JXK, Valdez-Flores MA, Del Ángel RM, Osuna-Ramos JF. Antiviral Effect of Microalgae Phaeodactylum tricornutum Protein Hydrolysates against Dengue Virus Serotype 2. Mar Drugs 2024; 22:369. [PMID: 39195485 DOI: 10.3390/md22080369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), is a global health threat transmitted by Aedes mosquitoes, resulting in 400 million cases annually. The disease ranges from mild to severe, with potential progression to hemorrhagic dengue. Current research is focused on natural antivirals due to challenges in vector control. This study evaluates the antiviral potential of peptides derived from the microalgae Phaeodactylum tricornutum, known for its bioactive compounds. Microalgae were cultivated under controlled conditions, followed by protein extraction and hydrolysis to produce four peptide fractions. These fractions were assessed for cytotoxicity via the MTT assay and antiviral activity against DENV serotype 2 using flow cytometry and plaque formation assays. The 10-30 kDa peptide fraction, at 150 and 300 μg/mL concentrations, demonstrated no cytotoxicity and significantly reduced the percentage of infected cells and viral titers. These findings suggest that peptides derived from Phaeodactylum tricornutum exhibit promising antiviral activity against dengue virus serotype 2, potentially contributing to developing new therapeutic approaches for dengue.
Collapse
Affiliation(s)
- Bianca Vianey Rivera-Serrano
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
| | - Sandy Lucero Cabanillas-Salcido
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Ricardo Jiménez-Camacho
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | | | | | - Luis Adrián De Jesús-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social (IMSS), Zacatecas 98000, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana, Veracruz 91700, Mexico
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Unidad Cuajimalpa, Ciudad de México 05348, Mexico
| | - Alejandra Romero-Utrilla
- Departamento de Anatomía Patológica, Instituto Mexicano del Seguro Social (IMSS), Culiacán 80200, Mexico
| | | | | | | | | | - Carla Angulo-Rojo
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Departamento de Anatomía Patológica, Instituto Mexicano del Seguro Social (IMSS), Culiacán 80200, Mexico
| | - Alma Marlene Guadrón-Llanos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Maestría en Ciencias en Medicina Traslacional y Salud Publica, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
| | - Ángel Radamés Rábago-Monzón
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Doctorado en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
| | | | - Marco Antonio Valdez-Flores
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Juan Fidel Osuna-Ramos
- Faculty of Medicine, Autonomous University of Sinaloa, Culiacán 80246, Mexico
- Programa de Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa (UAS), Culiacán 80246, Mexico
- Departamento de Anatomía Patológica, Instituto Mexicano del Seguro Social (IMSS), Culiacán 80200, Mexico
| |
Collapse
|
20
|
Singh P, Mohanty SS, Mohanty K. Comprehensive assessment of microalgal-based treatment processes for dairy wastewater. Front Bioeng Biotechnol 2024; 12:1425933. [PMID: 39165401 PMCID: PMC11333367 DOI: 10.3389/fbioe.2024.1425933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
The dairy industry is becoming one of the biggest sectors within the global food industry, and these industries use almost 34% of the water. The amount of water used is governed by the production process and the technologies employed in the plants. Consequently, the dairy industries generate almost 0.2-10 L of wastewater per liter of processed milk, which must be treated before being discharged into water bodies. The cultivation of microalgae in a mixotrophic regime using dairy wastewater enhances biomass growth, productivity, and the accumulation of value-added product. The generated biomass can be converted into biofuels, thus limiting the dependence on petroleum-based crude oil. To fulfill the algal biorefinery model, it is important to utilize every waste stream in a cascade loop. Additionally, the harvested water generated from algal biomass production can be recycled for further microalgal growth. Economic and sustainable wastewater management, along with proper reclamation of nutrients from dairy wastewater, is a promising approach to mitigate the problem of water scarcity. A bibliometric study revealing limited work on dairy wastewater treatment using microalgae for biofuel production. And, limited work is reported on the pretreatment of dairy wastewater via physicochemical methods before microalgal-based treatment. There are still significant gaps remains in large-scale cultivation processes. It is also crucial to discover robust strains that are highly compatible with the specific concentration of contaminants, as this will lead to increased yields and productivity for the targeted bio-product. Finally, research on reutilization of culture media in photobioreactor is necessary to augument the productivity of the entire process. Therefore, the incorporation of the microalgal biorefinery with the wastewater treatment concept has great potential for promoting ecological sustainability.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Satya Sundar Mohanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
21
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
22
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
23
|
Alizade A, Reich T, Jantschke A. Cellulose from dinoflagellates as a versatile and environmentally friendly platform for the production of functionalised cellulose nanofibres. Int J Biol Macromol 2024; 272:132804. [PMID: 38825272 DOI: 10.1016/j.ijbiomac.2024.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Cellulose nanofibres (CNFs), also known as nano-fibrillated cellulose, have emerged as highly promising sustainable biomaterials owing to their numerous advantages, including high accessibility, long-term sustainability, low toxicity, and mechanical properties. Recently, marine organisms have been explored as novel and environmentally friendly sources of cellulose fibers (CFs) due to their easy cultivation, extraction and biocompatibility. Dinoflagellates, a group of marine phytoplankton, have gained particular attention due to their unique cellulosic morphology and lignin-free biomass. Previously, we showed that the unique amorphous nature of dinoflagellate-derived cellulose offers various benefits. This study further explores the potential of dinoflagellate-derived CFs as a sustainable and versatile CNF source. Extracted dinoflagellate cellulose is effectively converted into CNFs via one-step TEMPO oxidation without significant polymer degradation. In addition, the biological compatibility of the CNFs is improved by amine-grafting using putrescine and folic acid. The products are characterised by conductometric titration, zeta potential measurements, TGA, GPC, FTIR, SEM/TEM, XRD, and XPS. Finally, in a proof-of-principle study, the application of the functionalised CNFs in drug delivery is tested using methylene blue as a drug model. Our findings suggest that dinoflagellate-derived CNFs provide an eco-friendly platform that can be easily functionalised for various applications, including drug delivery.
Collapse
Affiliation(s)
- Amina Alizade
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| | - Tobias Reich
- Department of Chemistry - Nuclear Chemistry, Johannes Gutenberg University Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
| | - Anne Jantschke
- Biomineralization/Crystallography, Institute of Geosciences, Johannes Gutenberg University Mainz, J.-J.-Becher-Weg 21, D-55128 Mainz, Germany.
| |
Collapse
|
24
|
Nie J, Wang X, Sun P, Yu D, Yu Z, Qiu Y, Zhao J. Inadvertently enriched cyanobacteria prompted bacterial phosphorus uptake without aeration in a conventional anaerobic/oxic reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172313. [PMID: 38593871 DOI: 10.1016/j.scitotenv.2024.172313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.
Collapse
Affiliation(s)
- Jiaxiang Nie
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Peng Sun
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Deshuang Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengda Yu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ji Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
25
|
Zhong D, Jin K, Wang R, Chen B, Zhang J, Ren C, Chen X, Lu J, Zhou M. Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312275. [PMID: 38277492 DOI: 10.1002/adma.202312275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Patients diagnosed with inflammatory bowel disease (IBD) exhibit a notable prevalence of psychiatric disorders, such as anxiety and depression. Nevertheless, the etiology of psychiatric disorders associated with IBD remains uncertain, and an efficacious treatment approach has yet to be established. Herein, an oral hydrogel strategy (SP@Rh-gel) is proposed for co-delivery of Spirulina platensis and rhein to treat IBD and IBD-associated anxiety and depression by modulating the microbiota-gut-brain axis. SP@Rh-gel improves the solubility, release characteristics and intestinal retention capacity of the drug, leading to a significant improvement in the oral therapeutic efficacy. Oral administration of SP@Rh-gel can reduce intestinal inflammation and rebalance the disrupted intestinal microbial community. Furthermore, SP@Rh-gel maintains intestinal barrier integrity and reduces the release of pro-inflammatory factors and their entry into the hippocampus through the blood-brain barrier, thereby inhibiting neuroinflammation and maintaining neuroplasticity. SP@Rh-gel significantly alleviates the colitis symptoms, as well as anxiety- and depression-like behaviors, in a chronic colitis mouse model. This study demonstrates the significant involvement of the microbiota-gut-brain axis in the development of IBD with psychiatric disorders and proposes a safe, simple, and highly efficient therapeutic approach for managing IBD and comorbid psychiatric disorders.
Collapse
Affiliation(s)
- Danni Zhong
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Kangyu Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Ruoxi Wang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Chaojie Ren
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, P. R. China
| | - Min Zhou
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, P. R. China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, 314400, P. R. China
- National Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Erdos Etuoke Joint Research Center, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310029, P. R. China
| |
Collapse
|
26
|
Kim DK, Rajan P, Cuong DM, Choi JH, Yoon TH, Go GM, Lee JW, Noh SW, Choi HK, Cho SK. Melosira nummuloides Ethanol Extract Ameliorates Alcohol-Induced Liver Injury by Affecting Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8476-8490. [PMID: 38588403 DOI: 10.1021/acs.jafc.3c06261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Do Manh Cuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Ho Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Republic of Korea
| | - Tae Hyeon Yoon
- College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Gyung Min Go
- JDKBIO lnc., Jeju-si, Jeju 63023, Republic of Korea
| | - Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon-Wook Noh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
- College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
27
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
28
|
An X, Zhong D, Wu W, Wang R, Yang L, Jiang Q, Zhou M, Xu X. Doxorubicin-Loaded Microalgal Delivery System for Combined Chemotherapy and Enhanced Photodynamic Therapy of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6868-6878. [PMID: 38294964 DOI: 10.1021/acsami.3c16995] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Osteosarcoma (OS) is considered the most frequent type of primary malignant bone tumor. Currently, radiotherapy, photodynamic (PDT), and other therapies for osteosarcoma are limited by tumor hypoxia and single efficacy and serve side-effects. Herein, we reported a microalgal drug delivery system (SpiD), doxorubicin (DOX)-loaded Spirulina platensis (Spi) for OS therapy. The specific surface of Spirulina platensis allowed for effective loading of DOX via surface channels and electrostatic interactions. Under 650 nm laser irradiation, SpiD enabled high oxygen production by photosynthesis and enhanced reactive oxygen species (ROS) generation via chlorophyll-assisted photosensitization, synergistically killing tumor cells with the released DOX. Combined chemotherapy and enhanced PDT mediated by SpiD exerted synergic antitumor effects and resulted in potent therapeutic efficacy in orthotopic osteosarcoma mice. Furthermore, SpiD could reduce the side-effects of chemotherapy, showing excellent blood and tissue safety. Taken together, this microalgal drug delivery system provided a natural, efficient, safe, and inexpensive strategy for OS treatment.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, China
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Haining 314400, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, China
| |
Collapse
|
29
|
Hammadi Al-Ogaidi DA, Karaçam S, Gurbanov R, Vardar-Yel N. Marine Microalgae Schizochytrium sp. S31: Potential Source for New Antimicrobial and Antibiofilm Agent. Curr Pharm Biotechnol 2024; 25:1478-1488. [PMID: 38465428 DOI: 10.2174/0113892010291960240223054911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The rise of antibiotic-resistant bacteria necessitates the discovery of new, safe, and bioactive antimicrobial compounds. The antibacterial and antibiofilm activity of microalgae makes them a potential candidate for developing natural antibiotics to limit microbial infection in various fields. OBJECTIVE This study aimed to analyze the antibacterial effect of the methanolic extract of Schizochytrium sp. S31 microalgae by broth microdilution and spot plate assays. METHODS The antibacterial effects of Schizochytrium sp. S31 extract was studied on gramnegative pathogens, Pseudomonas aeruginosa, Escherichia coli 35218, Klebsiella pneumonia, which cause many different human infections, and the gram-positive pathogen Streptococcus mutans. At the same time, the antibiofilm activity of the Schizochytrium sp. S31 extract on Pseudomonas aeruginosa and Escherichia coli 35218 bacteria were investigated by crystal violet staining method. RESULTS Schizochytrium sp. S31 extract at a 60% concentration for 8 hours displayed the highest antibacterial activity against P. aeruginosa, E. coli 35218, and K. pneumonia, with a decrease of 87%, 92%, and 98% in cell viability, respectively. The experiment with Streptococcus mutans revealed a remarkable antibacterial effect at a 60% extract concentration for 24 hours, leading to a notable 93% reduction in cell viability. Furthermore, the extract exhibited a dose-dependent inhibition of biofilm formation in P. aeruginosa and E. coli 35218. The concentration of 60% extract was identified as the most effective dosage in terms of inhibition. CONCLUSION This research emphasizes the potential of Schizochytrium sp. S31 as a natural antibacterial and antibiofilm agent with promising applications in the pharmaceutical sectors. This is the first study to examine the antibacterial activity of Schizochytrium sp. S31 microalgae using broth microdilution, spot plate assays, and the antibiofilm activity by a crystal staining method. The findings of this study show that Schizochytrium sp. S31 has antibacterial and antibiofilm activities against critical bacterial pathogens.
Collapse
Affiliation(s)
| | - Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
- Central Research Laboratory, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Nurcan Vardar-Yel
- Department of Medical Laboratory Techniques, Altinbas University, 34147, Istanbul, Turkey
| |
Collapse
|
30
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
31
|
Dubey KK, Kumar A, Baldia A, Rajput D, Kateriya S, Singh R, Nikita, Tandon R, Mishra YK. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol Adv 2023; 69:108267. [PMID: 37813174 DOI: 10.1016/j.biotechadv.2023.108267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Kumar
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark.
| |
Collapse
|
32
|
El-Sheekh MM, AlKafaas SS, Rady HA, Abdelmoaty BE, Bedair HM, Ahmed AA, El-Saadony MT, AbuQamar SF, El-Tarabily KA. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? - A Complete Review of the Literature. Int J Nanomedicine 2023; 18:6601-6638. [PMID: 38026521 PMCID: PMC10644851 DOI: 10.2147/ijn.s423171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant E Abdelmoaty
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Heba M Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid A Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
33
|
Dhokane D, Shaikh A, Yadav A, Giri N, Bandyopadhyay A, Dasgupta S, Bhadra B. CRISPR-based bioengineering in microalgae for production of industrially important biomolecules. Front Bioeng Biotechnol 2023; 11:1267826. [PMID: 37965048 PMCID: PMC10641005 DOI: 10.3389/fbioe.2023.1267826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Microalgae, as photosynthetic organisms, have the potential to produce biomolecules for use in food, feed, cosmetics, nutraceuticals, fuel, and other applications. Faster growth rates and higher protein and lipid content make microalgae a popular chassis for many industrial applications. However, challenges such as low productivity and high production costs have limited their commercialization. To overcome these challenges, bioengineering approaches such as genetic engineering, metabolic engineering, and synthetic biology have been employed to improve the productivity and quality of microalgae-based products. Genetic engineering employing genome editing tools like CRISPR/Cas allows precise and targeted genetic modifications. CRISPR/Cas systems are presently used to modify the genetic makeup of microalgae for enhanced production of specific biomolecules. However, these tools are yet to be explored explicitly in microalgae owing to some limitations. Despite the progress made in CRISPR-based bioengineering approaches, there is still a need for further research to optimize the production of microalgae-based products. This includes improving the efficiency of genome editing tools, understanding the regulatory mechanisms of microalgal metabolism, and optimizing growth conditions and cultivation strategies. Additionally, addressing the ethical, social, and environmental concerns associated with genetic modification of microalgae is crucial for the responsible development and commercialization of microalgae-based products. This review summarizes the advancements of CRISPR-based bioengineering for production of industrially important biomolecules and provides key considerations to use CRISPR/Cas systems in microalgae. The review will help researchers to understand the progress and to initiate genome editing experiments in microalgae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Industries Ltd., Navi Mumbai, India
| |
Collapse
|
34
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
35
|
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina ( Arthrospira) sp. Bioengineering (Basel) 2023; 10:955. [PMID: 37627840 PMCID: PMC10451540 DOI: 10.3390/bioengineering10080955] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorella sp. and Spirulina (Arthrospira) sp. account for over 90% of the global microalgal biomass production and represent one of the most promising aquiculture bioeconomy systems. These microorganisms have been widely recognized for their nutritional and therapeutic properties; therefore, a significant growth of their market is expected, especially in the nutraceutical, food, and beverage segments. However, recent advancements in biotechnology and environmental science have led to the emergence of new applications for these microorganisms. This paper aims to explore these innovative applications, while shedding light on their roles in sustainable development, health, and industry. From this state-of-the art review, it was possible to give an in-depth outlook on the environmental sustainability of Chlorella sp. and Spirulina (Arthrospira) sp. For instance, there have been a variety of studies reported on the use of these two microorganisms for wastewater treatment and biofuel production, contributing to climate change mitigation efforts. Moreover, in the health sector, the richness of these microalgae in photosynthetic pigments and bioactive compounds, along with their oxygen-releasing capacity, are being harnessed in the development of new drugs, wound-healing dressings, photosensitizers for photodynamic therapy, tissue engineering, and anticancer treatments. Furthermore, in the industrial sector, Chlorella sp. and Spirulina (Arthrospira) sp. are being used in the production of biopolymers, fuel cells, and photovoltaic technologies. These innovative applications might bring different outlets for microalgae valorization, enhancing their potential, since the microalgae sector presents issues such as the high production costs. Thus, further research is highly needed to fully explore their benefits and potential applications in various sectors.
Collapse
Affiliation(s)
- Ana P. Abreu
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
36
|
Ugya AY, Chen H, Wang Q. Microalgae biofilm system as an efficient tool for wastewater remediation and potential bioresources for pharmaceutical product production: an overview. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:131-142. [PMID: 37382505 DOI: 10.1080/15226514.2023.2229920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The role of microalgae in wastewater remediation and metabolite production has been well documented, but the limitations of microalgae harvesting and low biomass production call for a more sustainable method of microalgae utilization. The current review gives an insight on how microalgae biofilms can be utilized as a more efficient system for wastewater remediation and as potential source of metabolite for pharmaceutical product production. The review affirms that the extracellular polymeric substance (EPS) is the vital component of the microalgae biofilm because it influences the spatial organization of the organisms forming microalgae biofilm. The EPS is also responsible for the ease interaction between organisms forming microalgae biofilm. This review restate the crucial role play by EPS in the removal of heavy metals from water to be due to the presence of binding sites on its surface. This review also attribute the ability of microalgae biofilm to bio-transform organic pollutant to be dependent on enzymatic activities and the production of reactive oxygen species (ROS). The review assert that during the treatment of wastewater, the wastewater pollutants induce oxidative stress on microalgae biofilms. The response of the microalgae biofilm toward counteracting the stress induced by ROS leads to production of metabolites. These metabolites are important tools that can be harness for the production of pharmaceutical products.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| |
Collapse
|
37
|
Meade E, Rowan N, Garvey M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines (Basel) 2023; 11:992. [PMID: 37243096 PMCID: PMC10223144 DOI: 10.3390/vaccines11050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technical University Shannon Midlands Midwest, N37 HD68 Athlone, Ireland
| | - Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
38
|
Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, Ulmann L. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051050. [PMID: 37237915 DOI: 10.3390/antiox12051050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, microalgae have become a source of molecules for a healthy life. Their composition of carbohydrates, peptides, lipids, vitamins and carotenoids makes them a promising new source of antioxidant molecules. Skeletal muscle is a tissue that requires constant remodeling via protein turnover, and its regular functioning consumes energy in the form of adenosine triphosphate (ATP), which is produced by mitochondria. Under conditions of traumatic exercise or muscular diseases, a high production of reactive oxygen species (ROS) at the origin of oxidative stress (OS) will lead to inflammation and muscle atrophy, with life-long consequences. In this review, we describe the potential antioxidant effects of microalgae and their biomolecules on mitochondrial functions and skeletal muscular oxidative stress during exercises or in musculoskeletal diseases, as in sarcopenia, chronic obstructive pulmonary disease (COPD) and Duchenne muscular dystrophy (DMD), through the increase in and regulation of antioxidant pathways and protein synthesis.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Céline Loiseau
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Claire Mayer
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Martine Côme
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Isabelle Martin
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE (Biology of Organisms, Stress, Health, Environment), Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
39
|
Calabrone L, Carlini V, Noonan DM, Festa M, Ferrario C, Morelli D, Macis D, Fontana A, Pistelli L, Brunet C, Sansone C, Albini A. Skeletonema marinoi Extracts and Associated Carotenoid Fucoxanthin Downregulate Pro-Angiogenic Mediators on Prostate Cancer and Endothelial Cells. Cells 2023; 12:cells12071053. [PMID: 37048126 PMCID: PMC10093511 DOI: 10.3390/cells12071053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
The exploration of natural preventive molecules for nutraceutical and pharmaceutical use has recently increased. In this scenario, marine microorganisms represent an underestimated source of bioactive products endowed with beneficial effects on health that include anti-oxidant, anti-inflammatory, differentiating, anti-tumor, and anti-angiogenic activities. Here, we tested the potential chemopreventive and anti-angiogenic activities of an extract from the marine coastal diatom Skeletonema marinoi Sarno and Zingone (Sm) on prostate cancer (PCa) and endothelial cells. We also tested one of the main carotenoids of the diatom, the xanthophyll pigment fucoxanthin (Fuco). Fuco from the literature is a potential candidate compound involved in chemopreventive activities. Sm extract and Fuco were able to inhibit PCa cell growth and hinder vascular network formation of endothelial cells. The reduced number of cells was partially due to growth inhibition and apoptosis. We studied the molecular targets by qPCR and membrane antibody arrays. Angiogenesis and inflammation molecules were modulated. In particular, Fuco downregulated the expression of Angiopoietin 2, CXCL5, TGFβ, IL6, STAT3, MMP1, TIMP1 and TIMP2 in both prostate and endothelial cells. Our study confirmed microalgae-derived drugs as potentially relevant sources of novel nutraceuticals, providing candidates for potential dietary or dietary supplement intervention in cancer prevention approaches.
Collapse
Affiliation(s)
- Luana Calabrone
- IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: (L.C.); (A.A.)
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | | | | | | | - Debora Macis
- IRCCS Istituto Europeo di Oncologia IEO, 20141 Milan, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Research Council (CNR), 80078 Pozzuoli, Italy
- Department of Biology, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | | - Adriana Albini
- IRCCS Istituto Europeo di Oncologia IEO, 20141 Milan, Italy
- Correspondence: (L.C.); (A.A.)
| |
Collapse
|
40
|
İnan B, Mutlu B, Karaca GA, Koç RÇ, Özçimen D. Bioprospecting Antarctic Microalgae as Anticancer Agent Against PC-3 and AGS Cell Lines. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
41
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Effects of Microalgae on Metabolic Syndrome. Antioxidants (Basel) 2023; 12:449. [PMID: 36830009 PMCID: PMC9952430 DOI: 10.3390/antiox12020449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Metabolic syndrome (MetS) is a cluster of metabolic disturbances, including abdominal obesity, hypertension, hypertriglyceridemia, reduced high-density lipoprotein cholesterol (HDL-C) and hyperglycemia. Adopting a healthier lifestyle and multiple drug-based therapies are current ways to manage MetS, but they have limited efficacy, albeit the prevalence of MetS is rising. Microalgae is a part of the human diet and has also been consumed as a health supplement to improve insulin sensitivity, inflammation, and several components of MetS. These therapeutic effects of microalgae are attributed to the bioactive compounds present in them that exhibit antioxidant, anti-inflammatory, anti-obesity, antihypertensive, hepatoprotective and immunomodulatory effects. Therefore, studies investigating the potential of microalgae in alleviating MetS are becoming more popular, but a review on this topic remains scarce. In this review, we discuss the effects of microalgae, specifically on MetS, by reviewing the evidence from scientific literature covering in vitro and in vivo studies. In addition, we also discuss the underlying mechanisms that modulate the effects of microalgae on MetS, and the limitations and future perspectives of developing microalgae as a health supplement for MetS. Microalgae supplementation is becoming a viable approach in alleviating metabolic disturbances and as a unique addition to the management of MetS.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
42
|
Shaban NS, Radi AM, Abdelgawad MA, Ghoneim MM, Al-Serwi RH, Hassan RM, Mohammed ET, Radi RA, Halfaya FM. Targeting Some Key Metalloproteinases by Nano-Naringenin and Amphora coffeaeformis as a Novel Strategy for Treatment of Osteoarthritis in Rats. Pharmaceuticals (Basel) 2023; 16:260. [PMID: 37259405 PMCID: PMC9959020 DOI: 10.3390/ph16020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2024] Open
Abstract
Osteoarthritis (OA) represents the highest degenerative disorder. Because cartilage erosion is a common pathological alteration in OA, targeting some key metalloproteinases such as MMP-3, ADAMTS-5 besides their inhibitor TIMP-3 by natural products, could be an effective strategy to protect against osteoarthritis. Forty female Wister rats were categorized into five equal groups. Control, osteoarthritic (OA) (monosodium iodoacetate (MIA) 2 mg/50 µL saline, single intra-articular injection), OA+ indomethacin (2 mg/kg/daily/orally), OA+ nano-naringenin (25 mg/kg/daily/orally), and OA+ Amphora coffeaeformis (772 mg/kg/daily/orally). Treatments were initiated on the 8th day after osteoarthritis induction and continued for 28 days thereafter. Finally, blood and knee joint samples were collected from all rats for biochemical and histopathological evaluations. The current study showed that MIA induced oxidative stress, which resulted in changes in the inflammatory joint markers associated with increased right knee diameter and higher clinical scores for lameness. Amphora coffeaeformis followed by nano-naringenin exhibited a potential anti-arthritic activity by reducing the concentrations of serum MMP-3, ADAMTS-5, and joint MDA and increasing the levels of serum TIMP-3 and joint GSH, similar to indomethacin. The histopathological results confirmed these outcomes. In conclusion, Amphora coffeaeformis and nano-naringenin can be considered as natural therapeutic agents for osteoarthritis owing to their antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Nema S Shaban
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abeer M Radi
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 72341, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Randa M Hassan
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rania A Radi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma M Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
43
|
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023; 52:1068-1102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-based therapy holds great potential to address unmet medical needs and revolutionize the healthcare industry, as demonstrated by several therapeutics such as CAR-T cell therapy and stem cell transplantation that have achieved great success clinically. Nevertheless, natural cells are often restricted by their unsatisfactory in vivo trafficking and lack of therapeutic payloads. Chemical engineering offers a cost-effective, easy-to-implement engineering tool that allows for strengthening the inherent favorable features of cells and confers them new functionalities. Moreover, in accordance with the trend of precision medicine, leveraging chemical engineering tools to tailor cells to accommodate patients individual needs has become important for the development of cell-based treatment modalities. This review presents a comprehensive summary of the currently available chemically engineered tools, introduces their application in advanced diagnosis and precision therapy, and discusses the current challenges and future opportunities.
Collapse
Affiliation(s)
- Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Ting-Jing Chen-Mayfield
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Aryan Saini
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Afton Martin LaMere
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA. .,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.,Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
44
|
Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023; 15:nu15020477. [PMID: 36678348 PMCID: PMC9861193 DOI: 10.3390/nu15020477] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It is estimated that by 2050, the world's population will exceed 10 billion people, which will lead to a deterioration in global food security. To avoid aggravating this problem, FAO and WHO have recommended dietary changes to reduce the intake of animal calories and increase the consumption of sustainable, nutrient-rich, and calorie-efficient products. Moreover, due to the worldwide rising incidence of non-communicable diseases and the demonstrated impact of diet on the risk of these disorders, the current established food pattern is focused on the consumption of foods that have functionality for health. Among promising sources of functional foods, microalgae are gaining worldwide attention because of their richness in high-value compounds with potential health benefits. However, despite the great opportunities to exploit microalgae in functional food industry, their use remains limited by challenges related to species diversity and variations in cultivation factors, changes in functional composition during extraction procedures, and limited evidence on the safety and bioavailability of microalgae bioactives. The aim of this review is to provide an updated and comprehensive discussion on the nutritional value, biological effects, and digestibility of two microalgae genera, Tetraselmis and Nannochloropsis, as basis of their potential as ingredients for the development of functional foods.
Collapse
|
45
|
Savvidou MG, Georgiopoulou I, Antoniou N, Tzima S, Kontou M, Louli V, Fatouros C, Magoulas K, Kolisis FN. Extracts from Chlorella vulgaris Protect Mesenchymal Stromal Cells from Oxidative Stress Induced by Hydrogen Peroxide. PLANTS (BASEL, SWITZERLAND) 2023; 12:361. [PMID: 36679074 PMCID: PMC9866266 DOI: 10.3390/plants12020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Microalgae as unicellular eukaryotic organisms demonstrate several advantages for biotechnological and biological applications. Natural derived microalgae products demand has increased in food, cosmetic and nutraceutical applications lately. The natural antioxidants have been used for attenuation of mitochondrial cell damage caused by oxidative stress. This study evaluates the in vitro protective effect of Chlorella vulgaris bioactive extracts against oxidative stress in human mesenchymal stromal/stem cells (MSCs). The classical solid-liquid and the supercritical extraction, using biomass of commercially available and laboratory cultivated C. vulgaris, are employed. Oxidative stress induced by 300 μM H2O2 reduces cell viability of MSCs. The addition of C. vulgaris extracts, with increased protein content compared to carbohydrates, to H2O2 treated MSCs counteracted the oxidative stress, reducing reactive oxygen species levels without affecting MSC proliferation. The supercritical extraction was the most efficient extraction method for carotenoids resulting in enhanced antioxidant activity. Pre-treatment of MSCs with C. vulgaris extracts mitigates the oxidative damage ensued by H2O2. Initial proteomic analysis of secretome from licensed (TNFα-activated) MSCs treated with algal extracts reveals a signature of differentially regulated proteins that fall into clinically relevant pathways such as inflammatory signaling. The enhanced antioxidative and possibly anti-inflammatory capacity could be explored in the context of future cell therapies.
Collapse
Affiliation(s)
- Maria G. Savvidou
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Ioulia Georgiopoulou
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Nasia Antoniou
- TheraCell Advanced Biotechnologies, 14564 Kifisia, Greece
| | - Soultana Tzima
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Maria Kontou
- TheraCell Advanced Biotechnologies, 14564 Kifisia, Greece
| | - Vasiliki Louli
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | | | - Kostis Magoulas
- Laboratory of Thermodynamics and Transport Phenomena, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Fragiskos N. Kolisis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
46
|
Marine macroalgae polysaccharides-based nanomaterials: an overview with respect to nanoscience applications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Exploration of marine macroalgae poly-saccharide-based nanomaterials is emerging in the nanotechnology field, such as wound dressing, water treatment, environmental engineering, biosensor, and food technology.
Main body
In this article, the current innovation and encroachments of marine macroalgae polysaccharide-based nanoparticles (NPs), and their promising opportunities, for future prospect in different industries are briefly reviewed. The extraction and advancement of various natural sources from marine polysaccharides, including carrageenan, agarose, fucoidan, and ulvan, are highlighted in order to provide a wide range of impacts on the nanofood technology. Further, seaweed or marine macroalgae is an unexploited natural source of polysaccharides, which involves numerous different phytonutrients in the outermost layer of the cell and is rich in sulphated polysaccharides (SP), SP-based nanomaterial which has an enhanced potential value in the nanotechnology field.
Conclusion
At the end of this article, the promising prospect of SP-based NPs and their applications in the food sector is briefly addressed.
Collapse
|
47
|
Zewail M, Gaafar PME, Youssef NAHA, Ali ME, Ragab MF, Kamal MF, Noureldin MH, Abbas H. Novel Siprulina platensis Bilosomes for Combating UVB Induced Skin Damage. Pharmaceuticals (Basel) 2022; 16:36. [PMID: 36678533 PMCID: PMC9865528 DOI: 10.3390/ph16010036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The recent interest in bioactive compounds from natural sources has led to the evolution of the skin care industry. Efforts to develop biologically active ingredients from natural sources have resulted in the emergence of enhanced skin care products. Spirulina (SPR), a nutritionally enriched cyanobacteria-type microalga, is rich in nutrients and phytochemicals. SPR possesses antioxidant, immunomodulatory, and anti-inflammatory activities. Spirulina-loaded bilosomes (SPR-BS), a novel antiaging drug delivery system, were designed for the first time by incorporation in a lecithin−bile salt-integrated system for bypassing skin delivery obstacles. The optimized BS had good entrapment efficiency, small particle size, optimal zeta potential, and sustained drug release pattern. Blank and SPR-loaded BS formulations were safe, with a primary irritancy index of <2 based on the Draize test. In vivo tests were conducted, and photoprotective antiaging effects were evaluated visually and biochemically by analyzing antioxidant, anti-inflammatory, and anti-wrinkling markers following ultraviolet (UV) B irradiation. Results of biochemical marker analysis and histopathological examination confirmed the superior antiaging effect of SPR-BS compared with SPR. Thus, SPR-loaded BS is a promising nanoplatform for SPR delivery, can be used for treating UV-induced skin damage, and offers maximum therapeutic outcomes.
Collapse
Affiliation(s)
- Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Nancy Abdel Hamid Abou Youssef
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Alexandria P.O. Box 21500, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mai F. Ragab
- Pharmacology Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo P.O. Box 11835, Egypt
| | - Miranda F. Kamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria P.O. Box 1029, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour P.O. Box 22511, Egypt
| |
Collapse
|
48
|
Baldisserotto C, Gentili V, Rizzo R, Di Donna C, Ardondi L, Maietti A, Pancaldi S. Characterization of Neochloris oleoabundans under Different Cultivation Modes and First Results on Bioactivity of Its Extracts against HCoV-229E Virus. PLANTS (BASEL, SWITZERLAND) 2022; 12:26. [PMID: 36616154 PMCID: PMC9823352 DOI: 10.3390/plants12010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Microalgae are proposed in several biotechnological fields because of their ability to produce biomass enriched in high-value compounds according to cultivation conditions. Regarding the health sector, an emerging area focuses on natural products exploitable against viruses. This work deals with the characterization of the green microalga Neochloris oleoabundans cultivated under autotrophic and mixotrophic conditions as a source of whole aqueous extracts, tested as antivirals against HCoV-229E (Coronaviridae family). Glucose was employed for mixotrophic cultures. Growth and maximum quantum yield of photosystem II were monitored for both cultivations. Algae extracts for antiviral tests were prepared using cultures harvested at the early stationary phase of growth. Biochemical and morphological analyses of algae indicated a different content of the most important classes of bioactive compounds with antiviral properties (lipids, exo-polysaccharides, and total phenolics, proteins and pigments). To clarify which phase of HCoV-229E infection on MRC-5 fibroblast cells was affected by N. oleoabundans extracts, four conditions were tested. Extracts gave excellent results, mainly against the first steps of virus infection. Notwithstanding the biochemical profile of algae/extracts deserves further investigation, the antiviral effect may have been mainly promoted by the combination of proteins/pigments/phenolics for the extract derived from autotrophic cultures and of proteins/acidic exo-polysaccharides/lipids in the case of mixotrophic ones.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Chiara Di Donna
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Luna Ardondi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy
| |
Collapse
|
49
|
Youssef SM, El-Serafy RS, Ghanem KZ, Elhakem A, Abdel Aal AA. Foliar Spray or Soil Drench: Microalgae Application Impacts on Soil Microbiology, Morpho-Physiological and Biochemical Responses, Oil and Fatty Acid Profiles of Chia Plants under Alkaline Stress. BIOLOGY 2022; 11:1844. [PMID: 36552353 PMCID: PMC9775337 DOI: 10.3390/biology11121844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Alkaline soil inhibits the growth and productivity of chia plants (Salvia hispanica L.). Microalgae as biofertilizers have been reported to induce alkalinity tolerance and enhance yield and quality. However, limited information is known concerning the influence of microalgae application on medical plants, including chia. Our experiments were performed to evaluate the effect of microalgae strains of Arthrospira platensis, Chlorella vulgaris, Nostoc muscorum, and Anabaena azollae with two application methods, foliar spray and soil drench, on morpho-physiological and biochemical parameters, yield, seed and oil quality, and fatty acid profiles of chia plants cultivated under alkaline soil conditions, as well as the on soil microbial activity. The results obtained reveal that both application methods positively influenced the growth and productivity of chia plants. However, the foliar application showed significant differences in the herb's fresh and dry weights and leaf pigments, whereas the drenching application caused more effect than the foliar spray application at the reproductive stage. Untreated chia plants showed a slight decline in the growth, productivity, and antioxidant level with an increase in Na content. However, microalgae applications significantly ameliorated these impacts as they induced an enhancement in the growth, leaf pigments, total protein and carbohydrate contents, nutrient content, seed and oil yields, as well as an increase in linolenic and linoleic fatty acids, with a reduction in saturated fatty acids, namely, palmitic and lauric acid. Soil drenching generated an improvement in the soil microbial activity and caused a reduction in the pH. The treatment of A. platensis with drenching application resulted in higher seed and oil yield, with an increase of 124 and 263.3% in seed and oil yield, respectively.
Collapse
Affiliation(s)
- Samah M. Youssef
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Rasha S. El-Serafy
- Horticulture Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Kholoud Z. Ghanem
- Department of Biological Science, College of Science and Humanities, Shaqra University, Shaqra, Riyadh 11961, Saudi Arabia;
| | - Abeer Elhakem
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Azza A. Abdel Aal
- Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| |
Collapse
|
50
|
Oleskin AV, Boyang C. Microalgae in Terms of Biomedical Technology: Probiotics, Prebiotics, and Metabiotics. APPL BIOCHEM MICRO+ 2022; 58:813-825. [PMID: 36531290 PMCID: PMC9734902 DOI: 10.1134/s0003683822060126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2023]
Abstract
Green, red, brown, and diatomic algae, as well as cyanobacteria, have been in the focus of attention of scientists and technologists for over 5 decades. This is due to their importance as efficient and economical producers of food additives, cosmetics, pharmaceuticals, biofertilizers, biofuels, and wastewater bioremediation agents. Recently, the role of microalgae has increasingly been considered in terms of their probiotic function, i.e., of their ability to normalize the functioning of the microbiota of humans and agricultural animals and to produce biologically active substances, including hormones, neurotransmitters, and immunostimulators. A separate brief subsection of the review deals with the potential functions of microalgae with respect to the brain and psyche, i.e., as psychobiotics. Moreover, algal polysaccharides and some other compounds can be broken down to short fragments that will stimulate the development of useful intestinal microorganisms, i.e., function as efficient prebiotics. Finally, many components of microalgal cells and chemical agents produced by them can exert important health-promoting effects per se, which indicates that they are as potentially valuable metabiotics (the term preferred by late Prof. B.A. Shenderov), which are alternatively denoted as postbiotics in the literature.
Collapse
Affiliation(s)
- A. V. Oleskin
- Department of Biology, Moscow State University, Moscow, Russia
| | - Cao Boyang
- Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|